POLARIZATION MATRICES OF LITHIUM TETRABORATE

Arthur Ballato
ELECTRONICS TECHNOLOGY AND DEVICES LABORATORY

June 1989
NOTICES

Disclaimers

The citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein.
Title: POLARIZATION MATRICES OF LITHIUM TETRABORATE (U)

Authors: Arthur Ballato

Type of Report: Technical Report

Date: From Jan 88 to Jan 89

Date of Report: June 1989

Page Count: 29

Abstract:

In analytical treatments of piezoelectric-acoustic transducers, signal processors, and resonators, the electromechanical transduction mechanism is most often expressed in terms of the elements of the piezoelectric e or d matrices. Molecular interpretations of piezoelectricity, and especially electro-optical applications, usually involve polarization as the preferred variable, and consequently the alternative $[a]$ and $[b]$ matrices are of interest. The elements of these latter sets are calculated for lithium tetraborate from measured elastopiezodielectric constants taken from the literature.

COSATI Codes

<table>
<thead>
<tr>
<th>Field</th>
<th>Group</th>
<th>Sub-Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>09</td>
<td>U1</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>U2</td>
<td></td>
</tr>
</tbody>
</table>

Subject Terms

- Piezoelectric resonators; piezoelectric transducers; lithium tetraborate; acousto-optics
CONTENTS

INTRODUCTION 1
CONSTITUTIVE EQUATION SETS 1
RELATIONS AMONG MATERIAL CONSTANTS 5
CALCULATION SEQUENCE 7
EXPLICIT FORMULAS FOR POINT GROUP 4mm 10
INPUT VALUES FOR LI2 B4 07 16
OUTPUT VALUES FOR LI2 B4 07 16
CONCLUSIONS 19
REFERENCES 20

TABLES

Table Page

1. Symbols, Units, and Definitions. 2
2. Relations among Material Constants 8
3. Further Relations among Material Constants . . . 9
4. Elastopiezodielectric Matrices for Point Group 4mm 11
5. Isagric Elastic Compliances 16
6. Piezoelectric Strain Coefficients 16
7. Dielectric Permittivities at Constant Stress 16
8. Elastic Stiffnesses 17
9. Elastic Compliances 17
10. Piezoelectric [e], [h], and [a] Values 17
11. Piezoelectric [d], [g], and [b] Values 18

Availability Codes
Dist Avail and/or Special
A-1

iii
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.</td>
<td>Dielectric (eps) Values</td>
<td>18</td>
</tr>
<tr>
<td>13.</td>
<td>Dielectric (chi) Values</td>
<td>18</td>
</tr>
<tr>
<td>14.</td>
<td>Dielectric (bet) Values</td>
<td>18</td>
</tr>
<tr>
<td>15.</td>
<td>Dielectric (zet) Values</td>
<td>19</td>
</tr>
</tbody>
</table>
INTRODUCTION

Electromechanical transduction taking place via the piezoelectric effect is characterized phenomenologically by constitutive equations that relate the elastic and electric variables. These equations take a variety of forms, depending upon the choice of independent and dependent variables; the choice is normally dictated by the application. For example, piezoelectric resonators in the form of thickness mode plates are most easily treated using the isagric elastic stiffnesses \([cE]\), the piezoelectric stress constants \([e]\), and the dielectric permittivities at constant strain \([(\varepsilon)S]\).

Various measurement techniques yield values for the elements of a particular coefficient set more directly than those of another. The coefficients appearing in the different equation sets are, however, interrelated, so that once any one complete set is available, all the other sets of elements may be found. The most accurate and precise experimental results to date have been from plate resonator (resonance) and pulse-echo (transit-time) measurements. From the \([cE]\), \([e]\), and \([(\varepsilon)S]\) matrices determined therefrom, those matrices representing material properties expressed in the other alternative forms may be calculated.

Electrooptical applications are becoming increasingly important. So also are treatments of piezoelectric and ferroelectric phenomena from the standpoint of molecular interactions. In both of these cases the constitutive equations using polarization as the independent electrical variable, rather than either electric intensity or displacement, assume greater importance than the sets traditionally used for transducer, signal processing, and resonator applications.

In this report we give the complete sets of linear constitutive equations relating elastic and electric fields. For each equation set the numerical values are computed for lithium tetraborate from the measured \([sE]\), \([d]\), and \([(\varepsilon)T]\) values of Shiosaki, et al. (Ref.1). Coupling to the thermal field is neglected. Rationalized mks units are used throughout.

CONSTITUTIVE EQUATION SETS

Symbols and units for the quantities employed are given in Table 1. In terms of these, six constitutive equation sets are used. Of these, electric intensity, dielectric displacement, and polarization each appear in two sets as an independent variable. The sets are, in compressed matrix notation, as follows. A prime denotes transpose; \([I]\) is the unit matrix.

