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ABSTRACT

Boundary Kernel Estimation

of the Two Sample Comparison Density Function. (May 1989)

William Pyle Alexander, B.S.A., University of Arkansas

Chair of Advisory Committee: Dr. Emanuel Parzen

The focus of this work is to derive functional and graphical statistical tech-

niques for the two sample problem suitable for implementation in modern com-

puting environments. In the two sample problem, it is desired to test the null

hypothesis that two independent random samples have a common distribution

function. Assuming certain conditions on the distribution functions, a procedure

is proposed which has strong graphical elements, a sound theoretical founda-

tion, and estimates the relation of the two distributions if the null hypothesis

is rejected. The proposed procedure has as its motivation the estimation of the

comparison density and inference concerning its uniformity.

The proposed procedure is both a statistical test of the null hypothesis and

a model selection criterion. The test is based on components of a new stochastic

process which is termed the kernel density process. This process is based on a

boundary kernel estimate of the comparison density. It is proposed to apply a

new test, the subset chi-square test, to these components. If the null hypothesis is

rejected, the components found to be sin-acant are used to construct a damped

orthogonal series estimate of the comparison density.

The power of the proposed test under local alternatives is compared to two

commonly used portmanteau statistics, the Cramr-von Mises and the Anderson-

Darling, and to a third statistic suggested by this work. A new method for

finding the power of these statistics under local alternatives is given. This method

uses the fast Fourier transform to invert an approximation to the characteristic

function of the statistic. The proposed test is seen to have good power properties.

A simulation study is conducted to examine its small sample size. Its size is found

to remain close to its nominal value.
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1. INTRODUCTION

1.1. The Two Sample Problem

The statistical analysis of two samples occupies a fundamental role in statis-

tics. Data are collected under two regimes. Treatment and control, two time

periods, two lots of goods, two levels of a concomitant variable, or two formu-

lations of a product are just a few examples of such regimes. In each case, the

researcher wishes to know whether the two data sets arise from the same un-

derlying population. That is, are the two regimes the same? The number of

statistical texts at all levels which treat the problem attests to the fundamen-

tal nature of the question: see, for example, Keller, Warrack and Bartel (1988)

(undergraduate level methods), Montgomery (1984) (graduate level methods),

Hocking (1985) (graduate level linear model theory), Randles and Wolfe (1979)

(graduate level nonparametric theory), and Kendall and Stuart (1979) (graduate

level parametric theory).

That the two sample problem has old and venerable roots can be seen from

the writings of the great statistician Sir R.A. Fisher. Fisher (1948), page 122,

contrasts the importance of testing a single mean versus the equality of two means

in experimental work under the assumption of normality and equal variances:

"in experimental work it is even more frequently necessary to test whether two

samples differ significantly in their means, or whether they may be regarded as

having arisen from the same population." Fisher's comments relate not only the

relative importance of the two sample problem, but also something of its age.

The statistic Fisher proceeds to discuss is the well known Student's t. Concerning

the distribution of t, Fisher notes on page 16 that "it is equally fortunate that

the distribution of t, first established by 'Student' in 1908, in his study of the

probable error of the mean, should be applicable, not only to the case there

treated, but to the more complex, but even more frequently needed, problem of

the comparison of two mean values."

The format and style follows that of The Annals of Statistics.
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While dealing with the two sample problem in various contexts over the

years, statisticians have proposed an impressive number of tests. The t-test,

Wilcoxon, median, normal scores, Kolmogorov-Smirnov, Anderson-Darling, and

Cramr-von Mises are just a few of many. These tests range from making quite

specific assumptions on the nature of the two distributions to almost none. The

sorts of assumptions commonly made are discussed in Section 2.

Formally, the two sample problem can be stated in the following terms. Let

X = (X 1 ,..., Xm) be a random sample from a population with distribution func-

tion F(z) = P[Xi < z] for i = m. Let Y = (Y1,...,Y.) be an independent

random sample from a population with distribution function G(x) = P[Y z]

forj = 1,...,n. Stating X 1,...,Xm is a random sample from F means that

X1,..., X.. are independent and identically distributed (iid) according to the

distribution function F. These properties are nearly universally assumed. Some

work has been done to relax the assumption of independence within each sample

[see, for example, Harpaz (1985)]. However, in this work the usual assumption

of independence will be made. The mathematical representation of the null hy-

pothesis that the two samples arise from the same population is Ho: F = G. By

this is meant that F(z) = G(z) for -oo < z < oo.

Since there already exists such a plethora of two sample tests, it is only

natural to ask why another is needed. The answer to this question is threefold.

First, it is the goal of this research to derive a unified data exploratory method.

That is, a methodology is sought which makes minimal assumptions on F and

G a priori and will to the greatest extent possible let the data determine the

outcome.

Second, as typically implemented, two sample techniques possess no graph-

ical elements. They are statistical tests which return only an accept or reject

response. The advent of the personal computer and workstations brings the po-

tential to substantially alter the way in which statistical analysis is conducted. In

particular, there is great potential for a more graphical, exploratory and flexible

approach to data analysis. Packages such as Timealab [Newton (1988)J for the

IBM personal computer family and S [Becker, Chambers, and Wilks (1988)] for
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UNIX workstations are appearing to realize this potential. These new computing

environments open broad new areas of statistical research into methodologies to

exploit them. This research shall develop tests and estimators for the two sample

problem which are better suited to these environments than existing ones.

Third, the relevant standard two sample statistics give no indication of the

actual relation of F to G should the null hypothesis be rejected. This shall be

seen in Section 2. The most natural question to ask after the null hypothesis is

rejected is "Why was it rejected?". Yet surprisingly, most techniques are silent

on this point. Graphics enter here as the natural response. A graph should be an

estimate of some sort of the relation of F to G. In this context, many practicing

statisticians might plot the empirical distribution functions of the two samples.

This and similar procedures are, at best, ad hoc. A particular statistic rejects Ho

and one then proceeds to examine a picture of functions which are either step

functions or piece-wise continuous to try to discern why. What is sought here

is a unified approach where the graph and the test are derived from a common

foundation.

In summary, the purpose of this research is to derive a new procedure for

the two sample problem. This is to be a computer intensive, graphical and data-

exploratory procedure which makes minimal assumptions on the character of the

distribution functions, F and G. Further, as part of the framework, should the

null hypothesis be rejected, it is required that some explanation be given. This

explanation, in the form of a graph, should describe the relation of F and G.

1.2. Outline of This Dissertation

This dissertation is divided into six sections and two appendices. Section

2 is a review of the literature. Existing approaches to the two sample problem

are examined first. Such approaches include parametric and nonparametric tests

and tests against specific and general alternatives. Linear rank statistics and the

Cramir-von Mises and Anderson-Darling statistics are examined in depth. The

comparison distribution and density functions and related stochastic processes

are defined and their properties enumerated. Existing techniques based on these
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quantities are reviewed. It is seen that a nonparametric method is appropriate

for estimating the comparison density. This leads to an in-depth review of such

methods and the selection of the Gasser-Miller boundary kernel.

Section 3 examines the properties of the Gasser-Mfiller boundary kernel es-

timator of the comparison density. Conditions for its asymptotic normality un-

der Ho and pointwise consistency under any alternative are derived when the

bandwidth shrinks to zero. The kernel density process is defined and its weak

convergence to a Gaussian process is proved for a fixed bandwidth. Components

of this process are defined in terms of the inner product of the process and the

eigenfunctions of its covariance kernel under Ho. These components are shown to

be appropriate for testing the null hypothesis. They have interpretations both as

generalized Fourier coefficients and as rank statistics. Their asymptotic distribu-

tion under Ho is derived. A new test, called the subset chi-square test, is applied

to the components. This test, in turn, suggests an orthogonal series estimator of

the cemparison density based on the eigenfunctions. Finally, recommendations

for the choke of bandwidth for the boundary kernel estimator are made.

Section 4 examines the power and size of the methods derived in Section

3. Conditions for the weak convergence of the kernel density process under

local alternatives are established. Power functions for the Cramir-von Mises and

Anderson-Darling statistics are found by using a fast Fourier transform (FFT)

to numerically invert the characteristic function. Power functions for the subset

chi-square test are found by simulation. The methods of Section 3 are seen to

have very good power characteristics. Since the subset chi-square test is based

on the asymptotic distribution of the components, a simulation is conducted to

gauge the size of the test in small samples. The procedure is found to maintain

a reasonable size even for small samples.

Section 5 applies the techniques of Section 3 to two data sets. One data set

consists of observed data and the other of simulated data. Section 6 presents a

summary and conclusions and outlines areas of future research. Appendix A is

a glossary of notation and Appendix B gives proofs of the theorems stated in

Sections 3 and 4.
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2. REVIEW OF THE LITERATURE

2.1. Introduction

Section 2 is a review of the existing methodologies which this research touches

or builds upon. Subsection 2.2 reviews the methods of two sample analysis as

usually employed by the statistics community. The subsection closes with a

statement as to the criteria any methodology derived in this work must meet

and the rationale for these criteria.

Subsection 2.3 reviews a concept known as the comparison density. It is

argued that a methodology based on the comparison density fulfills the criteria

outlined in Subsection 2.2. The stochastic processes upon which any technique

must be based are reviewed and links between them refined. Existing techniques

of estimating the comparison density are reviewed. Each of these will be com-

pared to the criteria outlined in Subsection 2.2. They will be seen to fall short

of fulfilling all the criteria outlined, but will prove to be valuable stepping stones

in this work.

Subsection 2.4 reviews nonparametric density estimation techniques for den-

sities having support [0,1]. Such a technique will be employed to estimate the

comparison density in this work. Density estimates on compact support pose

special problems which will be discussed in detail. At the end of the subsection,

an estimation technique is selected.

2.2. Review of Two Sample Techniques

2.2.1. Introduction. Given a random sample, Xl,..., Xn, from a continuous

distribution function, F, and an independent random sample, Y1 ,.. . , Yn, from

a continuous distribution function, G, it is desired to test the null hypothesis

Ho: F = G. In this subsection, existing tests of this hypothesis are reviewed.

There are many tests that have been suggested and used over the years. Some are

applicable to very special and specific distributional assumptions concerning the

two samples. Others are applicable to very general cases. Yet, as implemented,
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none lend themselves fully to the type of computer intensive, graphical, functional

and data exploratory approach outlined in Section 1.

There are two schemes by which two sample tests can be classified which will

be discussed here. The first method classifies a test as to whether it is parametric

or nonparametric. The second classifies a test as to whether the alternate hy-

pothesis is general or specific. These are discussed in Subsections 2.2.2 and 2.2.3,

respectively. Subsection 2.2.4 reviews rank statistics, which are nonparametric

tests against specific alternatives. Subsection 2.2.5 reviews nonparametric tests

against general alternatives. Having reviewed the commonly used methodologies,

a list of criteria for the ideal method is proposed in Subsection 2.2.6. This list

summarizes the desirable properties a methodology should have to more fully

utilize computer and graphic intensive modes for data analysis.

2.2.2. Parametric and Nonparametric Test. Tests can be classified as to

whether they are parametric or nonparametric. In this subsection, parametric

and nonparametric tests are compared. It is seen that parametric tests are too

restrictive for the goals of this research. Any tests derived will be nonparametric

in nature.

Parametric tests assume that both F and G belong to a family of distribu-

tions, 7, which is indexed by a parameter 0. That is, one can write

Aq = {F(x) = F(z;90);G(z) = G(z;0 2) : 01,02 E 0 C Rk}.

It is usually assumed that ir is indexed in such a manner that for F(z; 01) and

G(z;0 2 ) in 70, one has F(z;0 1) = G(z;0 2) for all z if and only if 01 = 02. This

uniqueness property permits the reduction of the general two sample hypothesis

of Ho: F = G to Ho: 01 = 02.

With the two sample hypothesis reduced to testing the equality of two vec-

tor valued parameters, standard techniques from parametric inference may be

brought to bear upon the problem. Tests such as the likelihood ratio, efficient

score, Wald, and uniformly most powerful unbiased may potentially be derived.

See Silvey (1975), Kendall and Stuart (1979) or Bickel and Doksum (1977) for

background on these.



7

As an example of a parametric test, consider the two sample t-test. Let

9 = (p Ao2) and @(z) be the standard normal distribution function. Define the

parametric family as,

= {F(x) =,f((x - p'1)Io);G(x) = 4((-2)/) : i,2 E IR;o 2 > 0}.

The null hypothesis is H0 : sl1 = A2. A likelihood ratio test rejects Ho if

-- = sup L(.I,A 2 ,or2 )/ sup L(p 1 ,s 2 , 02 )
pi=142ER,0O>0 pI,p2tE,r 2 >O

is too small, where L(p1,.02,o 2) is the joint likelihood function of (1,12,a)

given X1,..., Xm and Y,..., Yn and is given by

2 ) = 1 m -_ M n
L(141,.2° )  ( r2(.m ep _- 2 (E":, _- A1)2 + E(,- IA2)2).

(2-r--2)(n+m)/2 eX [ +a -). I

The likelihood function gives an instantaneous measure of the probability content

at the point (Al1,A2,o 2) given the data l,... ,Xm, Yli,.. ,Yn. In the case at

hand, it is not hard to show that rejecting Ho for small values of X is equivalent

to rejecting Ho for large values of

where S2  1 =(X _ -)2 + jl(y _ F) 2) is the sample pooled

P n+m-21 S 3-=

variance and X" and ? are the means of the first and second samples, respectively.

This statistic is the standard two sample t-statistic.

Most parametric tests are generated in an analogous manner. One starts by

writing down the likelihood function. The likelihood ratio, Wald and efficient

scores tests are constructed around the maximum likelihood estimates of the

parameters. Uniformly most powerful unbiased tests can be obtained in special

cases and require an appeal to certain theorems detailing their existence and

construction.

Nonparametric tests assume that F and G lie in a class, 7, which is so

broad that it cannot be indexed by a finite dimensional parameter. An example
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of such a class is the class of all continuous distribution functions. Nonparamet-

ric techniques rely heavily on transformations of the original random variables,

XI,..., Xm, YI,..., Y, to new random variables, Ri,..., Rm, SI,... , So, such

that when the null hypothesis is true these new random variables always have the

same, known distribution. A set of random variables possessing this property is

said to be nonparametric distribution-free under the null hypothesis. Tests of H,

are then based on RI..., Rm, S,..., Sn rather than on Xl,..., Xm, Y,... , Yn.

An example of such a transformation is the rank transformation. For the rank

transformation, 14 is the rank of X and Si is the rank of Y in the pooled

or combined sample. When one pools the sample, X,..., Xm and Y1,...,Yn

are treated as being from one random sample, X 1,... , Xm, Y1, ... , Y, of size

N = m + n. The rank, R, is given by
m n

R , = X Xi) + EI(X - Y'
j=1 j=1

where I(-) is an indicator function which is 1 if the condition in parenthe-

ses is true and zero otherwise. There should be no ties in the ranks since

it is assumed that F and G are continuous. Under the null hypothesis,

(Rh... , RmS 1,..., S) are uniformly distributed over all N! permutations of

1,..., N and R, is marginally distributed as uniform over 1,..., N [see Lehmann

(1975), page 58, for example].

The rank transform and tests based upon it are examined in detail in Sub-

section 2.2.4. For now, consider the Wilcoxon statistic which is given by
m

j='

As the ranks are uniformly distributed over the N! permutations under Ho, it

can be shown [see Randles and Wolfe (1979), page 45] that E[W] = m(N + 1)/2

and Var[W] = nm(N + 1)/12. The full distribution of W under Ho can be found

by enumeration or by asymptotic approximation.

There are three issues to be addressed in any discussion of parametric versus

nonparametric tests. These are specification error, size, and power. A specifica-

tion error occurs whenever F or G does not fall in the assumed parametric class,
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i. The size of a test is the probability of rejecting the null hypothesis when it
is true. The power of a test is the probability of rejecting the null hypothesis

when it is false. The tradition in statistics since the time of Fisher and Neyman

has been to fix the size at some small value. For a given size, one then prefers a

test which is more powerful. In most situations, there won't exist a test which is

uniformly more powerful (UMP) than any other test. There usually aren't even

what are called uniformly most powerful unbiased tests (UMPU). Such a test,

when it exists, is most powerful in the class of unbiased tests. A test is unbiased

if it has power greater than its size for all alternatives.

In the current context, these issues will be discussed via Table 1. Table 1

gives the size and power of the two sample t-test and the Wilcoxon test for 4

choices of m and n and 5 choices of (A, - M2)/a and for 7r equal to the normal

distribution family and to the Cauchy distribution family. This table is a partial

reproduction of a table found on page 118 of Randles and Wolfe (1979). The

size of the test falls under the column value of 0 for (Al - 02)/a. Each test is

conducted to have nominal size 0.05. The power of the test is given under the

remaining columns, for each choice of family, in increasing values of (PO1 - A2)/U.

This table was created by simulation methods; see Randles and Wolfe for further

details on its construction.

If a parametric assumption is valid, one expects the appropriate parametric

test to be at least as powerful as a nonparametric test. This is so simply because

one is bringing more information to bear on the problem. The nonparametric

test must protect against a huge array of possible underlying F and G which the

parametric test ignores. This is borne out by Table 1 where the t-test is seen to

be more powerful than the Wilcoxon for the normal family. However, it is also

important to notice that this difference is slight.

The t-test will experience specification error when the Cauchy family holds

whereas the Wilcoxon will not. The implications of the t-test experiencing a

specification error are demonstrated under the Cauchy heading of Table 1. The

size of the t-test shows large fluctuations away from 0.05. The Wilcoxon test

shows no such failing. Finally, notice that the Wilcoxon test is now much more
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Table 1
Empirical power and size of the t-test and the Wilcozon linear rank test
for the normal and Cauchy families. T is the t-test and W is the Wilcozon
test.

(l- u.2)/0'
m n Test 0 0.3 0.6 0.9 1.2

Normal
5 5 T 0.044 0.111 0.213 0.356 0.523

W 0.046 0.108 0.208 0.346 0.503

15 15 T 0.052 0.206 0.497 0.785 0.947
W 0.054 0.205 0.479 0.766 0.933

5 15 T 0.047 0.144 0.303 0.511 0.724
W 0.048 0.141 0.287 0.492 0.694

15 5 T 0.053 0.149 0.313 0.518 0.729
W 0.050 0.140 0.296 0.499 0.703

Cauchy
5 5 T 0.024 0.066 0.132 0.207 0.288

W 0.051 0.118 0.218 0.323 0.408
15 15 T 0.030 0.079 0.153 0.243 0.333

W 0.046 0.210 0.484 0.700 0.839
5 15 T 0.056 0.087 0.137 0.205 0.282

W 0.046 0.133 0.284 0.441 0.576
15 5 T 0.061 0.097 0.146 0.209 0.279

W 0.046 0.140 0.297 0.457 0.590

powerful than the t-test. The superiority of the Wilcoxon over the t-test is much

greater in this case than that of the t-test over the Wilcoxon when normality

holds.

In summary, one can surmise that in finite samples, parametric tests will

often outperform nonparametric tests in situations where the parametric test

is appropriate. In such circumstances, should one have just cause to assume

a parametric model one should surely do so. However, parametric tests are

sensitive to specification errors which nonparametric tests do not experience.

As it is the goal of this work to develop a procedure which applies to as broad

an underlying class of distributions as possible, parametric tests will not be



considered. However, the methods derived will be competitive with parametric

tests. Nonparametric tests are discussed at greater length in Subsections 2.2.4

and 2.2.5.

2.2.3. General and Specific Alternative Hypotheses. In this subsection, types

of alternative hypotheses are examined. The alternative hypothesis specifies the

set of possible relations of F to G should the null hypothesis not be true. Al-

though ignored until now, the alternative hypothesis must always be stated. The

class of alternatives considered will have a profound effect upon the properties

of a test. It is seen in this subsection that for the type of procedure to be

constructed, a general and not specific alternative is needed.

For two sample tests, the alternative hypothesis can be divided into roughly

two categories. The first is a general alternative and the second a specific alter-

native. A general alternative leaves the fashion in which F and G are related

unspecified. A specific alternative will place some structure on the manner in

which F and G are allowed to differ. The type of alternative considered relates

back to the underlying class, jr, to which F and G belong. A few examples

should shed some light on this. Consider any parametric test so that F(z; 01),

G(z; 02) E 7e. The null hypothesis of H.: 01 = 02 is complemented by an alter-

native of the form H.: 01 # 02 or H,: 01 > 02. The important point is that F and

G are still in AS even under the alternative. The alternative is said to be specific.

Most nonparametric tests are constructed against specific alternatives, also.

The most common alternative is the location alternative. For the location alter-

native, the class of distributions is defined by

7 = {F(z) = H(z); G(x) = H(x - 0): H is a continuous d.f., 0 E R).

The null hypothesis reduces to H0 : 0 = 0, yet the test must still be nonparamet-

ric because H is any continuous distribution function, a class too broad to be

indexed. The alternative hypothesis in this setting can be H,: 0 0 0 or Ha: 0 > 0.

The alternative is specific because F and G are related through H by 0. A third

and final example of a specific alternative is the scale alternative. The family for
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scale alternatives is

I = {F(z) = H(x); G(z) = H(x/v) : H is a continuous d.f., q > 0}.

Again, the class is still too broad to be indexed but does place structure on the

relationship of F to G under the alternative. Nonparametric tests of location

include the Wilcoxon, median and normal scores (location) rank tests. Nonpara-

metric tests of scale include the Mood and normal scores (scale) rank tests.

A general alternative leaves the way in which F and G are related unspecified.

A typical class in this case might be

.7 = {F is a continuous d.f.; G is a continuous d.f.}.

One can see that this is a much broader class than the location and scale alter-

natives considered above. Minimal assumptions are made on the true relation of

F to G under H0 .

The class of alternatives is important for just the same reasons as discussed in

Subsection 2.2.3 on the relation of parametric to nonparametric tests. The issues

are power and specification. A test against a specific alternative will usually be

more powerful than a test against a general alternative if the alternative which

actually holds falls in the class considered by the former. On the other hand, a

specific alternative can fail miserably if the true alternative falls outside the class

for which it is designed. For example, using the techniques discussed in Section

4, it can be shown that asymptotically the Wilcoxon test has power equal to its

size if a local scale alternative holds and the underlying distribution is symmetric

about zero.

As with parametric tests, if one has justification to use a test designed against

a specific alternative, it should by all means be used. However, since the purpose

of this work is to design a methodology which makes minima! assumptions on

F and G, broader alternatives than location or scale must be considered. Tests

against such broader alternatives are called omnibus or portmanteau.

2.2.4. Nonparametric Tests Against Specific Alternatives (Linear Rank

Statistics). In this subsection, linear rank statistics, which are nonparametric
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tests against specific alternatives, are reviewed. It has been decided in Subsection

2.2.3 not to employ tests against specific alternatives such as rank tests. However,

rank tests will be seen to have a role to play and as such merit discussion. Rank

statistics have many equivalent or asymptotically equivalent representations. In

this subsection, the notation of Chernoff and Savage (1958) is used. They define

a rank statistic having the form

SN - f JN[HN(Z)]dFn(Z)
(2.2.1) ,f

j=1

where R, is the rank of X i in the pooled sample, JN is known as a score function,

unqualified integrals are assumed to be taken over the real line, Fm is the sample

or empirical distribution function of the first sample,

Fm(x)= - I(xi _ z)
j=1

and HN is the sample distribution function of the pooled sample,

HN(Z) = I(X, :_ z) + I(Y _ X))

"=1 j=1

= AX(N)Fm(x) + (1 - A(N))Gn(x).

The sample distribution function of the second sample is Gn(x) and A(N=

m/(rn + n) = m/N is the fraction of the pooled sample represented by the first

sample. The sample distribution function of the pooled sample estimates the

population quantity H(z) = A(N)F(z) + (1 - A(N))G(z).

As might be expected, the small sample distribution of SN under H, or H.

is not always easy to determine. This is true even of the Wilcoxon statistic. The

finding of percentage points of the distribution of SN is greatly simplified by

the celebrated work of Chernoff and Savage (1958). Using what has come to be

called a Chernoff-Savage approach, they demonstrate the asymptotic normality

of SN . For simplicity, assume that JN(u) = J(u) does not depend on N. One

then has
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Theorem 2.2.1 (Chernoff and Savage, 1958). If J(u) is not constant and if

IJ(')(u)l < Klu(1 - u)j-i-(1 / 2 + 6 for i = 0, 1,2 and some K and 6 > 0, then for

fized and continuous F and G, one has SN i8 AN(,o2 ), where

=1 J[H(x)]dF(x)

and

NaN =2(1- A(N)) {f / G(z)[1 - G(y)]J'[H(z)]J'[H(y)]dF(z)dF(y)

+ A(N ) ff F(x)l - F(y)]J'[H(x)J'[H(y)dG(x)dG(y)

providing ON 5 0.

The notation SN is AN(,Or2) means that the distribution function of the ran-

dom variable (SN - 1)/UaN converges pointwise to the distribution function of a

standard normal random variable. To find approximate values of the distribu-

tion function of SN, one need only calculate the values of A and 0 N . In many

practical circumstances, the values of u and aN can be worked out. For example,

taking J(u) = u (Wilcoxon scores), under H, one finds

S F(x)dF() = 0 udu = 1/2

and

N =2 (N) = 21F()[1- F(y) ]dF(x)dF( y )

= 2 (N) [1 - F(y)]dF(y) L F(x)dF(x)

A(N) co 01- (N) F(Y) 2  F(y)]dF(y)

= \(N) !F(Y I

1 1 - A(N)
12 A(N)

By the Chernoff-Savage theorem, one can conclude that the Wilcoxon statistic

is AN(1/2, (1 - A(N))/(12NA(N))).
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Table 2

Commonly used score functions for linear rank
statistics, location and scale alternatives.

Name Score Function

Location
Wilcoxon u
Normal 0-1(u)
Median I(u < 1/2)

Scale
Mood (u - 1/2) 2

Normal O-I(u)2

Ansari-Bradley iu - 1/21

Many different forms of the score function have been proposed, some which

depend on N and some which do not. It is the score function which determines

the properties of the statistic. It is up to the user of these techniques to choose

the score function. Some considerations for its choice are now given. Table 2 gives

some commonly used score functions for scale and location alternatives. Notice

that the score functions corresponding to location alternatives are monotone and

those corresponding to scale alternatives have one sign change in their derivative.

If one were to redefine the score function as J(u) = J(u) - p (thus centering the

statistic), this observation can be recast in terms of zero crossings. The score

functions for location alternatives have one zero crossing in (0, 1) and those for

scale alternatives have two. Eubank, LaRiccia and Rosenstein (1987) give further

intuition into this matter. For now, it is enough to notice such a pattern.

