Electrolyte Dependence of Charge Injection Processes for Electroactive Polymer Films

by

Mary M. Lien, Katsuhiko Naoi, and William H. Smyrl

Prepared for Publication in

in

Corrosion Research Center
Department of Chemical Engineering and Materials Science
221 Church St. SE
University of Minnesota
Minneapolis, MN 55455

June 15, 1989

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
Electrolyte Dependence of Charge Injection Processes for Electroactive Polymer Films

Mary M. Lien, Katsuhiko Naoi, and William H. Smyrl

Degradation of polymer films by reaction with anions such as CF_3SO_3^- has been observed. This is contrasted to reversible, non-degrading charge injection processes with these same salts in water solutions. An examination of the nature of the degradation for the polymer polyvinylferrocene (PVF) by the techniques of AC impedance, quartz crystal microbalance gravimetry (QCM), and Phase Detection Microscopy (PDI) will be presented.
Electrolyte Dependence of Charge Injection Processes for Electroactive Polymer Films

Mary M. Lien, Kazutoshi Nao, and William H. Smyrl

Corrosion Research Center,
Department of Chem. Eng. & Mat. Sci., University of Minnesota,
Minneapolis, Minnesota 55455 U.S.A.

"Differences in cyclic voltammetric behavior when using acetonitrile as an electrolyte solvent as compared to water solutions have been reported for redox polymers such as poly(vinylferrocene) (PVF). These differences are attributed to the degree of solvent uptake into the polymer film, activity of anion in the solvent, changes in site-site interaction parameters for the polymer film, and differences in the reduction wave deswelling process (see figure 1). Solvents penetrate glassy polymers and induce backbone motions of the polymer fibril. In the presence of any low molecular weight liquid, the polymer is swollen, and the free volume increases. The free volume may also change as the result of electrochemical cycling between the neutral and oxidized form of PVF.

Reversibility of the charge-injection process for these films varies with the salt and choice of solvent. Cyclic voltammetry and quartz crystal microbalance (QCM) studies of NaCFSO3 and NaPF6 in acetonitrile show irreversible degradation of PVF with charge capacity decreasing with each cycle and no net increase in mass (see figure 2). The same anions exhibit excellent reversibility in water solutions.

PVF films have been studied recently by impedance techniques (6), and were found to have three regions of behavior characterized by different relaxation times. At high frequencies, the simultaneous injection of holes (oxidation of the ferrocene pendant groups) and anions (to maintain charge neutrality) is the rate-controlling process (kinetic control). At intermediate frequencies, diffusion (of anions and holes) in the film is rate-limiting. At the lowest frequencies, the finite thickness of the films cause the impedance to become purely capacitive (charge saturation). The latter region has been termed the redox capacity region of impedance.

AC impedance analysis gives quantitative information about the charge-injection process. For the highly reversible system of LiClO4 in acetonitrile, no change in the three characteristic regions (kinetic control, diffusion control, charge saturation) was observed during cycling. For non-reversible systems of NaCFSO3 and NaPF6 in acetonitrile, consecutive cycles should produce an increase in the charge transfer resistance (high-frequency semicircle) and a decrease in the overall redox capacity flow frequency capacitive region.

Impedance analysis of PVF cycling in these salts will be presented.

An examination of the degree of electrolyte inclusion during break-in of dry (spin-coated) PVF films is possible with the use of QCM and Phase Detection Interferometric Microscopy (PDIM). Effects of changes in electrolyte concentration, associated cation and solvent will be discussed for redox films such as PVF.

Acknowledgement

This work was financially supported by Defense Advanced Research Agency and the Office of Naval Research.

References

POLYVINYLFERROCENE/ CYCLIC VOLTAMMOGRAMS

COMPARISON OF WATER VS. ACETONITRILE

Figure 1. Cyclic voltammetric behavior of PVF in solutions of 0.1 M LiClO$_4$ in acetonitrile and water.

Polyvinylferrocene

NaCF$_3$SO$_3$ in AN

Capacitive Loss During Cycling

Figure 2. Mass change of PVF films in 0.05M NaCF$_3$SO$_3$ in acetonitrile as solvent.