I. The Piezoelectric Stress Constant Set

\[
\begin{align*}
[T] &= [cE] [S] - [e]' [E] \\
[D] &= [e] [S] + [(\varepsilon)S] [E]
\end{align*}
\]
(1)
(2)
<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>UNIT</th>
<th>SYMBOL/DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastic stress</td>
<td>N/m²</td>
<td>[T]</td>
</tr>
<tr>
<td>Elastic strain</td>
<td>--------</td>
<td>[S]</td>
</tr>
<tr>
<td>Electric intensity</td>
<td>V/m</td>
<td>[E]</td>
</tr>
<tr>
<td>Dielectric displacement</td>
<td>C/m²</td>
<td>[D]</td>
</tr>
<tr>
<td>Dielectric polarization</td>
<td>C/m²</td>
<td>[P]</td>
</tr>
<tr>
<td>Elastic compliance at constant [E], [D], [P]</td>
<td>m²/N</td>
<td>[cE], [cD], [cP]</td>
</tr>
<tr>
<td>Elastic stiffness at constant [E], [D], [P]</td>
<td>N/m²</td>
<td>[sE], [sD], [sP]</td>
</tr>
<tr>
<td>Dielectric permittivity at constant [T], [S]</td>
<td>F/m</td>
<td>[(εs)T], [(εs)S]</td>
</tr>
<tr>
<td>Dielectric constant, relative, at constant [T], [S]</td>
<td>--------</td>
<td>([K]T), ([K]S)</td>
</tr>
<tr>
<td>Dielectric impermeability at constant [T], [S]</td>
<td>m/F</td>
<td>[(εt)T], [(εt)S]</td>
</tr>
<tr>
<td>Dielectric impermeability, relative, at constant [T], [S]</td>
<td>--------</td>
<td>([εt]T), ([εt]S)</td>
</tr>
<tr>
<td>Dielectric susceptibility at constant [T], [S]</td>
<td>F/m</td>
<td>[(εh)T], [(εh)S]</td>
</tr>
<tr>
<td>Dielectric susceptibility, relative, at constant [T], [S]</td>
<td>--------</td>
<td>([εh]T), ([εh]S)</td>
</tr>
<tr>
<td>Reciprocal dielectric susceptibility at constant [T], [S]</td>
<td>m/F</td>
<td>[(εh)T], [(εh)S]</td>
</tr>
<tr>
<td>Reciprocal dielectric susceptibility, relative, at constant [T], [S]</td>
<td>--------</td>
<td>([εh]T), ([εh]S)</td>
</tr>
<tr>
<td>Piezoelectric stress constant</td>
<td>C/m²</td>
<td>[e]</td>
</tr>
</tbody>
</table>
TABLE 1. SYMBOLS, UNITS, AND DEFINITIONS. (continued)

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>UNIT</th>
<th>SYMBOL/DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piezoelectric strain coefficient</td>
<td>m/V = C/N</td>
<td>[d]</td>
</tr>
<tr>
<td>Piezoelectric stress modulus</td>
<td>N/C = V/m</td>
<td>[h]</td>
</tr>
<tr>
<td>Piezoelectric strain constant</td>
<td>m2/C</td>
<td>[g]</td>
</tr>
<tr>
<td>Piezoelectric polarization modulus</td>
<td>V/m = N/C</td>
<td>[a]</td>
</tr>
<tr>
<td>Piezoelectric polarization constant</td>
<td>m2/C</td>
<td>[b]</td>
</tr>
</tbody>
</table>

Note: Square brackets, sic: [], denote matrices.
II. The Piezoelectric Strain Coefficient Set

\[[S] = [sE] [T] + [d]' [E] \quad (3) \]
\[[D] = [d] [T] + [(\epsilon_T)E] [E] \quad (4) \]

III. The Piezoelectric Stress Modulus Set

\[[T] = [cD] [S] - [h]' [D] \quad (5) \]
\[[E] = -[h] [S] + [(\beta_T)S] [D] \quad (6) \]

IV. The Piezoelectric Strain Constant Set

\[[S] = [sD] [T] + [g]' [D] \quad (7) \]
\[[E] = -[g] [T] + [(\beta_T)D] [D] \quad (8) \]

V. The Piezoelectric Polarization Modulus Set

\[[T] = [cP] [S] - [a]' [P] \quad (9) \]
\[[E] = -[a] [S] + [(\zeta_T)S] [P] \quad (10) \]

VI. The Piezoelectric Polarization Constant Set

\[[S] = [sP] [T] + [b]' [P] \quad (11) \]
\[[E] = -[b] [T] + [(\zeta_T)T] [P] \quad (12) \]

The electric variables are connected by the relation

\[[D] = (\epsilon_0) [E] + [P] \quad (13) \]

where \((\epsilon_0)\) is the permittivity of free space, defined by

\[(\epsilon_0) * (\mu_0) * (c) * (c) = 1 ; \quad (14) \]

\((\mu_0)\) is the permeability of free space, equal, by definition, to \(4 \pi \times 10^{-7}\), and \((c)\) is the velocity of light in vacuo and, also by definition, is equal exactly to \(2.99792458 \times 10^8\) m/s.