Given the relative freedom in the choice of score function, one might ask if

it is possible to choose it optimally in some fashion. The answer is yes in the

following sense. For location alternatives, F(x) = H(z) and G(x) = H(x - 0),

the optimal score function is

h'QH(u)

JL(U) = hQH(u)'

where h = H' is the density function of the distribution function H; QH(u) =

inf{x:F(x) >_ u} is the quantile function of H and hQH(u) = h[QH(u)] is a
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composite function as is hQH(u). The density, h, and its derivative, h, are

assumed to exist. The score function JL(u) is optimal in the sense that it maxi-

mizes the asymptotic relative efficiency (ARE) of the test as defined by Noether

[see Randles and Wolfe (1979) pages 147 ff.]. The asymptotic relative efficiency

gives a measure of the power of one test relative to another. In fact, the test

that results from using JL is asymptotically relatively efficient. This means that

no test, not even a parametric one, will produce a better ARE. The optimality

of JL is quite strong. Similarly, for scale alternatives one finds that the optimal

score function is
Js() = _QH (u) h'QH (U)

hQu())

Applying these formulas, one sees that the Wilcoxon is optimal at detecting

location shifts if H is the logistic distribution and the normal scores tests are

optimal at detecting location and scale shifts in underlying normal populations.

In one sense it is a drawback that to achieve the optimality one must know

the underlying family of distributions, H, to which F and G belong. This is

not the case if one is merely interested in protecting best against certain classes

of distributions. For example, if one thought that the underlying distribution

might be slightly longer tailed than the normal, the Wilcoxon test is a good

choice. Even though it is optimal only for H logistic (which has slightly longer

tails than the normal), one should expect it to perform well against the broader

family. Further, since the test is nonparametric one is protected in case F and

G are strongly non-logistically distributed.

2.2.5. Nonparametric Teats Against General Alternatives. As has been

shown in Subsections 2.2.2 and 2.2.3, the class of nonparametric tests against

general alternatives most nearly matches the goal of minimal assumptions about

F and G outlined in Section 1. In this subsection, existing nonparametric tests

against general alternatives are reviewed. In addition to standard properties, it

should be examined how these tests fit into a computer oriented data exploratory

environment. It is seen that as simple statistics, they do not fit well into such an

environment. Two tests are examined in detail: the Cramr-von Mises and the
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Anderson-Darling. The Kolmogorov-Smirnov test is briefly mentioned, but not

examined in detail.

The Cramir-von Mises test has been defined in a number of ways, none quite

the same but all having the same spirit. Lehmann (1951) and Rosenblatt (1952)

define the Cram6r-von Mises statistic as

" f[F(x) - Gn(X)12d[Fm(z) + Gn(x)];

Kiefer (1959) and Fisz (1960) employ the definition

'M f [Fm(.-) - Gn ()2dHN(x);

the Pyke and Shorack (1968) process leads to the definition

N )  fI [FmQN(u) - u]2du,I - A(N) f

where QH(u) is the sample quantile function of the pooled sample; and Parzen's

(1983) definition of the comparison distribution function leads to the definition

(2.2.2) CVMN = NI A(N ) f[DN(w) - w]2dw,

where DN(W) is the sample distribution function of the normalized ranks,

Rj1N,..., Rm/N. This last definition is the one which is used throughout this

work. All of these versions have the same motivation: one is measuring the

distance of F to G by an integral of a squared function. Here only (2.2.2) is

considered in detail.

The limiting distribution of (2.2.2) is the same as that of the corresponding

one sample statistic and is given by Anderson and Darling (1952). The limiting

distribution depends on that of the integrand which is viewed as a continuous

parameter stochastic process. To achieve a limiting process for the integrand,

one must make certain additional assumptions on F and G. These are detailed

in Subsection 2.3.3 and won't be discussed here further.

Durbin and Knott (1972) give a very important alternate representation for

the Cramir-von Mises statistic in terms of what they call components. Although
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they use the one sample problem as a format, their procedures apply to the two

sample problem as well. Using their techniques, one finds that
00

(2.2.3) CVMN = Z ,i,
j=1

where the

ZNj = jV/2( sin(7rjw) N.-A(N DN(w) - wldw

fa ~ V - -\(N)'

are referred to as the components of the Cramr-von Mises statistic. The compo-

nents, ZN1, ZN2,..., are asymptotically independent with the standard normal

distribution under H.

Durbin and Knott's (1972) result is derived by an orthonormal expansion

of the random function VNA(N)I(1 - A(N))[DN(w) - w]. The techniques used

are basic to Fourier analysis. The equality (2.2.3) follows easily from Parseval's

identity. The distributional results are somewhat deeper in nature and a good

discussion is given in Shorack and Wellner (1986), pages 215 ff.

Anderson and Darling (1952) suggest an alternative statistic, ADN, which

can be written as
AD -NA(jN )  I /1W

ADN - (N JO IDN(w) - w] 2 /w(1 - w)dw.1 -!\N

The rationale for the extra term, w(1 - w), is to give each point of the process

V//NA(N) /(1 - A(N))[DN(W) - w] equal weight in a statistical sense. This follows

from the fact that under H, its limiting process, call it CDN(w), has variance

w(1 - w). Anderson and Darling (1952) determine the distribution of ADN

under the null hypothesis. Durbin and Knott show that this statistic, too, has a

representation in terms of components. This representation is
00

ADN = E. (i ) + N
3=1

where

ZN, = LPj(w) ) [DN(w) - w]/V/w(i - w)dw,
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with

LPj(w) = 2 V(2j + 1)w(1 - w)Lj.(2w - 1),

and Lj is the ith Legendre polynomial. Again, under H0 , the components are

asymptotically distributed as independent standard normal random variables.

The asymptotic representations for CVMN and ADN allow important in-

terpretations of the manner in which these statistics operate. It is well known

that these tests are consistent against any alternative [see Randles and Wolfe

(1979), page 384], yet one must certainly be sensitive to the issue of power as

well. Consider the first component, ZN1, of the Cram~r-von Mises statistic. It

can be written as

ZN1 = aN sin(7w)DN(w) - wjdw

= bN c os(rw)d[DN(w) - w)

- bN E cos(wRjIN),
j=1

where aN and bN are constants depending only on N. This component has the

form of a linear rank statistic with score function J, (u) = cos(7ru). Since J(u)

has but one zero crossing in (0, 1), the first component is a test against a location

shift. It can be shown that Jl(u) is the optimal score function for detecting shifts

in the Cauchy family. In the same manner, the first component of the Anderson-

Darling statistic can be shown to be the Wilcoxon statistic. Similarly, the second

component of CVMN is a rank statistic with score function J2(u) = cos(21u)

which is a score for scale alternatives. The process continues with score functions

of successively higher frequency.

The interpretation of the components as rank statistics is very important.

Both CVMN and ADN successively and rapidly downweight these rank statistics

in calculating an overall portmanteau statistic. Although they may be consistent

against general alternatives, one expects that they would have poor power char-

acteristics against any but the first few components. This is indeed the case, as

is seen in Section 4.
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There does exist a third statistic, the Kolmogorov-Smirnov statistic, which

is consistent against general alternatives. It is defined as

KSN = NA 0sup IDN(w) - wl,
1 - O(N 0w<1

which measures the deviations from uniformity in a supremum norm sense. It

tests Ho only by the largest deviation of DN(w) from w. The Kolmogorov-

Smirnov test does not have a representation in terms of components, which makes

its response to various alternatives much more difficult to gauge.

As a final point concerning nonparametric tests against general alternatives,

consider how these statistics relate to the criteria outlined in Section 1. As

nonparametric tests against general alternatives, they certainly make minimal

assumptions on F and G. There are certain troubling questions about their

power. It is also difficult to see how they fit into a graphical, exploratory mode

of data analysis. As simple statistical tests, they simply accept or reject. There

is no explanation as to why Ho is rejected should it be.

2.2.6. Criteria for a Methodology. Having reviewed existing two sample

techniques and armed with an outline of goals from Section 1, a list of criteria

for a methodology can now be given. The list gives the desirable properties a

procedure should possess in order to attain the goals given in Section 1. These

criteria result directly from a combination of these goals and observations made

concerning existing techniques in this section.

The criteria for a two sample procedure which must be met by any derived

in this work are:

1. It is not solely number oriented but does possess graphical features.

2. It is not only a statistical test but also a selection procedure for a model of

the relation of F to G.

3. It should be omnibus.

4. It should be nonparametric distribution free under the null hypothesis.

A procedure with strong graphical elements is desired to take advantage of

modern computing environments. Statistics are needed, to be sure. However,
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numbers by themselves cannot convey the quantity or diversity of information

of which graphs are capable. Graphs have shape; numbers do not. Statistics are

useful as diagnostics and indicators; however, there is no longer any need to rely

upon them exclusively.

Dual to statistical testing is model selection. Suppose a model, M, for a

process is to be chosen from the class of possible models, . The model gives,

in some fashion, the true behavior of the process. In the two sample case, it

would give the true relation of F to G. Suppose further that the null hypothesis

corresponds to some subset, A, of . Choosing a model is dual to testing the

null hypothesis in that the null hypothesis is rejected if and only if the chosen

model is not in A. Similarly, a test of H0 can be viewed as a model selection

process if by rejecting Ho an element of M not in A is selected. Any procedure

derived must explicitly represent this duality.

As stated in Section 1, it is desired to make minimal assumptions on F

and G either under Ho or H.. In term of statistical terminology, it has been

seen in this section that this desire translates into a nonparametric test against

general alternatives. The wish to have a test consistent against any alternative

is tempered by the desire for a test which has good power characteristics against

a wide range of alternatives. It will not be required that a test be consistent

against any alternative, but that it be consistent for a wide range of alternatives

or be omnibus. The procedure should also be nonparametric distribution free

under Ho so that the distributional problems possess a solution.

2.3. Review of the Comparison Density

2.3.1. Introduction. There is an object which lends itself to the sort of graph-

ical, functional type of portmanteau test which was outlined in Subsection 2.2.6.

This object is termed the comparison density by Parzen (1983). The estimation

of and tests based on the comparison density will form the foundation of this

dissertation. In the following subsections, the comparison density is defined, the

properties of related stochastic processes are discussed, and existing tests based

on it are reviewed.
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2.3.2. Definition of the Comparison Density. In this subsection, the com-

parison density is defined and its properties reviewed. Let af and ag be the lower

endpoints of f and g, respectively, so that a1 , ag > -oo. Similarly, let bf and bg

be the upper endpoints of f and g, respectively, so that b1 , bg S o. From the

outset, assume that the distribution functions, F and G, the quantile functions,
QF and Q0 , and the densities, f and g, satisfy

a. QF and QG are continuous;

(2.3.1) b. F and G are absolutely continuous with densities f and g;

c. f and g are both continuous on the interval (a1 A ag, bj V bg).

Parzen (1983) defines the comparison distribution function to be,

DA(w) = FQH(w) =FoQ1 (w) for 0< w < 1,

where QH(w) is the quantile function of HA(Z) = AF(z) + (1 - A)G(z) and

o means function composition. A few of the simple properties of DA are: (a)

DA (0) = 0; (b) DA (1) = 1; (c) DA is increasing on [0, 11; and (d) DA is absolutely

continuous on (0, 1]. These properties justify the term 'distribution' as DA is, in

fact, a distribution function.

The comparison density is just the derivative of the comparison distribution

function

(2.3.2) d(w) = dDA(w) = f A
dw hQH (w) '

since (d W) = 1/hQH((w) [see Parzen (1979)]. Note that condition (2.3.1c)

ensures that dA(w) is continuous on (0, 1). The continuity of dA(w) is needed to

show the weak convergence of the comparison distribution process (see Subsection

2.3.3). The condition (2.3.1c) allows for many possible F and G, but some

choices are excluded. For example, taking F as the N(0,1) distribution and

G as the standard lognormal does satisfy this condition since G is continuous

on IR. Taking F as the N(0,1) distribution and G as the standard exponential

distribution does not satisfy condition (2.3.1c) since G is discontinuous at 0. The

comparison density will also be discontinuous. Parzen (1983) gives several of the
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elementary properties of dx as, (a) 0 < dA(w) _ 1/A; (b) d(w) -- 0 if f --+ 0;

and (c) d(w) -+ 1/ A if g --+ 0.

The most important interpretation of d is that of a likelihood ratio. The

comparison density is the likelihood ratio of the density of the first sample to the

density of the pooled sample, f to h), evaluated at the quantile function of the

pooled sample, QH. Now if F = G, hx(z) = f(z) for all z. If F $ G, then f will

differ from g on at least an interval (since both are continuous). Consequently,

F = G if and only if d,(w) = 1 for 0 < w < 1. Thus the hypothesis Ho: F = G

is equivalent to

Ho: d(w) = 1 for 0< t < 1.

Furthermore, if the alternative F # G holds then d. specifies the way in which the

hypothesis fails. This specification is given by departures of d from uniformity.

It is also possible to specify these departures in terms of the usual likelihood

ratio of f to g by noting, as Parzen (1983) does, that

1 1 gQ 1(w)
d(w) + fQH (w)

However, there is really no need to go to this trouble unless an estimate of f/g is

specifically desired. Visually, it is enough to know that d (w) > 1 if and only if

fQH(w) > gQH (w). A further argument for interest in dA instead of f/g is that

d, is bounded between 0 and 1/A whereas fig will often be unbounded. The

estimation of unbounded functions is a significantly more difficult task which is

best avoided, if possible.

Given a plot of d), one might wonder if one can determine the kinds of F

and G that generated it. Figure 1 presents d for a variety of F and G. Figures

(a), (c), (d) and (f) are location alternatives, that is, G(z) = F(z - 0), for some

constant 0. Figure (b) is a scale alternative, so G(z) = F(z/9). Although one

might be tempted to classify Figure (e) as a scale alternative based on the fact

that G(z) = F(z/2), it is best characterized as a location alternative. This is

so since it is easily converted to a location alternative by taking logarithms of

the random variables. This interpretation is doubly pleasing since Figure (e)
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Fig. 1. Examples of the comparison density function. Figure (a) is constructed us-
ing F = N(O, 1) and G = N(I, 1); Figure (b), F = N(O, 1) and G = N(O, 4); Figure
(c), F = Cauchy(O, 1) and G = Cauchy(1, 1); Figure (d), F = Triangular(O, 1)
and G = Triangular(1, 1); Figure (e), F = Exp(1) and G = Exp(1/2); Figure
(f), F = Lognormal(0, 1) and G = Lognormal(1, 1); Figure (g), F = Weibull(3)
and G = Exp(1); and Figure (h), F = N(O, 1) and G = N(1,1). Figures (a)
through (g) are constructed with A = 1/2 and Figure (h) is constructed using
A = 1/4.
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appears similar to Figure (a). One could define a pure location alternative as

those alternatives for which dA is monotone and a pure scale alternative as those

for which d,\ has one sign change of its derivative. However, Figures (c) and (f)

fail such a criterion. It would seem preferable to classify as a location alternative

those dA for which the dominant term in an orthonormal expansion of d\ is the

lowest frequency. Scale alternatives would have as a dominant term the next

higher frequency. Figures (b) and (g) are quite similar; yet the first is a scale

alternative and the second a general alternative. One could argue that in the case

of Figure (g) that the dominant difference between the two is scale. In Section

3, diagnostics will be introduced which help indicate the types of relations of F

to G present.

The comparison density is a specific example of the general technique of

reducing the null hypothesis to a test of uniformity of a function defined on [0,11.

The idea is well established in terms of the one sample problem in which the null

hypothesis is completely specified. In the one sample location-scale problem,

Parzen (1979) introduces the more general approach taken here. He terms this

approach the density estimation approach to goodness of fit. In his comments on

the article, Lindley remarks that this approach "provides something which looks

as if it will be easier to handle than the raw functions."

The comparison density is seen as a starting point to fulfilling the criteria for

testing outlined in Subsection 2.2.6. The comparison density, being a function,

is graphical in nature and conveys information a. to the relation of f to g. The

goal is to estimate the comparison density, in a manner to be determined, and

to test that estimate for uniformity. If the test rejects, a graph of the estimate

is displayed and various diagnostics presented.

2.3.3. The Comparison Distribution Empirical Process. It has been seen

that the comparison density, d, is a useful and interesting object. It is desired

both to estimate the comparison density and to derive inferential procedures

concerning its uniformity. As pointed out in Subsection 2.2.6, however, these

two goals are dual in nature, each depending on the other.

As a practical matter, one needs to determine a stochastic process such
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that an estimator of dx can be written as a functional of this process. In this

subsection, such a stochastic process is discussed. This stochastic process is

termed the comparison distribution empirical process and is introduced by Parzen

(1983) as a unifying concept. It will be seen to be a unification in that linear rank

statistics, the Cramir-von Mises, Anderson-Darling and Kolmogorov-Smirnov

statistics can all be conveniently represented as functionals of this process.

As a means of motivating this approach, consider estimating the mean, j,

of the distribution, F, from the first sample, X 1 ,... , Xm. Suppose that F has

finite variance a2. The sample mean, X, is given by X = f zdFm(x), where Fm

is the empirical distribution function. One is led naturally to the statistic

- is) = VMii zd[Fm(x) -

= Qf (t)d[FmQF(t) - t]

= fo QF(t)dUm(t)

= I' qF (t) Um(t) dt,

where qF(t) = dQF(t). The quantity Um(t) is termed the uniform empirical

process [see Shorack and Wellner (1986), page 86] and it is well known [Shorack

and Wellner, page 1101 that Um(t) =o U(t) as m --, oo, where =: denotes weak

convergence. Here, U(t) is a Brownian bridge; it can be characterized as U(t) =

W(t) - tW(1), where W(t) is a Wiener process. The Wiener process is defined as

a process that satisfies W(O) = 0 a.s., W(t) - N(O, t2 ), and W(t) has stationary,

independent increments. Hence, the Brownian bridge is a Gaussian process with

mean function E[U(t)] = 0, covariance kernel K(s, t) = E[U(t)U(s)] = min(s, t) -

st, and U(O) = U(1) = 0 a.s.. See Billingsley (1986), page 522, or Shorack and

Wellner (1986) for more details.

Given the weak convergence of Urn to U, one would hope that it would follow

that

foIqF(t)U(t)dt d& fo qF(t)U(t)dt as m -- oo.
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This last integral is normally distributed with mean

E[j qF(t)U(t)dt] = f qF(t)EJU(t)dt = 0,

and variance

Var[j 1 qF(t)U(t)dt] = j QF(t)2 dt - [jQF(t)dt] 2

= 2f (x)dx - [J zf (x)dxz]

[See Parzen (1962b), page 77, and Parzen (1979)]. It has just been proved, albeit

somewhat heuristically, that X is AN(14,o 2/m). The key is to define an empirical

process such that the parameter one is interested in can be written as a functional

of that process. For this example, one need only apply the central limit theorem

to achieve the result. The case of estimating d is far less straightforward in that

one is not estimating a single parameter from a random sample. The stochastic

process approach is the only one available.

The parameter A represents the weight or proportion given the distribution

F. For the samples X1,...,Xm and Y1,...,Y,, the natural estimate of A is

A(N) = m/N, where N = m + n. It is assumed throughout that A(N) --+ AO

as m An -- o, where 0 < A0 < 1. Define D(N)(w) = DA(N)(w), d(N)(w) =

dA (N)(w), Do(w) = DAo(W), and do(w) = dAo(w). These first two functions

depend on N, but only through the parameter A(N), and so are not random. In

fact, the goal is the estimation of d(N) which is tantamount to estimating do as

m An - oo.

The obvious process to define for the comparison distribution function is

(2.3.3) LN(w) = VI-N[KN(w) - D(N)(w)M ,

where KN(w) = FnQ,(w), and QNH is the sample quantile function of the pooled

sample. The process (2.3.3) simply substitutes the empirical functions for the

unknowns, which is the manner in which Urn, above, was constructed. Let X(1 )

be the 04 order statistic of X 1,... , Xm, for i = 1,. . . , m. Let R4 be the rank of
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Fig. 2. The typical appearance of KN and DN. Figure (a) is KN and (b) is
DN. The two graphs are constructed using the same input ranks and m = 10
and n = 10. The block on the end of the line segments marks the value of the
function at the jump points.

X i in the pooled sample and let R(i) be the rank of X(i) in the pooled sample.

This latter notation is appropriate since R(i) is also the ith order statistic of

R..., Rm. Now KN is given by
0, for 0 < w < (R(i) - 1)/N;

KN(w) = j/m, for (R(j) - 1)IN < w, < (R(j+I) - 1)/N and j = 1,..., m;

1, for (R(m) - I)/N < w < 1.

Figure 2(a) gives the typical appearance of KN.

Pyke and Shorack (1968) study the process LN(w) extensively. Their main

result is that under conditions (2.3.1), LN(w) =: L(w) as m A n --* oo, where

(2.3.4) L(w) = (1- AO) (d(w)U[Do(w) I VO

- do(w)V tA/v' T)

and U, V are independent Brownian bridges and DOG and d4 satisfy AoDo(w) +

(1 - Ao)Do(w) = w, and A04g + (I - Ao)do = 1. The process L(w) is Gaussian

with mean function 0 and covariance kernel K(u,v) = E[L(u)L(v)], equal to
(2.3.5) K(u, v) = (1- Ao)2(dg(u)do(v)Do(u)[1 - Dc¢(v)1/A0

+ do(u)do(v)DG(u)[1 - Dg()]/(1 -o))
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for u < v. If F = G, K(u, v) and L(w) simplify tremendously and one finds that

L(w) = (1- Ao)U(w)/VXo-V(w)/VT27XT] and K(u,v) = (1-A 0)u(i -

for u < v.

Parzen (1983) chooses to define a slightly different process, CDN(w), as

CDN(w) = vN[DN(w) - D(N)(w)I,

where DN(w) = [HNQFm-'(w); HN is the empirical distribution function of the

pooled sample; QF is the empirical quantile function of the first sample; and

the exponent -1 refers to a special type of inverse which is given below. The

function HNQF (u) has values,

HNQF (u) fO, for u =0;
SR(j)/N, for (/- 1)/m <u < j/m and j = 1,...,m;

since QF = X(j) for (j - 1)/m < u < j/m. Notice that HNQ F is defined on 0 to

1, is non-decreasing and left continuous. These are the characteristic properties

of a quantile function. Its inverse is defined as DN(w) = sup{u : HNQF (u) _ w)

and results in

0, for 0 < w < R(1)IN;

DN(W) = j/m, for R(j)/N < w < R(j+ 1 )/N and j = 1,...,r- 1;

1, for R()/N < w < 1.

As a matter of notation, DN is a stochastic process; it is estimating D(N) which is

not random. If there are parentheses around the N in a subscript, that quantity

is not random. If there are no parentheses, the quantity is random. Note that

DN(W) is non-decreasing, right continuous, and DN(O) = 0 and DN(1) = 1.

These are the characteristic properties of a distribution function on [0, 11. Figure

2(b) presents the function DN for the same data as is used to construct LN in

Figure 2(a). Aly, Cs6rg6, and Horvith (1987) use embedding techniques to prove

that CDN(w) converges weakly to the process L(w). Parzen (1983) conjectures

that this result can be obtained from Pyke and Shorack's (1968) results since

DN(w) and KN(w) differ by 1/rn on m intervals of length 1/N. A proof is as

follows. The function DN(W) can be written as DN(w) = LN(W) + AN(w),

where
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1/m, for (R() - 1)/N < w < R(j)/N and j = 1,...,m;
AN(W) ( 0, otherwise.

Pyke and Shorack (1968) give the following representation for LN(W):

(2.3.6) LN(W) = (1 - A(N))(BN(w)Um(FQ'(w)I/ A(N)

- AN(w)VlGQ%(w)I/ 1 - A(N)) + 6N(W) a.s.,

where AN(w) = [DN(uw) - DN(w)l/(uw -u) and uw = HQH(w); BN(w)

and 6N are defined by A(N)AN(w) + (I- A(N))BN(w) = 1 and LN(w) -

AN(w)vN(HNQI(w) - w); Urn and Vn are the uniform empirical processes

for the first and second sample, respectively. Pyke and Shorack use the Sko-

rohod device [see Shorack and Wellner (1986), page 541 to create versions, Urn,

V 4, U, and fV of Urn, Vn, U, and V such that the new versions are distributed

identically as the original versions, are defined on a common probability space,

and satisfy

(I0m - U-- 0 a.s.,

iivn - V- 0 a.s.,

as m A n -+ oo, where is the sup-norm. If one can show convergence

in probability for the new processes, this would imply that their probability

measures also converge. Since these probability measures are identical to those

of the original processes, this must mean that they converge also and hence that

one has weak convergence. These new versions are substituted into equations

(2.3.4) and (2.3.6) to obtain L(w) and LN(w), respectively. They then show

that

ItLN(W) - L(w)II - p 0 as M An. - oo.

Write DN(w) = LN(W) + AN(w) so that

DIDN(w) - L(w)II = IILN(w) + AN(W) - L(w)II

< IILN(w) - L(w)1 + IIA(w)II
--+P 0 as m A n -"- oo.



31

Hence, the same proof works with little additional work. It is important to

establish this fact as weak convergence under local alternatives will be shown for

LN(w) in Section 4 and the result carried over to DN(W).

The stochastic process suggested by Parzen will be the basic process used

in this work. It is chosen over that of Pyke and Shorack for several reasons.

First, DN(w) has the form of the sample distribution function constructed from

the data Ri/N,..., R,/N. This sample distribution function is estimating the

true distribution function whose density it is desired to estimate. The analogy

with the ordinary density estimation is very strong as shall be seen in Subsection

2.4. In this case, one views R 1/N,..., Rm/N as data arising from the density

d(N) and uses conventional density estimators for d(N). As with the example of

the sample mean, these estimators can be written as functionals of a stochastic

process. The limiting distribution of these functionals differs from the usual case

because the limiting distribution of the underlying stochastic process is different.

Second, DN(w) is preferred because rank statistics are more easily represented

as functionals of DN(w). Recall the rank statistic S = E 1 J(RI/N) as defined

by (2.2.1). This statistic can be neatly rewritten as

SN = J(w)dDN(w).

In fact, one can rewrite the centered form of the statistic as

s = 11 J(w)dCDN(w)

= jlJ'(w)CDN(w)dw.
The asymptotic normality of S is almost trivial if J is differentiable on (0, 1)

and the derivative is bounded there. In this case, the functional K(f) =

fo J'(w)f(w)dw is uniformly continuous for f E D[O, 1], the set of all functions on

[0,1] which have limits from the left and are continuous from the right. By Theo-

rem 3.12 of Ruymgaart (1988), S converges in distribution to f 1 J(w)L(w)dw,

which is a Gaussian random variable. Aly et at. (1987) study more general score

functions which are allowed to depend on N. The representation for rank statis-
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tics used by Pyke and Shorack (1968) is

Sk f LN(w) dir,
0

where VN is a signed measure which puts measure eNi on the point i/N for

i = 1,..., N. This representation is somewhat cumbersome and less natural

than that derived for the CDN process.

2.3.4. Existing Work on the Estimation of the Comparison Density. In

this subsection, existing work on estimating and testing the uniformity of the

comparison density is reviewed. Some very interesting work has been done in

the area, but it is seen that these techniques fall short of the goals which have

been outlined.

Parzen (1983) derives a testing and estimation methodology which fits into

the framework outlined in Subsection 2.2.6. His approach is essentially the same

that will be taken here: to apply a general method for the estimation of den-

sities to the special stochastic process CDN. Parzen's estimator is known as

the autoregressive estimator and its use in the general density estimation set-

ting is detailed in Parzen (1979) and Carmichael (1984). It is also discussed in

Subsection 2.4.5.

