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EXECUTIVE SUMMARY

A new formulation for the calculation of radar cross

section of objects of arbitrary shape based on the solution

of the electromagnetic wave equation in a natural coordinate

system that conforms to the shape of the boundaries has been

developed. The natural coordinate system is determined from

the solution of an elliptical partial differential equation

subject to Dirichlet boundary conditions. The basic approach

is to solve the electromagnetic wave equation expressed in

the natural coordinate system in a region between the

scattering object and an fictitious interface that fully

envelopes the object (a circle for two dimensional objects

and a sphere for three dimensional objects). Outside the

interface, the wave field can be expressed as infinite series

of Bessel types of functions. A unique solution is obtained

by matching the boundary conditions at the fictitious

interface... /

Under the six-months DOD/SBIR Phase I Program funded by

DARPA , the development of an algorithm based on this

formulation to calculate the radar cross section of two

dimensional objects to demonstrate the advantages of this

approach has been successfully carried out. The formulation

is completely general and can be extended to analyze the

radar cross section of three dimensional objects. By using

the natural coordinate system, it is also possible to analyze

the radar cross section of objects of composite structure

that can be represented by nested surfaces of arbitrary

shapes.

Extensive benchmark calculations have been carried out

using the code. Comparison with analytical solutions for

scattering off simple objects showed excellent agreement to

less than 1% error with relatively trivial computational

requirements and effort. Results of calculated radar cross
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section for ellipses, rectangles and crosses are compared to

show their distinctly different signatures. The availability

of such a code capable of efficient and accurate calculation

of radar cross sections can be expected to have application

to defense programs in three important areas. The first is

for use in interactive design of flight vehicles to rapidly

evaluate different design options. The second is for use in

interactive design of detection facilities for maximum

sensitivity and discrimination capabilities. Thirdly, with

further refinements to the code and advances in computer

hardware, it should be possible to implement a system on

manned and unmanned flight and space vehicles with capability

for on-line processing of radar signals for more selective

targeting and defensive manuvers.
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I. INTRODUCTION

The ability to calculate accurately the radar cross

section of objects of arbitrary shape with complex

composite structures is of interest to defense programs for a

variety of reasons. In the design of flight vehicles with

minimum radar cross sections, it is desirable to be

able to interactively evaluate the design options by

numerical analysis before committing to hardware modeling

studies. For the design of detection systems, it is equally

important to be able to determine the response of various

types of threats in order to properly configure the

detection systems. In general, both monostatic cross

sections of backscattered waves and multi-static cross

sections as seen by remote receivers are of interest.

In general, the radar cross section of an object can be

determined from the solution of the electromagnetic wave

equation subject to the boundary conditions at the surface of

the scattering object. For objects of very simple shape, such

as spheres and infinite cylinders, analytical solutions

exist from which the differential radar cross sections

at any scattering angle can be determined. In the more

general case, the solutions can be found only by

numerical techniques. Furthermore, for complex, three

dimensional objects with composite structures, numerical

solutions by a brute force approach can be taxing for even

the most advanced computers and they are not well suited

for interactive or field usage. Therefore, there is the need

for more efficient algorithms for the accurate solution of

Maxwell's equations.

In recognition of such needs, we have developed a

significantly more efficient approach for the solution of

Maxwell's equations to calculate radar cross section of

three dimensional objects of arbitrary shape and composition.

.. .. . . . . ., I1



A feature of the approach is the possibility to analyze the

response from nested surfaces of composite structures. With

support from the Defense Advanced Research Project Agency

(DARPA) under the 1988 DOD/SBIR Phase I program, wP

have developed a formulation of this approach to

demonstrate its capabilities.

In the spirit of the SBIR program, which specifies that

the objective of the Phase I program is to establish insofar

as possible, the scientific or technical merit and

feasibility of the idea, we limited our objective of the

six-month Phase I effort to developing the algorithm for

calculating the cross section for the scattering of

electromagnetic waves from infinitely conducting surfaces of

arbitrary two- dimensional shapes. The formulation can then

be generalized for treating scattering from fully three-

dimensional objects with composite structures under the

more extended Phase II efforts. The results of the Phase I

effort is fully described in this Phase I Final Report.

The mathematical concept underlying our approach is described

in Section II. Details of the formulation and the

algorithms for solutions can be found in the Appendices.

Examples of results from benchmark calculations are presented

in Section III. Conclusions regarding the demonstrated and

projected capabilities of the methodology are discussed in

Section IV.

II. MATHEMATICAL CONCEPT

The basic problem we want to address is to solve the

electromagnetic wave equation in infinite space, subject to

boundary conditions imposed by the scattering object of

arbitrary shape in which the material parameters may be

inhomogeneous and anisotropic with sharp discontinuities.

It is intuitively obvious that the accuracy of the
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solution is critically dependant on the proper

representation of the shape of the scattering object

in the computational grid used for the numerical

solution. For objects with a composite structure, such

shapes constitute a nested sets of surfaces. Therefore,

accurate representation of arbitrary shapes by a brute force

technique would require the use of a very fine grid which can

be computationally demanding.

To avoid this difficulty, we formulate the

electromagnetic wave scattering problem in a natural

coordinate system that conforms to the arbitrary shapes of

the nested series of surfaces. Far away from the scattering

object, we can also expect the effects due to the detailed

features of the scattering surfaces to be smoothed out and

it should then be possible to solve the wave equations on a

more conventional grid. To minimize the computational

efforts, we divide the infinite space into two regions

separated by a fictitious boundary that fully encloses the

scattering object (or circle for a two dimensional object).

Inside the fictitious interface, we solve the wave equations

in the natural coordinate system. Near the interface, the

natural coordinate system gradually conforms to the shape of

the interface. Outside of the interface, the wave equation

can be solved in a conventional coordinate system in which

the functional form of the solution is known and the boundary

conditions are simple. A unique solution is then obtained by

matching the two solutions at the fictitious interface. By

using this approach, we are able to achieve higher accuracy

with less computational effort.

Following this approach, the method of solution consists

of several steps. The first step is to generate the natural

coordinate system in the multiply connected region between

the scattering object and the fictitious interface. We then

rewrite the electromagnetic wave equation in this new
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coordinate system. Because of the arbitrary shape of the

scattering object, the boundary conditions are complicated.

which will be governed by simple boundary conditions.

However, the natural coordinate system leads to simple

boundary conditions and the wave equation can be easily

solved numerically in the transformed region. Outside the

fictitious interface, the solution can always be represented

by a harmonic series. The amplitudes of each oZ the harmonics

is determined by matching to the interior solution at the

fictitious interface.