From (13) the expressions for the remaining electric variables associated, respectively, with the six equation sets (1) to (12) may be found:

\[[P] = [e] [S] + [(\chi_S)S] [E] \quad (15) \]
\[[P] = [d] [T] + [(\chi_T)T] [E] \quad (16) \]
\[[P] = (\epsilon_0) [h] [S] + [I - (\epsilon_0) (\beta_S)] [D] \quad (17) \]
\[[P] = (\epsilon_0) [g] [T] + [I - (\epsilon_0) (\beta_T)] [D] \quad (18) \]
RELATIONS AMONG MATERIAL CONSTANTS

The material constants are interrelated by the following formulas:

\[
[cX][sX] = [(\varepsilon)Y] [(\beta)Y] = [I] \\
((\chi)Y) [(\zeta)Y] = [(K_Y - (\chi)r_Y) = [I]
\]

In (21) and (22), \(X = E, D, \) or \(P\) and \(Y = T\) or \(S.\)

\[
[cD] - [cE] = [h]' [e] = [e]' [h] \\
= [h]' [(\varepsilon)S] [h] = [e]' [(\beta)S] [e] \\
= [a]' [e - h * (\varepsilon)o] = [e - h * (\varepsilon)o]' [a]
\]

\[
[cP] - [cD] = [h]' [a] * (\varepsilon)o = [a]' [h] * (\varepsilon)o \\
= [h]' [(\varepsilon)S] [(\zeta)S] [h] * (\varepsilon)o \\
= [a]' [(\beta)S] [(\chi)S] [a] * (\varepsilon)o \\
= [a - h]' [e] = [e]' [a - h]
\]

\[
[cP] - [cE] = [a]' [e] = [e]' [a] \\
= [a]' [(\chi)S] [a] = [e]' [(\zeta)S] [e] \\
= [h]' [e + a * (\varepsilon)o] = [e + a * (\varepsilon)o]' [h]
\]

\[
[sE] - [sD] = [d]' [g] = [g]' [d] \\
= [d]' [(\beta)t] [d] = [g]' [(\varepsilon)t] [g] \\
= [b]' [d - g * (\varepsilon)o] = [d - g * (\varepsilon)o]' [b]
\]

\[
[sD] - [sP] = [b]' [g] * (\varepsilon)o = [g]' [b] * (\varepsilon)o \\
= [g]' [(\varepsilon)T] [(\zeta)T] [g] * (\varepsilon)o \\
= [b]' [(\beta)T] [(\chi)T] [b] * (\varepsilon)o \\
= [b - g]' [d] = [d]' [b - g]
\]

\[
[sE] - [sP] = [b]' [d] = [d]' [b] \\
= [b]' [(\chi)T] [b] = [d]' [(\zeta)T] [d] \\
= [g]' [d + b * (\varepsilon)o] = [d + b * (\varepsilon)o]' [g]
\]
\begin{align*}
((\zeta)S) - ((\zeta)T) &= [b] [a]' = [a] [b]' \\
&= [b] [cP] [b]' = [a] [sP] [a]' \\
((\chi)T) - ((\chi)S) &= ((\epsilon)T) - ((\epsilon)S) \\
&= [e] [d]' = [d] [e]' \\
&= [d] [cE] [d]' = [e] [sE] [e]' \\
((\beta)S) - ((\beta)T) &= [h] [g]' = [g] [h]' \\
&= [g] [cD] [g]' = [h] [sD] [h]' \\
[e] &= [d] [cE] = ((\epsilon)S) [h] = ((\chi)S) [a] \\
[d] &= [e] [sE] = ((\epsilon)T) [g] = ((\chi)T) [b] \\
[h] &= [g] [cD] = ((\beta)S) [e] = ((\chi)S) ((\beta)S) [a] \\
&= [I - (\beta)S * (\epsilon)o] [a] \\
[g] &= [h] [sD] = ((\beta)T) [d] = ((\chi)T) ((\beta)T) [b] \\
&= [I - (\beta)T * (\epsilon)o] [b] \\
[a] &= [b] [cP] = ((\zeta)S) [e] = ((\epsilon)S) ((\zeta)S) [h] \\
&= [I + (\zeta)S * (\epsilon)o] [h] \\
[b] &= [a] [sP] = ((\zeta)T) [d] = ((\epsilon)T) ((\zeta)T) [g] \\
&= [I + (\zeta)T * (\epsilon)o] [g]
\end{align*}

Some alternative relations are the following:
\begin{align*}
[a - h] &= ((\zeta)S) [h] * (\epsilon)o \\
&= ((\beta)S) [a] * (\epsilon)o \\
[b - g] &= ((\zeta)T) [g] * (\epsilon)o \\
&= ((\beta)T) [b] * (\epsilon)o \\
[e + a * (\epsilon)o] &= ((\epsilon)S) [a] \\
[d + b * (\epsilon)o] &= ((\epsilon)T) [b] \\
[e - h * (\epsilon)o] &= ((\chi)S) [h] \\
[d - g * (\epsilon)o] &= ((\chi)T) [g]
\end{align*}