The estimate of the comparison density, dk, is defined by

k
4(W) =a2 + L j, 2 ,

j=1

where the ai's are complex-valued and I . 12 denotes the complex squared mod-

ulus. The parameter, k, is a smoothing parameter and is referred to as the order

of the autoregressive process. Larger values of k lead to rougher estimates. The

tj's and am are estimated from the data, R 1 /N, ... , Rm/N. The form of 4k(w) is

that of the spectral density [see Newton (1988)1 associated with a complex-valued

AR(k) process with coefficients, a1 , . .. , ca/, and normalized residual variance, 0 2

hence the name.

Parzen (1983) defines the pseudo-correlations to be

Ak = e2*'kzdDN(x), for k = 0, 1,2,....
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The estimates of aj= 1,..., k and are&,j= 1,..., k and &2, respectively.

They may be obtained utilizing a complex-valued version of Levinson's algorithm

(see Parzen (1983) for a description of the algorithm) based on the pseudo-

correlations. Parzen suggests choosing k by a version of Akaike's (1974) AIC

criterion, which chooses k to minimize
AIC(k) = In 2k -()

lnk+N A(N)

if that value of AIC is negative and selects k to be zero otherwise. The selection

of k = 0 is significant because d(w) = I if k = 0. The AIC selection criterion

can then also be viewed as a test of the null hypothesis, Ho: d(N) (w) = 1. If

AIC chooses k = 0, the null hypothesis is accepted. If AIC chooses k > 0, the

null hypothesis is rejected and a model is chosen. This simultaneous testing

and model selection is exactly what is being sought here. However, neither the

autoregressive estimator nor AIC will be used in this dissertation. The procedure,

however, stands as a benchmark to which to compare any new procedures.

There are several difficulties with this procedure both as a test of Ho and as

an estimator. As a test, the properties of AIC in this framework are unknown.

In particular, the size of this test (the probability of rejection if H, is true) is

unknown. Nor are there any provisions for adjusting the size to a pre-specified

level. These two are not damning criticisms. Although one would probably

not expect to solve them analytically, they certainly would yield to simulation

techniques. Of much more concern is the behavior of dk as an estimator. It can

be shown that A. satisfies the relation

ik(0) = 4(1).

Such a condition is referred to as a periodicity condition. There is no reason

to suppose that d(u) satisfies such a condition. If it does not, the estimator is

biased and inconsistent at the ends. It will be seen in Subsection 2.4 that such

biases can reduce the efficiency of an estimator drastically.

Eubank, LaRiccia, and Rosenstein (1987) investigate what they term the

components of Pearson's phi-squared distance measure. Pearson's phi-squared,
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as defined by Eubank et al. (1987), is

02 = j(d(N)(w)_ 1) 2 dw,

which is the squared £2[0, 11 norm between d(N) and 1. Certainly Ho: d(N) (w)

1, 0 < w < I is equivalent to Ho: 2 - 0. Unfortunately, there are no natural

estimators for 02, although an estimate of the form
((w 1)2dw

is investigated in Section 3. Eubank et at. suggest instead decomposing 02 into

its components. Start by selecting a complete orthonormal sequence for £ 2 [0, 11
(see Subsection 2.4.4), {pj(w)}, and define

aj = [d(N)(w) - llp,(w)dw forj - 1,2,....

The aj's are the components of Pearson's phi-squared and they satisfy

00

The components are estimated by

(2.3.7) aj = fpj(w)dCDN(w).

These components bear a marked similarity to the components of the Anderson-

Darling and Cramr-von Mises statistics discussed in Subsection 2.2.5. In point of

fact, choosing p,(w) = sin rjw yields the components of the Cram6r-von Mises

statistic and p3(w) as the Legendre polynomials yields the components of the

Anderson-Darling statistic.

A test of Ho: s 2 = 0 is then equivalent to Ho: a = 0 for j 1. Of course,

this latter hypothesis is not testable. One cannot simultaneously test an infinite

number of parameters. One could weight the components by forming a statistic

like E Aja& where E AVar(a,) < oo to arrive at an asymptotically consistent

test. Recall this is the form of the Anderson-Darling and the Cram~r-von Mises

statistics. Eubank et at. suggest instead that one test subhypotheses, such as

(2.3.8) Ho:aj = 0 for j = 1,...,M



35

This latter suggestion is most intriguing as one then gives equal weight in the

testing procedure to each of the first M aj's. This notion will be discussed at

greater length in Section 3. In terms of implementing this suggestion, note that

under H,

cov(aj,ak) = -\(N) I' f (u)K(uv)p4(v)dudv

A\(N) 0 (
1- (N)[ fop, (w)pk(w)dw - o1 p,(w)dw fo pk(w)dw]

,\(N)LiJoJ rk j

S -A(N) fo pj (w)dwj l pk(w)dw.

A(N) f o

In particular, if the orthonormal sequence, {pj(w)), is also orthogonal to

p0 (w) = 1 then the components are asymptotically Gaussian and independent

with variance

1-(N) f p(w)dw.
(N) f

From the form of (2.3.7), it is seen that the components are also rank statis-

tics. This interpretation of the components brings to light several interesting

prospects. First, Eubank et at. (1987) note that the usual form of the sequence

of p.(w)'s is that they become more oscillatory as j increases. Typically, P,

will have one zero crossing in (0,1), P2 will have two, p3 three, and so on. A

score function with one zero crossing is testing location; one with two crossings

tests scale. More crossings can be viewed as testing higher frequency departures

from uniformity. Testing the hypothesis (2.3.8) for the first 2 components then

results in a test against both location and scale. The independence of location

and scale rank statistics is known in the literature [see Randles and Hogg (1971)

and Boos (1986)], but it is presented in an ad hoe fashion with no unifying phi-

losophy. Eubank et al. seem to be the first to give any framework and extension

to this observation. One might choose the parameter, M, based on how great a

departure is deemed worthy of testing.

Second, one can choose the orthonormal sequence so that it protects best

against certain distributions or types of tail behavior. For example, if one wished
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to design a test to be most powerful in tle case when F and G are long tailed,

one might choose to use the cosine functions for the sequence. The cosine is the

optimal score function of the Cauchy. Similarly, the Legendre polynomials would

be suitable for medium tailed distributions, such as the logistic distribution.

Although they do not investigate the properties at all, Eubank et al. (1987)

note that the components do lead to an estimate of d(N) (w) as, say,

M
j(W)= Fajp(W).

j=1

Such estimates are referred to as orthogonal series estimates and will be discussed

in Subsection 2.4.4. Eubank et al. present some very intriguing ideas, several

of which will be taken up in later sections. However, they do not outline a

comprehensive testing and estimation procedure that is being sought here.

2.4. Review of Density Estimation Techniques on [0,11

2.4.1. Introduction. The purpose of this subsection is to review various

methods that can be used to estimate dA;(u). These techniques fall under the

general heading of density estimation. Since dA (u) is known to have support

[0,11, the implications of this fact on the properties of the estimators must be

closely examined. Modifications of certain estimators for this case, particularly

kernel estimators, have been proposed in the literature. These, too, will be

reviewed.

As with two sample tests, density estimators can also be classified as para-

metric or nonparametric. A parametric estimator of a density assumes that

f E 10 where the family of distributions, Yr, is defined as 7 = {f(z) =

f(z;0),9 E 0, C kR}. Given a random sample, X 1 ,... ,X 1 , from f(.;0),

0 is estimated by a method such as maximum likelihood, minimum chi-square,

or the method of moments [see Kendall and Stuart (1979)]. The resultant estima-

tor of f is f = f(.; i). In particular, if i is the maximum likelihood estimator of 0

then f(.; 9) is the maximum likelihood estimator of f by the invariance principle

[see Mood, Graybill, and Boes (1974), page 284].
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Philosophically, should there be justification to assume that the underlying

density belongs to a parametric family it is, as Good and Gaskins (1971) remark,
"a pity to waste it." It will be seen that parametric estimators generally enjoy

faster rates of convergence of mean squared error (MSE) than nonparametric

ones. In the case at hand, namely estimation of dx(u) from R 1 /N,..., Rm/N,

parametric techniques simply do not apply. There is no reason to suspect that

the class D of all d(u) constructed as in Subsection 2.3 can be indexed by a

finite dimensional parameter, 0. For this reason, it is necessary to look into the

realm of nonparametric techniques of density estimation for a methodology.

Several nonparametric density estimators will be examined in detail. These

are the histogram, the kernel method, the orthogonal series method and

AR/ARMA methods. In this discussion, it is assumed that one desires to ea-

timate a density, f, and has at hand a random sample, X1 ,... ,X,,, from f.

The discussion will be organi-ed as follows. First the estimator is defined and

its properties given. Special attention will be given to representations of mean

squared error and mean integrated squared error (MISE). Other properties such

as weak and strong consistency will be referenced but not detailed. Second, the

implications of f having support [0,11 are examined. If modifications to the

original estimator have been proposed, these will be discussed.

It is assumed that the reader is familiar with the basic concepts of non-

parametric density estimation and related standard terms such as MISE. Back-

ground material can be found in the following books and review articles: Silver-

man (1986), Titterington (1985), Bean and Tsokos (1980), Tapia and Thompson

(1978), Wertz (1978), Scott, Tapia, and Thompson (1977), Wegman (1972a) and

Wegman (1972b).

At this point it seems wise to reiterate that the properties of the estimators

described in the following subsections are derived for data, x1,... , Xn, which is

iid f. Since this is not the case for RI/N,..., R,,,/N it should not be expected

that the properties should carry over in a one to one fashion. Since the iid case

is in many ways ideal, such results may indicate the best that can be done.

2.4.2. The Histogram. The histogram is the oldest of the nonparametric
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density estimators and is best suited to f having compact support. In fact,

difficulties arise should f have infinite support. Despite this, it is seen that the

histogram is not best suited to the needs at hand.

The histogram is constructed for data, z 1,..., zm, in the following manner.

Select bin edges t = (to,...,tm) such that 0 = to < t I < ... < tm - 1. The

histogram estimate is given by

)= ni for ti_ 1 < x < ti,fh~zt) =n(ti - til)'

where ni is the number of data points falling in the interval [ti- 1 , ti).

Two of the simplest properties of f h(x; t) are easily verified; namely fh(z; t)

> 0,Vz and f fh(x;t)dz = 1. These imply the estimate is itself a probabil-

ity density function. Tapia and Thompson (1978) prove the following theorem

concerning the consistency in mean square of the histogram.

Theorem 2.4.1 (Tapia and Thompson, 1978). Suppose that f has continuous

derivatives up to order three except at the endpoints of [0, 1], and f is bounded

on (0, 11. Let the mesh be equal spacing throughout [0, 11, so that t - ti_ ! = 2h.

If h --, 0 and nh --+ oo as n -- oo, (note the partition is now a function of n)

then for z E (0, 1), MSEx(fh, f) - 0, where

MSEz(fh , f) = E([fh(z;t) - f(z)12).

From the details of the proof of Theorem 2.4.1, an upper bound on MISE can be

derived. This bound is

MISE(fh, f) _< + 2h2  f'(X)2dx + O(n - 1) + 0(h3).

Minimizing this bound with respect to the bin width, h, one finds that the best

rate of convergence of MISE(fh, f) is 0(n-2/3).

There are several criticisms of the histogram. The first is the rate of conver-

gence of MISE. The kernel estimators examined in the next subsection do better

than 0(n-2/3). Second, it seems unfortunate to estimate a function which has

been assumed to possess three continuous derivatives by a step function. If f is

smooth, it is desirable that the estimate should be, too.
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2.4.3. The Kernel Method. This subsection reviews kernel density estima-

tors. With some modification for boundary effects, it is seen that kernels are a

viable method of density estimation on [0, 11. Rosenblatt (1956) first suggests the

method of kernel density estimation. He examines in detail only the rectangular

kernel, however. Parzen (1962a) investigates general kernels and derives myriad

results. In fact, such has been the influence of his research in this area that they

are often referred to as Parzen kernel estimators.

The kernel density estimator, fk, is defined as

f k(Z; h) -1 [K (x ') dF(y)

(2.4.1)
nh

where Fn is the empirical distribution function and h is the bandwidth or window

width. Parzen establishes the following theorem concerning the mean square

consistency of fk.

Theorem 2.4.2 (Parzen, 1962a). Let z be a continuity point of f and suppose

h --+ 0 and nh --+ oo as n --- o. Assume that K is bounded, absolutely integrable,

and I yK(y)I -- 0 as y --+ oo; then MSE.(fk, f) - 0 as n -- oo.

Under various additional assumptions on h, K and f, he also establishes asymp-

totic normality and uniform weak consistency.

Strong consistency has been considered by several authors: Silverman (1978),

Bertrand-Retali (1978) and Nadarya (1965). Wahba (1975) derives minimax

results for the MSE of kernel estimators. That is, for suitable restrictions on K

and h and f E W, where W is an appropriate space of densities, Wahba derives

an upper bound on MSE.(f k , f) for all f E W.

Parzen (1962a) gives an asymptotic representation of MSE and MISE of fk.

He assumes the existence of an integer r > 0 such that

1 -k(u)Kr = lira ku

is finite and nonzero where k(u) is the Fourier transform of K. The number 0C, is

called the characteristic coefficient and r the characteristic exponent of the kernel
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K. Parzen (1962a) assumes also that f(t)(z) - f e-iUZjujr~(u)du converges

absolutely, where f(r) is the rth derivative of f and p is the characteristic function

of f. In this case, MISE and MSE admit the following expansions:

(2.4.2) MSEz(fkf) J K(y) 2 dy + h2r r

MISE(fk,f) - J 2rkC f f(r) (X)2 dz.(2.4.3) ~ f ()d + / x

In each of these expansions, the first term is the contribution due to variance

and the second due to squared bias. Minimizing (2.4.3) with respect to h, one

sees that the best rate of convergence of MISE is O(n-2r/(2r+l)). K is normally

chosen to be a probability density function which is symmetric about 0 and has

a finite variance (which implies r = 2), in which case the best rate of convergence

is 0(n-4/5). This rate is better than that of the histogram.

The discussion will now center on events at z = 0 (however, any conclusions

hold for the other endpoint, z = 1). Suppose that it is known that f has support

[0,11 and is continuous on (0,1). If f(0) = f(1) = 0, so that f is continuous

on R, then all the standard results noted above still apply. Now suppose that

f(0) > 0; f has a simple discontinuity at z = 0. Theorem 2.4.2 now fails at

z= 0.

Let K be a symmetric density function and consider fk(0; h). Equation

(2.4.1) simplifies to

fk(O;h) = K(-y/h)dF(y),

which means that one is using K(y) only for y 5 0. In this case, one can define the

effective kernel to be K6 (y) = K(y)I(_o,Oj(y), where I is the indicator function.

For K' the characteristic exponent is r = 0 since f Ke(y)dy 1. Referring

to equation (2.4.2), one sees that MSEo(fk,f) --+ 'f(0)l as h -0 0, nh -+ 0c

and n --+ oo, or that Biaso(fk,f) --- -'f(O). The problem is that the fk is

converging in mean square to 2f(0) [see Schuster (1985)]. There is no difficulty

with the variance term, only the bias term.

To investigate this phenomenon more closely, start by assuming that K has

compact support. For z > h, there is no problem and the usual definition (2.4.1)
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Fig. 3. Position of the kernel to estimate the density at zo. Region (a) on the
right corresponds to region (b) on the left. Region (a) is unused in the estimation.

applies. For x < h, part of the kernel is clipped; it will never be used since f is

zero on (- oo,O0). So f k(x; h) can be rewritten as

f(; ) f

fk(; h) K h Y) dFn(y),

where s = z/h and

K(yAI~I_,,I(y), for 0 < s < 1;
)= K(y)I[,1](y), for s > 1,

is the effective kernel. Figure 3 depicts this phenomenon graphically. For esti-

mating f at xO, one uses a kernel "sitting" on the point zo. A portion of the right

tail of K, which is the mirror image of that portion of the left tail falling below

0, is never used. So, instead of using a kernel with r = 2, one is actually using a

kernel with r = 0. The bias is greatly increased. However, for points away from

x = 0, the MSE behaves as usual asymptotically. This is so because, for fixed

XO, a = Xo/h = 1 when h = xO. As h decreases to xO, the kernel sitting at xO

no longer reaches to x < 0 and so the effective kernel, KC, is just K. Since h is

tending to 0, eventually h = xO for every xO > 0 and so the usual asymptotics

apply to all x > 0.

From this discussion, it should be plain why only kernels of compact support

are considered. Kernels of infinite support will always cross over to x < 0 and se
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Fig. 4. The kernel density estimate for a random sample of size 250 from the
uniform (0, 11 distribution. The estimate is constructed using the biweight kernel
and h = 0.15.

will always be clipped. Hence, no matter how small h is taken, boundary effects

will be experienced for each x E (0, 1]. Gasser and Mfiller (1979) make note of

this fact.

In finite samples, one should expect to see boundary effects for z between 0

and h. Figure 4 demonstrates this point. The figure presents the kernel density

estimate based on 250 iid observations taken from the uniform 10, 1 distribution.

The biweight kernel, K(t) = I(1- t2)21_, 11(t), and bandwidth, h = 0.15,

are used. Notice how the estimate starts to bend downward for z < 0.15 and

x > 0.85. Clearly, the situation is not satisfactory.

Several proposals have been made to correct the situation. The cut and

normalize method normalizes the effective kernel, K.,, so that it integrates to

one. Define the cut and normalize kernel Kcn(t) as

Kjn(t) = K.(t)/ J K,(y)dy.

This normalization moves the characteristic exponent from r = 0 to r = 1 for

0 < s < 1. In the interior, one is using a kernel with characteristic exponent

r = 2 and at the boundaries a kernel with characteristic exponent r = 1. To

examine the MISE of this estimator, define IA(s) - fM(s) K(t)2 dt and v(s)
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(fj o) tK(t)dt) 2 , where M(s) - min(s, 1). The MSE of the cut and normalize

estimator, fcf'(z; h), is

MSEx{fCn, f) = f(xZ A/h)+ hv(z/h)fl(x)2,
nh L/)+

and the MISE is

MISE(fc', f) - -= j 11(z/h)f(x)dx + h2  v(x/h)f'(x) 2dx
nh(1 f'1f o

- ) fj()dx + - h (xlh)f+()dx + h 2 v(z/h)f(z) 2 dx

_. / 1+Onl 1(1ofO
=-+ -+ f I(y)f(hy)dy + 3  v(y)f'(hy) 2 dy

_ s(1) 1 f1
'UM +-' f -- ' I(y) (f (0) + Rl (hy)) dy

+ h3 101 V(y) (fI(o)2 + R2(hy)) dy + 0(n 1 )

-f(O) 2 f i(y)dy + O(n - ) + o(h3 )nh J

where Rl(hy) = o(1) and R 2 (hy) = o(1). Note that, VE > 0, IR1(hy)l < e if

Ihyj < 6 which will occur if IhI < 6 since 0 < y _< 1. Thus I fo u(y)Rj(hy)dyl

< fo II(y)R(hy)Idy _ S fo IRI(hy)Idy !5 S fo edy !_ Se if Ih < 6, where S =

supo<t<_1 Is(t)j. Thus f j,(y)Rl(hy)dy = o(1) as h --+ 0. The best rate of

convergence of MISE is 0(n-3/4), not 0(n-4/') as normally expected for a

kernel of characteristic exponent r = 2. The poor behavior of MSE at the ends

dominates the entire MISE calculation. Such results call the use of the cut

and normalize kernel into question. It should be noted that this result is in

contradiction to the statement of Gasser and Miller (1979); "...end effects may

dominate the global asymptotic behavior (for nonparametric regression). Note

that this problem does not arise for kernel estimation of densities."

Another method of dealing with the boundary effect is the method of re-

flection, which is detailed by Schuster (1985). He defines new random variables,

Yi = SiXi, where P[Si = 11 = P(Si = -1] = ' and the Si's are independent

of the Xi's. The density function of Y is fy(y) = f(lyl)/2 which is continuous
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at y = 0 and so kernel methods should be satisfactory. If K is symmetric, the

estimate of f does not depend on the Si's and is

[K( )+ K (_ + X)

In terms of the usual kernel density estimation formula (2.4.1), the kernel is found

to be

Ka )(t) f [K (t) + K (2s - t)]l[_..16 (t), for 0 < a < 1;

K(t), for s > 1,

where . = z/h as before. Referring to Figure 3, this method amounts to "folding

over" the unused portion of the kernel in region (a) back into the region where

the data lies.

Given a standard kernel representation for 1'(z;h), the MSE and MISE

can be examined. It can be verified that f 11 Ka(t)dt = 1 for all 8 but that

f LI tKsr(t)dt 3- 0 for 0 < a < 1. Again, one expects to observe the degraded

MISE characteristics the cut and normalize method experiences. Schuster does

point out, however, that fr is non-negative, integrates to 1 and is asymptotically

normal.

Both the cut and normalize kernel and the reflection kernel are boundary

kernels. That is, they are kernels which change their shape when estimating f

near the boundary. One wonders whether it is possible to define a boundary

kernel in such a way that the normal MSE and MISE properties are preserved.

At least two authors have investigated this possibility. Rice (1984) states the

problem in terms of nonparametric regression but notes that the results translate

directly to the density estimation problem. In this discussion, his results shall

be given in terms of density estimation. Since the cause of difficulty is the bias

term, Rice uses a jackknife approach to reduce the bias. This is similar in spirit

to the approach Schucany and Sommers (1977) take to reduce the bias of kernel

estimators in the non-boundary case. If f admits a second order Taylor's series

expansion, E[f k(x; h)] can be represented as

Efk(z; h)] = 1 j K ( -u) f(u)du,= h J
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= ZIl K(y)fz- hy)dy.

Now suppose 0 < z < h, so that

Elf k(x; h)= K(y)[f(x) - f'(z)hy + -f1(z)h 2 y 2 + o(h2y2)]dy,

where s = z/h, thus

(2.4.4) Ejf k(z;h)] = f(z)wo(s) - hf'(Z)wl(Z) + lh2f"()w 2 (z) +
2

where wi(s) f 1 tK(t)dt for i = 0,1,2. Rice (1984) suggests defining a new

estimator by

f'l(x; h,a, , a) = a (fk(x;h) - If k(x; h) - f'k(x;a h)1).

Using (2.4.4), one finds the expected value of f3 to be:

E[f'(x; h, a, 0, a) = ! ([(1 - 1)wo(s) + w(Sla)]f()

- 1(1 - )wi(.s) + &Owl(,sla)]hf'(x)

+ I[(1 - fl)w2(S) + a2 Pw2 (8/a)lh2fI(z)) + 0(h 2 ).
2

The parameters a, P, and a need to be chosen so that this expectation is f(x) +

const.h2 .This is accomplished by setting

a (1 - i)wo(,) + Iwo(S/a), 0 w i(S)

wi (a) - awl (S/a)

The parameter a is still free; Rice suggests setting a = 2 - s so that one always

smooths over an interval of length 2h. The kernel which defines fj is

K83(t)- [(1 - #,)Ka(t) + (f/a,)Kb(t)I/a,, for 0 < s < 1;

I K(t), for a > 1,

where

Ka(t) = K(t)[_l,,](t) and Kb(t) = g(t)l[_a'.](t).

It isn't hard to show that Kj, satisfies fil K J (t)dt = 1 and fl tKj(t)dt = 0 for

all a.

Figure 5 presents Kj for a =0, 0.25, 0.5, and 0.75 for K(t) equal to the

biweight kernel. Notice that these kernels do eventually have negative regions as
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Fig. 5. Rice's boundary kernels for s=O, 0.25, 0.5, and 0.75. The solid line is
a = 0; the broken line, 8 = 0.25; the broken line with points interspersed, s = .5;
and the solid line with nodes, a = .75.

s decreases. This is the price that must be paid to keep the first moment equal

to zero throughout. The usual MSE and MISE results will apply to this kernel.

It appears that one has the choice of non-negative estimates with bias of order

O(h) or potentially negative estimates with bias of order 0(h 2 ).

From (2.4.4) it can be seen that the essential conditions for bias reduction

are

(24.)i. Ks(t)dt 1,
(2.4.5) -

H. f tK5 (t)dt 0,

for all 0 < s < 1. Approaching the problem from this standpoint, Gasser and

Mller (1979) propose a boundary kernel of the form

Ki(t) = f(Os + 4.t)K(t)j-.,,j(t), for 0 < s < 1;

K(t), for s > 1,

where 0, and 0, are chosen to be rontinuous functions of f such that constraints

(2.4.5) hold for all a and 01 = 1 and 41 = 0. Using the biweight kernel and

substituting the form of Kl m into the constraints (2.4.5), fa and Os are the
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Fig. 6. Gasser and Mdler's boundary kernels for 5=0, 0.25, 0.5, and 0.75. The
solid line is s = 0; the broken line, a = 0.25; the broken line with points inter-
spersed, s = 0.5; and the solid line uth nodes, s = 0.75.

solutions to the following linear equations:
1l(85+l) - 2 (8 3 + I)++ +1s0[ 5 3 1

+ 1((s6 1) (s41 +1(s2

(2.4.6) + 11(+ 1 i#

26 13
+ 1(.97 + 1)- 2-(s5 +) + (s + 1) 0.

Graphs of Krn(t) for s=O, 0.25, 0.5, and 0.75 are displayed in Figure 6.

Again notice that the kernel must eventually have negative regions to satisfy

the constraints (2.4.5). Although for given s the support of K grM and K j are

different, their shapes are similar in that one can see a progressive and continuous

deformation of the original kernel. Despite needing to solve (2.4.6) for 0. and s,

the Gasser-Mfiller kernel may be somewhat easier to work with since its support

depends on 8 on only one side. Both kernels are rational functions of S.

The Gasser-Mfiller boundary kernel for the right hand endpoint, z = 1, is

easily obtained. One could derive the expression for the expected value of the

estimator for the right endpoint. One would then notice the same problem except
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that the integrals are from -a to 1 instead of -1 to s. In this case, s is given

by s = (1 - z)/h. Due to the symmetry of the problem, it is easily shown that

K,(w) = K'(-w), where s= = (1 - z)/h, a = z/h, K is the left hand boundary

kernel and K' is the right hand boundary kernel.

2.4.4. Orthogonal Series Methods. Orthogonal series methods are reviewed

in this subsection. Many orthogonal series lend themselves naturally to the es-

timation of densities on [0,1]. Care must be given to the choice of orthogonal

functions, however, since this choice can have profound effects upon the proper-

ties of the estimator. Although orthogonal series ideas are taken up in Section

3, the traditional methods are seen in this subsection not to be exactly what is

sought.

The expansion of non-random functions by orthogonal series is a commonly

used technique of mathematical analysis [see Stromberg (1981)]. Cencov (1962)

was the first to suggest that such techniques could be useful in the area of density

estimation.

Start by assuming that f has support [0,1]. There do exist orthonormal

bases on IR, such as the Hermite functions, however, these are not of primary

interest here. Let {j(z)} 9= be a complete orthonormal basis for £2[0, 1], which

is the space of all functions on [0, 1] which are square integrable with respect to

the weight function, w(z). A basis is orthonormal with respect to the weight

function w(x) if

f0,(x)4k()w(x)dx = I(j = k),

where I(j = k) is the (Kronecker's delta) indicator function. The basis is com-

plete, if for all g E £2[0, 1], there exists a sequence of constants {ak}k=1 such

that

Ig- ajtGkI~kI -0 as nl -- Co.