For the Phase I effort, we restrict ourselves to address

the two dimensional problem of calculating the scattering

cross section for infinite rods of arbitrary but constant

cross sectional shape. We chose as the fictitious interface

an infinite cylinder of radius a that fully surrounds the

scattering object and defines a doubly connected interior

region as shown in Fig. 1. We shall use the axis of the

infinite cylinder as the origin of a cylindrical reference

system (r, ) with the ignorable coordinate z along the axis

of this fictitious cylinder.

z

X8x, y

Fig 1.

4



We assume there is a plane wave of specified amplitude,

polarization and angle of incidence given by the wave vector

k. propagating through the space and interacting with the

scattering object. The fields outside the boundary of the

cylinder may be written as the sum of the incident wave in

terms of the components of the wave vector kx, ky, k, and the

wave frequency 0); and the scattered wave, which we shall

express as a superposition of cylindrical waves of a known

analytical form obtained from the solution of the wave

equation incident on an ideal cylinder. The amplitude of this

scattered wave is unknown and it contains information on the

geometry and material characteristics of the scattering

object. In terms of the (r,O) coordinate system, the incident

field is represented by

Ei = e -i(r' k.-( ) ( E' e + El eo) (2.1)

where Eill and Eil are the parallel and perpendicular

components of the incident field, and ko= (g)1/2 (O/c where 0
is the frequency of the incident wave.

The scattered field at a point P in the region outside

the matching interface, can be written as

E' (P) = e- t AF H1 ) (kr) ei n (2.2)

where H(1) (kor) is the cylindrical Hankel function of the first

kind of order n and argument kor. The constants An are complex

numbers that depend on the geometry and the material

characteristics of the scattering object. In the far-zone,
which is when the conditions kor >>(koa) 2 and r >> XO are

satisfied, the E-field can be approximated by a large

r , 5



argument expansion for the Hankel function and its analytical

form can be written as

e (korC /)

Es (P) e e' J T(*) (2.3)

where
00

T () = An ei(-) (2.4)

n=-0

The scattering cross section per unit length can be obtained
as

4 12
a()= z I T(o) (2.5)

The problem is now reduced to solving the wave equation

inside the cylindrical boundary of radius ro, and matching

the solution (with a scaling factor) to the sum of the

incident plane wave, (2.1), and the scattered cylindrical

wave, (2.2), at the fictitious cylindrical surface where

there is no source.

In the more general case, we can model the scattering

object as a set of nested sharp interfaces across which the

properties of the media changes discontinuously. A natural

set of coordinates is one that conforms to this set of nested

interfaces. Each surface is represented by setting one of the

coordinates as a constant. We first identify the boundaries

of the sharp interfaces of abruptly changing properties in

the scattered object and assume that the material properties

between the sharp interfaces is inhomogeneous and anisotropic

but varies in a continuous manner. We define T1 as a

coordinate function which is constant on each of the
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interfaces. A second coordinate function 4 is chosen to

intersect the f surfaces on the interfaces, and =* on the

cylindrical boundary. We require both 11 and 4 to satisfy

Laplace's equation

V2 O (2.6)

and

V2 =0 (2.7)

subject to Dirichlet boundary conditions. In general, the

generated coordinate system will be orthogonal only if we

require

0 (2.8)

However, this requirement would not allow for arbitrary

spacing of the natural coordinate lines around the boundary.

In the general case when this condition is not satisfied, the

coordinate system will not be orthogonal. The system of

governing equations must then be transformed directly

through implicit partial differentiation rather than by use

of scale factors and differential operators as is possible

with orthogonal curvilinear systems. However, the advantages

of allowing for arbitrary spacing far outweighs the

complications of the transformation procedure which is

carried out analytically only once. Therefore, we shall use

the more general non-orthogonal curvilinear coordinate

system. An example of the natural coordinate system in the

physical planc f an irregular object is shown in Fig. 2.

The effect Qf the transformation in this two dimensional

case is tc convert a doubly connected region bounded by two

closed contours of arbitrary shape in the physical plane into

a rectangular region in the transformed plane in which two

8



of the opposite boundaries are coincident in the physical

plane. As has been noted, the transformation must be

carried out by taking the partial derivatives according to

the chain rule. n general, the resulting equation will be

considerably more complicated than the original form.

However, the boundary conditions are now specified along

straight lines and the equations are to be solved in a simple

rectangular system.

The next step is to represent the Maxwell equations in

the natural coordinate system and determine the wave equation

for either the electric or the magnetic fields in the

interior of the fictitious cylinder. We will also base our

formulation on the tensorial representation of the equations

and vector fields, since all the information about the

geometry of the system can be contained in the components of

the metric tensor which simplifies the formulation of the

problem and the numerical algorithms, as a consequence.

For our present purpose, we shall consider the

simplified problem of a two dimensional scattering object

that is a perfect conducting infinite cylinder of arbitrary

cross sectional shape and solve for the wave equation in the

multiply connected region bounded by the scattering object

and the minimum cylinder that completely encapsulate this

object.

The Maxwell equations in the source free space are:

VoE=0 (2.9)

V x E =- I" (2.10)

V .B=0 (2.11)
1 bE
C x(2.12)
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where I - Ei +Z s , Z! and Z3 are the incident and scattered

component of the electric field respectively. The same

notation stands also for the magnetic field in the region.

The boundary conditions at the surface of the perfect

conducting scatter are given by

e n  E = 4 q, (2.13)

e n x E = 0 (2.14)

e n * B =0 (2.15)
47

en x B =- Ji (2.16)
c

where on is the unit vector normal to the scatter surface,

and directed outward, q. is the surface charge density, and Js

is the surface current density. From eqs. (2.10) and (2.12), a

wave equation for the electric field can be written as

1 2 E
Vx V x E = I 2 (2.17)

We shall represent this equation in terms of the natural

coordinates by making use of the conformal transformation

described in Appendix B. In order to simplify the analysis,

and to be able to present bench mark cases, we will assume

that the E-field of the incident plane wave is linearly

polarized in the direction parallel to an infinitely long

circular cylinder which is a perfect conductor. Therefore,

the scattered electric field will also be polarized F.rallel

to the cylinder axis. The wave equation given by (2.17)

becomes a scalar equation for Es , which is the scattering

field in the physical domain (x,y), and it can be written as

; =o 0(2.18)

10



with the boundary conditions

[ E (x,y) ]body [ E (x,y) ]body (2.19)

[ En (x,y) ]RO [E ,t (,r) IRo (2.20)

where Eout is the scattering field outside the matching
boundary, of radius R0 , and Ei is the incident plane wave. We
also require that the normal derivative of Ein be continuous

at R0 , that is,

L R0 =L~F R (2.21)

When transformed to the natural coordinate system, by making
use of Eq.B.13 in appendix B, the above wave equation (2.18)

becomes

(X E - 2 0 E- +'Y E+J k0 E=O (2.22)

where E is a function of (4,,q ), and %, E4 and Eq are its
partial derivatives. The metric elements and the Jacobian, J,

of the transformation are calculated in Appendix B and can
be written as

a= 2Y2 (2.23)

=X Xq + Y4 yn (2.24)

+ 
(2.25)

J = XY y%- Xq y4 (2.26)

11



The transformed boundary conditions are

[ Ems' (4, 1) 111 =  [ E (, 1 )n, 1(2.27)

[ En ( ,1) 0 = [ E t  (O, r) ]Ro (2.28)

E_,!, ) E t ( r)0 (2.29)

where 4-+ * when 11 -- 10 . The coefficients a , yand the

Jacobian are calculated during the generation of the natural

coordinate system.