Equations (21) to (43) result from equating like dependent variables pairs selected from equations (1) to (12) and (15) to (20).
Each pair yields one equation in three variables, one mechanical and two electrical, or vice versa. Two other equations exist, again from (1) to (12) and (15) to (20), that contain the same three variables found in each paired equation. One of these auxiliary equations is used to eliminate one of the two variables of the same kind; the result is one equation in two variables, one electrical and one mechanical. These are now independent variables, so the coefficients must vanish; two relations between the material coefficients result. As an example, (3) and (7) both have $[S]$ as dependent variable. Equating them produces one relation in $[T]$, $[E]$, and $[D]$; one of the electrical variables must be eliminated. This is done by using either (4) or (8); each contains the same three variables. If (8) is used to eliminate $[E]$, one obtains $[sE - d'g - sD][T] = [d'(bet)T - g'][D]$. Therefore, $[sE] - [sD] = [d]'[g]$ and $[g] = [(bet)T][d]$. Use of (4) instead of (8) leads to the equations $[sE] - [sD] = [g]'[d]$ and $[d] = [(eps)T][g]$. There are 36 pairs, six each equating $[S]$ and $[T]$, and eight each equating $[E]$, $[D]$, and $[P]$. The 72 relations contain many redundancies. Relations between the elastic, piezoelectric, and dielectric constants are shown schematically in Tables 2 and 3.

CALCULATION SEQUENCE

Using as input $[sE]$, $[d]$, and $[(eps)T]$, one may compute the remaining quantities in a variety of ways. The following sequence is typical:

\[
[cE] = [sE]^{-1}
\]
\[
[(bet)T] = [(eps)T]^{-1}
\]
\[
[e] = [d][cE]
\]
\[
[(eps)T] - [(eps)S] = [e][d]'
\]
\[
[(eps)S] = [(eps)T] - [e][d]'
\]
\[
[(bet)S] = [(eps)S]^{-1}
\]
\[
[h] = [(bet)S][e]
\]
\[
[cD] - [cE] = [e]'[h]
\]
\[
[cD] = [cE] + [e]'[h]
\]
\[
[g] = [(bet)T][d]
\]
\[
[sE] - [sD] = [d]'[g]
\]
\[
[sD] = [sE] - [d]'[g]
\]
\[
[(betr)S] = [(bet)S] * (eps)o
\]
\[
[(zetr)S] = [(betr)S][I - (betr)S]^{-1}
\]
TABLE 2. RELATIONS AMONG MATERIAL CONSTANTS.

\[
\begin{align*}
\begin{bmatrix} c \end{bmatrix} & \Delta \varepsilon = \Delta \chi & \begin{bmatrix} d \end{bmatrix} \\
\begin{bmatrix} a \end{bmatrix} & \Delta \xi & \begin{bmatrix} b \end{bmatrix} \\
\Delta c_{PE} & \Delta c_{PD} & \Delta \beta & \Delta s_{ED} & \Delta s_{EP} \\
\frac{\Delta c}{\varepsilon_0} & \frac{\Delta s}{\varepsilon_0}
\end{align*}
\]
\[(zet)S = [(zet)T] / (\epsilon o) \quad (58)\]
\[(bet)T = [(bet)T] * (\epsilon o) \quad (59)\]
\[(zet)T = [(bet)T] [I - (bet)T] (-1) \quad (60)\]
\[(zet)T = [(zet)T] / (\epsilon o) \quad (61)\]
\[(chi)S = [(zet)S] (-1) \quad (62)\]
\[(chi)T = [(zet)T] (-1) \quad (63)\]
\[a = [(zet)S] [e] \quad (64)\]
\[b = [(zet)T] [d] \quad (65)\]
\[[cP] - [cE] = [e]' [a] \quad (66)\]
\[[cP] = [cE] + [e]' [a] \quad (67)\]
\[[cP] - [cD] = [a]' [h] * (\epsilon o) \quad (68)\]
\[[sE] - [sP] = [d]' [b] \quad (69)\]
\[[sP] = [sE] - [d]' [b] \quad (70)\]
\[[sD] - [sP] = [g]' [b] * (\epsilon o) \quad (71)\]
\[[bet)S] - [(bet)T] = [h] [g]' \quad (72)\]
\[[zet)S] - [(zet)T] = [a] [b]' \quad (74)\]

A number of these relations are used as checks. For example, \([(bet)S]\) and \([(bet)T]\) are known from (45) and (49), but the difference is recomputed in (72).

EXPLICIT FORMULAS FOR POINT GROUP 4mm

Elastic:

The 6x6 elastic constant portion of Table 4 partitions into 4x4 and 2x2 submatrices. The 4x4 elastic stiffness and compliance submatrices are interrelated by formulas (75) to (93). The elastopiezoelectric matrix for class 4mm is found in Cady (Ref. 2). Other references to lithium tetraborate are given in Refs. 3 to 26.

\[A = s33 * (s11 + s12) - 2 * s13 * s13 \quad (75)\]
\[B = (s11 - s12) \quad (76)\]
\[c11 = +(s11 * s33 - s13 * s13) / (A * B) \quad (77)\]
TABLE 4. ELASTO PIEZODIELECTRIC MATRICES FOR POINT GROUP 4mm.