The sequence {ak} is given by ak = fo Ok(x)g(x)w(z)dx, and I is the Z20, 1]
norm with respect to the weight function, ujgl12 = f1 g) 2w(z)dx.

!~fo IgI (x) wl (x) dz.
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Assume that the density f admits the series representation,

00

A(z) Eakkk(x),
k=I

where ak = f 4k(z)w(z)f(z)dz. The orthogonal series estimate of the density is

defined to be

00

(2.4.7) f°(X; A) = E kak~k(z),
k=1

where

1a~k = 1j14'k()W(x)dFn(x)

I in
= n.Zw(X)~k(XJ)

i=1

The sequence {Ak} is the smoothing parameter, which one expects to decline to

0 as k becomes large. Several forms for the sequence have been suggested. For

the moment, it will be assumed that(1, ifk < m;

(2.4.8) 
k =

0, otherwise.

The estimator of equation (2.4.7) now becomes

(2.4.9) fO(x; m) = E ak4 k(Z).
k=1

The parameter m is referred to as the truncation point of the series and plays

the role of smoothing parameter.

Kronmal and Tarter (1968) consider estimators of form (2.4.9). Although

any orthonormal basis {0k) will do, they focus on trigonometric (or Fourier)

series. There are at least four distinct bases involving trigonometric functions;

these are

i. 4 'k(x) = coe rkx, k > 0;

ii. Ok(z) = sin ,rkx, k > 1;

iii k(z) = (cosrkz, sin~rkz), k > 1;

iv. Ok(z) = (cos 27rkz, sin27rkz), k > 0.

These will be referred to as bases (i), (ii), (iii), and (iv), respectively.
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Kronmal and Tarter (1968) give results for (i), (ii), and (iii), whereas (iv)

is recognized as the basis function used by Parzen (1983) in the AR spectral

approach to estimating dA(u) discussed in Subsection 2.3.4 and by Parzen (1979)

and Carmichael (1984) in a general density estimation setting. Trigonometric

functions are often used as they are convenient, easy to calculate and their prop-

erties are well known. Kronmal and Tarter also note that since trigonometric

functions differentiate and integrate to other trigonometric functions, one does

not have to choose between an orthogonal series expansion of F and f. For the

trigonometric bases, the weight function is w(z) = 2. Other orthonormal bases

do exist for £2[0, 1]; the Legendre polynomials are an example.

Although bases (i) through (iv) are complete in £2, it is well known [see

Wahba (1975) or Hall(1981)] that the estimates obey certain conditions. Though

the details are different, it was seen in Subsection 2.3.4 that basis (iv) imposes

dA(0) = dA(1) upon the estimates, as it does on f'. Basis (ii) also imposes this

condition. In the case that f(0) $ f(1), these trigonometric series exhibit Gibb's

phenomenon. The estimates will tend to be very wiggly near z = 0, 1, and in

fact f will be estimating (f(0) + f(1))/2 at the points z = 0, 1. This poses no

difficulty to the £2 convergence of the series since the £2 norm is insensitive to

pointwise errors. Hall (1981) discusses Gibb's phenomenon. He finds that the

rate of convergence of MISE can be as bad as O(I//ij. Newton (1988), page 77,

has an excellent general discussion of Gibb's phenomenon. The problem arises in

part due to the choice of Ak as (2.4.8). In time series analysis, it is usual to give

the Ahk's a damped form to reduce this problem. Basis (i) imposes the following

end conditions on the derivatives, fo(2k-1) (0; m) = fo(2k-1) (1), for k > 1. Hall

(1983b) finds that this series is far more resistant to Gibb's phenomenon than

any of the other three.

For the cosine series, basis (i), the density estimator is found by applying

equation (2.4.9), with the exception that the weight function w(z) = 1 not w(z) =

2 is appropriate for k - 0. Bearing this in mind, (2.4.9) becomes

Ma0
f (X; m) = 2 -+ E k cos 7kx,

k=1
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where
2n

ak= -n cos irkX for k > O.
s=1

In the case of bases (iii) and (iv), the terms are taken in sine/cosine pairs so that

the estimator is
M Mt

f s,(xi M) + bCo +

k=1 k=1
where n

ak - n (Xi) for k > 0

nbk = n_ (x,) fork > 1.
i=1

For basis (iii), Oc(x) = coswkx, Ok'(x) = sinrkx, and ao = 0; for basis (iv),

-(z) = cos 21rkx, 0(x) = sin 2rkx, and ao = 2.

One cannot be assured that f0 constructed from any of these bases will be a

valid density. In particular, fo can become negative. Kronmal and Tarter (1968)

make two points concerning this issue. First they note that in all their simulations

they did not come up with a negative estimate. This point seems somewhat weak

as it is based solely on a handful of simulated data sets. Their second point is

that negative estimates are not a complete anathema. Negative estimates should

serve as a warning that inference in the negative region is hazardous; that there is

insufficient data in the region. This second point seems a much more appealing

response. The estimate, f°(z; m), at a point is a random variable taking on

values in R; if f is small at z, there is no reason to be surprised that f0 (z; m)

should be negative.

Notice that f and fIv do integrate to 1. If the estimate is non-negative,

then the result is a density. If the estimate has negative regions, than the fact

that it integrates to I is of no interest. The key condition is non-negativity: given

a non-negative (and integrable) estimate or' can always normalize it to arrive

at a probability density.

As with histograms and kernel density estimators, the performance of

f°(z; m) is usually measured by MSE and MISE. Kronmal and Tarter give the
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MISE as

f) m 002
MISE(f, f - Var(al) + a .

k=1 k=1

Kronmal and Tarter (1968) establish that if m = o(vn), then MISE(fi, f) -- 0

as n -+ oo. Using basis (iv), Hall (1981) derives the following relations for

MISE assuming that f possesses r derivatives and that f(3)(0) = f()(1), for
j = 0, ... ,r- 1,

MISE(f(v),f) = n 1 [f(r)(o) -f(r)(1)Jm2r1 +o(mnl +m2r-)

l7r (27 + 1)7r

The best rate of convergence of MISE is O(n(2r+l)/(2r+2)) which is O(ns/6) for

r = 2. This rate improves somewhat that of the boundary kernel (Gasser-Mifiller

or Rice), which is 0(n4/5), for r = 2. The improved rate, however, is obtained

only at the cost of requiring f and its first r - 1 derivatives to be periodic.

Hall derives a similar result for basis (ii), by requiring f to possess 2r

derivatives satisfying f(2j)(O) = f(2)(1) = 0, for j = 0,...,r. A rate of

O(n(4r + l )/(4r+2)) is then obtained. For basis (i), he requires f to possess 2r + 1

derivatives which satisfy, f(2j+l)(o) =f(2j+1)(1) = 0, for j = 1,...,7. In this

case, the best rate of convergence of MISE is O(n(4r+3)/(4r+4)). Notice that in

this case the restrictions apply only to the derivatives of f, not to the end values

of f itself. This result must be related to the observation that series (i) is the

most resistant to Gibb's phenomenon.

Return now to the general definition of the orthogonal series estimator given

by (2.4.7). Until now, the special form of Ak of equation (2.4.8) has been assumed.

One wonders if there might be a better choice of weights. Watson (1969) finds

the weights which minimize the MISE of f0 to be

(1 + (n - 1)a2/E [0,,(X) 21)

He notes that for fixed k that Ak -- 1 as n --+ oo. He concludes that ordinary trun-

cation will probably be sufficient if the ak's are large compared to Var(4k(X))/n

for k < m and negligible for k > m.
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Wahba (1981) defines an estimator similar in spirit to Watson's using basis

(iv). She assumes the same periodicity conditions on f and its first m - 1

derivatives as Hall (1981), above. She defines the weights, Ak, parametrically

and gives them a Bayesian interpretation. The Anal form of her estimator is

n/2 1
fn,-,m(x) - 1 + 2 + ak cos 27rkx + bk sin 2wk)

Wahba shows that if, A = an - 2m/( 2m+1), for some constant, a, that MISE -
O(n-2n/(2rn+l}).

As a final point on orthogonal series density estimation, it qeems natural to

ask if it bears any relation to kernel density estimation. The answer is yes and

in the case of basis (iii) Kronmal and Tarter (1968) give the relation as

1n

f (ii) (X; m) n ~ 6m(X - )

where
6e(z) -- sin[(2m + 1)7rz/2]

sin[7rz/2]

is known as the Dirichlet kernel. There is no explicit bandwidth for the Dirich-

let kernel; instead m plays the role of the smoothing parameter. The relation

between m and h, the bandwidth of the usual kernel estimator, is approximately

h - 1/r. Figure 7 displays 6mn(z) for m = 2,4,8 and 16. Graphically, it is easy

to see the role of m. Note that this kernel is not unimodal and not non-negative.

Interestingly, the usual kernel approaches a delta function (unbounded at zero,

zero elsewhere) as h --+ 0, whereas 6m does not as m - oc. Although 6,, becomes

unbounded at zero, the side lobes never decay to zero. This raises an interesting

question: Should one choose an orthogonal series that's convenient and not worry

about the kernel representation or conversely? It is hard to imagine anyone ap-

proaching this problea from the kernel perspective actually choosing to use the

Dirichlet kernel.

2.4.5. AR/ARMA Method. The last categories of density estimates to

be examined are the autoregressive (AR) and autoregressive moving average
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Fig. 7. The Dirichiet kernel. Figure (a) is constructed ,ith m = 2; Figure (b),
m = 4; Figure (c), m = 8; and Figure (d), m = 16.

(ARMA) estimators. The AR and ARMA methods are natural for densities of

compact support. It is seen in this subsection that the AR approach imposes

certain restrictions on the estimated density. The ARMA approach is somewhat

less restrictive and contains as a special case the cosine based Fourier series

estimate.

The form of the AR estimator has been given in Subsection 2.3.4, however,

it is repeated here for the sake of completeness. The estimator, fAR (z; i), is

defined by
_ I +

3='

where the aj's are complex-valued and I . 12 denotes the complex squared modu-

lus. The a's and am2 are estimated from the data. The discussion of Subsection

2.3.4 carries over exactly with the exception of the estimates of the pseudo-

correlations. In this framework, the pseudo-correlations are estimated by

S=fI e2krdF,&(z), for k = O, 1,21,...,.

The only difference is that dFn replaces dDN in the definition of Pk in Subsection

2.3.4. Carmichael (1984) obtains a consistency result for f AR(z; m) by allowing
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m to grow with n at an appropriate rate. The estimate, fAR(x;m), is itself a

density; it is non-negative and integrates to one. As noted in Subsections 2.3.4

and 2.4.4, the estimates have the property that fAR(0; m) = fAR (1; m). One

should expect the estimates to exhibit bias if this condition is not met by the

underlying density.

Hart (1988) suggests what he calls an ARMA density estimate. It is defined

as

fARMA(X; m,a) = (+0 + 2 E cos 'jx)I1 + aenj,1-2

j= 1

= f'(x; m) + 2Real([amae(m+l)z]/[1 - ,,ilr)

where am is the estimate of the mth Fourier coefficient of f and fi is defined in

Subsection 24.4. fARMA is called an ARMA density estimate because the form

of fARMA is similar to that of an ARMA(1,m) spectral density. Hart specifi-

cally uses a cosine based series to minimize the Gibb's phenomenon experienced

by the estimate. The pair, (in, a), constitute the smoothing parameter. Since
f ARMA (X;m, 0) = fi(X; in), fARMA is a more general estimator than the cosine

Fourier series.

Hart derives exact and approximate MISE results. In particular, if the

Fourier coefficients, {ak}, of f and a = a(m), obey either (a) jPa. - K 54 0 as

j -- oo and m(1 - a) --+ c > 0 as m -- oo or (b) (-1)jjPa, -- K 5 0 as j -+ oo

and m(1 - a) --- c > 0 as in -+ oo, for p > , the best rate of convergence of

MISE is O(nl/2p - 1) for both fARMA and fi. In the case where c = p, Hart

shows that MISE(fARMA, f)/MISE(f',j) < 1; that is, even though the two

obtain the same rate, the constant in O(n /2P - 1) for fARMA is smaller. This

result is reasonable given the class of cosine Fourier estimates is a subset of the

ARMA estimates.

2.4.6. Choosing the Smoothing Parameter. Each estimator discussed in

Subsections 2.4.2 through 2.4.5 is indexed by some sort of smoothing parameter.

Let s denote a generic smoothing parameter. In this subsection, various methods

of choosing s will be discussed.
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One of the first methods suggested is to choose a to minimize MISE. Unfor-

tunately, in each case the optimal value depends in some way on the unknown

density, f. For the histogram, one needs f f'(X) 2 dx; for kernels, f f"(x) 2 dx (as-

suming r = 2); for orthogonal series, the Fourier coefficients. Several suggestions

have been made to overcome this difficulty. One method estimates the unknown

quantity by the value it would have if f falls in some parametric class; see Scott

(1979) and Silverman (1986). In the case of kernel estimates, one can estimate

the unknowns from the data nonparametrically; see Woodroofe (1970) and Scott,

Tapia and Thompson (1977). The parametric methods generally perform ade-

quately if f resembles the assumed family (for example, if f is unimodal). The

nonparametric methods fail to perform well in the simulation studies Bowman

(1985) conducts.

The second major class of selection methodologies could be termed selection

through optimization. In this technique, a is chosen as the optimizing value

of some objective function. There are two general types of objective functions;

the likelihood function and estimates of MISE. Duin (1976) introduces the first,

which is termed likelihood cross-validation. The objective function is defined as

L(a)- Hf(i)(Xi; s),

where f(t) is the estimate of f calculated with the ith observation omitted.

The parameter s is chosen to maximize L(s). The usual likelihood function,

[I f(Xi; s), is not employed since it typically leads to a degenerate choke of a

(i.e. a = 0 or oo). In the case of kernel estimators, Chow, Geman and Wu

(1983) prove that if f is bounded and of compact support and h is chosen to

maximize L(h), then ISE(fk,f) --+ 0 a.s. as n --+ co. Here, ISE is the integrated

squared error, ISE(fk,f) = f[fk(x;h)- f(z)12 dx. In general circumstances, the

restrictions on f are of concern, although not so here.

In the second method, an estimate of MISE is minimized with respect to a.

For trigonometric series, it is possible to estimate MISE, or its increments, di-

rectly; see Kronmal and Tarter (1968), Tarter and Kronmal (1976), Hart (1985),

Diggle and Hall (1986), an, Wahba (1981). Rudemo (1982) and Bowman (1984)
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introduce least squares cross-validation (LSCV), which has application to a wide

range of estimators. The objective function is given by

LSCV(s) = 1 /(X ; 8) 2 dz - 2 L f((X i ; s).
n n

i=1i=

Rudemo (1982) shows that LSCV is an unbiased estimator of MISE(j, f) -

f f(X) 2dx. Since the last term does not depend on s, it is hoped that minimizing

LSCV with respect to s will be like minimizing MISE. Hall (1983a) and Stone

(1984) give results for kernel estimates concerning the behavior of fk when h is

so chosen. In particular, assuming only that f is bounded, Stone shows that

f[,fk(z; h) f(x) 2dz -- 1 a.s. as n - oo,

f[fk(z;ht)- f(z)]2 dx

where h is the minimizer of LSCV and ht minimizes ISE.

Of all the methods discussed, LSCV is probably the most widely used, al-

though one should not regard LSCV as a panacea. Silverman (1986), page 51,

points out that for kernel estimation LSCV can lead to a degenerate choice of h if

the observations are discretized. It is also well recognized [see Hart (1988,1985)

and Scott and Terrell (1987)] that LSCV tends to substantially undersmooth

about 5% to 20% of the time. Nonetheless, least squares cross-validation is a

useful and general tool.

2.4.7. Choice of Estimator. The estimator to be used in this dissertation is

the boundary kernel of Gasser and Mller. The rationale for choosing a kernel

based estimator and specifically the Gasser-Miller boundary kernel is detailed

below.

The histogram is not used because it is felt that it does not convey informa-

tion well. It is inherently rough and discrete, yet it is estimating an object which

is continuous and smooth. A smooth estimator is desired. Further, the rate of

convergence of MISE falls well below that of other techniques examined.

A trigonometric series is not employed because one is led to kernel repre-

sentations for the estimate that use poor kernels. To answer the question posed

at the enC Subsection 2.4.4, it is better to choose what seems an appropriate
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kernel; one that leads to sensible estimates and has sensible properties. This is

not to say that orthogonal series have been abandoned altogether. In Section 3, a

series representation for the Gasser-Mfiller boundary kernel is obtained. Rather,

it is to say that it is better to let the kernel determine the orthogonal series. Ker-

nels seem to be more easily examined as to their implications for the estimate.

Further, the kernel based orthogonal series is indexed by the bandwidth, h. In

Section 3, where the orthogonal series will be used to construct score functions

for linear rank statistics, this will be very convenient. It will be seen that the

tail behavior of the score functions varies with h so that distinct values of h cor-

respond to optimal scores for different distributions. If an ordinary orthogonal

series were used, it would be necessary to change the series to achieve such an

effect. Since the ARMA method is very nearly an orthogonal series method much

the same reasoning applies.

The cut and normalize and reflection boundary kernels are not used because

of their greater bias. If is felt that it is worth trading bias reduction for the

guarantee of non-negative estimates. The discussion of the interpretation of

negative estimates in Subsection 2.4.4 removes some of the onus of the situation.

Further, one needs to examine the potential uses of an estimate of dA(u). Even

though dA (u) is a density, it won't be used for simulation, nor will probabilities be

calculated. Recalling dx(u)'s interpretation as a likelihood ratio, the important

feature of dA (u) is its shape-which regions are large relative to others and relative

to 1. Regions which are negative are to be interpreted as having little or no

content. In these circumstances, there is far less need to require the estimate

to itself be a density function. Rather, it is preferable to have an improved

estimate in terms of MISE. Finally, there is not a lot to choose between Gasser

and Muller's boundary kernel and that of Rice. Both have the same asymptotic

representation and broadly similar shapes. It is somewhat more compact to write

down the Gasser-Mfiller boundary kernel and so it is selected.
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3. ESTIMATION AND TESTING

3.1. Introduction

3.1.1. Introduction. Results for the boundary kernel estimation of the com-

parison density and tests of its uniformity are presented in this section. Subsec-

tion 3.2 describes results concerning the estimation phase of the process. Subsec-

tion 3.2.2 gives more traditional results for the estimator, including its asymptotic

normality under H, and its consistency under general alternatives. Both these

results are derived under a shrinking bandwidth. The invariance properties of

the estimator are also detailed.

Subsection 3.2.3 defines a stochastic process based on the boundary kernel

estimate. This stochastic process is called the kernel density process. Under a

fixed bandwidth, the weak convergence of this process to a limiting Gaussian

process is proved. A convenient representation for the limiting process is given.

Properties of these processes are explored. They are seen to be continuous with

probability 1. The null covariance kernel, which is the covariance kernel of the

limiting process under H., is given. The quality of the approximation of the

limiting distribution under fixed h is compared to that of shrinking h under

H.. A simulation study is conducted to carry out this comparison. The results

indicate that the fixed h approximation is superior.

Subsection 3.3 gives results concerning the testing phase of the procedure.

During the study another estimator of the comparison density suggests itself.

Subsection 3.3.2 details the statistic 0vh which is the square of the £2 norm

between the boundary kernel estimator and 1. Although it is a statistic and

so is not what is sought, an analysis of its distribution leads to the idea of the

components of the kernel density process. These components are similar in spirit

to those of the Cram~r-von Mises and Anderson-Darling statistics described in

Subsection 2.2.5. Subsection 3.3 investigates the components in depth. Also in-

vestigated are those concepts required to define the components such as the null

covariance kernel and its eigenvalues and eigenfunctions. A numerical procedure
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to estimate the eigenfunctions and eigenvalues is given and a check -f its accuracy

performed. The properties of the components are worked out. They are seen to

be generalized Fourier coefficients and linear rank statistics. The joint conver-

gence in distribution of the sample components to their limiting counterparts is

proved. A small sample correction to the means of the components is given. It

is seen that the space spanned by the eigenfunctions is of interest. Finally, it is

argued that a test based on the first M components which gives equal weight

to each will yield more fruitful results than the traditional statistics which are

weighted infinite sums of the components.

Subsection 3.3.4 investigates whether the space spanned by the eigenfunc-

tions contains the space in which the kernel density process resides. This con-

dition is seen to be related to the positive definiteness of the null covariance

kernel over this space. An equivalent condition which is a Fredholm integral

equation of the first kind is given. Unfortunately, it is not possible to check

either of these conditions: the equations are too complex. The implications of

the eigenfunctions spanning or not spanning the appropriate space are detailed.

Subsection 3.3.5 introduces a new framework for testing the components.

From this framework is suggested what is called the subset chi-square test. The

traditional tests-the chi-square test and the independent tests method (i.e. test-

ing each component independently)-fit into this framework as well. The three

tests are compared. The subset chi-square is shown to be a compromise between

the other two. It is also seen to possess other desirable properties. It considers

the components as groups not just singly. In the case of rejection, it indicates

which components are significant. Finally, it lends itself well to graphical display.

Subsection 3.3.6 applies the subset chi-square test to the components. The

test suggests an orthogonal series estimate of the comparison density. This or-

thogonal series estimate is investigated and contrasted to the boundary kernel

estimator. The orthogonal series estimate is proved to be a weighted orthonormal

series where the weights are the eigenvalues of the null covariance kernel. Subsec-

tion 3.3.7 suggests alternate strategies of choosing the bandwidth and truncation

point. Also discussed are the pros and cons of automatic selection criteria and



61

their effect on the testing procedure. Subsection 3.3.8 summarizes the unified

procedure.

3.1.2. Assumptions. The various assumptions made on the underlying distri-

butions have been scattered throughout the first two sections. They are repeated

here for clarity.

1. X1,..., Xn are iid with distribution function F.

2. Y.,..., Yn are iid with distribution function G.

3. The two samples are independent.

4. F and G are absolutely continuous with densities f and g, respectively.

5. The quantiles functions of F and G, QF and QG, are continuous.

6. If f has support [a1 ,b1 ] and g has support lag,bg], then f and g are contin-

uous on (af A ag,bf V bg).

7. Let A(N) = m/N, N = m + n. Then it is usually assumed that A(N) - \ 0

as m A n - oo where 0 < A0 < 1 but sometimes A(N) = A0 is assumed. It

will be pointed out where this latter assumption is used.

3.2. Properties of the Boundary Kernel Estimator

3.2.1. Introduction. Subsection 3.2 examines the properties of the boundary

kernel estimator of the comparison density function. In Subsection 3.2.2 asymp-

totic pointwise results are established. The asymptotic normality of the estimator

under H. is established as is its consistency. These results are traditional in the

sense that they occur as the bandwidth shrinks to zero at an appropriate rate.

The invariance properties of the estimate are also examined. In Subsection 3.2.3,

results for the estimator are derived by treating it as a stochastic process on [0,1].

These results are derived under the assumption of fixed bandwidth; that is, the

bandwidth does not shrink to zero as the sample sizes increase. A process based

on the kernel density estimator called the kernel density process is defined and

its weak convergence is shown under this condition. The results of both these

subsections are unique because the underlying stochastic process, CDN, and its

limiting process, L, are not those associated with iid random variables for which
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density estimation results are usually derived. No such results are known to exist

in this framework.

3.2.2. Pointwise Asymptotic Results. In this subsection, two main point-

wise results are established for the boundary kernel estimate of the comparison

density. The first is its asymptotic normality under H0 and the second is its con-

sistency under any alternative. The invariance properties of the estimate are also

investigated. Start by defining the boundary kernel estimator of the comparison

density as

SK w u) dDN()
dh(W) =101 hK (hi

1 A (w- (R N)

where K, (w) is the Gasser-Mfiller boundary kernel and s = .(w, h) is given by

w/h for 0 < w < h

s(w,h)= (1-w)/h forl-h<w<l

1 otherwise.

The function s(w, h) chooses which of the family of boundary kernels is appropri-

ate. It is understood that when w < h the left hand boundary kernel is selected

and when w > 1 - h the right hand boundary kernel is selected. The remaining

terms have been defined in Subsections 2.2 and 2.3: DN(u) is the sample com-

parison distribution function; N = m + n and R, is the rank of Xi in the pooled

sample.

The following theorem concerning the asymptotic normality of dh(w) under

H, can be proved.

Theorem 3.2.1. If K(t) is a kernel with support [-1,1] satisfying K(-1) =

K(1) = 0, K'(-1) = K'(1) = 0, K"(-1) = K"(1) = 0, and IK"(t)l _< M for

some M < oo and f_1 K(t)dt = 1 and if h- 0, (m A n)h 3 -+ oo as m A n --* oo

then under H,,, d(w) is AN(1, In f- K(t)2 dt) for each w E (0,1).

The proof of Theorem 3.2.1 along with the proofs to all the theorems and lemmas

stated in Sections 3 and 4 is in Appendix B. The proof of Theorem 3.2.1 is long



63

and somewhat tedious. Its basic approach is motivated by Chernoff and Savage

(1958). The strategy is to write V-N-(hh(w) - 1) as the sum of four terms, two

first order terms and two second order terms. The first order terms are shown

to converge in distribution to the appropriate random variable while the second

order terms are shown to converge in probability to zero.

It should be noted that since the bandwidth, h, is shrinking to zero that

boundary effects do not occur asymptotically for each w E (0, 1). This is so since

for each fixed w, boundary effects are experienced only if w < h or w > 1 - h.

Since h -, 0, these effects will cease at some point. In the proof of Theorem

3.2.1, one can ignore the Gasser-Mfller modification of K and concentrate solely

on K itself.

Comparing Theorem 3.2.1 with the types of conditions one normally sees for

kernel estimators in the iid case, one notes (a) additional conditions on K and

(b) (mAn)h 3 --, oo instead of Mh --+ oo (for a random sample of size M in the iid

case). This comparison is of interest since under Ho one might reasonably expect

the normalized ranks, R 1/N,..., R/, to behave like a random sample from a

uniform, U(O, 1), distribution. Indeed, when viewed from a process point of view,

they have the same limiting empirical process up to the multiplicative constant

V- . During the proof of Theorem 3.2.1, one sees that the first order terms

do, in fact, behave like a kernel smoothing of iid U(0, 1) random variables. For

these terms, the condition (m A n)h --+ oo is sufficient for asymptotic normality.

The extra conditions, both on K and the rate at which h goes to 0, are necessary

to show that the second order terms converge to zero in probability.

Although interesting in its own right, it is not clear how Theorem 3.2.1

might be used to test the null hypothesis. One certainly wouldn't base a test on

the kernel estimate at a single point. It should be possible to extend Theorem

3.2.1 to show the joint convergence in distribution of (dh(wl), ... , h(wk)) to a

multivariate normal distribution for fixed k and wl,... ,wk. However, at this

point one encounters a practical problem. To test H0, how would one choose k

and ,. ... wk? There perhaps is some way to choose these points in an optimal

fashion, however such a scheme would certainly depend on the true and unknown
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values of the comparison density. Such statistics would also not fit the criteria

outlined in Section 1 and Subsection 2.2.6.