After the mesh is generated, the Helmholtz equation in

natural coordinates, (2.22), is to be solved by using finite

difference techniqes. Since the factors aP,yand J are

function of the two coordinates 4,and 1, the Helmholtz

equation has variable coefficients. However, this presents

no difficulty in the numerical solution.

The Helmholtz equation can be approximated as a set of

linear algebraic equations by the use of finite differences.

The matrix resulting from the finite difference equations is

sparse and well conditioned. As a result, standard sparse

matrix subroutines that perform Gaussian elimination can be

used to solve the set of linear equations. The use of a

sparse matrix solver makes the overall method very efficient

with respect to computational resources. Test cases

demonstrating the accuracy of the solution are presented in

the following chapter.

12



III. EXAMPLES OF BENCH MARK CALCULATIONS

To carry out the cross section calculations based on our

approach, we had to develop two computational modules. The

first module is for generation of the natural coordinate

system in the region between the scattering object and the

fictitious interface and transform of the wave equation in

this region into the natural coordinate system. The

formulation for the determination of the natural coordinate

system is described in detail in Appendix A. The algorithm

for the transformation of the wave equation into the natural

coordinate system is described in Appendix B. The numerical

technique for the solution of the wave equation in the

natural coordinate system and matching of the solution at the

fictitious interface to the series solution outside the

interface is described in Appendix C. In this section, we

present examples of calculated results and benchmark cases to

illustrate the application of the code to calculate the radar

cross section of two dimensional objects of arbitrary shape.

A. Generation of the Natural Coordinate System

The objective for defining a natural coordinate system

is to transform the governing equations from doubly connected

region R bounded by contours (surfaces for the fully three

dimensional case) of arbitrary shape into a rectangular

region R'. The effect is illustrated in Fig. 3 that relates

the region between a scattering object and an enclosing

circle in the (r,e) or (x,y) physical space to a rectangle in

(Ti,4) natural coordinate space. The natural coordinates (Q,4)

are obtained from solutions of Laplace's equations for T1and

with Dirichlet boundary conditions: 1 = constant = ill on C1

71- constant - 12 on C2; 4(x,y) is a multiple valued solution

with a branch of 4(x,y) specified (but not constant) on C1 and

C2 . The curve C1 on the physical plane transforms to the

13
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lower boundary, Cl', of the transformed plane. Similarly, C2

transforms to C2 ', etc. The right and left boundaries of the

rectangular transformed plane, C3' and C4 ', are coincident in

the physical plane. The curve which transforms to these

boundaries connects C1 and C2 and determines a branch cut for

the multiple valued function 4(x,y) . Thus the functions and

all derivatives are continuous across this cut.

The natural coordinate system so generated has a

constant f-line coincident with each boundary in the physical

plane. The 4-line may be spaced in any manner desired around

the boundaries by specification of the 4 boundary conditions,

or equivalently by specification of (x,y) at the equi-spaced

4-points on the ilI and 12 lines of the transformed plane.

Control of the spacing of the 7-lines may be exercised by

varying the elliptic system of which 1 and 4 are solutions.

To test the module, we have carried out the calculation

for the generation of the natural coordinate grids for a

number of two dimensional objects with geometric cross

sections of circles, ellipses, rectangles and crosses. To

speed convergence, we have found founding of sharp corners as

shown to be helpful but not necessary. Examples for each of

the four cases are shown in Fig. 4, 5, 6. and 7, respectively.

All computations were carried out on an IBM 3090. Using the

algorithm, convergence to less than 1% deviation is

achieved in only a few iterations for the elliptic case as

shown in Fig. 8a and 8b where we have plotted the normalized

changes in the x and y coordinates of the grid for the

natural coordinate system as a function of the number of

i,-erations. Convergence to 0.2% is realized typically in 30

iterations and the accuracy continues to improve with further

iterations. Similar behavior are found for the other cases

where we have carried out bench mark calculations to

determine the number of iterations and computer processor

unit (CPU) time in seconds on the IBM 3090 as a function of

15
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convergence tolerance specified. The results are shown in

Fig. 9a, 9b and 9c for the case of the ellipse, cross and

rectangle, respectively. In all cases, the CPU time is less

than a few seconds for convergence tolerance of less than one

part per million. At this point in the development of the

code, we have made no effort to optimize the code and even

so, the computational requirement for the generation of the

natural coordinate system is quite insignificant.

B. Verification of the Helmholtz Solver

Making use of the natural coordinate system, the next

task is to transform the governing equations into the natural

coordinate system and solve the system of equations

numerically subject to the transformed boundary conditions.

To test the algorithm, we carried out a benchmark calculation

of a cylindrical stationary wave subject to simple boundary

conditions for which an exact analytical solution is

available for comparison.

The governing equation is the Helmholtz equation which

has the form

V2 Ex + k2Ex = 0 (3.1)

In cylindrical coordinates this becomes

1 a E.x 1 ~
(r Ox + kE,x0

r a+ kEr2 a0 (3 .2 )

Assuming Eex has the form

EOx = E(r)coso (3.3)

The solution of the equation is

EOx = {AJ(kr) + BY1(kr)}cos* (3.4)

21
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where Jz(kr) and Yl(kr) are Bessel functions of the first and

second kind respectively. Using the boundary conditions

E.x r= 1=0 (3.5)

Eex r r= r sCOs (3.6)

implies

- Y1 (k)
j(k)Yj(kro) - Jl(kro)Y1 (k) (3.7)

and

Jj(k)

J1 (k)Y1 (krO) - J1 (kro)Y1 (k) (3.8)

which gives the exact solution.