11 12 13 00 00 00	00 00 31 cE	e'
12 11 13 00 00 00	00 00 31 e	(eps)S
13 13 33 00 00 00	00 00 33	
00 00 00 44 00 00	00 15 00 cD	h'
00 00 00 00 44 00	15 00 00 h	(bet)S
00 00 00 00 00 66	00 00 00	

00 00 00 00 15 00 11 00 00 cP | a' |
00 00 00 15 00 00 00 11 00 a | (zet)S |
31 31 33 00 00 00 00 00 33 |

Matrix entries show only subscripts.
\[c_{12} = - (s_{12} * s_{33} - s_{13} * s_{13}) / (A * B)\] \hfill (78)
\[c_{13} = - s_{13} / A\] \hfill (79)
\[c_{33} = (s_{11} + s_{12}) / A\] \hfill (80)
\[c_{44} = 1 / s_{44}\] \hfill (81)
\[c_{66} = (c_{11} - c_{12}) / 2 = s_{44} / (2 * B)\] \hfill (82)
\[K = c_{33} * (c_{11} + c_{12}) - 2 * c_{13} * c_{13}\] \hfill (83)
\[L = (c_{11} - c_{12})\] \hfill (84)
\[s_{11} = +(c_{11} * c_{33} - c_{13} * c_{13}) / (K * L)\] \hfill (85)
\[s_{12} = -(c_{12} * c_{33} - c_{13} * c_{13}) / (K * L)\] \hfill (86)
\[s_{13} = - c_{13} / K\] \hfill (87)
\[s_{33} = (c_{11} + c_{12}) / K\] \hfill (88)
\[s_{44} = 1 / c_{44}\] \hfill (89)
\[s_{66} = 1 / c_{66}\] \hfill (90)
\[\text{det (3x3) [s]} = A * B\] \hfill (91)
\[\text{det (3x3) [c]} = K * L\] \hfill (92)
\[A * K = B * L = A * B * K * L = 1\] \hfill (93)

Formulas (75) to (93) hold for each set of constant electrical conditions: either E, D, or P constant.

\[[c_{D}] - [c_{E}] = [\text{del } c_{DE}] = [e]' [h] = [h]' [e]\] \hfill (23)
\[\text{del } c_{DE11} = + e_{31} h_{31}\] \hfill (94)
\[\text{del } c_{DE12} = + e_{31} h_{31}\] \hfill (95)
\[\text{del } c_{DE13} = + e_{31} h_{33} = + h_{31} e_{33}\] \hfill (96)
\[\text{del } c_{DE33} = + e_{33} h_{33}\] \hfill (97)
\[\text{del } c_{DE44} = + e_{15} h_{15}\] \hfill (98)
\[\text{del } c_{DE66} = 0\] \hfill (99)

\[[c_{P}] - [c_{D}] = [\text{del } c_{PD}] = [a]' [h] * (\text{eps}) = [h]' [a] * (\text{eps})\] \hfill (24)
\[\text{del cPD}_{11} = (+ a_{31} h_{31}) * (\varepsilon)_{o} \]
(100)
\[\text{del cPD}_{12} = (+ a_{31} h_{31}) * (\varepsilon)_{o} \]
(101)
\[\text{del cPD}_{13} = (+ a_{31} h_{33}) * (\varepsilon)_{o} \]
\[= (+ h_{31} a_{33}) * (\varepsilon)_{o} \]
(102)
\[\text{del cPD}_{33} = (+ a_{33} h_{33}) * (\varepsilon)_{o} \]
(103)
\[\text{del cPD}_{44} = (+ a_{15} h_{15}) * (\varepsilon)_{o} \]
(104)
\[\text{del cPD}_{66} = 0 \]
(105)

\[[\text{CP}] - [\text{CE}] = [\text{del cPE}] = [e]' [a] = [a]' [e] \]
(25)
\[\text{del cPE}_{11} = + e_{31} a_{31} \]
(106)
\[\text{del cPE}_{12} = + e_{31} a_{31} \]
(107)
\[\text{del cPE}_{13} = + e_{31} a_{33} = + a_{31} e_{33} \]
(108)
\[\text{del cPE}_{33} = + e_{33} a_{33} \]
(109)
\[\text{del cPE}_{44} = + e_{15} a_{15} \]
(110)
\[\text{del cPE}_{66} = 0 \]
(111)

From the del c13 entries we have the ratios
\[e_{31} / e_{33} = h_{31} / h_{33} = a_{31} / a_{33}. \]
(112)

\[[\text{SE}] - [\text{SD}] = [\text{del sED}] = [d]' [g] = [g]' [d] \]
(26)
\[\text{del sED}_{11} = + d_{31} g_{31} \]
(113)
\[\text{del sED}_{12} = + d_{31} g_{31} \]
(114)
\[\text{del sED}_{13} = + d_{31} g_{33} = + g_{31} d_{33} \]
(115)
\[\text{del sED}_{33} = + d_{33} g_{33} \]
(116)
\[\text{del sED}_{44} = + d_{15} g_{15} \]
(117)
\[\text{del sED}_{66} = 0 \]
(118)