Pursuing for the moment a test based on k values, a natural statistic to use

would be of the form

k

ZI dh(w) - 1]2.
i=1

Letting k grow large, a natural analogue to this statistic is
1

(3.2.1) . ) [h(w) - 1]2dw.

It is only appropriate that barring some reason to look at a specific and fixed set

of w's that all of them should be considered. Statistics such as (3.2.1) cannot be

handled by pointwise convergence in distribution results such as Theorem 3.2.1.

Instead, weak convergence results are required. These are treated in Subsection

3.2.3. Although (3.2.1) is also a statistic and so not does not fit the criteria

which have been outlined, a study of (3.2.1) leads to a methodology which does.

Construction of tests is taken up in Subsection 3.3.

Another type of asymptotic result which is often of interest is consistency.

The following theorem can be proved regarding the consistency of 4h(w).

Theorem 3.2.2. Let h -+ 0, (m A n)h2 -- o as mAn -- oo and let K have

support [-1,11 with K differentiable on (-1, 1). If A(N) = Ao is not a function

of N or d(N) converges to do uniformly, then dh(w) P--e do(w) as m A n --- 00,

otherwise dh(w) - (1/h) fo K[(w - u)/hjd(N)(u)du -A 0 as m A n - oo.

Consistency is generally regarded as a good property. Theorem 3.2.2 states that

if h tends to zero at the appropriate rate then 4h(w) will indeed be consistent.

Again, it is interesting to compare Theorem 3.2.2 with results from ordinary

kernel density estimation. In the iid case, pointwise consistency is achieved under

the conditions h -+ 0, Mh --+ o and uniform consistency if h --+ 0, Mh 2 --+ 00.

The extra conditions on A(N) and uniform convergence result from the fact that

one is approximating a function which itself is changing with N. Hence, one needs

either that it isn't changing with N (i.e. A(N) = AO) or uniform convergence. In
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a very real sense, the proofs of theorems in the lid case are much easier because

a good deal more is known than simply the weak convergence of the empirical

process. It is not surprising, then, that results obtained in the iid case should be

stronger.

There is one last property of the kernel estimate which should be examined.

This is the question of invariance. In this context, invariance refers to whether it

makes a difference which of the two samples is called the first sample. Expanding

the notation for this purpose, let Df (w) - FQH(w) be the comparison distribu-

tion function when the population with distribution function F is called the first

sample. Similarly, let DG,(w) = G(. ' 4 ,) be the comparison distribution func-

tion when the population with distribution function G is called the first sample.

Let dFX(w) and dA(w) be the corresponding comparison density functions. Let

be the weight given to distribution function F (i.e. the probability of choosing

population F or the fraction of the total sample represented by population F).

Parzen (1983) shows that dF and d satisfy

.dA(w) + (1 _ X)dGA(w)-1

for all w E [0, 1]. The boundary kernel estimates of these quantities satisfy

A(N)d(w) + (I - A(N))dhG(w)
M w - (RIIN) n I n w- S^
-K. +- -N) h--, Ks w N

i=1 h=1

N ~KK. (w (sIN))
Nh

-1 1 as N --- oo and Nh -+ 00

for all w E [0,11, where s = s(w, h) and Si is the rank of Y in the pooled sample.

The last sum is a rectangular sum approximation to the integral 1 f 0' Ks[(w -

u)/h]du which is 1. The above convergence is shown as part of the proof of

Theorem 3.2.1 in Appendix B. Asymptotically, the boundary kernel estimate

obeys the invariance property of the population quantities.

3.2.3. The Kernel Denzity Procesa. In this subsection, the kernel density

process is defined and a theorem concerning its weak convergence under a fixed
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bandwidth is stated. The implications of a fixed bandwidth are discussed and

the covariance kernel of the limiting process under Ho is found and investigated.

The kernel density process, KDPNh(W), is defined as

(3.2.2) KDPNh(w) j K, h ) dCDN(U),

where K, is a boundary kernel and CDN is as previously defined. The process

KDPN,h(w) is simply a centered and scaled version of dh(w), that is,

KDPN,h(w) = 'jIi[ h(w) - h(w)],

where dh(w) I N fl Ka[(w - u)Ih]d(N)(u)du is a smoothing of the comparison

density.

To allow for some flexibility, the theorem concerning the weak convergence

of KDPN,h is stated for any boundary kernel which obeys the following regularity

conditions.

Regularity Conditions. Let K,(w) be a family of boundary kernels indexed by

s E [0, 11. It is required that the derivative of K, (w) with respect to w exist for

each s and that K,(w) be continuous on JR. Define

8(6)= sup l01 (x---u) )-K--) )Id.
Iz-Yl< -  K h (, h

where a = s(x,h) and s' = a(y,h). It is required that 9(6) -- 0 as 6 -' 0.

Lemma 3.2.1 states the conditions under which the Gasser-Mfiller boundary ker-

nel satisfies the Regularity Conditions.

Lemma 3.2.1. Let K(t) be a differentiable kernel with support [-1, 1] satisfying

(1) K is continuous on Rand (.) K' is continuous on JR. Then the Gasser-Miller

boundary kernel based on K satisfies the Regularity Conditions.

From Lemma 3.2.1 it follows that the Gasser-Miiller boundary kernel cannot

be based on just any kernel. For instance, the popular Epanechnikov kernel,

which is a quadratic function, cannot be used. However, the biweight kernel,
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which is a quartic kernel, can be used. The biweight will be used throughout

this work when a specific kernel is required. That the Epanechnikov kernel

cannot be used is not of great concern. From a practical standpoint, there is not

much to choose from within the class of kernels having support 1-1, 1] which are

probability density functions, symmetric about zero and continuous on IR. Very

similar results can be obtained from these kernels by altering the bandwidths.

The differences are in higher order smoothness properties which are difficult to

detect visually. However, the smoother kernel is required here for the proofs to

go through.

The limiting process of KDPNh is KDP h which is defined as

KDPh(w) = - 1 K, (w h u) L(u)du,

where L is the limiting process of CDN as defined in Subsection 2.3.3. Before

proving that KDPh is, in fact, the limiting process of KDPNh, its existence must

be shown. One must show that the defining integral equation has some meaning.

This result is given by Lemma 3.2.2.

Lemma 3.2.2. The sample paths of the process KDPh exist and are continuous

with probability 1.

Now that the needed Regularity Conditions have been established and the

limiting process exists with probability 1, the stage is set for the main result of

this subsection. Theorem 3.2.3 gives the weak convergence of KDPN h to KDP h .

Theorem 3.2.3. If the boundary kernel satisfies the Regularity Conditions then

for fixed h one ha.

KDPN,h => KDPh

in (C[O,1, CPp) as A -- oo.

The triple (CIO, 1], Cp, p) is a probability triple. The set of continuous functions

on [0, 1] is C[O, 1); P is the sup-norm; and Cp is the o-field generated by the open

balls.
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There are several aspects of Theorem 3.2.3 which merit attention. First is

that the limiting process is basically a kernel smoothing of the process L(u).

The second is that the result refers to fixed bandwidths. This is in contrast

to standard kernel density estimation results which require the bandwidth to

shrink to zero. However, one should note that although some work has been

done, it is also not typical in ordinary kernel density estimation to treat the

estimator as a stochastic process and to investigate its weak convergence. Bickel

and Rosenblatt (1973) have done the major work in this area. They assume the

data is iid according to a density f and that f satisfies various conditions such

as it is twice differentiable with a bounded second derivative. They then treat

the kernel density estimate on a bounded interval as a process and obtain weak

convergence results under a shrinking bandwidth.

There are several arguments that can be employed to justify fixing the band-

width in Theorem 3.2.3. The rationale in any context for letting the bandwidth

tend toward zero is tc remove the bias of the estimator. In terms of testing,

the comparison density is uniform under the null hypothesis. It is not hard to

show that the estimator, dh(W), is asymptotically unbiased under Ho for fixed

bandwidths. Observe:

Edh(w)] EE [K. (w -)]
n'h h

I N-- w - ( N)

- ZK, ( h(I)

since each Rj is marginally uniform over 1,..., N under H. Hence,

EfdMI1- JK. (w-~

as N --- oo. Thus dh is asymptotically unbiased for fixed h. From an imple-

mentation standpoint, knowing results like (m A n)h3 -- oo is not much help in

choosing a bandwidth. Recall the discussion of Subsection 2.4.6. One is either

left to judge the fit by graphical standards or by a criterion such as least squares

cross-validation. Essentially, h controls the tradeoff between bias and variance.

Letting h - 0 may make things work out asymptotically, but is of little help in



t

69

fixed samples. Finally, one can argue that the asymptotic approximation derived

for fixed h is superior to that derived for h --+ 0. To this end, an examination

of the exact differences in the limiting distributions should prove useful. Under

Ho, each has the same limiting mean but the variances are not the same. The

variance for h --- 0 is given in Theorem 3.2.1; a variance formula from Theorem

3.2.3 needs to be derived.

Let Ch(V, w) be the covariance kernel of KDPh. The covariance kernel is de-

fined as Ch(v,w) = E[KDPh(v)KDPh(w)] which has support on the unit square.

The covariance kernel of KDPh(w) under Ho can be derived and the result is

given as Lemma 3.2.3.

Lemma 3.2.3. The covariance kernel of v'O/(1 - _A)KDPh(w) under Ho is

(3.2.3) Ch(v,w) = -f K. K , dh 1

where a = .(v,h) and.' = a(w,h).

Although the formula for Ch(V, w) looks somewhat messy, it is possible to

obtain a closed form expression for it. No numerical integration is necessary.

This formula is derived in Appendix B.

From the definition of the covariance kernel, it is obvious that Ch(v, w) =

Ch(w, v). Recall the relation of the boundary kernel for the left and right end-

points from Subsection 2.4.3, K,(t) = K,(-t). Using this relation and a change

of variable in (3.2.3) it can be shown that Ch(V, w) also satisfies

Ch(v,w) = Ch(l -v,1 - w).

These symmetries are visible in Figures 8 through 10. Each of these figures

presents four perspective plots of the covariance kernel under H. Figure 8 pic-

tures Ch(v,w) for h = 0.5; Figure 9 for h = 0.3; and Figure 10 for h = 0.1. The

graphs are truncated at ±3 so that details are not obscured by a large dynamic

range. In each figure, the covariance changes from its base level of -1 only if

the two points are within two bandwidths of one another. For a large bandwidth

(Figure 8, h = 0.5), one observes a very smooth tunnel-like appearance. For a



70

Fig. 8. Perspective plots of the covariance kernel of the kernel density process
under Ho. The bandwidth is h = 0.5. The perspective of Figure (a) is (5, -4, 10);
Figure (b) is (.5, -4, 10); Figure (c) is (-2, -3, 10); and Figure (d) is (0, -. 5,0).

Fig. 9. Perspective plots of the covariance kernel of the k ;rnel density process
under HO. The bandwidth is h = 0.3. Th perspective of Figure (a) is (5, -4, 10);
Figure (b) 1s (.5, -4, 10); Figure (c) is (-2, -3, 10); and Figure (d) Is (0, -. 5,0).
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Fig. Ho. Perepect:ve plota of ti e Covariance kernel of the kernel density process

under io. The bandidth -4 10) 0. . The perspective of Fgure (a) 'a (5, -4,10);

Fgre (6) is (.5,-4,1) Fig,.,re (c) is (-2, -3, 10); and Figure (d) Is (0, -. ,0)
small bandwidth (Figure 10, h = 0.1), one observes a very steep jump Once two

Points are within two bandwidths of one another. The flat ridge results from
truncating the plot though it's not hard to see that the variance increases with

decreasing bandwidth.The covariance kernel of the kernel density proces can also be found under
the alternative hypothesis, It is a rather complkated integral formula Which
depencj not only on the boundary kernel but also on the comparlon distributionfunction and the comparison density function. It is generally of little use, and sowill not be given.Returning to the question of fixed versus shrinking bandwidth for dh(w),

compare the differences in asymptotic variance formulas for the normalized ran-
dom variable, VI[iiJA(Pw) 

- 11 under Ho. For shrinking h, Theorem 3.2.1 givesthe asymptotic variance as
(3.2.4) 

1 f (t)2dt"
For fixed bandwidth, the variance formula is(3.2.5) 

1 A_ 1. /h!o- [f,,,)/ K.(w) dw h].

AO wllllllllh
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There are two distinctions between (3.2.4) and (3.2.5). For w near the bound-

ary, (3.2.5) uses the boundary kernel whereas (3.2.4) does not. Equation (3.2.5)

also has an additional term. Since (3.2.5) approaches (3.2.4) as h tends to zero,

one could easily view (3.2.5) as containing corre4tnt, factors for fixed h. Since

h is fixed for finite samples, one might suppose that (3.2.5) would yield an im-

proved approximation of the small sample distribution function by the limiting

distribution function. A simulation confirms this supposition.

The simulation consists of 1000 replications for each of five choices of m

and n. The two samples are each drawn from a U(0, 1) population, hence H0

is true. The bandwidth is given by h = 0.75(m A n) - .3 which satisfies the

conditions of Theorem 3.2.1. For each replication, the comparison density is

found for w = 0.1,0.2,0.3,0.4,0.5. Values above 0.5 are not needed by symmetry

with those below 0.5. The one sample Kolmogorov-Smirnov statistic comparing

the fit of the data to each normal approximation is then calculated for each

sample. The Kolmogorov-Smirnov statistic is a measure of the goodness of fit of

the sample and asymptotic distributions. The results are presented as Table 3.

The Kolmogorov-Smirnov statistics based on the fixed bandwidth approximation

are less than those for shrinking bandwidth in all but one case, n = m = 100

and w = 0.1. The difference in this case is at the second decimal place and is

certainly statistically insignificant. The overall impression from Table 3 is that

the Kolmogorov-Smirnov values for the fixed h approximation are substantially

smaller than those for shrinking h. The lower values for the fixed h approximation

would imply that this is the superior approximation.

The conclusion to draw from these remarks is that there are very good

reasons to derive asymptotic results for fixed rather than shrinking bandwidths.

The kernel density process forms the basis of tests of the null hypothesis. These

tests are discussed in Subsection 3.3.

3.3. Tests of the Null Hypothesis

3.3.1. Introduction. In this subsection, tests of the null hypothesis,

H:dA (w) = 1, are examined. The first test looked at is based on a statistic,
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Table 3

Comparison of the fit of the small sample distribution of the
Gasser-Miller boundary kernel estimate of the comparison
density under Ha to its limiting distribution with fixed and
shrinking bandwidth. The values in the table are one sample
Kolmogorov-Smirnov statistics.

w
m n 0.1 0.2 0.3 0.4 0.5

Fixed Bandwidth

20 20 3.45 1.60 0.74 0.99 0.78
50 20 3.70 1.57 0.71 1.43 1.23
50 50 1.52 0.81 1.27 0.61 1.17
50 100 1.30 0.70 0.56 1.05 1.42

100 100 1.73 0.67 1.00 0.79 0.60

Shrinking Bandwidth
20 20 4.31 2.19 2.03 1.90 1.97
50 20 4.39 2.52 2.39 2.05 2.26
50 50 1.65 2.08 1.93 1.81 1.88
50 100 1.39 1.57 1.52 1.98 1.96

100 100 1.70 1.82 1.94 1.14 1.72

,h,which is a scaled version of the square of the £2 norm between dh and 1.

Since ,2 is a statistic, it does not fit the criteria required for a testing proce-

dure. However, it leads to the concept of components similar to those discussed

in Subsection 2.2.5. These components form the basis of the testing procedure.

They are investigated in depth in Subsec- .3. Their properties are explored

and numerical methods for calculating the eigenfunctions and eigenvalues upon

which they are based are examined. Subsection 3.3.4 looks at the question of

whether the eigenfunctions form a complete basis for the spaces in which KDPN,h

and KDPh reside. This raises issues in terms of orthogonal decompositions of

dh by the eigenfunctions. Subsection 3.3.5 introduces a new test, the subset chi-

square test, whicil is applied to the components in Subsection 3.3.6. Subsection

3.3.6 also introduces an orthogonal series estimator based on the components.

The relation of the boundary kernel estimator and this orthogonal series estima-

tor is investigated. Subsection 3.3.7 provides recommendations for the choice of
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bandwidth. Finally, Subsection 3.3.8 summarizes a unified technique of estima-

tion and testing which satisfies all the required criteria.

3.3.2. The Statistic 02 h . In this subsection, the statistic 02h is defined.

Its limiting distribution is found and a possible representation for this limiting

distribution in terms of components is also examined. Define ,h by

AN N dh(w) l 2 dw,

,h =1-='(N)

which has already been briefly mentioned in Subsection 3.2.2. Note that 1 is

subtracted from dh and not d(N). The general statistic is not of interest because

it is desired to test the null hypothesis and so the mean under Ho is subtracted.

This will be the case throughout this subsection. Although the general weak

convergence of KDPN,h was shown in Subsection 2.2.3, for construction of tests

one only needs the weak convergence under Ho. For clarity, the process KDPON,h,

which is defined as

KDPON,h = v'Nldh(w) - 1),

is introduced and will be referred to as the null kernel density process. The

process KDPON,h equals KDPNh unde. H. and so converges weakly under Ho.

Under alternatives there is no such result: the process will become unbounded

as N increases because it is incorrectly centered. This too is desirable as it is

indicating that the null hypothesis is false. It is now possible to rewrite 2h as

((N)/(1 - A(N))) fo' KDPONh(W)2dw.

The statistic N~r,h is a normalized estimate of Pearson's p2 distance measure

which can be written [cf. Eubank, LaRiccia, and Rosenstein (1987)] as

P 2 j(d(N) (w) - 2 dw.

The initial claim for 02,h is that it converges in distribution to the random

variable

2 1 AO0  KDPh(w) 2dw

Ph - AOf
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under H,. This convergence in distribution can be demonstrated by results for

functionals of stochastic processes which are known to converge weakly. It is not

hard to show this functional is continuous [see Ruymgaart (1988), page 54]; it is

also measurable (Cp, B) where B is the Horel o-field. Theorem 3.11 of Ruymgaart

may be used to establish the fact that 02 d o* Having found the limiting

random variable, , its distribution needs to be established.

The distribution of quantities such as P2 has been examined in the litera-

ture. Its behavior is similar to that of the Cramhr-von Mises statistic defined in

Subsection 2.2.5. One would like to apply a technique similar to that applied by

Durbin and Knott (1972) to the Cramir-von Mises statistic. That is, one would

like to represent P2 by

002 e h 72
(3.3.1) Ph I: i "j,

j=1

where Z1, Z2,... are iid N(0,1) random variables and {04} satisfies 04 > 0 and

J= 104 < co. The details of the basis of this representation can be found in

Shorack and Wellner (1986). The Zj's are known as components of the null

kernel density process and the 04's will be seen to be eigenvalues of Ch(v, w).

The details of the construction of the components are not needed here but will be

discussed in Subsection 3.3.3. The exact meaning of the '-' in equation (3.3.1)

is subject to question. Under one set of conditions, it refers to 'distributed as'.

However, under another set of conditions, the definitions of KDPONh and KDPh

need to be modified to be their projection onto an appropriate subspace. This

projection is then substituted for the original process and the results hold. For

the moment, these concepts and definitions are left intentionally vague. They

will be discussed in depth in Subsection 3.3.4.

The statistic 02'h motivates the introduction of components as a natural

consequence of investigating the distribution of the limiting random variable. It

also motivates a detailed study of Ch(V, w). From a practical standpoint the two

interpretations do not matter much. However, which scenario holds will change

certain interpretations and wordings. In the next subsection, the components

will be seen to be of greater interest than the statistic which initially motivates
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them.

3.3.3. Components of the Kernel Density Process. In this subsection the

components of the kernel density process which were introduced above are de-

fined. The basic properties of Ch(v, w) are given first as they will be needed

throughout. In order to define the components it is necessary to find the eigen-

functions and eigenvalues of Ch(V, w). It is observed that the eigenfunctions and

eigenvalues must be found numerically. A method for doing so is suggested. The

resulting approximations are examined graphically. Finally, various interpreta-

tions of the components are explored. They are seen to be both generalized

Fourier coefficients and linear rank statistics.

Before starting on a discussion of eigenfunctions, eigenvalues, and compo-

nents a few of the properties of Ch(v, w) are given. These will be needed through-

out to establish the properties of these other objects of interest. These properties

of Ch(v, w) are stated as Lemma 3.3.1.

Lemma 3.3.1. The covariance kernel Ch(V, to) satisfies the following:

i. Ch(v, w) is continuous on the unit square,

ii. fofo'Ch(vw) 2 dvdw <00,

iii. fJ Ch(v,v)dv < oo.

The function oh(v), which is defined on 10, 11, is said to be an eigenfunction

of Ch(V, w) and ah is said to be the associated eigenvalue if Oh(v) $ 0 and

f 1 Ih(v)Ch(vw)dv = ahoh(w),

for all w E [0, 11. Shorack and Wellner (1986), page 207, give a list of results for

eigenfunctions and eigenvalues. Among these are:

1. The eigenvalues are at most countable in number.

2. Corresponding to any non-zero eigenvalue there are at most a finite number

of linearly independent eigenfunctions; the maximal such number is called

the multiplicity of the eigenvalue.

3. Let {60} be an enumeration of the nonzero eigenvalues with each eigen-

value appearing as many times as its multiplicity. Then the set {0(v)} of
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eigenfunctions may be assumed to be orthonormal.

4. The eigenvalues {10} satisfy fJo Ch(V,v)dv = Ego 0h

The properties of Ch(v, w) given in Lemma 3.3.1 imply several additional ones

involving both Ch(v, w) and the eigenfunctions. These are given as Lemma 3.3.2.

Lemma 3.3.2. The eigenfunctions, 04(w), and the null covariance kernel,

Ch(v, w), satisfy:

i. The eigenfunctions, 04(w), are continuous on [0, 11,

ii. C1,(v, w) is positive semi-definite,

iii. C1 (vw) = E 1 04 4(v)04(w), where the infinite series converges both ab-

solutely and uniformly.

The covariance kernel, Ch(v, w), is said to be positive semi-definite if

1ol folg(v)Ch(v,W)g(w)dvdw >_ 0

for all g E C2 [0, 11 with g $ 0. It is said to be positive definite if the > 0

can be replaced by > 0. These properties will all be of use at one point or

another. For now the discussion turns to actually calculating the eigenfunctions

and eigenvalues.

The form of Ch(v, w) as given in equation (3.2.3) involves the boundary

kernel in a very complicated way. It is probably too much to expect to be able to

derive analytic expressions for the eigenfunctions and eigenvalues. This is indeed

the case: a numerical solution is needed. The route taken is to approximate the

defining integral by Simpson's rule and to convert thie problem to an ordinary

matrix eigenvalue problem. Such discretized approximations are well known in

the literature; see, for example, Ahuis, d'Almeida, Chatelin and Telias (1982).

It is desired to find 04(v) and 84 to solve the integral equation

(3.3.2) jj 4(v)Ch(v~w)O(w)dvdw =

where bij is Kronecker's delta. Equation (3.3.2) is approximated by a two dimen-

sional Simpson's rule at the points z = (0, 1/1,2/1,... ,l/l) with I even. Define

d' = ( 1 , 4 , 2 , 4 , . . . , 2 , 4 , 1 ) 1
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and Kh [h( )I (i- 10)), iJ +
The Simpson's rule approximation to equation (3.3.2) is

j -VhfDKhDvhi = G 6 i i, j=1, 2, 3,.

where D = diag(d). Grouping these together for ij = 1,... ,I + 1 yields

~VD Kh DVh = 0h

where 0 h = diag(e),... ,~#1) and Vh ; hl,. . , vh,+- There is also an or-

thogonality condition on the 's; namely

104(w)04(w)dw = bwj, ij = 1,2,3,...

The orthogonality condition is approximated by

- VhDj = ij, i , j 2,3,...,

so in order to approximate the first I + 1 eigenfunctions and eigenvalues, the

following system must be solved for Vh and Oh:I!
i-Vh'DKhDVh =Oh,

I VhDVh = Ij+j.

Letting Sh = 1D 1 / 2Vh, this system is equivalent to
3-1

Sh4 D12KhD1/2]s

Sh'Sh = 11+1.

This last system is an ordinary symmetric eigenvalue problem which can be

handled numerically. One solves it for Sh and (h and then finds Vh from Sh.

Since the covariance kernel is so nicely behaved, one expects Simpson's rule

to perform well in this case. One would also expect the eigenvalues to be better
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estimated than the eigenfunctions; the former are simple scalars whereas the

latter are functions. This, however, is a much more desirable state than the

alternative. The eigenfunctions appear only in integrals where individual error

is damped down, whereas it is often necessary to divide by the eigenvalues in

which case error could produce large effects. In considering a choice for I, one

should try to make it rather larger than the highest order eigenfunction one is

considering using. Otherwise, the approximation may be at too few points to get

a good fix on the function.

Applying this technique and using the biweight kernel and I = 88, Figures

11 through 13 are produced. Each figure presents, for a different h, the first four

approximated eigenfunctions. Figure 11 is constructed with h = 0.5; Figure 12

with h = 0.3; and Figure 13 with h = 0.1. Generally, the jth eigenfunction has

a similar shape for each bandwidth up to an arbitrary sign. Changing the band-

width tends to change the sharpness or peakedness of the functions. Notice that

they are oscillatory; the jth eigenfunction has j zero crossings in (0, 1). Figure

14 presents the estimated eigenvalues for these three bandwidths. The values all

decay to zero as required considering they sum. The larger the bandwidth, the

more quickly they decay to zero.

As a check on how well the numerical approximation works, one can compare

the sum of the estimated eigenvalues with fo Ch(v, v)dv. These two values should

be comparable. The sum is truncated, but considering the rate at which the

eigenvalues are decreasing this effect should be very small. Table 4 presents

this comparison for five bandwidths, h = 0.5,0.4,0.3,0.2, and 0.1. The true

value is computed using Simpson's rule at 1001 points. The estimated values

are astonishingly accurate. Interestingly, the estimated sum tends to err on

the side of being slightly too big. The largest relative error is less than 0.03%,

though it would be very slightly larger if one could add in the truncated values.

Nevertheless, such good results are very encouraging. They lend credence to the

approximating procedure as a whole.
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Fig. 11. The first four approximated eigenfunction for h = 0.5 and the Gasser-
Miler boundary modification to the biweight kernel. Figure (a) is the first eigen-
function; Figure (b) the second; Figure (c) the third; and Figure (d) the fourth.
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Fig. 12. The first four approximated eigenfunctions for h = 0.3 and the Gasser-
Miller boundary modification to the biweight kernel. Figure (a) is the first eigen-
function; Figure (b) the second; Figure (c) the third; and Figure (d) the fourth.
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Fig. 13. The first four approximated eigenfunctions for h = 0.1 and the Gasser-
Miller boundary modification to the biweight kernel. Figure (a) is the first eigen-
function; Figure (b) the second; Figure (c) the third; and Figure (d) the fourth.
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Fig. 14. The first 20 estimated eigenvalues for h = 0.5,0.3, and 0.1 and the
Gasser-Miller modification to the biweight kernel. The solid line with large x's
is h = 0.5; the solid line with blocks is h = 0.3; and the solid line with small x's
is h =0.1.
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Table 4

Comparison of the sum of the estimated
eigenvalue. and their true sum.