The numerical solution is obtained by transforming the

Helmholtz equation into the natural coordinate system. The

resulting equation in the (7%1) space has the form

a E4 - 2DE4 + yE,, + k2J2E = 0 (3.9)

with the boundary conditions

E(4,1) 1. =0 and E(4,1) lo=cos (3.10)

The equations are solved numerically and the results are

compared with the exact analytical solution as shown in Fig.

10a, 10b and 10c in which we compared the solutions along a

radial cut at 45-degree angle for three cases by taking 20,

40 and 60 radial grids. The points represented by the black

diamonds are the numerical results while the open squares

represent the exact analytical values calculated at the

corresponding grid position. The improved agreement of the

23
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numerical solution with the analytical solution with

refinement to the radial grid is readily apparent. Excellent

agreement is realized by taking 60 mesh points. The agreement

between the solutions as a function of the angle at a

constant radius for the three cases are shown in Figs. lla,

llb and llc. It can be seen that the trend is similar.

Based on these results, we concluded that by chosing a

fine enough mesh, the numerical solver will match to the

exact solution. This is due to the fact that the (x,y) points

generated have an error of o(h2 ) where h = the step size in

the radial direction. So as the number of 71-lines is

increased h will decrease and the computed solution will

become a better approximation to the exact solution. When a

mesh of 4max 53 and Tmax = 42 is used a mean difference

between the exact solution and the computed solution

normalized with respect to the exact solution of 4.5% while

with a mesh of 4max 53 and 11max = 62 the mean difference

between the exact solution and the computed solution

normalized with respect to the exact solution was found to be

2.6%. This implies that as the mesh is refined the computed

solution is converging to the exact solution.

It was also observed that the number of 4-lines does not

have as great an effect on convergence as the number of 11-

lines. In going from a mesh of 4max = 97 and Imax = 21 to a

mesh of 4max - 53 and TImax = 42 the doubling of the number of

f-lines overcomes any decrease in convergence from decreasing

the number of 4-lines.

C. Results of Cross Section Calculations

To establish the validity of the code, we compare the

results of the numerical calculations to the analytical

results for scattering from a perfect conducting infinite

cylinder of circular geometric cross section. An analytical

25
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(b) 90, and (c) 60 radical grids
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solution for the case when the incident electric field is

linearly polarized (parallel to the axis of the cylinder) is

given in Appendix D, which is of the form

00
Es f (-i) n E, n  

1 (ko)r) cos (n )
( c r (3.11)

I for n =0
with , = 2fornf1,2.3,...

where An is the coefficient of the nth harmonic in the series

representation of the analytical solution. For waves

scattered by an infinite cylinder, the magnitude of An as a

function of n for the first five harmonics are shown in Fig.

12a. It can be seen that for low wave frequencies (or ka

values) the magnitude of An falls off very rapidly with

increasing n such that the contributions from high order

modes will be negligible. Fig. 12b shows that for higher

frequencies the contributions from high order modes is very

significant. In matching the interior solution to the

external analytical solution at the boundary, we need to

evaluate many high order terms for higher frequency incident

waves.

The total electric field as a function of the angle

around the scattering object for waves incident along *0 = 0 is

shown plotted in Fig. 13. The corresponding differential

scattering cross section as a function of the scattered angle

is shown in Fig. 14 for the case k 1 1. In general, for high

wave numbers, the cross section is maximum in the forward

direction. The forward (* = 71) and backward ({ - 0) scattering

cross section as a function of the wave number is shown in

Figs. 15 and 16, respectively. These results calculated from

the analytical expression provide a reference for evaluating

the accuracy of our numerical solution.

27



100

10"1 ka-5
10-2

AN 10"3

10 " 4  ka-2

10-5

10ka - 1

10-7

10-8

10-9

10-10
0 24 6 8 10

N ( MODE NUMBER)

Fig. 12A

I ""
AN ka 0-lO

I ka-

, ,I

'I

I

i i

tl ka-7

.01
0 2 4 6 10

N ( MODE NUMBER)

Fig. 12B

28



TOTAL E VS THETA

2-

0 20 40 60 80 100 120 140 160 180

THETA

Fig. 13 Analytical solution of the total electric field
as a function of scattered angle
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Fig. 14 Differential scattering cross section for k=l
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Fig. 16 Backscattering cross section as a function of wave number
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The differential scattering cross section for the

infinite cylinder calculated with the code was used as a

bench mark. The results for the case of an incident wave

with wave number k = 1 is shown in Fig. 17 in which the

differential scattering cross section as a function of the

scattered angle is given by the curve on top and the natural

coordinate grid used for the calculation is shown at the

bottom. The results calculated with the code is compared with

the cross section obtained from the analytical solution as

shown in Fig. 18. The absolute value of the normalized cross

section are compared in the top figure and their differences

as a function of the scattered angle are plotted in the

bottom figure. It can be seen that the agreement is very good

and the deviation is less than 1% at all scattered angles.

To further verify the accuracy of the numerical

procedure, we evaluated the coefficient of the individual

harmonics at the matching interface for comparison with the

coefficients determined from the analytical solution. The

results are shown in Fig. 19 for the case ka = 1. It is seen

that the agreement is very good for the first five harmonics.

Since the contributions of the high order harmonics is

totally negligible in this case, it is reasonable to expect

the high degree of agreement between the two results.

To exercise the code, we calculated the differential

scattering cross sections for a variety of shapes by

systematically varying the wave number, the angle of

incidence and the number of modes included. In general, for

ka < 5, we found that higher order terms has negligible

effect on the solution as was to be expected. The cases

calculated are summarized in Table 1. The results are shown

in Figs. 20 through 30 and a variety of trends can be

observed, some are intuitively obvious and many are quite

interesting.
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Fig. 17 Differential cross section of an infinite cylinder
for ka 1.
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Table 1. Summary of Cross Section Calculation.