\[[\text{SD}] - [\text{SP}] = [g]' [b] * (\varepsilon)_{o} \]
\[= [b]' [g] * (\varepsilon)_{o} \]
(27)
\[\text{del sDP}_{11} = (+ g_{31} b_{31}) * (\varepsilon)_{o} \]
(119)
\[
\begin{align*}
\text{del } s_{DP12} &= (+ g_{31} b_{31}) * (\varepsilon)_o \\
\text{del } s_{DP13} &= (+ g_{31} b_{33}) * (\varepsilon)_o \\
&= (+ b_{31} g_{33}) * (\varepsilon)_o \\
\text{del } s_{DP33} &= (+ g_{33} b_{33}) * (\varepsilon)_o \\
\text{del } s_{DP44} &= (+ g_{15} b_{15}) * (\varepsilon)_o \\
\text{del } s_{DP66} &= 0 \\
[sE] - [SP] &= [\text{del } s_{EP}] = [b]' [d] = [d]' [b] \\
\text{del } s_{EP11} &= + d_{31} b_{31} \\
\text{del } s_{EP12} &= + d_{31} b_{31} \\
\text{del } s_{EP13} &= + d_{31} b_{33} = + b_{31} d_{33} \\
\text{del } s_{EP33} &= + d_{33} b_{33} \\
\text{del } s_{EP44} &= + d_{15} b_{15} \\
\text{del } s_{EP66} &= 0
\end{align*}
\]

From the del s13 entries we have the ratios
\[
d_{31} / d_{33} = g_{31} / g_{33} = b_{31} / b_{33}.
\]

Piezoelectric:
\[
\begin{align*}
[e] &= [d] [cE] \\
e_{15} &= + d_{15} cE_{44} \\
e_{31} &= + d_{31} (cE_{11} + cE_{12}) + d_{33} cE_{13} \\
e_{33} &= + d_{33} cE_{33} + d_{13} cE_{13} * 2 \\
[h] &= [(\text{bet})S] [e] \\
h_{15} &= (\text{bet})S_{11} e_{15} \\
h_{31} &= (\text{bet})S_{33} e_{31} \\
h_{33} &= (\text{bet})S_{33} e_{33} \\
[g] &= [(\text{bet})T] [d] \\
g_{15} &= (\text{bet})T_{11} d_{15} \\
g_{31} &= (\text{bet})T_{33} d_{31} \\
g_{33} &= (\text{bet})T_{33} d_{33}
\end{align*}
\]
[a] = [(zet)S] [e] \hspace{1cm} (36)
a_{15} = (zet)S_{11} \text{ } e_{15} \hspace{1cm} (141)
a_{31} = (zet)S_{33} \text{ } e_{31} \hspace{1cm} (142)
a_{33} = (zet)S_{33} \text{ } e_{31} \hspace{1cm} (143)
[b] = [(zet)T] [d] \hspace{1cm} (37)
b_{15} = (zet)T_{11} \text{ } d_{15} \hspace{1cm} (144)
b_{31} = (zet)T_{33} \text{ } d_{31} \hspace{1cm} (145)
b_{33} = (zet)T_{33} \text{ } d_{33} \hspace{1cm} (146)

Dielectric:

[(bet)Y] = [(eps)Y]^{(-1)} \hspace{1cm} (21)
(bet)Y_{11} = 1 / (eps)Y_{11} \hspace{1cm} (147)
(bet)Y_{33} = 1 / (eps)Y_{33} \hspace{1cm} (148)

[(zetr)Y] = [(betr)Y] [I - (betr)Y]^{(-1)} \hspace{1cm} (149)
(zet)Y_{11} = 1 / ((eps)Y_{11} - (eps)o) \hspace{1cm} (150)
(zet)Y_{33} = 1 / ((eps)Y_{33} - (eps)o) \hspace{1cm} (151)

[(eps)T - (eps)S] = [del (eps)] = [e] [d]' = \hspace{1cm} (30)
[(chi)T - (chi)S] = [del (chi)] = [d] [e]' \hspace{1cm} (30)
del (eps)_{11} = del (chi)_{11} = + e_{15} d_{15} \hspace{1cm} (152)
del (eps)_{33} = del (chi)_{33} = + e_{33} d_{33} + e_{31} d_{31} * 2 \hspace{1cm} (153)

[(bet)S - (bet)T] = [h] [g]' = [g] [h]' \hspace{1cm} (31)
del (bet)_{11} = + h_{15} g_{15} \hspace{1cm} (154)
del (bet)_{33} = + h_{33} g_{33} + h_{31} g_{31} * 2 \hspace{1cm} (155)

[(zet)S - (zet)T] = [del (zet)] = [a] [b]' = [b] [a]' \hspace{1cm} (156)
del (zet)_{11} = + a_{15} b_{15} \hspace{1cm} (157)
del (zet)_{33} = + a_{33} b_{33} + a_{31} b_{31} * 2 \hspace{1cm} (158)
The values measured by Shiosaki, et al. (Ref. 1) are as follows:

TABLE 5. ISAGRIC ELASTIC COMPLIANCES.

<table>
<thead>
<tr>
<th>sE11</th>
<th>sE12</th>
<th>sE13</th>
<th>cE33</th>
<th>sE44</th>
<th>sE66</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.81</td>
<td>1.23</td>
<td>-5.92</td>
<td>24.6</td>
<td>17.1</td>
<td>21.4</td>
</tr>
</tbody>
</table>

Units: \(10^{-12}\) m/N.

TABLE 6. PIEZOELECTRIC STRAIN COEFFICIENTS.

<table>
<thead>
<tr>
<th>d15</th>
<th>d31</th>
<th>d33</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.07</td>
<td>-2.58</td>
<td>19.4</td>
</tr>
</tbody>
</table>

Units: \(10^{-12}\) m/v.