Sum of Eigenvalues
h True Estimated

0.5 1.9074 1.9074
0.4 2.2646 2.2646
0.3 2.8598 2.8598
0.2 4.0503 4.0504
0.1 7.6217 7.6234

The components of the null kernel density process, KDPON,h, are defined as

=j 10 jk*(w)ldh(w) - 1]dw,

,i (N)N7
ZN J ~ v -- A N ' . V

z= A(N)'

- I-" (N),O 045(w)KDPoN'h(w)dw1/,

for j _ 1 and the components of the limiting process are defined as

z = 4(w)KDPh(w)dw

1 A0 -, / j4

for j > 1. Although the components clearly depend on h, it is not included in

the notation for simplicity. By Lemma 3.3.1 and Proposition 2 of Shorack and

Wellner (1986), page 208, one can conclude that ZI, Z2 ,... are iid N(0,1) random

variables under Ho. Since the functional defining the components is continuous

(as a result of Lemma 3.3.2) and is measurable (Cp, B), by Theorem 3.11 of

Ruymgaart (1988) and Theorem 3.2.3, one has

ZNj d"- Zj

under HO as m A n -- oo.
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It has just been shown that the sample components converge in distribution

singly to the appropriate limiting component. Later, the joint convergence in

distribution of the set ZN,,..., ZNM will be needed. This result is easily derived

by an application of the Cram~r-Wold device and an appeal to the same theorems

used above. Formally, Lemma 3.3.3 states the result.

Lemma 3.3.3. For any fixed integer M > 1 and fized bandwidth h, one has

(zN,... ,ZNM)- dV(Zi,...,ZM) a m A n -- oo.

The components have several very important interpretations. First, Z j

is the jth generalized Fourier coefficient in an expansion of dh(w) - 1 in the

eigenfunctions. This interpretation will be significant in a later subsection where

an orthogonal series estimator of d(N) is based on the eigenfunctions. Second,

Z, is a linear rank statistic. This can be seen as follows:

4 = f O(w)[4(w) - 1]dw

0 [ 0 h . w0
= f [f K, (w - u) 0(w)dw dDN(u) - j 1(w)dw,

where s = s(w, h). This last quantity has the form of a linear rank statistic with

the score function

J '(U) = oj (w)Ks (w - us) div.

This score function can be termed a 'backward' smoothing of 04(w). The term

backward is applied because the integration is with respect w and not u as is

usual. The term fC I0h(w)dw is a centering constant and is equal to f J;-.(u)du.

For rank statistics, the centering constant arises naturally by centering DN(u)

by the appropriate function, which under Ho is u. This converts DN(u) to

DN () - u which is a multiplicative constant (v/-N) away from being the empirical

comparison distribution process, CDN, under Ho, that is,

V/-N Zj = fo J (u)dCDN(u)
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= vrjJ J'(u)d(DN(s) - U

= V- [jh (u) dDN (U) - j Jj"(u) du].

Figures 15 through 17 picture these score functions. In order to make them

easier to view, they have been scaled so that each attains a maximum absolute

value of 1. The important aspect of score functions is their shape, not their mag-

nitude. Each figure presents four graphs corresponding to j = 1, 2,3,4. Figure 15

employs a bandwidth of h = 0.5; Figure 16 uses h = 0.3; and Figure 17 employs

h = 0.1. The property of the number of zero crossings of the eigenfunctions is

preserved by the score functions. Recalling the discussion of score functions in

Subsection 2.2.4, the first component is seen to test location and the second scale.

Higher order components are testing higher frequency departures of d(N) from

uniformity. Although it would be nice to give these higher frequency departures

moment interpretations such as skewness and kurtosis, such interpretations have

not been demonstrated.

Score functions based on eigenfunctions and boundary kernels are entirely

novel: this is a new procedure for generating score functions. There are several

attractive features to this methodology. First, one is generating an entire fam-

ily of score functions--starting with location, moving to scale, and then higher

order departures. There is a link between these since they have a unified ori-

gin. Portmanteau tests for departures up to the fourth order score function, (i.e.

j = 4), have been proposed in the literature [see Boos (1986)]. However, the

score functions employed have no common origin making the entire procedure

seem somewhat ad hoc. Second, these score functions are parametrically defined

by the bandwidth, h. Selecting the bandwidth allows one to select the properties

of the test, that is, one can tune the bandwidth so that the components are more

powerful against certain classes of underlying distributions. Eubank, LaRiccia,

and Rosenstein (1987) provide a unified origin for score functions by taking them

to b- an orthonormal basis. There are several reasons why an approach based

on eigenfunctions is desirable. First, to protect against different classes of dis-

tributions requires a complete change of the basis. Such a change of basis may
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Fig. 15. The first four score functions corresponding to the first four components
of the kernel density process based on the Gasser-Miller boundary modification
to the biweight kernel. The bandwidth is h = 0.5. The score functions have been
scaled so that the maximum absolute value attained is 1. Figure (a) is the first
score function; Figure (b) the second; Figure (c) the third; and Figure (d) the
fourth.
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Fig. 16. The first four score functions corresponding to the first four components
of the kernel density process based on the Gasser-Miller boundary modification
to the biweight kernel. The bandwidth is h = 0.3. The score functions have been
scaled so that the maximum absolute value attained is 1. Figure (a) is the first
score function; Figure (b) the second; Figure (c) the third; and Figure (d) the
fourth.



86

(a) (5

.4 5 .6 .7 .6 ." '

.6

Fig. 17. The first four score functions corresponding to the first four components
of the kernel density process based on the Gasser-Miller boundary modification
to the biweight kernel. The bandwidth is h = 0.1. The score functions have been
scaled so that the maximum absolute value attained is 1. Figure (a) is the first
score function; Figure (b) the second; Figure (c) the third; and Figure (d) the
fourth.

have important implications for any estimator of the comparison density based

on it (cf. Subsection 2.4.4). Second, the eigenfunction-based scores have quite

unusual shapes that would be hard to match by standard orthogonal functions;

for instance, J3 x1 (u) puts more weight on the tails than would be observed for

the Legendre polynomials or trigonometric functions. Often, the tails are pre-

cisely the area of interest. Thus, the eigenfunction approach generates interesting

shapes that would be difficult to obtain otherwise. There is great convenience

and theoretical unity in a procedure based on the eigenfunctions.

The asymptotic relative efficiencies (ARE's) of the components relative to

standard two sample tests are taken up in detail in Section 4. There is a certain

amount of ground work that needs to be performed in order to define the ARE's

for the components. This work is most properly done in Section 4. Suffice it to

say for now that altering the bandwidth does truly affect the properties of the

components. These score functions give one the ability to ch6dse the tests in a

unified manner.
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Rank statistics enjoy a very important invariance property. When properly

centered and scaled, it doesn't matter which sample is called the first sample.

The resulting rank statistics will have the same magnitude (but different signs).

Hence, tests based on either statistic will always reach the same conclusion. Un-

fortunately, the rank statistic ZNj is not properly centered in small samples

for this to be the case. As shown above, ZNj is centered by its asymptotic

mean, fl1 J (u)du. Asymptotically, everything works out fine. In finite samples,

f J (u)du can be sufficiently different from the small sample mean that invari-

ance is lost. In fact, if m and n are very different, invariance may be lost to the

point that one may reach different conclusions a significant amount of the time.

To demonstrate these statements, let U* = 1 n~l J?(RJIN) be the rank

statistic where R, is the rank of X i in the pooled sample. Under Ho,

E EJU*]

N
1

since each R, is marginally distributed as uniform over 1,..., N. Let

u-fNA (U - E)71 - A(N)

!n- m (U- E).

Now, it is true that v/N(E - f0I Jh(u)du) --+ 0 as N -- - This is shown as

part of the proof of Theorem 3.2.1 in Appendix B. By Lemma A on page 20

of Serfling (1980), U has the same limiting normal distribution as ZN,. Let

V* = 1J (Si/N) where Si is the rank of Y1 in the pooled sample. It

follows that E[V*] = E. Let

V ( - E(N))N

-nN - E).

m (V
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The random variable V has the same limiting normal distribution as U under

H,. Simple algebra yields the invariance result: U + V = 0. Instead of centering

by E, suppose F = f01 Jh(u)du is used. In this case, the random variables U and

V no longer have mean zero but are biased. As noted above, this bias disappears

asymptotically but may be significant in finite samples. The means of U and V

are

E(UI= -(E-F),

EIVI = -(E- F).

m

If, say, m > n, then U will be considerably more biased than V. Comparing

each to a standard normal reference distribution, one would expect U to reject

more often than V under H,. To avoid this problem and to preserve invariance,

the small sample means will be subtracted throughout. The asymptotics are

unaffected and the small sample properties improved.

The small sample mean of U* is

1 N l i fol w -iNN J (i/N) = L q J b (w)K, w h) dw

1h Ks hw) dw.j=11

This last formula is a more tractable form for calculation. The quantity inside the

brackets is the kernel smoothing of the data (1/N, 2IN,..., N/N). The integral

can be evaluated by Simpson's rule at I + 1 points (1 even), hence one needs

the kernel smoothing of (1/N, 21N,..., N/N) at these I + 1 points. This can be

calculated using the same routine that calculates the estimate of the comparison

density.

As noted in the introduction, it is planned to use the components as the basis

of the integrated testing and estimation procedure. The exact procedure has yet

to be introduced; however a justification for using components can be made at

this point. Even if statistics such as 02 fit the criteria outlined, the components

would still be of greater interest. A test based on components examines the first
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M of them and gives each equal weight. This is in contrast to statistics such
2or the Cram-von Mises which use all the components but downweight

each successively according to the eigenvalues of the covariance kernel. This

is clear from representations such as (3.3.1) and (2.2.3). Because they employ

all the components, such statistics are consistent against any alternative. By

this is meant that the probability of rejecting H, if Ho is false tends to 1 as

m A n -+ oo. There is a price to be paid for this consistency, however. The

weights on the components drop off so quickly that it takes a tremendous amount

of data to detect an alternative which effects one of the higher order components

[cf. Randles and Wolfe (1979), page 383]. This will be seen to be the case in

Section 4. Such statistics begin to lose power for alternatives affecting even the

second or third component.

In contrast, a procedure which tests only the first M components and gives

each equal weight should have good power characteristics against alternatives

affecting these components. However, it will be inconsistent against alternatives

which effect only components other than the M considered. Such a tradeoff

seems a reasonable one on several grounds. First, since the statistics will be seen

to have poor power against even low order components, consistency is not much

solace. Second, since M is under the control of the user, it can be chosen to

protect against as broad a class as is felt necessary or suitable. One also has the

comfort that this class is much better protected against than by the standard

statistics.

In summary, this subsection has defined the basic machinery necessary to

define the components. Properties of the covariance kernel of the null kernel den-

sity process have been investigated. The eigenfunctions and eigenvalues of this

covariance kernel have been defined and their properties explored. A numerical

method of finding these was suggested. The components were defined and given

several very important interpretations. The components are both generalized

Fourier coefficients and linear rank statistics. As linear rank statistics they are

seen to be testing successively higher frequency departures of d(N) from unifor-

mity. A small sample correction to the mean of the components was suggested
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to preserve invariance. Finally, a first comparison of a test based on components

versus the usual type of portmanteau statistic was made. It was argued that one

would expect the components to have superior power against many alternatives.

This will be seen conclusively in Section 4.

3.3.4. The Space Spanned by the Eigenfunctions. In this subsection, the

space spanned by the eigenfunctions of the null covariance kernel is examined.

The properties of decompositions based on them are also explored. It is seen

that from a practical aspect, this question is of little import. However, from

a theoretical aspect certain interpretations and representations do change. The

question of exactly what space the eigenfunctions do span is not resolved. Given

that there is no explicit representation for the eigenfunctions, their properties

are all the more difficult to determine.

In deriving representations such as (3.3.1), it is necessary to know whether

the eigenfunctions form a complete orthonormal basis for the space in which

the stochastic process resides. Since it will be necessary to decompose both

KDPON, h and KDPh, an examination of the spaces in which these processes

reside is necessary. Lemma 3.2.2 states the KDPA is continuous with probability

1. A more precise statement than this is possible. The process KDPh is in the

space Sh with probability 1, where

Sh o T2: 1(w) 1 f(w-) g(u)du,a= s(w,h),g E C[0, 11}.

The process KDPON,h is in the space Sh with probability 1, where

Sh = If : f(w) 'f ( -u) g(u)du,. = s(w,h),g E D[O, 1]),

and D[0, 1] is the space of all functions on 10,11 which are continuous from the

right and have limits from the left. From the definitions, it follows that Sh C $h

so that the fundamental question is whether the eigenfunctions form a complete

orthonormal basis for Sh. If they do, then the following two results follow:

M
(3.3.3) 1dh - 1 - E ZAvj#i(w)II A 0 as M -*

3=1
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2d00(3.3.4) P h 2

j=1

where Ij " is the I- 2 norm, -= denotes equal in distribution and 2*1+ denotes

almost sure (with probability 1) convergence. See Shorack and Wellner (1986),

pages 270 ff., for demonstrations of these facts. Basically, (3.3.3) is a statement

of completeness and (3.3.4) is a form of Parseval's theorem.

If the eigenfunctions are not complete for Sh then equation (3.3.3) and

(3.3.4) must be amended slightly. Let $h be the space actually spanned by {h}.

Let Pi be the projection of dh(w) - 1 onto S h and PKDP h be the projection of

KDPh onto S h . Instead of (3.3.3) and (3.3.4), one has

M
(3.3.5) 11 P(w) - L Zjq(w)lI 1 0 as M -+ 00

3=1A 0/012wA 004;
(3.3.6) 1 - 10 PKDPh(w) 2dw d1-j Z ,.

3=1

The results are the same, but now one must deal with the projections instead of

the original processes.

This is inconvenient mathematically; practically it makes no difference. It

makes no difference because when (3.3.3) and (3.3.4) are actually applied, they

are truncated at some point, M. Hence, one is always dealing with the projection

onto a subspace; for instance, in Subsection 3.3.6 the orthogonal series estimate

of d(N),

M
dhM(w) =1+ ZZ~k()

3=1

is introduced as a truncated decomposition of dh(w) - 1. Since M is always finite,

what does or does not happen in the tail of the sequence is of little importance.

This is particularly true since the components, ZV , are becoming small with

high probability for increasing j. Note that Z , is AN(0,(1 - Ao)04/(NAo))

under H,. Because _ -+ 0 as j - oo, the Zj 's are becoming small with high3ne o eas 3i
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probability as j increases. The higher order eigenfunctions simply do not carry

much weight.

In Section 4, the approximate distribution of Wo under Ho is found by nu-

merically inverting the characteristic function of

M

j=1

One chooses M sufficiently large so that Oh is very small for j > M. The
3

percentage points of (3.3.7) are then used in proxy for those of o2. This is the

methodology employed by Durbin and Knott (1972) with excellent results. The

calculated distribution does not depend on whether the tail of the sequence fills

out to be complete for Sh or not.

Shorack and Wellner (1986) state that a necessary and sufficient condition

for the eigenfunctions to span a given space and for the eigenvalues to all be

positive is that Ch(v, w) be positive definite over that space. Here, it is required

that

f0 fof (v)Ch(vw)f(w)dvdw > 0,

for all f E Sh with f 0 0. Lemma 3.3.2 states that Ch(V, w) is positive semi-

definite over this space. Checking positive definiteness turns out to be no small

task. Lemma 3.3.4 gives an equivalent condition.

Lemma 3.3.4. Ch(v,w) is positive definite on Sh if and only if the integral

equation,

lf Ks -w,]'~(w)dw= C,

has no solution for f E Sh where f $ 0 and c = 0, 1.

Unfortunately, the condition of Lemma 3.3.4 is no easier to check than the

initial statement of positive definiteness. The integral equation of Lemma 3.3.4

is a Fredholm integral equation of the first kind. These are among the hardest

to solve both analytically and numerically; see, for example, Marti (1982) and
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Lukas (1980). Further, the integrand involves the boundary kernel and so is a

rational function of w; it is not even a 'nice' Fredholm equation of the first kind.

There seems no hope of an analytic solution. Numerical approaches are doubly

difficult in this context since the question is over the existence of a solution,

not finding a solution which is known to exist. Hence, one would be put in the

position of trying to gauge whether the approximation is converging to a true

solution or not. A further difficulty of numerical approaches is restricting the

solution to reside in the space S h . Such a restriction would be very difficult to

impose.

The question of exactly what space the eigenfunctions span will not be re-

solved here. Where appropriate, the implications of the eigenfunctions forming

a complete basis for S, or failing to do so will be noted.

3.3.5. The Subset Chi-Square Test. In this subsection, a new test is pre-

sented. This test is referred to as the subset chi-square test. It is applied to the

components, ZN1,...,ZNM , in Subsection 3.3.6. It is seen to have several de-

sirable properties. First, it represents a compromise between two existing tests:

the standard chi-square test and the independent tests method. This latter tests

the components one at a time at a smaller size than desired so that the overall

test has the desired size. Second, the subset chi-square test indicates not only

that some components are significant when it rejects, but also which ones are

significant. Third, it lends itself to graphical display of a criterion function much

in the way Akaike's (1974) AIC and Parzen's (1977) CAT criteria do in time

series analysis.

Let S,..., SM be independent normally distributed random variables with

variance 1 and suppose that Si has mean Ai. A test -)f Ho:sAl = A2 = ... =

1M = 0 versus Ha:$,i j 0 for at least one i is desired. The need to conduct tests

of this nature is not unknown in statistics. For instance, in time series analysis

under the null hypothesis of no autocorrelation, the first M standardized sample

autocorrelations are asymptotically iid N(0,1) [see Newton (1988), page 1581.

The two most commonly used tests in this framework are the chi-square test and

the independent tests method.
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There do not exist optimal tests such as the uniformly most powerful unbi-

ased test in this case-the alternatives are just too general. One can, of course,

form several classically motivated statistics: likelihood ratio, Wald, Rao's effi-

cient score can all be derived. In this situation, one usually sees one of two tests

applied. The first is the chi-square test statistic

M
T = s" $,

1=1

which is distributed as XM under H. The second is to test each of the Si's one

at a time and adjust the size of each test so that the overall test has the desired

size, a. This is termed the independent tests method. In this procedure, H0 is

rejected if and only if

s2 2

for any i = 1,... ,M, where X2((1 - a)1/M) is the quantile of the X2 distribution

evaluated at (1 - a) 1/M. The overall Lest does indeed have size a.

There are several considerations in choosing a test. The first is that it

should have reasonable power against a wide range of alternatives. A second

consideration is that if the null hypothesis is rejected, the test should indicate

why it has been rejected. That is, it should indicate which of the Si's were

judged to have non-zero means. For the components, this information is useful

on two grounds. First, knowing which rank statistic is large serves as a numerical

indicator to accompany the estimate of the comparison density. Graphs should

always be accompanied by diagnostics to reinforce the message. Knowing that

the second component is the major difference between the samples is meaningful.

Second, it will be seen that one can construct an orthogonal series estimate of

de(N) based on the significant components. This follows from their interpretation

as generalized Fourier coefficients. Finally, it would also be desirable if the test

has some graphical components in the manner of AIC or CAT. One would like

something more than just a list of significant components.

What is needed is a unified framework in which to discuss these two tests

and to derive new ones. An appropriate framework is suggested by analogy with
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the optimal subset regression techniques of Furnival (1971) and Furnival and

Wilson (1974). The idea ' -. hind optimal subset regression is to find that subset

of a given size, k, of the regressors which yields the least RSS (residual sum of

squares). One can then vary k and use some criterion function such as Mallow's

Cp to help choose a subset size. The key concept here is the examination of all

subsets to yield the best result. By analogy, one could look at all subsets of size k

of S,...,S for k = 1,...,M and reject H, if the sum of the members of some

subset were found to be too large. The philosophy is that S2,..., S2 should not

be considered only singly but should also be allowed to reinforce one another.

Mathematically, such a test works out to be: Reject H0 if and only if

S?' + .. + S?, > D>M(k, a),

for some k, 1 < k < M and some (i 1 ,. .. ,ik). The indices (il,. .,ik)

range over all (M) subsets of size k taken from {1,. ,M}. The sequence

DM(1, a),...,DM(M,a) are critical values which must be selected. This se-

quence determines the properties of the test and must keep the overall size at

To perform this test, one needn't actually look at all 2 M - 1 subsets. In fact,

even the branch and bound algorithm of Furnival and Wilson is unnecessary. All

one need examine are M subsets. The above test is equivalent to: Reject Ho if

and only if

s(M) +..+ S2(M k+) > DM(k,,r),

for some k, 1 < k < M, where S 2 )..., C2 are the order statistics of

S2  c1',...9 . There is no onerous computational burden at all. However, the

optimal subset analogy is more motivational than simply starting with the order

statistics.

At first blush, there seem to be at least three reasonable choices for the

sequence of critical values, DM (1,a,... ,DM (M, a). These are:

1. DM(k, a) = X2(1 - a);

2. DM(k,a) = kX2((1 - /M);
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3. DM(k,a) = X2(t(M'a)).

These shall be referred to as sequences (1), (2), and (3), respectively. Sequence

(1) yields the ordinary chi-square test. For the chi-square test, the null hypothesis
is rejected if _S?1

2 > DM(M, a) = X2 (1 - a). If the chi-square rejects,

the test based on sequence (1) will, also. Suppose, for some subset of size k,

(i1,... i k), one has

S?' +..+ S? > DM(k,,a).

Then, of course,

M S? > S?+...-+ S?> DM(k, a) = X2 o,

so the chi-square test rejects as well. Thus, sequence (1) is equivalent to the

standard chi-square test.

Sequence (2) is equivalent to the independent tests method. Clearly, if the

independent tests method rejects then the test based on (2) will, also. Suppose,

for some k and some subset (ii,... ,ij) that

S?, +. - + S ? > kX2((1 - )1/M).

If S? < X2((1 - a)1IM) for = 1,... ,k then the above cannot hold. Hence

S? > X2((1 - a)11M) for some j and the independent tests method also rejects.

Thus sequence (2) is equivalent to the independent tests method.

The critical sequence (3) yields what is to be called the subset chi-square test.

The critical value is a natural one since, taken alone, each term S? + + S?

is distributed as X2 under H. To keep the overall test at size a, one needs

to adjust the size of each term in the critical sequence. This is the purpose of

evaluating -, 2 quantile at the point t(M, a). All three tests are now in a

common f i:work so that comparisons are possible.

Figure l ' esents the critical regions for the chi-square test and the in-

dependent tests method for M = 2. The square is the critical region for the

independent tests method and the circle is the critical region for the chi-square
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Fig. 18. Critical regions for the chi-square test and the independent tests method
for M = 2 and a = 0.05. The critical region for the chi-square test is the circle
and that for the independent tests method is the square.

test. These regions are for a size of 0.05. The tests reject when the pair (S 1, S2)

falls outside the appropriate figure. Comparing the two, it is possible to draw

some tentative conclusions about which test is more powerful for certain kinds

of alternatives. If the alternative is in the direction of one of the axes, the inde-

pendent tests method should outperform the chi-square test because its critical

region is shorter in that direction. Similarly, il the alternative is in the direction

of one of the diagonals, the chi-square test should do better.

Figure 19 presents the critical region for the subset chi-square test. The

test rejects anytime the pair (S 1 , S2 ) falls outside either the circle or the square.

Comparing the dimensions of these shapes to those in Figure 18, one sees those

in Figure 19 are slightly larger. Visually, the subset chi-square test appears to be

a compromise between the other two. It is a compromise of the independent tests

method by cutting off the corners of the square. It is a compromise of the chi-

square test by reducing the distance in the direction of the axes. If the alternative

is in the direction of an axis, the independent tests method and the subset chi-

square should be about the same and both better than the standard chi-square

test. If the alternative is in the direction of a diagonal, the chi-square test should
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Fig. 19. Critical region for the subset chi-square test for M = 2 and a = 0.05.
The teat rejects any time the observation (S 1, S2 ) falls outside either the square
or the circle.

perform the best followed by the subset chi-square and the independent tests

method.

A small power study confirms these findings. Figure 20 presents the power

curves of the three tests for M = 4 and alternative (GA,s2,Js3, '4) = q"(1, 1, 1, 1).

The scalar q ranges from 0 to 6.4. The power curves are constructed by simula-

tion techniques using 10,000 replications. For each replication, four independent

normal random variables are drawn with mean 0 and variance 1. For this real-

ization, a loop steps through the range of q values. For each value qj of q the

appropriate means are added to the normal random variables drawn above. The

sample power curve for the ith test at the alternative qj is calculated as 1 if the

test rejects and 0 otherwise. The estimates are then averaged over all realizations

to generate Figure 20. Clearly, there is reuse of each sample over the range of

alternatives. However, this technique will converge to the correct values and it

does impose monotonicity on the estimated power functions. From Figure 20,

one can see that the ordering of the tests is as predicted.

Figure 21 repeats the same method for the alternative (A1,J.2,JA3,sA4) -

q. (1,0,0,0). Again the results are as predicted, however the curves are much
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Fig. 20. Power of the chi-squ~are, asbset chi-squsare and the independent tests
method for alternatives in the direction of (1, 1, 1, 1). The blocks are the chi-aquare
teat, the x 'a are the aubset chi-square test and the solid line is the independent
teats method.
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Fig. 21. Power of the chi-square, subset chi-square and the independent tests
method for alternatives in the direction of (1,0, 0,0). The blocks are the chi-square
test, the x's are the subset chi-square test and the solid line is the independent
tests method.
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closer together than in Figure 20. The subset chi-square and the independent

tests method are virtually identical and the standard chi-square is only slightly

worse.

The subset chi-square represents a good compromise between the indepen-

dent tests method and the chi-square test. It also possesses other features to

recommend it. How a test fits into a graphical, model selection environment

must also be considered. For instance, the chi-square test does not indicate

which components caused the rejection, only that it did reject. The independent

tests method does indicate which components are large but considers them only
singly. Heuristically, it seems possible that S2 and S2 may be insignificant taken

singly but that S2 + S may be significant. From practical experience, the inde-

pendent tests method seems to be 'stingy' in declaring components significant.

This will be seen, for example, in a data set examined in Section 5. The subset

chi-square test does not suffer from these difficulties.

The subset chi-square test lends itself to graphical display much as AIC or

CAT do. Define

C(k) = max S? +... + $? 211,...,li ) SI _ k((M

for k = 1,..., M, where the indices, (il,... , i), range over all subsets of size k

of {1,...,M}. One then graphs C(k) versus k. If the values are all negative,

the null hypothesis is not rejected. Since C(k) is a function, it has shape and

shapes impart information. If C(k) has a very sharp and pronounced peak, then

there is a strong choice for a particular subset. If C(k) is flat without much

of a peak, then there are several subsets which could be considered candidates.

These interpretations will take on greater meaning in the next subsection where

an orthogonal series estimator based on the components is introduced.

A plot of C(k) versus k is only plotting the winner for each subset size. One

could also plot below C(k) the next largest value of the criterion function. This

would give some indication of the cost of switching the smallest component in

the optimal subset with the next smaller component. Since all these concepts

are easily written in terms of order statistics, computation is not a problem.
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There is no ready analytic method for determining the function t(M, a).