Wave No. of Angle of
Fig. No. Shape Number Modes Incidence

20 Ellipse 0.5 6 0"

21 Ellipse 1.0 6 0"

22 Ellipse 3.0 6 0*

23 Ellipse 5.0 60

24 Short 1.0 4 0
Rectangle

25 Long 1.0 4 0"
Rectangle

26 Short Arm 1.0 4 0
Cross

27 Short Arm 1.0 4 45
Cross

28 Short Arm 1.0 4 90
Cross

29 Short Arm 1.0 4 Varied
Cross

30 Long Arm 1.0 4 0
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Fig. 20 Top figures cross section of a 1x2 elliptic cylinder
for ka=0.5 and n=6 modes. Bottom figure shows the
grid.
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Fig. 21 Cross section of a 1x2 elliptic cylinder for ka~l'
and n =6 nodes.
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Fig. 22 Cross section of a 1x2 elliptic cylinder for ka=3

and n=6 modes.
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Fig. 23 Cross section of a lx2 elliptic cylinder for ka=5
and n=6 modes.
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Fig. 25 Cross section of a lx4 rectangular cylinder for
ka=l and n=4.
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Fig. 27 Cross section of the geometric cross for ka=l and
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Comparing the differential scattering cross section of

an ellipse shown in Fig. 21 with that of the circle shown

previously in Fig. 17 for the same wave number, we note the

appearance of side lobes at right angle associated with the

eccentricity of the shape. The dependence on the wave

frequency for scattering by the same elliptical object under

same angle of incidence can be seen by comparing Figs. 20,

21, 22 and 23.When the wavelength of the incident wave is

long compared to the scale length of the scattering object,

the differential scattering cross section of the ellipse

resembles that of a circle for scattering of higher frequency

of waves. As the wavelength becomes comparable with the scale

length, the forward scattering cross section rises

dramatically by an order of magnitude and side lobes appear

at right angle.

The effect of the length of the scattering object along

the direction of incidence can be seen by comparing Figs 24

and 25 for two rectangles of different length. The magnitude

of the forward scattering cross section scales approximately

linearly with the length of the object while the percent

increase in the backward scattering cross section is much

more pronounced. Referring back to the cross section of the

ellipse shown in Fig. 21 which has similar aspect ratio as

the rectangle in Fig. 24, we note that in fact, the

characteristics of their differential scattering cross

sections are quite different.

The relative effects of pretruding arms on the

scattering cross section compared to length can be deduced by

comparing Fig. 25 for the long rectangle with Fig. 26 for a

short arm cross and Fig. 30 for a long arm cross. The most

notable feature is that increasing the length of the body

results in a significantly larger increase in the forward

scattering cross section than the effect of stubby pretruding
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side arms. Furthermore, increasing the length of the side

arms increases the forward scattering cross section but

reduces the backward scattering cross section, which iL

somewhat counter intuitive. The effect of the angle of

incidence on the scattering cross section is evaluated by

comparing Figs. 26, 27, and 28 as the angle of incidence is

increased from 0 to 90 degrees at 45 degree intervals. The

general trend is that magnitude of the cross section

increases as the angle of incidence is increased from 0 to 90

degrees. The forward scattering cross section as a function

of angle of incidence is shown plotted in Fig. 29. It should

be emphasized that this figure should be interpreted with

some care because when the angle of incidence in 180 degrees,

the "forward" direction is actually the backward direction.

IV. CONCLUSIONS

The present work was carried out under the Small

Business Innovation Research Phase I program which is limited

to six months in duration at approximately one-third man-year

level of effort. Under this effort, we have successfully

demonstrated the concept of using a natural coordinate system

that conforms to objects of arbitrary shape for the

calculation of radar cross sections of such objects. The

resulting algorithm is shown to be highly versatile,

efficient and accurate. The present code is limited to

treating two dimensional objects of arbitrary shape to

establish the scientific and technical merit of the concept.

The formulation, however, is completely general and can be

extended directly to the full three dimensional case.

Making use of the code, we have evaluated the radar

cross section for a variety of shapes. Comparison with known

analytical results for an infinite cylinder showed excellent

agreement. Reason for good agreement is also established. To

fully test the code, the differentially radar cross suction
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for a variety of shapes were calculated by systematic

variation of the key parameters. Upon examining the results,

signatures associated with the different shapes can readily

be identified, suggesting techniques for reducing radar cross

sections.

The generalization of the code to three dimensions is

the logical next step that can lead to the availability of a

robust and efficient code for the calculation of radar cross

sections.
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APPENDIX A

GENERATION OF NATURAL COORDINATE SYSTEM

A.l Mathematical Formulation.

A general method of generating natural coordinate system

is to let the natural coordinates be solutions of an elliptic

partial differential system in the physical plane, with

Dirichlet boundary conditions on all boundaries. The

procedure is not restricted to two dimensions, and allows the

coordinate tangential to the boundary to be distributed quite

easily as desired along the boundary, and is applicable to

all multiconnected regions. The coordinate system so

generated is not necessarily orthogonal, but orthogonality is

not required, and its lack only requires that the governing

equations of the physical system must be transformed directly

through implicit partial differentiation rather than by use

of the scale factors and differential operators developed for

orthogonal curvilinear systems. An orthogonal system cannot

be achieved with arbitrary spacing of the natural coordinate

lines around the boundary, and the capability for such

arbitrry spacing is of more importance than orthogonality.

The objective is to transform the two dimensional,

double connected region, R, bounded by two closed countours

of arbitrary shape into a rectangular region, R' , as shown

in Fig.l. The general transformation from the physical plane
(x,y) to the transformed plane (4,11) is given by

5n(x,y)
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Similarly, the inverse transformation of (a.l) is

=Ly(4, i)J 
(a.2)

with the Jacobian matrix

J 2 = [4 ] (a.3)[Y4 YI1

which yields the Jacobian of the transformation

J = x~q - xy, (a.4)

The partial derivatives of a generic function f (x,y) are

transformed by

-Kf, y) o(x,y) Y- Yff (a. 5)
o-x~ f =Cx4,y) =-xfj (a.5)

fy = 0--X, f) / X -, )= N t Vq(a.6)

Since the basic idea of the transformation is to

generate transformation f',,nctions such that all boundaries

are coincident with coordinate lines, the natural coordinates

(4,ij) are taken as solutions of some suitable elliptic

boundary value problem with one of these coordinates constant

on the boundaries. Using Laplace's equation as the generating

elliptic system, we have

4xx + 4YY = 0 (a.7)

1XX + 1 = 0 (a.8)
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with Dirichlet boundary conditions, 71 = constant = 711 on C1

11= constant = 12 on C3 ; 4 (x,y) a multiple valued solution

with a branch of 4 (x,y) specified (but not constant) on C1

and C3  The curve C1 on the physical plane transforms to the

upper boundary, C 1 ', of the transformed plane. Similarly, C3

transforms to C3 ', etc. The right and left boundaries of the

rectangular transformed plane, C2' and C4 ', are coincident in

the physical plane. The curve which transforms to these

boundaries connects C1 and C3 and determines a branch cut for

the multiple valued function 4 (x,y) . Thus the functions and

all derivatives are continous across this cut.

Now since we wish to do all numerical computation in the

rectangular transformed plane, it is necessary to interchange

the dependent and independent variables in (a.7) and (a.8).

