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EXECUTIVE SUMMARY

A new formulation for the calculation of radar cross
section of objects of arbitrary shape based on the solution
of the electromagnetic wave equation in a natural coordinate
system that conforms to the shape of the boundaries has been
developed. The natural coordinate system is determined from
the solution of an elliptical partial differential equation
subject to Dirichlet boundary conditions. The basic approach
is to solve the electromagnetic wave equation expressed in
the natural coordinate system 1in a region between the
scattering object and an fictitious interface that fully
envelopes the object (a circle for two dimensional obijects
and a sphere for three dimensional objects). Outside the
interface, the wave field can be expressed as infinite series
of Bessel types of functions. A unique solution is obtained
by matching the boundary conditions at the fictitious
interface. __ ; - -

Under the six-months DOD/SBIR Phase I Program funded by
DARPA , the development of an algorithm based on this
formulation to calculate the radar cross section of two
dimensional objects to demonstrate the advantages of this
approach has been successfully carried out. The formulation
is completely general and can be extended to analyze the
radar cross section of three dimensional objects. By using
the natural coordinate system, it is also possible to analy:ze
the radar cross section of objects of composite structure
that can be represented by nested surfaces of arbitrary

shapes.

Extensive benchmark calculations have been carried out
using the code. Comparison with analytical solutions for
scattering off simple objects showed excellent agreement to
less than 1% error with relatively trivial computational

requirements and effort. Results of calculated radar cross




section for ellipses, rectangles and crosses are compared to
show their distinctly different signatures. The availability
of such a code capable of efficient and accurate calculation
of radar cross sections can be expected to have application
to defense programs in three important areas. The first is
for use in interactive design of flight vehicles to rapidly
evaluate different design options. The second is for use in
interactive design of detection facilities for maximum
sensitivity and discrimination capabilities. Thirdly, with
further refinements to the code and advances in computer
hardware, it should be possible to implement a system on
manned and unmanned flight and space vehicles with capability
for on-line processing of radar signals for more selective

targeting and defensive manuvers.
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I. INTRODUCTION

The ability to calculate accurately the radar cross
section of objects of arbitrary shape with complex
composite structures is of interest to defense programs for a
variety of reasons. In the design of flight vehicles with
minimum radar Cross sections, it is desirable to be
able to interactively evaluate the design options by
numerical analysis before committing to hardware modeling
studies. For the design of detection systems, it is equally
important to be able to determine the response of various
types of threats in order to properly configure the
detection systems. In general, both monostatic cross
sections of Dbackscattered waves and multi-static cross

sections as seen by remote receivers are of interest.

In general, the radar cross section of an object can be
determined from the solution of the electromagnetic wave
equation subject to the boundary conditions at the surface of
the scattering object. For objects of very simple shape, such
as spheres and infinite cylinders, analytical solutions
exist from which the differential radar <cross sections
at any scattering angle can be determined. In the more
general case, the solutions can be found only by
numerical techniques. Furthermore, for complex, three
dimensional objects with composite structures, numerical
solutions by a brute force approach can be taxing for even
the most advanced computers and they are not well suited
for interactive or field usage. Therefore, there is the need
for more efficient algorithms for the accurate solution of

Maxwell's equations,

In recognition of such needs, we have developed a
significantly more efficient approach for the solution of
Maxwell's equations to calculate radar cross section of

three dimensional objects of arbitrary shape and composition.




A feature of the approach is the possibility to analyze the
response from nested surfaces of composite structures. With
support from the Defense Advanced Research Project Agency
(DARPA) under the 1988 DOD/SBIR Phase I program, we
have developed a formulation of this approach to

demonstrate its capabilities.

In the spirit of the SBIR program, which specifies that
the objective of the Phase I program is to establish insofar
as possible, the scientific or technical merit and
feasibility of the ides, we limited our objective of the
six~-month Phase I effort to developing the algorithm for
calculating the cross section for the scattering of
electromagnetic waves from infinitely conducting surfaces of
arbitrary two- dimensional shapes. The formulation can then
be generalized for treating scattering from fully three-
dimensional objects with composite structures under the
more extended Phase II efforts. The results of the Phase I
effort is fully described in this Phase I Final Report.
The mathematical concept underlying our approach is described
in Section II. Details of the formulation and the
algorithms for solutions can be found in the Appendices.
Examples of results from benchmark calculations are presented
in Section III. Conclusions regarding the demonstrated and
projected <capabilities of the methodology are discussed in
Section 1IV.

II. MATHEMATICAL CONCEPT

The basic problem we want to address is to solve the
electromagnetic wave equation in infinite space, subject to
boundary conditions imposed by the scattering object of
arbitrary shape in which the material parameters may be

inhomogeneous and anisotropic with sharp discontinuities.

It is intuitively ©obvious that the accuracy of the




solution is critically dependant on the proper

representation of the shape of the scattering object

in the computational grid used for the numerical
solution. For objects with a composite structure, such
shapes constitute a nested sets of surfaces. Therefore,

accurate representation of arbitrary shapes by a brute force
technique would require the use of a very fine grid which can

be computaticnally demanding.

To avoid this difficulty, we formulate the
electromagnetic wave scattering problem in a natural
coordinate system that conforms to the arbitrary shapes of
the nested series of surfaces. Far away from the scattering
object, we can also expect the effects due to the detailed
features of the scattering surfaces to be smoothed out and
it should then be possible to solve the wave equations on a
more conventional grid. To minimize the computational
efforts, we divide the infinite space into two regions
separated by a fictitious boundary that fully encloses the
scattering object (or circle for a two dimensional object).
Inside the fictitious interface, we solve the wave equations
in the natural coordinate system. Near the interface, the
natural coordinate system gradually conforms to the shape of
the interface. Outside of the interface, the wave equation
can be solved in a conventional coordinate system in which
the functional form of the solution is known and the boundary
conditions are simple. A unique solution is then obtained by
matching the two solutions at the fictitious interface. By
using this approach, we are able to achieve higher accuracy

with less computational effort.

Following this approach, the method of solution consists
of several steps. The first step is to generate the natural
coordinate system in the multiply connected region between

the scattering object and the fictitious interface. We then

rewrite the electromagnetic wave equation in this new




coordinate system. Because of the arbitrary shape of the
scattering object, the boundary conditions are complicated.
which will be governed by simple boundary conditions.
However, the natural coordinate system leads to simple
boundary conditions and the wave equation can be easily
solved numerically in the transformed region. Qutside the
fictitious interface, the solution can always be represented
by a harmonic series. The amplitudes of each ol the harmonics
is determined by matching to the interior solution at the

fictitious interface.