TABLE 7. DIELECTRIC PERMITTIVITIES AT CONSTANT STRESS.

<table>
<thead>
<tr>
<th>(eps)T11</th>
<th>(eps)T33</th>
<th>(eps)T11/(eps)o</th>
<th>(eps)T33/(eps)o</th>
</tr>
</thead>
<tbody>
<tr>
<td>82.61</td>
<td>87.92</td>
<td>9.33</td>
<td>9.93</td>
</tr>
</tbody>
</table>

Units: \(10^{-12}\) F/m.

The input values from Tables 5, 6, and 7 were used to compute the remaining elastic, piezoelectric, and dielectric quantities for lithium tetraborate in the manner discussed in prior sections of this report. The results are given in Tables 8 to 15.
TABLE 8. ELASTIC STIFFNESSES.

<table>
<thead>
<tr>
<th></th>
<th>cE</th>
<th>cD</th>
<th>cP</th>
<th>del cDE</th>
<th>del cPE</th>
<th>del cPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>135.5</td>
<td>136.7</td>
<td>136.8</td>
<td>1.18</td>
<td>1.35</td>
<td>0.167</td>
</tr>
<tr>
<td>12</td>
<td>3.57</td>
<td>4.75</td>
<td>4.92</td>
<td>1.18</td>
<td>1.35</td>
<td>0.167</td>
</tr>
<tr>
<td>13</td>
<td>33.47</td>
<td>37.24</td>
<td>37.78</td>
<td>3.78</td>
<td>4.31</td>
<td>0.535</td>
</tr>
<tr>
<td>33</td>
<td>56.76</td>
<td>68.83</td>
<td>70.54</td>
<td>12.07</td>
<td>13.78</td>
<td>1.71</td>
</tr>
<tr>
<td>44</td>
<td>58.48</td>
<td>61.31</td>
<td>61.66</td>
<td>2.83</td>
<td>3.18</td>
<td>0.358</td>
</tr>
<tr>
<td>66</td>
<td>46.73</td>
<td>46.73</td>
<td>46.73</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Units: 10^9 N/m².

TABLE 9. ELASTIC COMPLIANCES.

<table>
<thead>
<tr>
<th></th>
<th>sE</th>
<th>sD</th>
<th>sP</th>
<th>del sED</th>
<th>del sEP</th>
<th>del sDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>8.81</td>
<td>8.73</td>
<td>8.73</td>
<td>0.0757</td>
<td>0.0842</td>
<td>0.00848</td>
</tr>
<tr>
<td>12</td>
<td>1.23</td>
<td>1.15</td>
<td>1.15</td>
<td>0.0757</td>
<td>0.0842</td>
<td>0.00848</td>
</tr>
<tr>
<td>13</td>
<td>-5.92</td>
<td>-5.30</td>
<td>-5.29</td>
<td>-0.569</td>
<td>-0.633</td>
<td>-0.0637</td>
</tr>
<tr>
<td>33</td>
<td>24.6</td>
<td>20.3</td>
<td>19.8</td>
<td>4.28</td>
<td>4.76</td>
<td>0.479</td>
</tr>
<tr>
<td>44</td>
<td>17.1</td>
<td>16.3</td>
<td>16.2</td>
<td>0.788</td>
<td>0.883</td>
<td>0.0946</td>
</tr>
<tr>
<td>66</td>
<td>24.4</td>
<td>21.4</td>
<td>21.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Units: 10^{-12} m²/N.

TABLE 10. PIEZOELECTRIC [e], [h], AND [a] VALUES.

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>h</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0.472</td>
<td>5.99</td>
<td>6.75</td>
</tr>
<tr>
<td>31</td>
<td>0.290</td>
<td>4.07</td>
<td>4.64</td>
</tr>
<tr>
<td>33</td>
<td>0.928</td>
<td>13.00</td>
<td>14.84</td>
</tr>
</tbody>
</table>

Units: e: C/m²; h and a: 10^9 V/m.
TABLE 11. PIEZOELECTRIC \([d], [g], \) AND \([b]\) VALUES.

<table>
<thead>
<tr>
<th></th>
<th>(d)</th>
<th>(g)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>8.07</td>
<td>97.7</td>
<td>109.4</td>
</tr>
<tr>
<td>31</td>
<td>-2.58</td>
<td>-29.3</td>
<td>-32.6</td>
</tr>
<tr>
<td>33</td>
<td>19.4</td>
<td>220.6</td>
<td>245.4</td>
</tr>
</tbody>
</table>

Units: \(d: 10^{-12}\) m/V; \(g\) and \(b: 10^{-3}\) m²/C.

TABLE 12. DIELECTRIC (\(\epsilon\)) VALUES.

<table>
<thead>
<tr>
<th></th>
<th>(\epsilon_S)</th>
<th>(\epsilon_T)</th>
<th>(\Delta \epsilon_T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>78.80</td>
<td>82.61</td>
<td>3.81</td>
</tr>
<tr>
<td>33</td>
<td>71.41</td>
<td>87.92</td>
<td>16.51</td>
</tr>
</tbody>
</table>

Units: \(10^{-12}\) F/m.