Thus, using the partial derivative transformations and the

chain rule, equation (b.13) in Appendix B yields

ax,. - 2Px4 + yx,., = 0 (a.9)

ay4 - 2pyt +yyn = 0 (a.1o)

where the coefficients C, P and Y correspond to the

components of the metric tensor of the coordinate

transformation, and are given by

=XoX + yyn (a.12)

= x4 + (a.13)
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with the transformed boundary conditions given by

(a.14)

Y Lg2(4,1 2) ,(4i 2) e 3

This system is a quasi-linear elliptic system with Dirichlet

boundary conditions for the physical coordinates in the

transformed plane. The differential equations of the system

(a.9) and (a.10) are considerably more complicated than those

of Eqs. (a.7) and (a.8) . However, in the first case the

transformed boundary conditions are specified on straight

boundaries, and the computation region is rectangular. We

have thus exchanged a problem having simple equations but

complex boundary conditions for a problem having complex

equations and simple boundary conditions. This statement also

holds for all partial differential equations which govern the

physical system solved on the natural coordinates.

The natural coordinate system so generated has a

constant f-line coincident with each boundary in the physical

plane. The 4-lines may be spaced in any manner desired around

the boundaries by specification of the 4 boundary conditions,

or equivalent by specification of (x,y) at the equi-spaced 4-

points on the Ii and 112 lines of the transformed plane.

Control of the spacing of the f-lines may be exercised by

varying the elliptic system of which 4 and fi are solutions.

As noted above, orthogonality is not required of the

coordinate system for solution of a system of partial

differential equations. Indeed, normal derivatives on the

boundaries may be easily represented in a non-orthogonal

55



system as follows: Let y= g(x), i.e., y-g(x)- f(x,y)=0, be

the equation of some boundary in cartesian coordinates. Then

-- .~ ~ = .= ,21 f(g Yn +)(n)-q (9 yt+x X (a.15)

where g' = dy/dx. All derivatives in the last expression can

be calculated along coordinate lines in the natural

coordinate system. Thus it is not necessary to require

orthogonality at the body surface in order to get accurate

representation of the normal derivative.

A.2 Numerical Method.

The numerical solution of the system of Eqs. (a.9) and

(a.10), with the boundary conditions given by Eqs. (a.14), is

accomplished by the use of a nine-point finite difference

approximation. The diagram in Fig.(a.1) shows the nodal

arrangement for the approximation, and the paramater D is

the separation between adjacent nodes. Now using central

differences to aproximate the partial derivatives of the

variables x and y with respect to 4 and T1 we obtain the

following expressions:

XE - 2Xc + XW (a.16)
xt A 2

XNE - XNW - XSE + XSW (a.17)

4A2
XN - 2XC + XS (a.18)

XE-XW (a.19)
x{=u 2A

XN - XS (a.20)

2A
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And substituting the above expressions into Eqs. (a.9) through

(a.14), we obtain

C (XE + XW) - 0.5 (XNE - XNW - XSE + XSW) + ION+XS) (a.21)

2(a + y)

a(YE+ YW) - 0 .50(YNE - YNW- YSE - YSW) + <YN + YS)
Yc 2(+ y) (a.22)

where

a= (XN -XS) 2 + (YN - yS2 (a.23)

0= (XE -XW)(X N - XS) + (YE - YW)(YN - YS) (a.24)

Y = (XE- XW) 2 + (YE - Yw) 2  (a.25)

The above system will now be solved on the (4,11)

rectangular plane with 4i = i, for i = 1, 2, ... ,M-1 and iii=

j, for j = 1, 2, ... ,N. There are 4(M-1) known values

corresponding to the x and y points at the boundaries, and

therefore there are 2(N-2) (M-1) unknown values to be

determined. We will use Gauss-Seidel iteration scheme, which

is a direct substitution method using updated values as they

are generated in an iteration.

The values of x and y on the left and right boundaries

of the transformed plane, C2 ' and C4 ', are unknown but

continuous in 11. This implies that the values of xw,xsE and

XNE at i-M-1 are also the values i -1. These relations also

hold for the y-values at those boundaries. A good initial

guess is needed to obtain convergence in Gauss-Seidel method.

Since the x's and y's in the radial direction will fall

between the values at the boundaries it seems that a weighted

average of these values constitutes an appropriate guess.

Therefore, the values for xij and yij can be evaluated from
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N-j-1

=i ~{~)Yi + (--1 )YIN} a.7

where j= 2,3,...,N-1 and i=1,2,...,M-1.

Comparison of the difference of the absolute norm of the

kth and k - ist iterations was used for checking convergence.

The I I x I I is calculated by

N-I -1

111 (k)(k-i)

ilxll(k)= j=21=1 (a.28)
(M-1)(N-2)

where the difference in the norms is calculated as

Diff. 1lxil = I 1Ix1' )I - Ixll(k1-) I (a.29)

And similarly for the difference in the y-norm. If the

difference in the norms is less than a given tolerance the

iteration process converges and the final values for x and y
will define the grid points corresponding to the (4,71)

coordinates.

The set of finite difference Eqs. (a.21) and (a.22) has

been successfully solved for a number of two dimensional

objects with various geometric cross sections corresponding

to circles, ellipses, rectangles and even more arbitrary

geometries. For all these cases the outer boundary is defined

by a perfect circle, as desired by the matching interface in
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the scattering problem. The plots shown are of = constant

lines and l=constant lines in the physical plane.

The specification of the convergence tolerance was found

to be dependent on the number of iterations. The number of

iterations as a function of convergence tolerance has the

form of ce-l/x ( where x = convergence tolerance ). A false

convergence was found when the number of iterations was below

150. This implies that the convergence tolerance must be at

most (10-4) . Also the N-! contour is required to be

cylindrical which implies that the deviation in the radius

must be small. A convergence tolerance of O(10 - 7 ) satisfied

both of the above criterion.

It was observed that the number of points per contour

had a more significant effect on the cost of generation than

did the number of contours. The doubling of the number of

contours increased the number of iterations by less than 5%.

The doubling of the number of points per contour doubled the

number of iterations required. It was also observed that the

greater the number of.contours the better the resolution near

the inner boundary.
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APPENDIX B

Transformation Algorithm

I. Derivatives and Vectors in the Transformed Plane

Given that x=x(4,11) and y=y(4, 1) we obtain a set of

relations in the transformed (x,h) plane.Let f = f(x,y) - a

twice differentiable scalar function of x and y.

I J = x ,yn - xNy4

By the chain rule we obtain

Thus,

(f: = It-x n ( xfJ Y(bt)

where IJI = det J.