For the Phase I effort, we restrict ourselves to address
the two dimensional problem of calculating the scattering
cross section for infinite rods of arbitrary but constant
cross sectional shape. We chose as the fictitious interface
an infinite cylinder of radius a that fully surrounds the
scattering object and defines a doubly connected interior
region as shown in Fig. 1. We shall wuse the axis of the

infinite cylinder as the origin of a cylindrical reference
system (r,¢) with the ignorable coordinate z along the axis

of this fictitious cylinder.
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We assume there i1s a plane wave of specified amplitude,

polarization and angle of incidence given by the wave vector

ko propagating through the space and interacting with the
scattering object. The fields outside the boundary of the
cylinder may be written as the sum of the incident wave in
terms of the components of the wave vector kx, ky, k; and the
wave frequency ®; and the scattered wave, which we shall
express as a superposition of cylindrical waves of a known
analytical form obtained from the solution of the wave
equation incident on an ideal cylinder. The amplitude of this
scattered wave is unknown and it contains information on the
geometry and material characteristics of the scattering

object. In terms of the (r,¢) coordinate system, the incident

field is represented by
Ei_ -ilrek,—~wt) i Ex
=e (Eje,+E| e4) (2.1)

where Ei“ and Eil are the parallel and perpendicular

components of the incident field, and ko= (H€)!/2 w/c where ®
is the frequency of the incident wave.

The scattered field at a point P in the region outside

the matching interface, can be written as

E®=c ) AHYkoe'™ (2.2)
N=—oc0

where HS)(kor) is the cylindrical Hankel function of the first
kind of order n and argument k,r. The constants A, are complex

numbers that depend on the geometry and the material

characteristics of the scattering object. In the far-zone,
which is when the conditions kgr >>(koa)? and r >> Ay are

satisfied, the E-field can be approximated by a large




argument expansion for the Hankel function and its analytical

form can be written as

2 el (kol' -r /4)

E°P)=a/ = T () (2.3)
n .\/kor
where
T(¢)=2A,,ei““”"’2) (2.4)

The scattering cross section per unit length can be cbtained
as

o(¢)=%|T(¢)|2 (2.5)

The problem is now reduced to solving the wave equation
inside the cylindrical boundary of radius ro, and matching
the solution (with a scaling factor) to the sum of the
incident plane wave, (2.1), and the scattered cylindrical
wave, (2.2), at the fictitious c¢ylindrical surface where

there is no source.

In the more general case, we can model the scattering
object as a set of nested sharp interfaces across which the
properties of the media changes discontinuously. A natural
set of coordinates is one that conforms to this set of nested
interfaces. Each surface is represented by setting one of the
coordinates as a constant. We first identify the boundaries
of the sharp interfaces of abruptly changing properties in
the scattered object and assume that the material properties
between the sharp interfaces is inhomogeneous and anisotropic

but varies in a continuous manner. We define TN as a

coordinate function which is constant on each of the
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interfaces. A second coordinate function §is chosen to
intersect the 1 surfaces on the interfaces, and £=¢ on the

cylindrical boundary. We require both N and & to satisfy

Laplace's equation

V2n=0 (2.6)

and

ViE=0 (2.7)

subject to Dirichlet boundary conditions. In general, the
generated coordinate system will be orthogonal only if we

require

)
=0 (2.8)
9F

However, this requirement would not allow for arbitrary
spacing of the natural coordinate lines around the boundary.
In the general case when this condition is not satisfied, the
coordinate system will not be orthogonal. The system of
governing equations must then be transformed directly
through implicit partial differentiation rather than by use
of scale factors and differential operators as is possible
with orthogonal curvilinear systems. However, the advantages
of allowing for arbitrary spacing far outweighs the
complications of the transformation procedure which is
carried out analytically only once. Therefore, we shall use
the more general non-orthogonal curvilinear coordinate
system. An example of the natural coordinate system in the

physical plane ‘£ an irregular object is shown in Fig. 2.

The effect (f the transformation in this two dimensional
case 1is tc convert a doubly connected region bounded by two

closed contours of arbitrary shape in the physical plane into

a rectangular region in the transformed plane in which two




of the opposite boundaries are coincident in the physical
plane. As has been noted, the transformation must be
carried out by taking the partial derivatives according to
the chain rule. In general, the resulting equation will be
considerably more complicated than the original form.
However, the boundery conditions are now specified along
straight lines and the equations are to be solved in a simple

rectangular system.

The next step is to represent the Maxwell equations in
the natural coordinate system and determine the wave equation
for either the electric or the magnetic fields in the
interior of the fictitious cylinder. We will also base our
formulation on the tensorial representation of the equations
and vector fields, since all the information about the
geometry of the system can be contained in the components of
the metric tensor which simplifies the formulation of the

problem and the numerical algorithms, as a consequence.

For our present purpose, we shall consider the
simplified problem of a two dimensional scattering object
that is a perfect conducting infinite cylinder of arbitrary
cross sectional shape and solve for the wave equation in the
multiply connected region bounded by the scattering object
and the minimum cylinder that completely encapsulate this

object.

The Maxwell equations in the source free space are:

V.E=0 3 (2.9)
1dB
VXE=-::-Tt- (2.10)
V.eB=0 SE (2.11)
1
VxB=-
c ot (2.12)




where E = Ei +BS , Ef and ES are the incident and scattered
component of the electric field respectively. The same

notation stands also for the magnetic field in the region.

The boundary conditions at the surface of the perfect

conducting scatter are given by

e, * E = an q, (2.13)

e, x E = 0 (2.14)

e, B =0 (2.15)
ar

e, x B = = Js (2.16)

where e is the unit vector normal to the scatter surface,
and directed outward, gg is the surface charge density, and Jg
is the surface current density. From egs.(2.10) and (2.12), a
wave equation for the electric field can be written as
VxVxE:—i-az—E (2.17)
¢ ot
We shall represent this equation in terms of the natural
coordinates by making use of the conformal transformation
described in Appendix B. In order to simplify the analysis,
and to be able to present bench mark cases, we will assume
that the E-field of the incident plane wave 1is linearly
polarized in the direction parallel to an infinitely long
circular cylinder which is a perfect conductor. Therefore,
the scattered electric field will also be polarized p.rallel
to the cylinder axis. The wave equation given by (2.17)
becomes a scalar equation for ES®, which is the scattering

field in the physical domain (x,y), and it can be written as

VIEL + g B =0 (2.18)

10
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with the boundary conditions

LE, (x,Y) hoody =~ [ E' (x,y) Tooay (2.19)

[E (y) I, = [Egy (91) I, (2.20)

where Egye 1is the scattering field outside the matching
boundary, of radius Rg, and Ei is the incident plane wave. We
also require that the normal derivative of Ein be continuous

at Rg, that is,

e, ] [oE. |
[WL[T] -2

When transformed to the natural coordinate system, by making
use of Eq.B.13 in appendix B, the above wave equation (2.18)

becomes

0 Egg— 2B Egn+YEqq+ 12k E=0 (2.22)

where E is a function of (§ 1), and Ege ,Egy and Eqn are its
partial derivatives. The metric elements and the Jacobian, J,
of the transformation are calculated in Appendix B and can

be written as

a=x;+y3 (2.23)

P =xg xy + ¥z ¥y (2.24)

Y=xi+y} (2.25)

J=x§yn-x.ny§ (2.26)
11




The transformed boundary conditions are

[E, €Iy, =[EEn)h, (2.27)

[ Ef, G Jy, = [ El. 0,0 Iy, (2.28)

[aE:.,@,n)] _ [ aE;m@,r)} (2.29)
3'1 Mo - ;r r=R,

where &— ¢ when M > M,. The coefficients «,B ,yand the

Jacobian are calculated during the generation of the natural

coordinate system.