\(\Delta \epsilon_T\) = \(\Delta \epsilon_S\)

TABLE 13. DIELECTRIC (\(\chi\)) VALUES.

<table>
<thead>
<tr>
<th></th>
<th>(\chi_S)</th>
<th>(\chi_T)</th>
<th>(\Delta \chi_T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>69.95</td>
<td>73.76</td>
<td>3.81</td>
</tr>
<tr>
<td>33</td>
<td>62.56</td>
<td>79.07</td>
<td>16.51</td>
</tr>
</tbody>
</table>

Units: \(10^{-12}\) F/m.

\(\Delta \chi_T\) = \(\Delta \epsilon_T\)

TABLE 14. DIELECTRIC (\(\beta\)) VALUES.

<table>
<thead>
<tr>
<th></th>
<th>(\beta_S)</th>
<th>(\beta_T)</th>
<th>(\Delta \beta_T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12.69</td>
<td>12.11</td>
<td>-0.585</td>
</tr>
<tr>
<td>33</td>
<td>14.00</td>
<td>11.37</td>
<td>-2.63</td>
</tr>
</tbody>
</table>

Units: \(10^9\) m/F.
TABLE 15. DIELECTRIC (zet) VALUES.

<table>
<thead>
<tr>
<th></th>
<th>(zet)S</th>
<th>(zet)T</th>
<th>del (zet)TS</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>14.30</td>
<td>13.56</td>
<td>-0.738</td>
</tr>
<tr>
<td>33</td>
<td>15.99</td>
<td>12.65</td>
<td>-3.34</td>
</tr>
</tbody>
</table>

Units: 10^9 m/F.

CONCLUSIONS

This report provides formulas interrelating the coefficients that appear in the several alternative sets of constitutive equations involving the elastic, piezoelectric, and dielectric properties of crystals. These are then specialized for crystals of class 4mm; using measured values reported for lithium tetraborate, numerical values of the elements of the polarization matrices are calculated.
REFERENCES

Mandatory Distribution List

Contract or In-House Technical Reports

101 Defense Technical Information Center*
 ATTN: DTIC-FDAC
 Cameron Station (Bldg 5) (*Note: Two copies for DTIC will
 Alexandria, VA 22304-6145 be sent from STINFO Office.)

483 Director
 US Army Material Systems Analysis Actv
 ATTN: DRXY-MP
001 Aberdeen Proving Ground, MD 21005

563 Commander, AMC
 ATTN: AMCDE-SC
 5001 Eisenhower Ave.
 Alexandria, VA 22333-0001

609 Commander, LABCOM
 ATTN: AMSLC-CG, CD, CS (In turn)
 2800 Powder Mill Road
 001 Adelphi, MD 20783-1145

612 Commander, LABCOM
 ATTN: AMSLC-CT
 2800 Powder Mill Road
 001 Adelphi, MD 20783-1145

680 Commander,
 US Army Laboratory Command
 Fort Monmouth, NJ 07703-5000
 1 - SLCET-DD
 2 - SLCET-DT (M. Howard)
 1 - SLCET-DB
 35 - Originating Office

681 Commander, CECOM
 R&D Technical Library
 Fort Monmouth, NJ 07703-5000
 1 - ASQNC-ELC-I-T (Tech Library)
 3 - ASQNC-ELC-I-T (STINFO)

705 Advisory Group on Electron Devices
 201 Varick Street, 9th Floor
 002 New York, NY 10014-4877
205	Director	603	Cdr, Atmospheric Sciences Lab
	Naval Research Laboratory		LABCOM
	ATTN: CODE 2627	001	ATTN: SLCAS-SY-S
	Washington, DC 20375-5000	001	White Sands Missile Range, NM 88002
221	Cdr, PM JTFUSION	607	Cdr, Harry Diamond Laboratories
	ATTN: JTF		ATTN: SLCHD-CO, TD (In turn)
	1500 Planning Research Drive		2800 Powder Mill Road
	McLean, VA 22102	001	Adelphi, MD 20783-1145
301	Rome Air Development Center		
	ATTN: Documents Library (TILD)		
	Griffiss AFB, NY 13441		
437	Deputy for Science & Technology Office, Asst Sec Army (R&D)		
	Washington, DC 20310		
438	HQDA (DAMA-ARZ-D/Dr. F.D. Verderame)		
	Washington, DC 20310		
520	Dir, Electronic Warfare/Reconnaissance Surveillance and Target Acquisition Ctr		
	ATTN: AMSEL-EW-D		
	Fort Monmouth, NJ 07703-5000		
523	Dir, Reconnaissance Surveillance and Target Acquisition Systems Directorate		
	ATTN: AMSEL-EW-DR		
	Fort Monmouth, NJ 07703-5000		
524	Cdr, Marine Corps Liaison Office		
	ATTN: AMSEL-LN-MC		
	Fort Monmouth, NJ 07703-5000		
564	Dir, US Army Signals Warfare Ctr		
	ATTN: AMSEL-SW-DS		
	Vint Hill Farms Station		
	Warrenton, VA 22186-5100		
602	Dir, Night Vision & Electro-Optics Ctr		
	CECOM		
	ATTN: AMSEL-NV-D		
	Fort Belvoir, VA 22060-5677		