With another application of the chain rule we obtain

1f4 "fxx
f14n fxy

fllin M fyy

It, fx

fq fy

where M=0 0 0I
M=w 00j

A = = X ,Xq x4YiI+xnlY4 YkYn
2x'Y Y2
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B=X44 Y44iJ

det M =detA -Ij I = j1

By inverting the 5x5 matrix M we obtain the relations between

the derivatives of f in the x-y plane with respect to the

derivatives in the x-h plane.

fX k
fy fn,

where

1- J1 3 ( 0 l 0 0 1 J 13 (j ) 11
A =- 0 0

2 -2x 4x, x

D a-y.,b -x~a+y~b"

where

2Yt -2y4Yykny + y2y

b = 4 n- 2ygy.,xg. + 2lX4
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c = NY4 -(xyn + Xny~yl + yyn

d = x.,y 11x4 -(x~y., + xNYOx4- + XN-

e xy4 - 2x~x.,y4, + MIy

g = xtx - 2x4x 1x + xt..

From (1) and (2) we obtain the derivative transformations

= (±f)= (,j-fr)(b.3)

=y = lf,-l 1~ (b.4)

xx- 2 f;; - 2y ____f2y y1 ft + nfn + (b.5)

[a(xN1f - xe.,) + W n- ynf4)I

f 2xN%. + 1J1 2 fq + (b.6)

[e(Nf4 - xen,) + g(yen1 - Yn1f4)]

f [(xY'n + XTIyO)f - x~~n - xqnt + (b.7)

[d(y~lf4 - eI + C(xefn - x1
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The Laplacian is

V~ W4- 2P~,+yn)+(b.8)
1j2

(axg - 20~x4. + yx,)y. - ynS~)I

(aft - 2jpyF- + yy,)(f4 X0fn)

or

Vjf- (b.9)

where

a = 14 +y 2

P x4xiN + y~yll

Dx = axft - 2I0xt. + rc,(b. 10)

Dy = aft- 2jpy4, + yy,

_YgDx - x4Dy

x.,Dy - Y.,Dx

In particular the derivatives of 4(x,y) and il(x,y) are
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4YY = exI - gy11

Ijl 3

V2 =(a -)x - (b+g)yn =IJ13  IJ12

Similarly

a

I1 = 12 (b.12)

If V2 = 0 and V2 = :hen Y = 0 and -T = 0 and (9) is transformed

into

V2f = o4- 20f + (b.13)Ij 12

II. Unit Tangent and Unit Normal Vectors in the (x,h) plane

Utilizing (3) and (4) we have

-- y + x0 
(b.14)

which is the unit vector normal to a line of constant h.

Similarly the unit vector normal to a line of constant x is

given by

n 4, = Y- . (b.15)

The unit tangent vectors are given by

(b.1 6)

-(~j+ ynP)

-43
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APPENDIX C

METHOD OF SOLUTION FOR FINDING FOURIER COEFFICIENTS

Because of the linearity of the governing equations, we can

write the total field, Etot, as the sum of an incident field and

a scattered field.

Etot =Ein + Es

Ein= e-ikrc( o)

400

Es = AmHm(kr)e r

m

The constants, A,, are generally complex. Hm are

cylindrical Hankel Functions of the first kind of order m:

Hm = Jm + iYm

and eim* - cos(m*) + i sin(mo)

On the inside boundary

Etot - 0, therefore, ES = -Ein

The scattered field can be broken down into a real and

imaginary part:

400

(Es)R = [amJm - bmYmCOs(rno) - [amYm + bmJm]Sin(m4)
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=E~ [a~ + bmJmlcos(mO) + [amm - bmYm~sin(m*)

It is desirable to combine terms so that the sumnmation is

over positive integers.

(Es)R I- [a0J0 - b0Y0]

+.00

+ I [a~ + a&mG1) mJm - bmYm - b..(G1) YmI cos(m )

- ay - a-,,(-1 )mYm + bmJm - b-,(-1 ) m JIl sin(mo)
M=1

(Es), = [a0'?0 + b0J0]

+ I [amYm + a-,(-1 )in' + bmJm + b-m(-1 )m J]1 cos(mo)
M=1

+ 2: [amJm - a-M(-1 )m - bmYm + b-m(-1 )mYm] sin(mO)

For the ideal case of an obstacle having a circular shape, these

equations can be matched - equated to Fourier expansions of the

boundary conditions.

For example, at r-1,

(Es)R = --cos[k cos(* - -01 f( )

(.,= +sin[k cos(O - On)1 a &()
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Both f(o) and g(S) can be expanded as Fourier series:

400

4) = Ao + Am cos(m*) + Bm sin(m*)

4..

g(O) = CO + Cm cos(m*) + Dm sin(mO)
m=1

Matching mode by mode gives:

m=O [C]=[y: Jo ][bo]

and for m=l to +ao

Am- +Jm +(-1) mJm -Ym -(-1) mYm am

Bm _ Ym +(-1) m y m  -Jm +(-1) m j m  a-m

Cm +Ym +(-1 )mYm  -J m  +(-1 )mJm bm

Dmin +Jr -(1)Jm -Ym +(-1) m Ym .b-m]

If we were solving the problem in cylindrical coordinates, the

unknown constants {am, a-m, bin, bm] could be easily determined

by solving the simple 4x4 system of linear equations.

For the general boundary shape such that

robs = r- W

The problem is more complicated.

on rinf

(E.)R = -cos[k r1(O) cos(* - o)]
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(F.-, = +sin[k r,($) cos(O - *o)1

However, in the natural coordinate system, (4,j), the boundary

ri () corresponds to 1=1. We are at liberty to define the

following expansion:

+4.

f() = A0 + A " cos(m') + Bm sin(m4)
ml-I

g{)= C o + C cos(m{') + 1Dm sin(m{')

m=1

where

The constants ., BM, CM, DM are line/contour integrals over the

boundary shape.

e.g. A = cos(kr(4) cos(o(4) - $)) d4

since r(4*) and *(4*) are points on the surface in the parameter
4*.-

For this to work, we need to find functions as the following

form:

406

[E.(4,)= ] {an [Am(,)cos(m') - A(,) sin(m{')]

-bm [BA,(,11) cos(m') - B(,) sin(m')]}
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4-c

(,)]= 2 {a 1 ,COs(m ) + A n(,I) sin(m')]

+bm [B2m(4,n) cos(m') - B~m(4,fl) sin(m')]}

In which the general functions Alm(4,11), A2m(4,11), Blm(4,11),

B2,(4,11) replace the Bessel functions used in cylindrical

coordinates. We can pick the natural coordinate system in such a

way that, at the outside boundary, r=r. or T=w]max, 4*= .