After the mesh is generated, the Helmholtz equation in

natural coordinates, (2.22), is to be solved by using finite
difference techniges. Since the factors o, B,yYand J are

function of the two coordinates & and T, the Helmholtz

equation has variable coefficients. However, this presents

no difficulty in the numerical solution.

The Helmholtz equation can be approximated as a set of
linear algebraic equations by the use of finite differences.
The matrix resulting from the finite difference equations is
sparse and well conditioned. As a result, standard sparse
matrix subroutines that perform Gaussian elimination can be
used to solve the set of linear equations. The use of a
sparse matrix solver makes the overall method very efficient
with respect to computational resources. Test cases
demonstrating the accuracy of the solution are presented in

the following chapter.

12




ITI. EXAMPLES OF BENCH MARK CALCULATIONS

To carry out the cross section calculations based on our
approach, we had to develop two computational modules. The
first module is for generation of the natural coordinate
system in the region between the scattering object and the
fictitious interface and transform of the wave equation in
this region into the natural coordinate system. The
formulation for the determination of the natural coordinate
system is described in detail in Appendix A. The algorithm
for the transformation of the wave equation into the natural
coordinate system is described in Appendix B. The numerical
technique for the solution of the wave equation in the
natural coordinate system and matching of the solution at the
fictitious interface to the series solution outside the
interface is described in Appendix C. In this section, we
present examples of calculated results and benchmark cases to
illustrate the application of the code to calculate the radar

cross section of two dimensional objects of arbitrary shape.
A, Generation of the Natural Coordinate System

The objective for defining a natural coordinate system
is to transform the governing equations from doubly connected
region R bounded by contours (surfaces for the fully three
dimensional case) of arbitrary shape into a rectangular
region R'. The effect is illustrated in Fig. 3 that relates
the region between a scattering object and an enclosing
circle in the (r,0) or (x,y) physical space to a rectangle in
(n§) natural coordinate space. The natural coordinates (n,§)
are obtained from solutions of Laplace's equations for Mand §
with Dirichlet boundary conditions: M = constant = mMj on C; ,
N= constant = 1M, on C,; E(x,y) is a multiple valued solution
with a branch of §(x,y) specified (but not constant) on C; and

C2 . The curve C; on the physical plane transforms to the

13
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Fig. 3

Mapping of the coordinate transformation

14
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lower Dboundary, C;', of the transformed plane. Similarly, C;
transforms to Cs', etc. The right and left boundaries of the
rectangular transformed plane, C3' and C4', are coincident in

the physical plane. The curve which transforms to these

boundaries connects C; and Cz and determines a branch cut for
the multiple valued function §(x,y). Thus the functions and

all derivatives are continuous across this cut.

The natural coordinate system 8o generated has a
constant TM-line coincident with each boundary in the physical
plane. The &-line may be spaced in any manner desired around
the boundaries by specification of the § boundary conditions,
or equivalently by specification of (x,y) at the equi-spaced
E-points on the N1 and N2 lines of the transformed plane.
Control of the spacing of the TN-lines may be exercised by

varying the elliptic system of which 1 and § are solutions.

To test the module, we have carried out the calculation
for the generation of the natural coordinate grids for a
number of two dimensional objects with geometric cross
sections of circles, ellipses, rectangles and crosses. To
speed convergence, we have found founding of sharp corners as
shown to be helpful but not necessary. Examples for each of
the four cases are shown in Fig. 4, 5, 6. and 7, respectively.
All computations were carried out on an IBM 3090. Using the
algorithm, convergence to less than 1% deviation 1is
achieved in only a few iterations for the elliptic case as
shown in Fig. 8a and 8b where we have plotted the normalized
changes in the x and y coordinates of the grid for the
natural coordinate system as a function of the number of
i-erations. Convergence to 0.2% is realized typically in 30
iterations and the accuracy continues to improve with further
iterations. Similar behavior are found for the other cases
where we have carried out bench mark calculatioans to
determine the number of iterations and computer processor

unit (CPU) time in seconds on the IBM 3090 as a function of

15
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Fig. 8 Convergence of the x and y coordinates of
the natural coordinate system
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convergence tolerance specified. The results are shown in
Fig. 9%9a, 9b and 9c for the case of the ellipse, cross and
rectangle, respectively. In all cases, the CPU time is less
than a few seconds for convergence tolerance of less than one
part per million. At this point in the development of the
code, we have made no effort to optimize the code and even
so, the computational requirement for the generation of the

natural coordinate system is quite insignificant.
B. Verification of the Helmholtz Solver

Making use of the natural coordinate system, the next
task is to transform the governing equations into the natural
coordinate system and solve the system of equations
numerically subject to the transformed boundary conditions.
To test the algorithm, we carried out a benchmark calculation
of a cylindrical stationary wave subject to simple boundary
conditions for which an exact analytical solution is

available for comparison.

The governing equation is the Helmholtz equation which

has the form
V2E9x+k2Eex=0 (31)

In cylindrical coordinates this becomes

19 %) 1 FEs

—=|r +——= + KPEg =0

ror\ or P 3¢ ox (3.2)
Assuming Ee¢x has the form

on = E(T)C°S¢ (33)

The solution of the equation is

Eqx = {AJ4(kr) + BY (kr)}cos¢ (3.4)

21
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where Ji(kr) and Yi(kr) are Bessel functions of the first and

second kind respectively. Using the boundary conditions

E,x|r=1=o (35)
Eex|r=r°=c°s¢ (3.6)
implies
N ~ Y,
" J1(K)Y(krg) — Jy(kro)Y4(k) (3.7)
and |
. J,(K)
- J.' (k)Y1(kr°) - J1 (kro)Y1(k) (38)

which gives the exact solution.