Even for M = 2, the integral is not tractable. The function is found by simulation

methods. The procedure is to fix u = t(M, a), the nominal size of the chi-

squares, at various levels and the estimate the true size of the test, a. For the
jth realization of M iid N(0,1) random variables, the function

B (M, ui) = 1 if the test accepts for t ui,

0 if the test rejects for t ui,

is found for the grid of ui's equal to ui = 0.95 + 0.0499999(i - 1)/25 for i =

1,..., 25. These functions are then averaged over 25,000 replications to arrive at

the function R(M, u):

25,000

2500 __Bj(M, ui).
j=l

The function R(M,u) is estimating R(M,u) which is the inverse function of

t(M, a). Multiple uses are made of the M random variables for each realization

since the test is conducted at a grid of u values. However, this preserves the

monotonicity of the estimated function R(M, u). The value of t(M, a) is found

by interpolating the function (fI(M, ui),ui). That is, one finds i and i ' with

i = i' - 1 such that

R(Mui) < 1 - a
R(M, ui,) > I - a

and then linearly interpolates the pairs (A (M, ui), ui), (k(M, ui,), ui,) at the

point 1 - a to arrive at t(M, a) calculated from the u domain. From this pro-

cedure, it is clear why it is so important that the estimated function R(M, u)

be monotone. If it were not, an inverse wouldn't exist and the procedure for

estimating t(M, a) would fail.

Figure 22 presents the function (u, k(M, u)) for M = 2. The function has

been linearly interpolated between the points ui . The function is indeed mono-

tone as needed. The simulations are conducted for M = 2,..., 15. In this

framework, presenting 14 graphs would be somewhat awkward. Instead, Table 5
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Fig. 22. The function R(M, u) for determining the critical sequence of the subset
chi-square teat for M = 2.

presents £(M, a) for a = 0.05 and 0.01 and for M = 2,..., 15. These values can

be used in conjunction with an algorithm to evaluate the chi-square quantile to

find the critical sequence.

In this subsection a new test, the subset chi-square test, was introduced and

compared to two existing tests, the chi-square and the independent tests method.

The subset chi-square was seen to be a good compromise between these other

two in terms of the kinds of alternatives it detects. Further, the subset chi-

square lends itself to the kind of graphical, model selection techniques which are

sought. It is possible to define a criteria function, C(k), which not only indicates

acceptance and rejection but also points out particular subsets which are deemed

significant. A simulation study was conducted to estimate the function t(M, a)

which determines the sequence of critical values for the subset chi-square test.

In the next subsection, the subset chi-square test is applied to the components.

In this case, important uses are made of the components found to be significant.

3.3.6. Orthogonal Series Estimates. In this subsection, the subset chi-square

test is applied to the components. This test leads naturally to an orthogonal se-

ries estimator of the comparison density. The relation of the orthogonal series
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Table 5

Points at which to evaluate the chi-square
quantile to find the critical sequence for the
subset chi-square test (values are multiplied by
1000).

Size of Overall Test
M 0.05 0.01
2 976.29 995.44
3 985.33 997.36
4 990.08 998.30
5 992.44 998.66
6 994.19 998.94
7 995.82 999.22
8 996.51 999.37
9 997.29 999.49

10 997.77 999.56
11 998.22 999.64
12 998.51 999.70
13 998.64 999.73
14 998.86 999.77
15 998.93 999.79

estimator and the boundary kernel estimator is investigated. The orthogonal

series estimator is found to be a damped series with the weights being the eigen-

values of the null covariance kernel. Hence, one can view the boundary kernel as

behaving like a damped orthogonal series estimator.

The subset chi-square test can be applied directly to the sample normal-

ized components, ZN1,... , ZNM. This application is justified by Lemma 3.3.3

which gives the joint convergence in distribution of these random variables to

limiting random variables which are iid N(0,1) under H,. The first result of the

application of the subset chi-square test to the components is invariance.

Lemma 3.3.5. The subset chi-square test applied to the components is invariant

as to which sample is called the first.

The intriguing idea of the subset chi-square test is that it returns subsets of

significant components as well as an accept/reject decision. Since these compo-
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nents are also interpretable as generalized Fourier coefficients, it is only natural

to define an orthogonal series estimator based on these. Suppose C(k) attains

its maximum at k = k* and that C(k*) > 0. Let il,... , i. be the subset which

generates this maximum value. An orthogonal series estimate of d(N) is

dh,M() -1 Ii Zj.M(w

Other subsets could be examined based on the shape of C (k).

Before examining dh,M(W) any further, the relation of dh and

00

40()- E= NjOr'w
j=l

should be looked into. As pointed out in Subsection 3.3.4, if {q} are complete for

S'k then equation (3.3.3); applies otherwise (3.3.5) holds. More than this can be

said, however. In Subsection 2.3.4 the relation between Fourier based estimates

and kernel estimates was pointed out. This relation is a two way street. The

best way to examine dhM or dh,0 is not as a decomposition of dh(w) - 1 but as

a function of the original data. Recall the representation of Z as

f J 3 (u)dDN(u) - j Jh(u)du

(3.3.8) = j J'(u)d[DN(u) - u]

= J"(U) - joJ(t)dt dDN(u),

where Jh is defined in Subsection 3.3.3. The large sample mean is used here

instead of the small sample mean to avoid a dependence on N.

It is very interesting to note that the family of score functions, {Jh(u)}, is

not orthogonal. The components cannot be regarded as the Fourier coefficients

of an orthogonal decomposition of DN (u) - u. Instead, they satisfy the condition

Jo ()~ud -o Jhwd J t J(t) dt = 0,

for j # j'. It does follow from this condition that the sequence {oh(u)} is or-

thogonal where 04(u) = Jh(u) - fo Jh(t)dt. Thus, the components Z . can
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be regarded as the generalized Fourier coefficients resulting from the usual or-

thogonal series density estimation formulas using the orthogonal functions O(u)

and applied to the normalized ranks, R 1/N,..., Rm,/N. This observation is clear

from the last equality of equations (3.3.8). Since each O(w) integrates to zero,

the constant function I is in this basis as well. Its Fourier coefficient is always 1

and is subtracted on the left hand side of the equals sign in the defining formulas

for jh,M and jh,0 .

Notice it is claimed that the O(u)'s are orthogonal and not orthonormal.

Figures 15 through 17 presented the score functions, Jh, for j = 1,2,3,4 and

h = 0.5,0.3,0.1. At the time, the shapes of these score functions and not their

magnitudes were of primary interest. Hence, each was normalized to attain a

maximum absolute value of 1. Now, however, the magnitudes are of interest.

Figures 23 through 25 present the orthogonal functions O(u) for j = 1,2,3,4

and h = 0.5,0.3,0.1. Figure 23 is an overlay plot of the 4 functions for h = 0.5;

Figure 24 an overlay for h = 0.3; and Figure 25 an overlay for h = 0.1. The

most striking feature is that the magnitudes of the O&'s decrease with increasing

j. The second striking feature is that this rate of decrease is slower with the

smaller bandwidths. One suspects an interplay between this observation and the

slower rate of decline in the eigenvalues (recall Figure 14) for decreasing h. The

following steps make this relationship mathematically clear:

jIO f1 - j (u)2du

0 0

f ~ [f' K. (w ;; u) 04(w)dw - Of ~(t) dt] du

f j ( 1  K. (T - U) O(w)dw. ~ K81 (t.$ - U (t)dt) dus

-2 j (t)dt. j Ka (w-: h i) (w) dwdu

+ [f1 jlh]()dt12
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Fig. 23. The orthogonal functions O'(u) for j = 1,2,3,4 and h = 0.5. The
function 00.5(u) is the solid line; 00.5 is the broken line of x'; og5 is the

broken line of +'s; 0O'- is the solid line with blocks. The square of the £2 norms
of these functions are: 1.0585, 0.6574, 0.1619, 0.0275.

-~~~ jj - u!~) K., (t -) u 04(w)0k4(t)dwdtdu

-~K f f u)(w K.f (t (wu du - 1] ojh(v)dwdv

f j j (v)C (v, w)(w)dwdv

O,

where a = s(w,h) and s = s(t,h). Hence, the square of the £2 norm of the

function 04 is equal to the eigenvalue Oh
I I 3"

This proves conclusively that dh,M and dh,. are damped orthogonal series

estimators where the weights are the eigenvalues. By this is meant that the

estimator has the following representation:

dh,o(w) 1+ 7h
;=, V4 34
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Fig. 24. The orthogonal function. O (u) for j - 1,2,3,4 and h = 0.3. The

function O°'3 (u) is the solid line; 00.3 is the broken line of x's; 0 0.3 is the
1 2 3

broken line of +'; 003 is the solid line with blocks. The square of the £2 norms
of these functions are: 1.0921, 0.9008, 0.4941, 0.2547.
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Fig. 25. The orthogonal functions O4(u) for j = 1,2,3,4 and h = 0.1. The

function o0. 1 (u) is the solid line; 00-1 is the broken line of x's; oo.1 is the

broken line of + 's; 00-1 is the solid line with blocks. The square of the £2 norms
of these functions are: 1.1034, 1.0654, 0.9317, 0.8654.
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since the sequence {O(u)/Val} is now orthonormal. If the sequence { k } is

complete for S11, one can regard the boundary kernel estimator dh as being

equivalent to a damped orthogonal series estimator. If the sequence is not com-

plete for Sh, this interpretation is limited to the projection of dh(w) - 1 onto the

subspace S h .

The fact that the series is weighted makes the usual problem of the choice

of truncation point much less difficult. The representation for dh,oo provides an

alternate and intriguing explanation of the role of the bandwidth in determining

the smoothness of the estimate. Larger bandwidths lead to smoother estimates

than smaller bandwidths (recall the discussion of Subsection 2.4.3). From Fig-

ures 23 through 25 it is apparent that the higher order orthogonal functions are

rougher (higher frequency) than the lower order ones. A smaller bandwidth gives

more weight to the higher order 04's than a larger bandwidth, hence the smaller

bandwidth is capable of producing rougher estimates.

One can also appreciate why the estimate d; is consistent as h -- 0. As the

bandwidth shrinks, more and more of the basis is allowed to enter and contribute

materially to the shape of the final estimate. In the limit, any shape can be

duplicated. This also explains the increase in variance as h decreases. With

decreasing bandwidths, the number of parameter estimates (components) that

make up the estimate is increasing as more are given significant weight. This

results in an increase in variance.

At this point, it may be wise to summarize the properties of dh and dkM.

In fixed samples each estimator is biased; this is to be expected for any density

estimator [see Rosenblatt (1956) or Seheult and Quesenberry (1971)]. For fixed h

the estimators are also asymptotically biased. But this is not the whole story. As

a practical matter, with increasing amounts of data one would be lead naturally

to choosing smaller h and larger M. These actions reduce the amount of bias

present. Indeed, such a process will even attain consistency as per Theorem

3.2.2. The distinction is between what one assumes to prove theorems and what

one does in implementing a procedure. One uses fixed-h results such as Theorem

3.2.3 and Lemma 3.3.3 to find approximate distributions. One merely conceives
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of the bandwidth being fixed as the sample size increases. Although A(N) is not

selectable, there is still a very strong analogy between the treatment of X(N) and

h. It is assumed that A(N) converges to A0 , 0 < A)o < 1, as m A n --+ oo. The

limit stochastic processes all contain the term A0 . Yet given just one sample, one

can only conceptualize a convergence. For the single sample, convergence has no

meaning.

It is not guaranteed that either dh or dhM will be non-negative and integrate

to 1. The estimates may themselves not be densities. If the density is not non-

negative, then having it integrate to 1 is of little benefit. The decision to employ

such estimators was made in Section 2. Suffice it to say here that one must recall

what the estimate of d(N) is used for. This relates to the discussion of bias as

well. The important aspect of dh and dh,M is their shape. It is not intended

to use them as density estimates. One will not simulate random variables from

them. Their important interpretation is that of likelihood ratio. These other

properties would be nice, but are not at all essential.

More importantly, the orthogonal series estimator can be shown to satisfy

invariance even in finite samples. This result is stated as Lemma 3.3.6.

Lemma 3.3.6. The orthogonal series estimate obeys the invariance condition

h,~dM(w) + (1 - X(N))dh~hM(w) 1

in finite samples.

The function dhM(W) is the estimate when the population with distribution

function F is called the first sample. The function dh,M(w) is the estimate when

the population with distribution function G is called the first sample. This result

is due to the small sample mean correction to the components which caused them

to be invariant.

It is now known also that dh,M is a damped orthogonal series estimate and

that the weights are the eigenvalues. Only a subset of the components (or fre-

quencies) making up 4h(w) are present in dh,M. The estimate of h,M can be

smoother than dh but not rougher in the sense higher frequencies may be absent
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from dh, M. This observation will lead to a suggestion for choosing the bandwidth

in the next subsection.

In this subsection, the subset chi-square test was applied to the normalized

components, ZNI,... , ZNM. It was seen that this test leads naturally to an

orthogonal series estimator, dh,M. A representation for this estimator in terms

of the original data was found. It was seen to be a damped orthogonal series

estimator with the weights being equal to the eigenvalues of the null covariance

kernel. The properties of the estimators dh and dhM were discussed. They

were seen to be biased, even asymptotically-so under a fixed bandwidth regime.

However, it was argued that such a statement is vacuous in the sense that the

bandwidth will naturally decline with increasing sample size and that fixed band-

width theorems are useful for approximating distributions. One is not meant to

seriously consider keeping the same bandwidth out to infinite sample sizes. The

goal of any density estimation technique should be to select the bandwidth to fit

the data parsimoniously whatever the resulting bandwidth might be.

3.3.7. Choosing h and M. In this subsection, several schemes for choosing

h and M are examined. One can choose h either graphically or by an automatic

criterion. One can choose M to cover only the desired alternatives or to include

all eigenvalues above some cutoff. The issues involved in choosing h from the

data on the properties of the test are also discussed.

The usual density estimator has either h or M; here both are present. This

adds flexibility to the problem and is not a hindrance. There are several philoso-

phies that might be adopted. The first is based on a remark from Subsection

3.3.6 that the orthogonal series estimate can be smoother than the boundary

kernel estimate but not rougher. This approach would suggest choosing h to un-

dersmooth the data (i.e. dh is slightly too rough) and then choose M to include

all the components whose eigenvalues exceed some cutoff such as 0.01 or 0.001.

One then relies on the subset chi-square test to include or exclude the compo-

nents as appropriate. Thus, the orthogonal series estimate of d(N) has available

to it all models from too smooth to too rough. Table 6 gives the numbers of

eigenvalues above three cutoffs as a function of bandwidth.
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Table 6
Number of eigenvalue of the null covariance
kernel above a cutoff.

Cutoff
h 0.01 0.001 0.0001

0.5 4 5 6
0.4 5 6 8
0.3 6 8 10
0.2 9 12 16
0.1 16 23 32

Another alternative is to use a criterion function such as least squares cross-

validation (LSCV) to choose the bandwidth and then to include all the compo-

nents above some cutoff. The properties of LSCV have not been established in

this setting. Anyone proceeding upon such a path should use caution. These

first two suggestions are similar in spirit.

A completely different approach is to fix M. One might fix M based on the

types of alternatives one is considering, for example, M = 2 for location and

scale. Having fixed M one is free to choose h. One could choose h based on fit

or based on the types of distributions one wishes to best protect against, that is,

one could choose h so that the shapes of the score functions are pleasing. Overall,

there seem to be very good opportunities to direct the procedure toward more

specific alternatives if this type of information is available.

The first two procedures and possibly the third involve the selection of the

bandwidth based on the data. The bandwidth in these cases is not only random

but also a function of the data. It is of interest how the properties of the test

might be affected. This sort of problem is not at all unheard of in statistics.

An analogue in regression would be the distribution of the parameter t-statistics

under a regression selection criterion like stepwise regression. If the bandwidth

were random but not a function of the data, then the answer would be trivial:

the size of the test would be unaffected. Of course, the bandwidth will always

depend on the data and the situation is more complicated. The effect of a

data-driven bandwidth depends on exactly how the bandwidth depends on the
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data. For graphical selection procedures, this question is not resolvable because

it cannot be quantified. For criteria functions such as LSCV there is hope for

an answer though it most probably would result from simulation rather than

analytic techniques. An adjustment for a data-driven bandwidth would amount

to adjusting a in the critical sequence defining the subset chi-square test.

These simulations are not performed here. Instead, they are left as future

work. There are cases where completely automatic methods may be appropriate;

say, when the output density is required as input to another procedure. Other-

wise, those using an automatic method who do not check the fit of the estimated

density may be rudely surprised as such methods do fail: LSCV is known, for

example, to drastically undersmooth about 5-20% of the time [see Hart (1988)1.

These methods are more properly used to suggest choices of bandwidths. It is up

to the user of these techniques to make the final choice based on other criteria

such as fit.

One of the strong points of nonparametric density estimation in general is

its ability to suggest different models. The methodology here is no different.

Aside from altering bandwidths, the function C(k) is capable of suggesting quite

different shapes for a given bandwidth. If the function is nearly level, then several

quite different models may result. However, caution should be made against one

particular abuse. Sometimes it will occur that the subset chi-square will fail to

reject. Upon examining the components, one may see that by decreasing M or

changing h that the test would reject. It is statistically dishonest to make such a

modification and declare significance. Such a procedure can drastically alter the

properties of the test. Since some choice of M and h must be made, this choice

should be made before the subset chi-square test is run. These procedures will

still affect the properties of the test, but they will do so in a much less egregious

manner.

In this subsection, several different methods of choosing the bandwidth and

the truncation point were examined. Which to use is determined by the objectives

of the researcher. The issues involved in the effect of a data-driven bandwidth on

the size of the subset chi-square test were discussed. In order to adjust the size
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of the test, one would have to pick a specific, quantifiable choice criterion. The

necessary adjustment would most probably have to be determined by simulation

techniques.

3.3.8. Summary of the Unified Testing and Estimation Procedure. The pieces

of the unified testing and estimation procedure have been scattered throughout

this section. They are brought together in this subsection. The procedure is seen

to fulfill the features outlined in Subsection 2.2.6 and Section 1. This procedure

is summarized by the following list:

1. Univariate Analysis

2. Preliminary Two Sample Analysis

3. Choosing M and h

4. Executing the Subset Chi-Square Test on the Components

5. Plotting the Orthogonal Series Estimate of the Comparison Density

Any two sample analysis should start with three univariate analyses: the two

individual samples and the pooled sample. Statistics such as the mean, median,

standard deviation, twice the interquartile range and trimmed means should be

examined. Identification quantile plots (Parzen (1979)] should be constructed.

The philosophy is that before asking if F and G are equal, it is best to investigate

the properties of each on their own. Examining the pooled sample can highlight

distinctions between the two.

During the Preliminary Two Sample Analysis stage, visual indications of the

fit of the two samples and standard two sample statistics are given. An overlay

plot of the two identification quantile plots is given as is an QQ plot. These two

plots remove the effect of location and scale: they compare the shapes of the

distributions. Traditional statistics such as the Cram~r-von Mises or Anderson-

Darling are also given at this stage.

At this point, M and h need to be chosen by one of the methods outlined

in Subsection 3.3.7. In the example in Section 5, they will be chosen by the first

method outlined. The components are then calculated and the subset chi-square

test applied to them. The criteria function, C(k), as defined in Subsection 3.3.5
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should be displayed. The graph should include a horizontal reference line at 0.

If C(k) does not exceed zero, the null hypothesis cannot be rejected and the esti-

mate of the comparison density is the uniform density. If C(k) exceeds 0 at one or

more k values then estimates of the comparison density based on the eigenfunc-

tions should be displayed. The estimate based on the subset which maximizes

C(k) is always displayed. Others may be displayed at the user's discretion based

on the shape of C(k). Along with these graphs a list of which components are

significant and the components themselves should be given. Each graph should

include a horizc. ital reference line at 1. The boundary kernel estimate can also

be overlaid for reference.

Note that this procedure does indeed fulfill the criteria outlined in Subsection

2.2.6 and Section 1. It is certainly a graphically oriented technique. The subset

chi-square test applied to the components is also a selection procedure for a model

of d(N)(w). If the null hypothesis cannot be rejected the model is uniformity;

if the null hypothesis is rejected the model is the orthogonal series estimate

corresponding to those components found significant. The test is omnibus. In

fact, the breadth of the class protected against is under the control of the user.

The distribution of the components is nonparametric distribution free under H,

since they are linear rank statistics. There are as few restrictions placed on F

and G as possible while maintaining weak convergence results for the comparison

distribution empirical process. Finally, the estimation of the relation of F to G

is given by the estimate of the comparison density. All the requirements are

fulfilled by this methodology.

In summary, this section has detailed the theoretical and computational as-

pects of the boundary kernel estimate of the comparison density and tests of

its uniformity. The section started by giving pointwise results for the boundary

kernel estimator under a bandwidth shrinking to zero, the pointwise asymptotic

normality of the boundary kernel estimator under H,; its pointwise consistency

and invariance under general alternatives was shown. A stochastic process called

the kernel density process was defined from the boundary kernel estimator. Con-

ditions were given for its weak convergence to a limiting process under a fixed
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bandwidth. A rationale for fixing the bandwidth was given.

Tests of the null hypothesis were based on the kernel density process. It was

argued that the best strategy was to base any test on a fixed number M of the

components of the kernel density process. The components were defined as the

inner product of the eigenfunctions of the covariance kernel of the kernel density

process under H, and the boundary kernel estimate less 1, dh(w) - 1. Properly

scaled, these components converge jointly to iid N(0,1) random variables under

Ho. The components are interpretable both as generalized Fourier coefficients

and as rank statistics.

A new test, the subset chi-square test, was introduced and compared to ex-

isting tests. This test was then applied to the components. The subset chi-square

test was seen to have several desirable properties. First, it considers the compo-

nents in combination not just singly. Second, it indicates which components are

deemed large. Third, it lends itself to graphical display. The subset chi-square

test was also seen to suggest an orthogonal series estimate of the comparison

density based on the components and the eigenfunctions. The relation between

the orthogonal series estimate and the boundary kernel estimate was explored.

Methods of choosing the bandwidth and truncation point were examined.

The implications of data based choices of the bandwidth were also discussed.

Finally, the methodology was summarized. It was seen to truly meet the criteria

outlined in Section 1 and Subsection 2.2.6.
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4. POWER AND SIZE STUDIES

4.1. Introduction

In this section, power and size studies are conducted. Subsection 4.2 covers

power studies; subsection 4.3 covers size studies. Subsection 4.2 derives and

explains the theoretical concepts necessary for defining power functions and the

asymptotic relative efficiency between two rank statistics. Also detailed are the

simulation and numeric techniques used to actually find the power functions.

The asymptotic relative efficiencies of the first two components are compared

to standard rank tests. The bandwidth is seen to have an effect on this efficiency.

The first component is generally less efficient than the standard rank statistics

and the second more efficient. It is found that the optimal choice of bandwidth

is not necessarily the same for both location and scale alternatives of the same

underlying distribution. A good compromise choice of bandwidth, however, can

be made for the distributions considered.

The subset chi-square test applied to the components of the kernel density

process is found to have very good power properties. The Cram6r-von Mises

and Anderson-Darling statistics have good power against the location alterna-

tives examined. However, when the alternative starts to principally affect higher

components, these two statistics have much poorer power properties. The subset

chi-square test is equally good against any alternative which affects components

it considers. It outperforms the Cramhr-von Mises and Anderson-Darling statis-

tics by wide margins for alternatives influenced mainly by the fourth and higher

components.

It is seen that the key to the power of the subset chi-square is the choice

of truncation point (M) and bandwidth (h). Choosing the truncation point

too large (h too small) reduces power because the signal is swamped by noise.

Choosing the truncation point too small (h too large) reduces power because

the signal is missed by the test. Careful selection of the truncation point and

bandwidth should chart a course between these twin abysses.
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Subsection 4.3 covers the small sample size of the subset chi-square test

applied to the components. The size remains very close to the appropriate value

even for samples as small as n = m = 5. The size deviates significantly when one

of two situations occurs. The first occurs when the bandwidth is clearly chosen

to be too small. For instance, the size deviates substantially from its nominal

value if h = 0.3 or h = .2 is used for n = m = 5. One would never choose such a

small bandwidth for this sample size in practice. The second occurs when m is

very small (say m = 5) and n > m (say n = 100). Again, one doesn't expect to

see such cases very often in practice.

4.2. Power Studies

4.2.1. Introduction. Subsection 4.2 investigates the power of the procedures

discussed in Section 3 along with the the Cram~r-von Mises and Anderson-

Darling statistics. The power functions in this subsection are asymptotic.

Subsection 4.2.2 discusses the notion of a local alternative. The main result

of this subsection is a theorem stating the conditions under which CDoN =

v'/[DN(u) - u] still converges weakly under local alternatives. Local location,

scale and Fourier alternatives are defined. The asymptotic relative efficiency of

two rank statistics is defined.

Subsection 4.2.3 gives the methods to be used to find power functions. A

method based on simulation is described for the subset chi-square test. A method

to numerically invert the characteristic function is also described. A theorem

about its numerical consistency is proved. This method is used to find the power

functions for the ph, Cram6r-von Mises, and Anderson-Darling statistics.

Subsection 4.2.4 demonstrates the calculations necessary to check the con-

ditions for weak convergence of CDON. These conditions are checked for Cauchy

location and scale alternatives. Subsection 4.2.5 presents power curves for two

distributions for both location and scale alternatives. Curves for two Fourier

alternatives are also given. The subset chi-square test applied to the components

is seen to perform credibly, particularly for alternatives stressing the second

and higher components. Asymptotic relative efficiencies comparing the first two
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components to standard rank tests for four underlying distributions are given.

The bandwidth is seen to make a difference. No statistic dominates over all the

different distributions.

4.2.2. Weak Convergence of CDON Under Local Alternatives. The weak con-

vergence of the stochastic process CDON to a limiting process L + (1 - 0)-1/2&

under local alternatives is proved in this subsection. This is very important since

under fixed alternatives one expects the process to become unbounded as the sam-

ple sizes increase. From the results of Section 2, one can only claim that CDoN

converges weakly under H,, because one has the identity CDON(u) =_ CDN(u).

It is the goal of this subsection to broaden the class for which convergence is

claimed to include local alternatives.

The discussion opens by examining the concept of a local alternative. The

statement of the theorem on weak convergence follows. Types of local alternatives

satisfying the conditions are discussed. Local location and scale alternatives

are defined. Also introduced is the strategy of defining the local alternative by

parametrically defining its limiting bias function and not specifying the sequence

of underlying distributions.

A local alternative is an alternative in which the distribution of Y1 ,... Y,,

depends on n so one has Y,,, ... , Yn are iid according to the distribution func-

tion G(,). The problem is that for fixed G # F, a test is either consistent or

inconsistent. If it is consistent, the asymptotic power function is 1, if it is in-

consistent the power is equal to the size of the test. Hence, asymptotic power

curves drawn for fixed alternatives are very uninteresting. Instead, one chooses

a sequence {G(,)} of alternatives such that G(n) -+ F as n -4 o. If G(n) con-

verges to F at the correct rate, several good things happen. First, the power

functions are not degenerate, that is, they are not uniformly equal to a or 1.