Now if at r=r0,

A -- Jm Am -Ym

1 2Bm Ym Bm " Jm

a(A,' ) dJm

Dr dr ansoo

and if we force:

H (A (4 11) cos(m4)) = 0 H(Am(4 i) sin(m%')) = 0

then Es(4,11) matches into the cylindrical coordinate system

smoothly. The operator H is the Helmholtz equation in ( ,T)

space.

2- .2+- + j 2k2=0

The functions A'm, ... are generalized eigenfunctions, which are

determined numerically by solving the H equation subject to

proper boundary conditions. At 11-1 A'm, ... are simply

constants.
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at .ii-nimax Am = Jm(kro)

51 aJm(kr) 1

The solution for Alm consists of a two point Boundary value

problem which requires a shooting method under general

conditions.

As an illustration, consider:

H(AM1 cos(m%')) = 0

The solution procedure involves:

1. Set (A cos(m'))_- = Jm(kro) cos(m')

1 1

2. Pick an initial value for (Am)=1= constant =

3. Solve H [AM cos(m')] = 0

4. Check the slope at r=r o to see whether or not:
1 1'

a(Am') Wm1
& ar

If agreement is unsatisfactory, pick a new value of A*m and go

back to step 2.

In turn, all four functions can be generated and four general

constants, (Al)*, (A2m)*, which depend only on the problem

geometry, are found. Now, we can match the B.C. on the obstacle

at 1-=1 by using the following:
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Am +A' +(-I)A, -B' -(-) m B am'
er. -A, +-l-)M'm -B' --l)'e m a_-,

62 m 2 2 +,m 26m +Am +(-1) Am +Bm -(-)rBm bm
Dn -A I _(_l)mA 1  _B1  +(_1)roB 1  b..

Solving easily for am, a-m, bin, b-m.

Note that the incident angle, 0o, affects only the RHS values.

Therefore, 00 can be varied without needing to recalculate the

eigenfunctions A',....

Finally, for m=O,

o = aokA bo Bo

60= ao B; + bo A

as r - r,

- Jo(kro)

H(A) =0 and analogously for B0 .
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APPENDIX D

INFINITELY LONG CIRCULAR CYLINDERS - NORMAL INCIDENCE

I. Formulation

Scattering from an infinitely long cylinder, when the

incident field propagates normal to the cylinder axis (taken as

the z axis) is essentially a two dimensional problem. This is

evident because there is no variation in the incident field or

in the cylinder properties in the axial or z direction; hence,

the scattered field will not vary in the z direction. The

cylinder surface is a natural coordinate surface in this system

(i.e., r = a), and boundary value techniques give an exact

solution.

The incident wave is considered to be planar, and, in

general, is polarized arbitrarily r- wever, it can be resolved

into two components : (1) an E-field component parallel to the

cylinder axis, and (2) an E-field perpendicular to the same axis

(or an H-field component parallel to the axis). Each case is

then treated separately. The two cases will be distinguished by

I or -L, or TM and TE, referring to (1) and (2) above

respectively. The plane of incidence is considered to be the x-z

plane.

Since an electromagnetic field can be expressed entirely in

terms of either the electric or the magnetic field, the problems

can be solved for p1

Plane
incident
wave

Fig. 1 Scattering geometry for an infinitely long circular cylinder with axis perpendicular to the page.
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the two cases by : (a) using only the axial electric field for

case (1), and (b) using only the axial magnetic field for case

(2). In either case, both the incident and scattered fields

posses only axial components. The boundary conditions at the

cylinder can be expressed in terms of these axial components,

and a scalar problem rather than a vector problem must be

solved, which simplifies the solution considerably. (Such is not

the case with a sphere, because the incident field strikes the

sphere at different angles corresponding to different points on

the sphere; hence, that problem retains a vector nature.)

Consider the incident wave to be resolvable into components

of the form

E l= e-iko x  Elli
E'i (d.1)

where the field is incident from the left in figure 1. The

scattered field at point P' can be expressed for each of the

above two scalar field components as

E(P') = EIX (-i)"e.AnH )(kor)cos(n* ,) (d. 2)
n0

Hi(P') = ' (-i)nBnH'(kor)os(n) (d.3)
H (P')HI1_inEH)kcon1(d3

and n-0

where

H (P') =1

and
Fn={I2 for n=O

2 for n = 1,2,3...

In the above equations, Hn( I) (kor) is a cylindrical Hankel

function of the first kind of order n and argument kor; it has
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the proper behavior large r corresponding to the time convention

used here. The constants An and Bn are functions only of the

cylinder material and radius, and are given in following

sections for the cylinder type considered. It is again pointed

out that in case (1), both the incident and scattered electric

fields are polarized parallel to the cylinder axis; while in

case (2), the incident and scattered magnetic fields are

polarized parallel to the axis.

II. Far-Zone Simplification and Scattering Width

Simplification of the above series solution is possible

when (i) kor >> (kor)2 and (ii) kor >> 1 (or r >> Xo ). In this

case, a large-argument expansion can be used for the Hankel

function. That is

El(P') = E -.. Vr,) (d.4)

Hi .'"(kdr-!) ,

H(P')= H±V/ ek To(i (d.5)

where

00

T ) (_) nACos(n') (d.6)

and

00

T±(J) 1(-1)n FnBncoS(n*')

n-0

In contrast with the exact Mie series for far-zone

scattering from a sphere, the field from an infinite cylinder

decreases as 1/4r, rather than the 1/r dependence for objects of

finite dimensions, such as spheres. Such must be the case in
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order for the total energy in the diverging scattered fields to

be conserved.

( = 71 T1 (€') 2 (d. 7)

and

4 T 12
T.t' k L(tj 1

Two special scattering directions give further simplification

(a) Backscattering. Here , *' = 0, and the above results
simplify

00

TII(O) = 1(_I)nEnAn (d.8)
n-0

and

00

T.L(O) = .(-1 )nnBn
n=0

The backscattering widths become

and

CO

.(O) =4±I I(1~r'n1

(b) Forward Scattering. Here, i' = t, and the scattering
amplitudes simplify to

TU,(n) = je_:rAn

n0

and
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T.L(n) = X nBn
n=O

The forward scattering widths then become

0

and

cT()= " enBn 12

III. Perfectly Conducting Cylinder

The coefficients An and Bn appearing in the exact solution

for the perfectly conducting infinitely long cylinder at normal

incidence are

J n(k0a)A n = 0
Hn )(koa)

and

J n'(koa)
H ')'(koa)

where the primes represent derivatives with respect to the

expressed argument. Jn(koa) is the usual cylindrical Bessel

function of order n and argument koa. These coefficients are

easily generated on a computer by recurrence techniques, or are

found in the tables.
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