The numerical solution is obtained by transforming the
Helmholtz equation into the natural coordinate system. The
resulting equation in the (M,§) space has the form

o Egg - 2BEgy, + YEqq + KTE=0 (3.9)

with the boundary conditions

BEM =0 and EEW g =cost (3.10)

The equations are solved numerically and the results are
compared with the exact analytical solution as shown in Fig.
10a, 10b and 10c in which we compared the solutions along a
radial cut at 45-degree angle for three cases by taking 20,
40 and 60 radial grids. The points represented by the black
diamonds are the numerical results while the open squares
represent the exact analytical values calculated at the

corresponding grid position. The improved agreement of the

23
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numerical solution with the analytical solution with
refinement to the radial grid is readily apparent. Excellent
agreement is realized by taking 60 mesh points. The agreement
between the solutions as a function of the angle at a
constant radius for the three cases are shown in Figs. 1lla,

11b and llc. It can be seen that the trend is similar.

Based on these results, we concluded that by chosing a
fine enough mesh, the numerical solver will match to the
exact solution. This is due to the fact that the (x,y) points
generated have an error of o(h?) where h = the step size in
the radial direction. So as the number of MN-lines is
increased h will decrease and the computed solution will
become a better approximation to the exact solution. When a
mesh of Emax= 53 and Mmax = 42 is used a mean difference
between the exact solution and the computed solution
normalized with respect to the exact solution of 4.5% while
with a mesh of &max= 53 and TNmax = 62 the mean difference
between the exact solution and the computed solution
normalized with respect to the exact solution was found to be
2.6%. This implies that as the mesh is refined the computed

solution is converging to the exact solution.

It was also observed that the number of &-lines does not
have as great an effect on convergence as the number of N-
lines. In going from a mesh of gmax = 97 and NMmax = 21 to a
mesh of &max = 53 and Mmax = 42 the doubling of the number of
N-lines overcomes any decrease in convergence from decreasing
the number of &-lines.

C. Results of Cross Section Calculations
To establish the validity of the code, we compare the
results of the numerical calculations to the analytical

results for scattering from a perfect conducting infinite
cylinder of circular geometric cross section. An analytical
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solution for the case when the incident electric field 1is
linearly polarized (parallel to the axis of the cylinder) is
given in Appendix D, which is of the form

E'= ) ()" &, A, HY (ige) cos (n0)
& (3.11)

. 1forn=0
with €, ={ 2forn=1,2.3,...

where Ap is the coefficient of the nth harmonic in the series
representation of the analytical solution. For waves
scattered by an infinite cylinder, the magnitude of Ap as a
function of n for the first five harmonics are shown in Fig.
l12a. It can be seen that for low wave frequencies (or ka
values) the magnitude of Ap falls off very rapidly with
increasing n such that the contributions from high order
modes will be negligible. Fig. 12b shows that for higher
frequencies the contributions from high order modes is very
significant. In matching the interior solution to the
external analytical solution at the boundary, we need to
evaluate many high order terms for higher frequency incident

waves.

The total electric field as a function of the angle
around the scattering object for waves incident along ¢g=0 is
shown plotted in Fig. 13. The corresponding differential
scattering cross section as a function of the scattered angle
is shown in Fig. 14 for the case k = 1. In general, for high
wave numbers, the cross section is maximum in the forward
direction. The forward (¢ = ®) and backward (¢ = 0) scattering
cross section as a function of the wave number is shown in
Figs. 15 and 16, respectively. These results calculated from
the analytical expression provide a reference for evaluating

the accuracy of our numerical solution.
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The differential scattering cross section for the

infinite cylinder calculated with the code was used as a

bench mark. The results for the case of an incident wave
with wave number k = 1 is shown in Fig. 17 in which the
differential scattering cross section as a function of the
scattered angle is given by the curve on top and the natural
coordinate grid used for the calculation is shown at the
bottom. The results calculated with the code is compared with
the cross section obtained from the analytical solution as
shown in Fig. 18. The absolute value of the normalized cross
section are compared in the top figure and their differences
as a function of the scattered angle are plotted in the
bottom figure. It can be seen that the agreement is very good

and the deviation is less than 1% at all scattered angles.

To further verify the accuracy of the numerical
procedure, we evaluated the coefficient of the individual
harmonics at the matching interface for comparison with the
coefficients determined from the analytical solution. The
results are shown in Fig. 19 for the case ka = 1. It is seen
that the agreement is very good for the first five harmonics.
Since the contributions of the high order harmonics is
totally negligible in this case, it is reasonable to expect

the high degree of agreement between the two results.

To exercise the code, we calculated the differential
scattering cross sections for a variety of shapes by
systematically varying the wave number, the angle of
incidence and the number of modes included. In general, for
ka < 5, we found that higher order terms has negligible
effect on the solution as was to be expected. The cases
calculated are summarized in Table 1. The results are shown
in Figs. 20 through 30 and a variety of trends can be
observed, some are intuitively obvious and many are quite

interesting.
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Table 1. Summary of Cross Section Calculation.

Wave No. of Angle of
Fig. No. Shape Number Modes Incidence

20 Ellipse 0.5 6 0°

21 Ellipse 1.0 6 0°

22 Ellipse 3.0 6 0

23 Ellipse 5.0 6 0-

24 Short 1.0 4 0

Rectangle
25 Long 1.0 4 0
Rectangle

26 Short Arm 1.0 4 0
Cross

27 Short Arm 1.0 4 45°
Cross

28 Short Arm 1.0 4 90~
Cross

29 Short Arm 1.0 4 Varied
Cross

30 Long Arm 1.0 4 0
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Comparing the differential scattering cross section of
an ellipse shown in Fig. 21 with that of the circle shown
previously in Fig. 17 for the same wave number, we note the
appearance of side lobes at right angle associated with the
eccentricity of the shape. The dependence on the wave
frequency for scattering by the same elliptical object under
same angle of incidence can be seen by comparing Figs. 20,
21, 22 and 23.When the wavelength of the incident wave 1is
long compared to the scale length of the scattering okject,
the differential scattering cross section of the ellipse
resembles that of a circle for scattering of higher frequency
of waves. As the wavelength becomes comparable with the scale
length, the forward scattering cross section rises
dramatically by an order of magnitude and side lobes appear

at right angle.

The effect of the length of the scattering object along
the direction of incidence can be seen by comparing Figs 24
and 25 for two rectangles of different length. The magnitude
of the forward scattering cross section scales approximately
linearly with the length of the object while the percent
increase in the backward scattering cross section is much
more pronounced. Referring back to the cross section of the
ellipse shown in Fig. 21 which has similar aspect ratio as
the rectangle in Fig. 24, we note that in fact, the
characteristics of their differential scattering cross

sections are quite different.

The relative effects of pretruding arms on the
scattering cross section compared to length can be deduced by
comparing Fig. 25 for the long rectangle with Fig. 26 for a
short arm cross and Fig. 30 for a long arm cross. The most
notable feature is that increasing the length of the body
results in a significantly larger increase in the forward

scattering cross section than the effect of stubby pretruding
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side arms. Furthermore, increasing the length of the side
arms 1increases the forward scattering cross section but
reduces the backward scattering cross section, which is
somewhat counter intuitive. The effect of the angle of
incidence on the scattering c¢ross section is evaluated by
comparing Figs. 26, 27, and 28 as the angle of incidence is
increased from 0 to 90 degrees at 45 degree intervals. The
general trend is that magnitude of the cross section
increases as the angle of incidence is increased from 0 to 90
degrees. The forward scattering cross section as a function
of angle of incidence is shown plotted in Fig. 29. It should
be emphasized that this figure should be interpreted with
some care because when the angle of incidence in 180 degrees,

the "forward" direction is actually the backward direction.

IV. CONCLUSIONS

The present work was carried out under the Small
Business Innovation Research Phase I program which is limited
to six months in duration at approximately one-third man-year
level of effort. Under this effort, we have successfully
demonstrated the concept of using a natural coordinate system
that conforms to objects of arbitrary shape for the
calculation of radar cross sections of such objects. The
resulting algorithm is shown to be highly versatile,
efficient and accurate. The present code is 1limited to
treating two dimensional objects of arbitrary shape to
establish the scientific and technical merit of the concept.
The formulation, however, is completely general and can be

extended directly to the full three dimensional case.

Making use of the code, we have evaluated the radar
cross section for a variety of shapes. Comparison with known
analytical results for an infinite cylinder showed excellent
agreement. Reason for good agreement is also established. To

fully test the code, the differentially radar cross section
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for a variety of shapes were calculated by systematic
variation of the key parameters. Upon examining the results,
signatures associated with the different shapes can readily

be identified, suggesting techniques for reducing radar cross

sections.

The generalization of the code to three dimensions is
the logical next step that can lead to the availability of a
robust and efficient code for the calculation of radar cross

sactions.
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APPENDIX A
GENERATION OF NATURAL COORDINATE SYSTEM
A.l1 Mathematical Formulation.

A general method of generating natural coordinate system
is to let the natural coordinates be solutions of an elliptic
partial differential system in the physical plane, with
Dirichlet boundary conditions on all boundaries. The
procedure is not restricted to two dimensions, and allows the
coordinate tangential to the boundary to be distributed quite
easily as desired along the boundary, and is applicable to
all multiconnected regions. The coordinate system so
generated is not necessarily orthogonal, but orthogonality is
not required, and its lack only requires that the governing
equations of the physical system must be transformed directly
through implicit partial differentiation rather than by use
of the scale factors and differential operators developed for
orthogonal curvilinear systems. An orthogonal system cannot
be achieved with arbitrary spacing of the natural coordinate
lines around the boundary, and the capability for such

arbitrry spacing is of more importance than orthogonality.

The objective is to transform the two dimensional,
double connected region, R, bounded by two closed countours
of arbitrary shape into a rectangular region, R' , as shown

in Fig.l. The general transformation from the physical plane
(x,y) to the transformed plane (§n) is given by

HE kel 1)
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Similarly, the inverse transformation of (a.l) is
x| _[xEmn)
= (a.2)
yl LyGEm)
with the Jaccbian matrix

Xg X
J2=[ ; "] (a.3)
Ye Yn

which yields the Jacobian of the transformation

J = Xg¥n = Xnye (a.4)

The partial derivatives of a generic function f (x,y) are

transformed by

_9y) , axy) _ Yafe -~ Yely

Eenw Ew - J (a-3)
_ oD, Axy) _ ~Xnfe = xefy

Y=Ew w9 (a-0)

Since the basic idea of the transformation 1is to
generate transformation firnctions such that all boundaries

are coincident with coordinate lines, the natural coordinates
(§,M) are taken as solutions of some suitable elliptic

boundary value problem with one of these coordinates constant
on the boundaries. Using Laplace's equation as the generating

elliptic system, we have
&xx"'gyy:O (a.7)

Tlxx""nyy:o (a.8)
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with Dirichlet boundary conditions, M = constant = 7] on Cj ,

N = constant = M, on Cj ; € (x,y) a multiple valued solution
with a branch of §(x,y) specified (but not constant) on C3
and C3 . The curve C; on the physical plane transforms to the
upper boundary, C;', of the transformed plane. Similarly, Cj
transforms to C3', etc. The right and left boundaries of the
rectangular transformed plane, Cz' and C4', are coincident in
the physical plane. The curve which transforms to these
boundaries connects C; and C3 and determines a branch cut for
the multiple valued function § (x,y). Thus the functions and
all derivatives are continous across this cut.

Now since we wish to do all numerical computation in the
rectangular transformed plane, it is necessary to interchange
the dependent and independent variables in (a.7) and (a.8).
Thus, using the partial derivative transformations and the

chain rule, equation (b.13) in Appendix B yields
W§§—2ﬂX§n+‘YX.m‘=O (a.9)
ayee ~ 2BYen +VWnn =0 (a.10)

where the coefficients «, P and Yy correspond to the

components of the metric tensor of the coordinate

transformation, and are given by

a=xf‘+yf1 (a.11)
B = XgXy + YeYn (a.12)
2
y=x§+y€ (a.13)
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with the transformed boundary conditions given by

x] _[f&ny) .
[V] -l:fz(éﬂh)] - &m) e Cy

(a.14)

X 91(§-Tl2)] .
= , &, C
[y] [ga(é-nz) Gna) € Co

This system is a quasi-linear elliptic system with Dirichlet
boundary conditions for the physical coordinates in the
transformed plane. The differential equations of the system
(a.9) and (a.10) are considerably more complicated than those
of Egs.(a.7) and (a.8). However, in the first case the
transformed boundary conditions are specified on straight
boundaries, and the computation region is rectangular. We
have thus exchanged a problem having simple equations but
complex boundary conditions for a problem having complex
equations and simple boundary conditions. This statement also
holds for all partial differential equations which govern the
physical system solved on the natural coordinates.

The natural coordinate system so generated has a
constant N-line coincident with each boundary in the physical

plane. The &-lines may be spaced in any manner desired around
the boundaries by specification of the & boundary conditions,
or equivalent by specification of (x,y) at the equi-spaced &-
points on the M1 and 7, lines of the transformed plane.
Control of the spacing of the N-lines may be exercised by
varying the elliptic system of which & and M are solutions.

As noted above, orthogonality is not required of the
coordinate system for solution of a system of partial
differential equations. Indeed, normal derivatives on the

boundaries may be easily represented in a non-orthogonal
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system as follows: Let y= g(x), i.e., y-g(x)= f(x,y)=0, be

the equation of some boundary in cartesian coordinates. Then

x 1 : :
3y =nVi= TG [fe (@ Yn+Xq) =1t (@ ye+xe) s (a.15)
where g' = dy/dx. All derivatives in the last expression can

be calculated along coordinate 1lines in the natural
coordinate system. Thus it is not necessary to require
orthogonality at the body surface in order to get accurate

representation of the normal derivative.

A.2 Numerical Method.

The numerical solution of the system of Egs. (a.9) and
(a.10), with the boundary conditions given by Egs. (a.l14), is
accomplished by the use of a nine-point finite difference
approximation. The diagram in Fig.(a.l) shows the nodal
arrangement for the approximation, and the paramater D is
the separation between adjacent nodes. Now using central
differences to aproximate the partial derivatives of the
variables x and y with respect to § and T we obtain the

following expressions:

XE—2X0+XW
A
Xep = XNE ~ XNw — Xsg + Xsw (a.17)
n 2
4A
xan = XN—ZXc+Xs (a.18)
n~" 2 )
A
Xg ~ Xw .19
T (8-29)
XN~ Xs (a.20)
*n="2A
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And substituting the above expressions into Egs. (a.9) through

(a.14), we obtain

_adxg + Xw) — 0.5B(xng = Xnw — XsE + Xsw) + YXN + Xg)

2(a+7) (a.21)
oalyg+ yw) — 0.5B(yNe - YNw—YsE— Ysw) + KYN+Ys)
Y= (a.22)
2(a+7)
where
2 2
a=(xy—-xg) +(yN—Ys) (a.23)
B = (xg = xw)xn — Xg) + (e - YW(YN—Ys) (a.24)
2 2
Y= (xg —xw)" +(Yg - yw) (a.25)

The above system will now be solved on the (§,1)
rectangular plane with & =i, for i =1, 2, ... ,M-1 and N5 =
j, for j =1, 2, ... ,N. There are 4(M-1) known values
corresponding to the x and y points at the boundaries, and
therefore there are 2(N-2) (M-1) unknown values to be
determined. We will use Gauss-Seidel iteration scheme, which
is a direct substitution method using updated values as they
are generated in an iteration.

The values of x and y on the left and right boundaries
of the transformed plane, C3' and C4', are unknown but
continuous in 7. This implies that the values of xy,xsg and
XNg at i=M-1 are also the values i =1. These relations also
hold for the y-values at those boundaries. A good initial
guess is needed to obtain convergence in Gauss-Seidel method.
Since the x's and y's in the radial direction will fall
between the values at the boundaries it seems that a weighted
average of these values constitutes an appropriate guess.
Therefore, the values for x;j and y;j can be evaluated from
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z

(ST

xij =

{( —_: )x" +(%)X‘N} (a.26)

1)[ N-j j—1
Yij = 5{(WT)YH +(r{‘—1)¥m}
- - (a.27)

where j= 2,3,...,N-1 and i=1,2,...,M-1,

Z

—

Comparison of the difference of the absolute norm of the

kth and k - 1st iterations was used for checking convergence.
The || x || is calculated by
N-1M-1
Kk _ k-1)
22 4R
"X"(k)= j=2i=1 (a.28)
(M-1)(N-2)

where the difference in the norms is calculated as

Ditt. Ixll = | lx® - x| & | (a.29)

And similarly for the difference in *the y-norm. If the
difference in the norms is less than a given tolerance the
iteration process converges and the final values for x and y
will define the grid points corresponding to the (&,n)

coordinates.

The set of finite difference Egs. (a.21) and (a.22) has
been successfully solved for a number of two dimensional
objects with wvarious geometric cross sections corresponding
to circles, ellipses, rectangles and even more arbitrary
geometries. For all these cases the outer boundary is defined
by a perfect circle, as desired by the matching interface in
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the scattering problem. The plots shown are of §&= constant
lines and M=constant lines in the physical plane.

The specification of the convergence tolerance was found

to be dependent on the number of iterations. The number of

iterations as a function of convergence tolerance has the
form of ce~1l/x ( where x = convergence tolerance ). A false
convergence was found when the number of iterations was below
150. This implies that the convergence tolerance must be at
most 0(10-4). Also the N-1 contour is reguired to be
cylindrical which implies that the deviation in the radius
must be small. A convergence tolerance of 0(10'7) satisfied
both of the above criterion.

It was observed that the number of points per contour
had a more significant effect on the cost of generation than
did the number of contours. The doubling of the number of
contours increased the number of iterations by less than 5%.
The doubling of the number of points per contour doubled the
number of iterations required. It was also observed that the
greater the number of.contours the better the resolution near

the inner boundary.
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APPENDIX B
Transformation Algorithm

I. Derivatives and Vectors in the Transformed Plane

Given that x=x(&m) and y=y(§,M) we obtain a set of
relations in the transformed (x,h) plane.Let f = f(x,y) - a

twice differentiable scalar function of x and y.

|91 =Xy = xnye

By the chain rule we obtain

()= o=t
th) \Xq yql\ly fy
hy__1 (Yn -Ygxfé)
(fv) |91 \=xn xg Aty (b-1)

where |J| = det J.

Thus,

With another application of the chain rule we obtain

(fgg\ ffxx\

f&n fxv

fan [= M fyy

e te

\ fn / \fy)

where

A B

M=|000
000J

X 2y YE
A =] XeXq XgYntXn¥e YeYn

"121 2XnYn Vf\
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Xer Ye
B=|Xen Yen

Xm Yan

detM=detA  [J]|=[J[4

By inverting the 5x5 matrix M we obtain the relations between

the derivatives of f in the x-y plane with respect to the

derivatives in the x-h plane.

fex (fee )
fxy f&n
-1
fyy |=M"} fyq
f fe
Lfy/ th /
where
1 lol-c D
M= e
o 0o o |43y
Ya  2vg¥n V3
C=|—Xp¥n Xe¥n+tXq¥e —XeYe
2
G 2 K
D={ xqa-ysb —Xga+yeb
~XnC+ynd XgC-y.d
Xn®-Yn9 —Xe0+Y:eg
where

2
a= ngnn = 2YeYnYEq + YnYes

2
b= Vg"nn = 2YgYnXen *+ YnXeg

61

(b.2)




C = XnYn¥zg ~(XgYn + XnYe)yen + XeYeYnn
d = XnYnXeg ~(XgYn + XnYE)Xen + XgYeXnq

2
© = Xn¥ gz = 2XgXnYxn + Xe¥mn

2
9 = XnXeg — 2XgXnXen + x%x,m

f=(2f_)=&ﬁs:ﬂ
* Ao [l

f = ( % ) _ (xsf,;;|xnf5)

_ ( CA ]= (Yafeg = 2¥eYnfin + YEtne)
a2 412

Frx

[a(X.,.lfg - ngﬂ) + b(yé, - ynfg)]

NIE

- [ CAl ) - ORfeg — xeXnfen + XEton) +

f, =

[8(xnfe — Xety) + Gyefn — Ynfe)]
lu]?

¢ o LOeyn + Xnyelfen - XYty — XY afee]
v ME '

[d(ynfe - yefn) + C(xgty — Xqfe)]
413
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From (1) and (2) we obtain the derivative transformations

(b.3)

(b.4)

(b.5)

(b.6)

(b.7)




The Laplacian is

V2 = (afee — 2B + vhoy) +
[y 2

[(oxeg — 2Bxen + Piyn)Yeln — Yuf)] |

lJ]2

(aygr — 2BYgn + 1nn)(Xnfe — Xefn)
[J]2

- (lfgg - 2Bf§n + ‘Yf,m + O’fn + Tf;

V2
|y ]2

where
a2 +y2
B = xgxn +yeyn
Y=XE+¥E
Dx = oxge — 2Bxgn + VX

Dy = ayee ~ 2Byen + 1nn

EDX_XED
o=> 0] .

e XDy —y,Dx
9]

In particular the derivatives of §(x,y) and n(x,y) are

£ _ 3y - byy
"" NIE

(b.8)

(b.9)

(b.10)

(b.11)




_ 8Xp = gYq
CARNIE

(a +8)x, - (b+g)yy o

v = =
lJ]3 [ ]2

Similarly

ME (b.12)

2 2
£ V E=0 and VN=0 .pen 6 =0 and T = 0 and (9) is transformed
into

V3 = ocfee — 2Bty + Vg
|y |2

(b.13)

II. Unit Tangent and Unit Normal Vectors in the (x,h) plane

Utilizing (3) and (4) we have

m__¥n _ yeitxg b.14
© 7 Tl Vv (b-14)

which 1is the unit vector normal to a line of constant h.
Similarly the unit vector normal to a line of constant x is

given by

®_ Y& _ Yol= Xl
A R (b.15)

The unit tangent vectors are given by

I(n) = ﬂ(n) xKk= E%Yi
Y (b.16)
{® = ® x = Xt Ynd

3
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APPENDIX C
METHOD OF SOLUTION FOR FINDING FQURIER COEFFICIENTS

Because of the linearity of the governing eguations, we can
write the total field, E..., as the sum of an incident field and

a scattered field.

Etot = Ein + Es

E = e—ikrcos(Mo)
in=

+o0
Ea= D, ApHn(kne™
m = oo

The constants, A,, are generally complex. H, are

cylindrical Hankel Functions of the first kind of order m:
Hy = +iYm
and eimé = cos(mé) + i sin(m¢)

On the inside boundary

Eiot = 0, therefore, E, = ~-E;,

The scattered field can be broken down into a real and

imaginary part:

+oo
(Egr = Z {amJm = BmY mlcos(me) ~ [an, Y + brd misin(me)

M= —oo
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+00
EJ = 3, [8yYm +Dydpy]cos(Mb) + [y, — by Yyplsin(me)

Mm = —oo

It is desirable to combine terms so that the summation is
over positive integers.

(EQR = [8gJy = boY,]

+ Y Tapdm + 81 = DY = b_n(-1)"Y,] cOS(me)

m=1

+oo
= D [8Y i = 81D + Brdiy = b (1)l sin(me)

m=1

(Eg)i = [a5Yo + byl

400
+ z [aqYm + A=Y + By + b_(=1) ") cOS(MO)

m=1

4oo
+ D [y = A1)y = by Y + b_n(~1)"Y ] sin(me)

m=1
For the ideal case of an obstacle having a circular shape, these
equations can be matched - equated to Fourier expansions of the
boundary conditions.
For example, at r=1,

(Eg)r = —coslk cos(¢ — )] = f(9)

(Egh = +sin[k cos($ — ¢,)] = g(9)
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Both f(¢) and @g(¢) can be expanded as Fourier series:

H0) = Ao+ D, Ay COS(MY) + By, sin(me)

m=1

<00
9 =C,+ z C,, cos(m¢) + D, sin(m¢)

m=1

Matching mode by mode gives:
~ A, _ Jo =Yo|| 2
= Col LYo Jo JLbo

and for m=1 to +eo

If we were solving the problem in cylindrical coordinates, the
unknown constants {am, a.,, bm, b_;] could be easily determined

Anl [Ny H-D"Jp
Bn| |-Yn, H-D"Yn,
Cm| [+Y, +H-D"Y,
NN A ) A

D™
+H=1)"Jp,
+("1 )me

H-1)"Yp, ]

LEY

by solving the simple 4x4 system of linear equations.

For the general boundary shape such that

Tops = ri(9)

The problem is more complicated.

ONn TLine

(Eg)r = —coslk ri(¢) cos(é — ¢,)]
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(Egh = +sinlk ri(¢) cos(¢ - ¢,)]

However, in the natural coordinate system, (§,7), the boundary
r; (§) corresponds to M=1l. We are at liberty to define the

following expansion:

+oo
&) = A, + Z A, cos(mg) + B, sin(mé)
m=1

g€) =C, + z C,, cos(mt) + D, sin(m¢)

m=1

§-=(2n (&—1))

where ax

~s

The constants X, B, C,, D, are line/contour integrals over the

boundary shape.

. -1 2%

e.g. ==/ cos(kr(£") cos(@(&) - ¢o)) &’

since r(§") and ¢(§") are points on the surface in the parameter

g

For this to work, we need to find functions as the following

form:

[E.EmIr= Y, {an [ALEM cos(me) - AZ(E.n) sin(me)]
Mw—oo

—by, [BL(E,) cos(mE) - B2(E,n) sin(m& "1}
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[EsE i = z {am [A2 (E,n) cos(ME) + ALE,n) sin(m&))

+b, [B(En) cos(mE) - BLE) sin(m& )1}

In which the general functions Al (§,M), 22, (§,M), B (E, M),
B2, (E,N) replace the Bessel functions used in cylindrical

coordinates. We can pick the natural coordinate system in such a
way that, at the outside boundary, r=r, or N=Nmax: E=d.

Now if at r=r.,

Al > Jn, A2 Y
m = Ym By = Jn
AD Ay
- and so on

or dr

and if we force:
H (AL 1) cos(m&)) =0 H(A2(E " n) sin(mE)) =0

then Es(§,mn) matches into the cylindrical coordinate system
smoothly. The operator H is the Helmholtz equation in &, 1)

space.

& Py Py 2

Hiy) = a2 - 2B + Y +J4Py =0

a§2 m anZ
The functions Al,, ... are generalized eigenfunctions, which are
determined numerically by solving the H equation subject to
proper boundary conditions. At n=1 Al,, ... are simply
constants.
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N~ Am = Im(kro)

A _(aJm(kr) )
o \ o J

The solution for Al consists of a two point Boundary value
problem which requires a shooting method under general

conditions.

As an illustration, consider:

H(A! cos(m&)) =0

The solution procedure involves:

1. set (Ap cos(ME ) . = Jmkr,) cos(mt)
2. Pick an initial value for (A:n)n=1 = constant = A,1n

3. solve HIAL cos(m&)] = 0

4. Check the slope at r=r_, to see whether or not:
1 1
AL aJl
o or

If agreement is unsatisfactory, pick a new value of A", and go

back to step 2.

In turn, all four functions can be generated and four general
constants, (Al;)", (A%,)*, which depend only on the problem

geometry, are found. Now, we can match the B.C. on the obstacle
at N=1 by using the following:
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An] [+AL +#=D™A! B! —1)"8!][ am
Bn| |-AZ «-1)"A2 -B2 +-1"B2 || a.m
Co| |+A2 +=1)"A2 482 +(-1)™B2 || by
D] |-A% ~=D"A -8, #-1)"8},] [ b_n]

Solving easily for a,, a-n, bp, b-n.
Note that the incident angle, ¢o, affects only the RHS values.
Therefore, ¢, can be varied without needing to recalculate the

eigenfunctions Al,,

Finally, for m=0,

Ao =a, Al - b, B}

éo=aoB;+boA;

as r = r,

Ag — Jo(kro)
A, _(B(Jokr))
or \ or /o

]

H(A:,)=O and analogously for Bi.
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APPENDIX D
INFINITELY LONG CIRCULAR CYLINDERS - NORMAL INCIDENCE

I. Formulation

Scattering from an infinitely 1long cylinder, when the
incident field propagates normal to the cylinder axis (taken as
the z axis) is essentially a two dimensional problem. This is
evident because there is no variation in the incident field or
in the cylinder properties in the axial or z direction; hence,
the scattered field will not vary in the 2z direction. The
cylinder surface is a natural coordinate surface in this system
(i.e., r = a), and boundary value techniques give an exact

solution.

The incident wave is considered to be planar, and, in
general, is polarized arbitrarily «.wever, it can be resolved
into two components : (1) an E-field component parallel to the
cylinder axis, and (2) an E-field perpendicular to the same axis
(or an H-field component parallel to the axis). Each case is
then treated separately. The two cases will be distinguished by
i or l, or TM and TE, referring to (1) and (2) above
respectively. The plane of incidence is considered to be the x-z

plane.

Since an electromagnetic field can be expressed entirely in
terms of either the electric or the magnetic field, the problems

can be solved for

Plane
incident

wave
Fig. 1 Scattering geometry for an infinitely long circular cylinder with axis perpendicular to the page.
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the two cases by : (a) using only the axial electric field for
case (1), and (b) using only the axial magnetic field for case
{(2). In eithexr case, both the incident and scattered fields
posses only axial components. The boundary conditions at the
cylinder can be expressed in terms of these axial components,
and a scalar problem rather than a vector problem must be
solved, which simplifies the solution considerably. (Such is not
the case with a sphere, because the incident field strikes the
sphere at different angles corresponding to different points on

the sphere; hence, that problem retains a vector nature.)

Consider the incident wave to be resolvable into components

of the form

i kx| EJZ

i o-kgx] ™l

E=e - (d.1)
Ei¢

where the field is incident from the left in figure 1. The

scattered field at point P' can be expressed for each of the

above two scalar field components as

ER(P) = B} ) (-)"e,AH (grcos(ng)) (d.2)
n=0
HI(P) = HilZ(—i)“e,,B,,Hﬁ,1 )(kor)cos(nop') (d.3)
and n=0
where
H,(P) = —~E|
L noL
and

e,,={1 forn=0
2 forn=1,2.3,...

In the above equations, Hn(l)(kor) is a cylindrical Hankel

function of the first kind of order n and argument kor; it has
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the proper behavior large r corresponding to the time convention
used here. The constants Ap and Bp are functions only of the
cylinder material and radius, and are given in following
sections for the cylinder type considered. It is again pointed
out that in case (1), both the incident and scattered electric
fields are polarized parallel to the cylinder axis; while in
case (2), the incident and scattered magnetic fields are

polarized parallel to the axis.
II. Far-Zone Simplification and Scattering Width

Simplification of the above series solution is possible
when (i) kor >> (kor)? and (ii) kor >> 1 (or r >> Ao ). In this

case, a large-argument expansion can be used for the Hankel

function. That is

i /2 e(kO"%)
Ej(P) = E'r\/: T(¢) (d.4)
I N = Tt e

 releed
Hi(P')=Hll\/ge J%; T.@) (d.5)

where
Ty#) = D -1 e Aqcos(ng) (d.6)
n=0
and
T, = 2 (-1)"eB,cos(ng)
n=0

In contrast with the exact Mie series for far-zone
scattering from a sphere, the field from an infinite cylinder
decreases as l/Vr, rather than the 1/r dependence for objects of

finite dimensions, such as spheres. Such must be the case in
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order for the total energy in the diverging scattered fields to

be conserved.
4 ,
cﬁ(¢')=—k;| Ty(9) |2 (d.7)
and

63(¢) = % | T,0 |2

Two special scattering directions give further simplification

(a) Backscattering. Here , ¢' = 0, and the above results
simplify
n
T = D (-1 enA, (d.8)
n=0
and

T,0)= ) (1,8,
n=0

The backscattering widths become

50 = | D -er
n=0

and
50 = %I D (1B, |2
n=0

(b) Forward Scattering. Here, ¢' = 1, and the scattering
amplitudes simplify to

T =D A,
n=0

and
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Tym= D eB,
n=0

The forward scattering widths then become

oy (r) = %I Z,e,,An 2
n=0

and

4 .
o}(n) = EI Zean |2
n=0
III. Perfectly Conducting Cylinder

The coefficients Ap and Bp appearing in the exact solution
for the perfectly conducting infinitely long cylinder at normal

incidence are

Jn(kod)

A,=-
n HS )(koa)

and

_ Jylked)
HM"(kqa)

where the primes represent derivatives with respect to the
expressed argument.Jp(kepa) is the usual cylindrical Bessel
function of order n and argument kpoa. These coefficients are
easily generated on a computer by recurrence techniques, or are
found in the tables.
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