Second, statistics have the same distribution as under H0 with the exception of

the addition of a non-zero mean. Typically, this makes power curves much easier

to construct.
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For the purposes of local alternatives, let

Yn9,..., Ynn be iid G(n),
H(N)(X) = -X(N)F(z) + (I - A(N))G(n),

QH(N-(u) =H - (u),

and

D(N)(U) - FQH(N)(u).

It is assumed that G(n)(z) -+ F(z) at a rate so that the limit function, A(u),

defined by

(4.2.1) A(u) = m la i/-n[D(N)(u) - u]
mAn-oo

exists and is continuous with A(O) = A(1) = 0. Although not specified in the

notation, A(u) will depend on A0 as well as a parameter -y which indexes the local

alternative. The function A(u) is the bias function and Theorem 4.2.1 gives the

conditions under which CDON =*- L + (1 - AO ) 1/ 2 A.

Theorem 4.2.1. Assume that there exists A(u) such that IVfn[ID(N)(u) - u-

A(u)i ] -+ 0 as mAn --+ oo and suppose there exists sequences of constants {a(N))

and {b(N)} such that

Pa(n) QN(t) !5 b(N),0 < t < 11 -- 1

as m A n -- oo. Let e(N) and f(N) be defined as

e(N) = QH(') (1/N) A a(N),

f(N) = QH(N)(1 - 1/N) V b(N),

and suppose that

sup f W
e(N<_5Z:f(NJ g(n)(')

inf /(-),Ie(N):<Z<5(JV) g(n)(X)
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a8 m A n --+ oo. Then

CDON =* L + (1 - 1/2A

in (C[O, I, Cp,p) a m A n --+ oo where L(u) 1 -)'B(u) and B(u) is a

Brownian bridge proces8.

The norm 11 " 1 is the sup-norm. This theorem is the basic building block for

deriving power functions. It follows from a proof entirely analogous to that of

Theorem 3.2.3 that under the same conditions as Theorem 3.2.3

KDPON,h => KDPoh + 6h,

where

bh(W) \ (1 - f/ 2 f , (w -h )A(u)du,
and KDPoA is the process KDPh when H, is true.

To this point, nothing has been said about the character of G(,, or the rate

at which it must converge to F for a non-degenerate limit function to exist. These

details are now given. For a local location alternative, define G(") by

G( )() = F(z - -/ v ).

Prihoda (1981) shows that the limit function is

(4.2.2) A(u) = (1 - Ao)_yfQF(u),

although a proof of this is embedded in the proof of Lemma 4.2.1 (below) as well.

Pointwise convergence is easily shown, however Theorem 4.2.1 calls for uniform

convergence since the sup-norm is used. Lemma 4.2.1 gives the conditions on F

under which pointwise convergence implies uniform convergence for local location

alternatives.

For a local scale alternative, G(n) is defined by

G(,)() = F 1 + / "
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Prihoda (1981) shows the limit function in this case to be

(4.2.3) A(u) = (1 - O)_YQF(u)fQF(u).

Under certain conditions on F, the convergence for location and scale alternatives

can be shown to be uniform. Lemma 4.2.1 gives the result.

Lemma 4.2.1. Let A(u) be given by (4.2. 2) for a local location alternative and by

(4.2.3) for a local scale alternative and suppose A(u) is continuous and A(O) =

A(1) = 0. Suppose that f' exists and is bounded. Assume also that A(N) = Ao.

Then

11v4 -[D(N)(M) ul - AoM)11 - 0

as r A n - 00.

These conditions are easily satisfied by the distributions to be considered. The

remaining conditions of Theorem 4.2.1 must be shown on a case by case basis.

These conditions are easier to show than uniform convergence.

There is another possible method for defining local alternatives. This is to

ignore the underlying distributions F and G(,) and to define the limiting bias

function A(u) parametrically. A convenient representation is

k
(4.2.4) A(u) = (1 - \ 0 )'y - aj sin 7rju.

j= 1

The function A(u) preserves its known properties: A(u) is continuous with

A(O) = A(1) = 0. This procedure is attractive for creating alternatives other

than location and scale. As might be anticipated from the discussion in Sec-

tion 3, location and scale alternatives affect mainly the first two components.

Defining alternatives in this waf allows one to easily put weight on the higher

order components. Alternatives constructed in this way will be called Fourier

alternatives since a sine basis is used to define A(u).

At this point, it is now possible to define the asymptotic relative efficiency

(ARE) of two rank statistics. Let RN1 be a rank statistic with score function
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J (u) and let RN2 be a rank statistic with score function J2 (u). Assume J1 (U)

and J2 (u) are differentiable, then

RNi = - J(u)CDoN(u)

d - jo J,'L(u)du - (1-_ AoY-1/2 fa Ji(u) A (us)du

as m A n - oo for i = 1, 2, where the convergence in distribution follows from

the weak convergence of CDON to L + (I - )- 1/2A. Restating this result, one

has

RN + (1 - o)-1 2 fo' J(u)A(u)du d

Vo i(fl J(U) 2 du - [fo J(u)du]) N(0,1),

as m A n -+ oo. The conditions of Noether's theorem [see Randles and Wolfe

(1979), page 147] which justify defining ARE's are clearly met. The asymptotic

relative efficiency of RNI to RN2, denoted ARE(RN1, RN2), is defined as

ARE(RNI, RN2 )= 2
K2

where

= _ (1- Ao)-1/ 2 fo X(u)A(u)du 1,
, fl0 J.(U)2du - [So1 X (u)du]2)

and Pi is known as the efficacy of the rank test. If ARE(RN1, RN2) > 1, then

RN1 is asymptotically relatively efficient compared to RN2.

The motivation for these definitions is straightforward once one realizes that

the asymptotic power function for RNi is calculated as

#(-y) = P-[Reject Ho]

= lim PIIRNi/oil > z./2)
mAn-

= 1Jmz 1- P -z, 2 - . -Z ) ,
= 1- IO(Z./ 2 - Ki) - t(-Z./ 2 - K,)],
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where ai is the denominator in the definition of xi and ZN, = RNi/Ori . Increasing

xi causes t to be evaluated further in the tail which reduces the quantity in the

brackets and increases the power function. The efficacy, Ki, does provide an

ordering of the powers and is meaningful.

Power functions and ARE's are given in Subsection 4.2.5 for local scale

and location alternatives corresponding to four underlying distributions: normal,

logistic, Laplace, and Cauchy. Power functions are also calculated for two Fourier

alternatives.

Summarizing, in this subsection the concept of local alternative was defined.

A theorem giving the weak convergence of the comparison distribution empirical

process was given. Local location and scale alternatives were defined and lemmas

concerning the uniform convergence of the biases were proved. Local Fourier

alternatives were defined. The ARE of two rank statistics was defined and the

relevance of the measure illustrated. In Subsection 4.2.3, techniques for actually

calculating the power curves are given.

4.2.3. Computing Power Curves. Power curves are constructed for the subset

chi-square test applied to the components of the kernel density process, p2

CVM (Cramer-von Mises statistic), and AD (Anderson-Darling statistic). Two

separate techniques are used. For the subset chi-square procedure, simulation

methods are used. For the others, the characteristic function is numerically

inverted.

Since finding the percentage points of the subset chi-square test under Ho

required simulation techniques, it is not at all surprising that finding the power

function does as well. The technique is as follows. The parameters M and h are

given. The asymptotic bias for each of the M components, Z* , is

b! j (w)h()dw,

where 6h is as defined in Subsection 4.2.2. The normalized components have bias

A0 • b
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Although the notation does not reveal it explicitly, A, 6 h and thus bj all depend

on the parameter -y which indexes the local alternative [see equations (4.2.2),

(4.2.3), and (4.2.4)]. To find the power function, #(-y), one needs to find the

probability of the subset chi-square test rejecting Ho when given M indepen-

dent normal random variables with variance 1 and means bj, j = 1,... , M. The

beauty of this procedure is that one need not take large samples from the un-

derlying distributions F and G(,), compute the components and then apply the

subset chi-square test. One need only simulate the limiting distribution of the

M components to obtain the asymptotic power function.

The simulation is conducted in the same manner as that which generated

Figures 20 and 21. For each set of M iid N(0,1) realizations, an indicator function

is set to 1 for rejection and 0 otherwise at each -y = - = (i - 1)/35 for i =

1,..., 36. These individual functions are then averaged over 10,000 realizations

to arrive at the estimated power function. A confidence interval for any point

along the estimated function having at least a 95% coverage probability has a

half-width of

.975 •V 4. 10,000 00098

There are numerical methods of approximating the power functions of P2

CVM, and AD so one needn't resort to simulation methods. Each of these statis-

tics is representable as a weighted infinite sum of squares of independent normal

random variables under He and local alternatives. Under He these normal ran-

dom variables are iid N(0,1); under local alternatives they have nonzero means.

Since the weights on the squared normals decrease very rapidly, these numerical

methods truncate the infinite series at some point Q. The distribution of

00

T= ejZZ
j=1

is approximated by

Q
TQ = ejZ.

j=1
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Reflect back to the discussion of the space spanned by the eigenfunctions in Sec-

tion 3. The distribution of V2 is to be approximated by the distribution of the

projection of the process KDPON,h onto a subspace spanned by the eigenfunc-

tions. For the purposes of the approximation, it is clear that whether or not the

eigenfunctions form a complete basis for Sh is irrelevant.

Durbin and Knott (1972) take the approach described here in finding the

distribution of various elements of the CVM statistic. They do add one more

term, aX, where X is distributed as X. and is independent of Z1 ,..., ZQ. They

choose a and i, so that T and TQ have the same mean and variance.

The approach taken by Durbin and Knott is adopted here. They invert

the characteristic function of Tq by numerical methods. The methods used

by Durbin and Knott were originally proposed by Imhof (1961) and Slepian

(1958). These methods are geared specifically to quadratic forms of normal

random variables. They return the distribution function of TQ, F(z), given the

dj's. They are somewhat tedious in that one must perform numerical integration

for each z for which F(z) is desired. If the entire distribution function is needed,

this can result in quite a lot of computation. A different method is used here;

one that applies to a much broader range of cases than the methods of Imhof

and Slepian. This new method returns the density function at a range of values,

not just at a single value.

This method uses the fast Fourier transform (FFT) to numerically invert

the characteristic function. As obvious as this idea sounds, it doesn't appear

in the literature in this form. Silverman (1982) (see also Jones and Lotwick

(1984)] describes an algorithm which uses the FFT to numerically invert the

characteristic function of a kernel density estimate. Otherwise, the FFT has not

been used in this manner.

To describe the algorithm, start by assuming f(z) is a continuous density

function and that OX(t) is its characteristic function. Then one has [see Parzen

(1962b), page 121

f 1 W_ Citz Ox(t)dt27 0
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1 M
I e1itZx(t)dt

27r J-M
I 2M N - N

4--- I e-iV[-M+2MjVX(-M + 2Mj/N)

-

(4.2.5) = eiMZ 1 M N- 2Mji/Nir N ,-
j=0

where Z(j) - rkx(-M + 2Mj/N). The integers M and N are unrelated to their

earlier uses. There are two sources of error here, that due to truncation and that

due to approximation.

Consider the relation of (4.2.5) to the inverse FFT of Z(O),..., Z(N - 1).

The inverse FFT is
N-i

(4.2.6) I(k) - Z e- 2 i j k/N Z(j)

j=0

for k = 0,..., [N/2]. Comparing (4.2.5) and (4.2.6), one sees that they are almost

the same. Equating the exponents of the two exponentials,

2zMj 21rjk

N N'
7rk

for k = 0,..., IN/2]. This defines the z values at which an approximation results.

Substituting these z values into ei Mz, one finds that

ei Mz = eiMxrk/M

=eir k  1 k even,
-1 k odd.

The estimate !NM of f(x) at the points zk = irk/M, k = 0,..., [N/21 is

JNM(xk) = WI Re[I(k)1L

The estimate of the distribution function F, call it FNM, can then be found from

fNM by numerical integration. Using the trapezoidal rule, the estimate works

out to be

(4.2.7) PNM(zk) f(i) - If(z)- f-(k)

i~~~ 
2 2 1 -

n|i i|iI|n
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In this work, it is known that the distributions have support on the positive reals

so that getting f(z) at z = 7rk/M is not a difficulty. In other work, one could

use the forward FFT to get the density at z = -7rk/M. Or one could use the

characteristic function of X ± b to slide the areas of interest within the range of

the zk values.

The approximation used in (4.2.5) appears to be the composite rectangular

rule, but it is not. Because of the symmetries of the characteristic function,

(4.2.5) is equivalent to the trapezoidal rule. Let

g(t,z) = Re[e-itzXOx(t)]

= costz • Re[Ox(t)] + sintz. mIm[x(t)],

so that f(z) = f2.og(t,z)dt. Note that g(-t,z) = g(t,z) for all x and t. The

trapezoidal rule for integrating g(t, z) with respect to t is

M N1 1
INM(z) = ~- j g( -M +2Mj/N~x) -- g(-M,x) - -g(M,x)J

= M g(-M + 2Mj/N,z),
3;=0

since g(-M, z) = g(M, z). This last sum is precisely (4.2.5).

The errors in equations (4.2.5) and (4.2.7) would seem to be working against

each other. To make (4.2.5) more accurate one wants M/N small; to make

(4.2.7) more accurate one wants M large which means N may need to be huge

to make M/N small. One must also select M large enough so that truncation

errors in the original integral defining f don't dominate. These forces can be

balanced, however. Theorem 4.2.2 gives a numerical consistency result for the

approximation FNM.

Theorem 4.2.2. Let 4x(t) be the characteristic function of f with support on the

positive reals and g(t, x) be oas defined above. Suppose that g(t, z) is twice differ-

entiable in t (except possibly at t=O, in which case the left and right derivatives

must exist) and that

sup IW2j(tx)I< 0o
t#0,ZI[0,b r
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and

_00 Jt'Re[0X(t)jjdt < oo,

0 jot Im[0X(t)lldt < eo.

Suppose also that M 3/N 2 -f 0 as M, N - oo, then

FNM(b) - F(b)

as N, M -1 oo for b > 0.

Theorem 4.2.2 says not only that the estimate of the distribution function

converges but also gives a bound on the relation of M to N. Rates of convergence

are harder to derive. They are probably less useful too since such rates are upper

bounds and usually not very good ones. In applying this procedure, one typically

observes that if INM(zk) < f(zk) then INM(zk+1) > f(zk+,). The trapezoidal

rule applied to INM gives a result remarkably close to that which would result if

f had been used. The procedure seems quite robust to the choice of N and M.

However, if really bad choices are made the result is usually quite apparent. The

estimated density fNM is very wild looking and doesn't come close to integrating

to 1.

To test of this procedure, consider using it to invert the characteristic func-

tion of the CVM statistic under Ho. In Lemma 4.2.2, the characteristic function

.Q(t) of TQ = =109Z is given.

Lemma 4.2.2. Let Z1,... ,Zq be independent with Zj - N(bj,1). Let 01,. OQ

be a sequence of constants. Then the characteristic function of

Q
L"iz3
j=1

is

(4.2.8) q(t) = - xp[cit/( - 2it),eI~ ~ i/l 2-t 2

j=l
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where ej = Abj.

Equation (4.2.8) is not in a useful form. Through purely formal manipulations,

one arrives at

1 1 + 20 1

1 - 2itj I + 40t 2  1 + 402 t 2

3 3.

One also needs the square root of a + bi which is c + di, where

2

2

At this point, equations (4.2.6) and (4.2.7) can be implemented on a computer.

The procedure is run twice, once with a truncation point of Q = 20 and

once with Q = 32. In each case, one more term is added so that the mean of the

truncated sum is the same as that of the infinite sum. The results are given in

Table 7 and are compared to Anderson and Darling's (1952) values. The values

are compared in the quantile domain, not the distribution domain. They are

compared in this domain since people actually using the test will want a critical

value from the quantile. The large maximum percentage difference observed

in Table 7 occurs near the lower endpoint of the distribution where the values

of the quantiles are near zero. Larger percentage errors can be forgiven here.

The absolute error is small throughout and the maximum percentage error for

u > 0.25 is extremely good.

The procedure has been found to work less well on densities with singu-

lar points or large discontinuities. That it should work less well with densities

with singularities is not surprising. Most of the simple numerical integration

techniques will fail in such cases. The problem with discontinuities comes in

inverting the characteristic function. If f(z) is discontinuous at z = a, the in-

version routine wants to return a value of [f(a-) + f(a+)1/2 at z a. If the

discontinuity is large, this tends to cause the next integration routine to under-

estimate F. If the point of discontinuity is known and f(a-) = 0, one can always

double fNM(a).
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Table 7
FFT approximation to the quantile function of the Cramdr-von Mises
statistic under Ho compared to Anderson and Darling's (1952) values.
Unless otherwise stated maxima are taken at a grid of us between 0.01
and 0.999.

No. of Terms (Q)
20 32

max IQNM(u) - Q(u)[ 0.0029 0.0019
max IQNM(u) - Q(u)I/Q(u) 11.7% 7.6%
maxIQNM(u) - Q(u)1, u > 0.25 0.0011 0.00025
max IQNM(u) - Q(u)I/Q(u), u > 0.25 0.18% 0.10%
M 400 400
N 2048 2048
q(O.O1) 0.0248 0.0248
Q(0.999) 1.1679 1.1679

The FFT method seems a very good contender to existing techniques both

in terms of accuracy and speed. This method is also applicable to a far greater

number of cases than the methods of Imhof and Slepian.

4.2.4. Checking the Conditions of Theorem 4.2.1. This subsection looks

at the details that are involved in showing the conditions of Theorem 4.2.1 are

met. These are not shown for all four distributions that are being worked with.

The steps are very similar for each and somewhat tedious. Since the Cauchy

distribution is widely used as the exception to statistical rules, these conditions

are shown for Cauchy location and scale alternatives.

First one needs to find a sequence of constants, {a(N) } such that

Pf-a(N) !5 X19,...,iXm, Ynr, ,..., Ynn, <_ a(N)] I 1

as m A n --* oo. This is equivalent to the condition bounding the sample quantile

function. Since Xl,..., Xm are iid F and Y, ,... , Ynn are iid F(x - -yv/n) and

the two samples are independent, it follows that:

(4.2.9) PI-a(N) !S X) ,...,Xm, Ynl,..., YnF (_ a(N)
= [F(a(N)) - F(-a(N))im
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[F(a(N) - 1/0) - F(-aN) - .1 )]"

[tan-'a(N) - tan-1(-a(N))]M

I [tan-((N) - -y/Vli) - Itan-((N) -/)] n

=[tanl((N) - -/ Vin) - ta '(a(N) + -/')

. [ tan-1a(N)] M

since F(x) = 1/2 + (1/w) tan- 1 x. Abramowitz and Stegun (1964), page 81, give

the following series representation for tan-1:
2 + (-j)3+1

(4.2.10) tan - 1 Z + 7r (2j+ 1) 2 '' z > 1.

Thus

P[-a(N) Xl,...,Xm,Ynl,...,Yni _ a(N)l
2 1 - _ 1 n
a(N) + 0(a(N))] 7r(a(N) - -Yl/ 7r(a(N) + Y/V')

2 + o(a(N))] N,
2r8(N)

since

+ 
2 - + 0(a(N)).a (N) -"t/ Vf a(N) +"y/Vln a(N)

Using the fact that z/(z + 1) _ ln(1 + z) _< 11z for z > 0 one can show that if

a(N) Nl+ then

[ 1- 2 + o(a(N))] N 1,

ra(N)

as N - o. Let a(N) = N 2 . Next it must be shown that QH(v)(1 - 1/N) :_ N 2 .

Of course, QH(N)(I - 1/N) < N 2 if and only if H(N)(N 2) > 1 - 1/N. Since

F(z - -I/vrn) < F(z), it is sufficient to check that F(N 2 - -y/v-n) > 1 - 11N.

It can be shown by induction that each partial sum in the series in (4.2.10) is

nonnegative which means that

r 1
tan 1  --- , z > 1

2 Z



It

132

and thus
F(N >1 +2 (w
FCN ~ ~ -Ir 2- + ( N2 - I

2=1-2
?r( N2 --y/V -
1

for N sufficiently large. Next the conditions on the sup and inf of the likelihood

ratio on the range [-a(N), a(N)] must be checked. The likelihood ratio is

f(z) 1 + (x- -y/V )
f (x - -yIvl - + X2 '

which has extrema at

=" 2 (- v ! ' 2 I + 4).

It is quite clear that f(z*)If(z* - -y/v/) -. , 1 as m A n -. oo. The endpoints of

the range should be examined too, since calculus-based methods might miss the

endpoints misbehaving:

f (N 2 )  1 + (N2 _ _YlVn) 2

F(N2 - yV) i +N 4  1

as m A n -- oo. Therefore, all the conditions are met for the Cauchy location

alternative.

Showing that the sample quantile is bounded for local scale alternatives

proceeds in a perfectly analogous fashion. Likewise, showing that F(N 2/[1 +

-yl/Vi1) > 1 - 1/N is carried out in the same fashion. This leaves checking the

sup and inf of the likelihood ratio. The likelihood ratio for the scale alternative

is

f(z) 1 + (X/[1 + _Ivn) 2

f(z/[1 + -"IV--]) 1 + z2

This ratio has an extremum at z = 0 and f(0)/f(0) = 1. Again, the tails must

also be checked:

f(N 2) 1 + N 4/(1 + #IV-) 2

f(N 2 1[l + "y7/-/) I + N 4
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as m A n -+ oo. Therefore, all the conditions are met for the Cauchy scale

alternative.

It has been shown that the conditions for the weak convergence of the em-

pirical comparison distribution process are met for Cauchy location and scale

alternatives. The demonstrations for other distributions follow in a completely

analogous manner. In the next subsection, power curves and ARE's are found.

4.2.5. Power Curves and Asymptotic Relative Efficiencies. Power curves for

local location and scale alternatives for the normal and Cauchy distributions are

given in this subsection. Power curves are also calculated for two Fourier alterna-

tives. The subset chi-square procedure is seen to perform well, particularly as the

alternative stresses higher components. An investigation is made on the effect of

the choice of bandwidth on the subset chi-square test. A similar investigation is

conducted for V2. The asymptotic relative efficiencies of the first two components

to standard rank statistics are found for location and scale alternatives for four

underlying distributions: normal, Cauchy, logistic, and Laplace. The efficiency

of the components is seen to vary with the bandwidth. For the distributions

considered, a larger bandwidth tends to do better for location alternatives and

a smaller one better for scale alternatives.

For the subset chi-square test, a cutoff of 0.001 is used for including com-

ponents in the test. Thus, for h = 0.5, 0.4, 0.3, 0.2, and 0.1, a truncation point

of M = 4, 6, 8, 12, and 23 is used, respectively (cf. Table 6). Table 6 would

say that for h = 0.5 that M = 5 should be used but it was not. The eigenvalue

for the fifth component in this case is 0.002 so that its exclusion should not be

significant. All power curves are derived for A0 = 0.5 and 0 < -y 7.

Figures 26 and 27 present power curves for normal and Cauchy location

alternatives, respectively. For the normal case, the techniques arrange themselves

as follows from highest to lowest power: AD, CVM, o.5, subset chi-square:

h =0.5, 0.3, 0.2. There is a gap between the top and bottom three. This is not

unexpected considering previous remarks on the behavior of these statistics. The

components are down-weighted at such a rate that the first few dominate. The

normal location alternative affects mainly the first component.
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22Fig. 26. Power of the subset chi-square, (p.5 CVM, and AD tests against normal
location alternatives. The solid line is CVM; the + 'a are AD; the x's are V0.5; the

solid line with sparse blocks is the subset chi-square, h = 0.5; the solid line with
dense blocks is the subset ehi-square, h = 0.3; the blocks are the subset chi-square,
h = 0.2.
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Fig. 27. Power of the subset chi-square, Vo.5, CVM, and AD tests against Cauchy
location alternatives. The solid line is CVM; the + '8 are AD; the x's are V0.5; the
solid line with sparse blocks is the subset chi-square, h = 0.5; the solid line with
dense blocks is the subset chi-square, h = 0.3; the blocks are the subset chi-square,
h = 0.2.
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Table 8 presents the efficacies of the components for normal and Cauchy loca-

tion and scale alternatives. One can see that for the normal location alternative,

the first component has the largest efficacy.

For the Cauchy location alternative, the power functions are much closer.

In fact, ph does worse than the subset chi-squares. Referring to Table 8 again,

one sees that the Cauchy location alternative places the most weight on the

third component and about half as much on the first. This is unusual for a

location alternative, yet recall from Figure 1(c) that the comparison density for

this case is not monotone. For a bandwidth of h = 0.5, the third component is

downweighted severely in V0.5 (cf. Figure 23), hence its poor performance. It

will also been seen later in the subsection that the components making up CVM

are more efficient against this alternative than those making up P2

The situation changes even further for scale alternatives. Figures 28 and 29

give the power functions for normal and Cauchy scale alternatives, respectively.

Table 8 verifies that these alternatives principally affect the second component.

The first component has no influence at all and so the statistics CVM, AD,

and W2 drop off. In both these cases the subset chi-square (h = 0.5) is most

powerful. The o.5 statistic is next followed by the two subset chi-squares (h =

0.3,0.1). The V0.5 statistic shows relative improvement from the Cauchy location

alternative for two reasons. First, the second component receives more weight

than the third component which dominated the Cauchy location alternative.

Second, as shall be seen, the second component performs much better against

both these alternatives than the first does against Cauchy location alternatives.

Figure 30 presents the power curves for what shall be called Fourier alter-

native 1. Referring to equation (4.2.4), Fourier alternative 1 is defined by k = 5

and a = 2.5. (-.4,-.5,.6,1, 1)/30. These coefficients are chosen so that the

Wilcoxon, median, and Mood tests all have power equal to their size. That is,

these tests are no better than one which randomly rejects Ho 100a percent of

the time. From Table 9 it can be seen that this alternative affects mainly the

third, fourth, and fifth components. For all but the largest bandwidths, the

first component is involved as well. The significance of the weights used by the
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Table 8

Efficacies of the components of the kernel density process, normal and
Cauchy location and scale alternatives, Ao = 0.5 and -y = 1.

Bandwidth
Component 0.1 0.2 0.3 0.4 0.5

Normal Location

1 0.621 0.672 0.685 0.691 0.692
2 0.000 0.000 0.000 0.000 0.000
3 0.276 0.180 0.141 0.102 0.058
4 0.000 0.000 0.000 0.000 0.000
5 0.138 0.094 0.022 0.053 0.094
6 0.000 0.000 0.000 0.000 0.000
7 0.094 0.023 0.050 0.072 0.061
8 0.000 0.000 0.000 0.001 0.000

Normal Scale

1 0.000 0.000 0.000 0.000 0.000
2 0.967 0.932 0.899 0.871 0.848
3 0.000 0.000 0.000 0.000 0.000
4 0.015 0.093 0.143 0.199 0.266
5 0.000 0.000 0.000 0.000 0.000
6 0.016 0.063 0.173 0.240 0.337
7 0.000 0.000 0.000 0.000 0.000
8 0.018 0.109 0.151 0.198 0.142

Cauchy Location
1 0.149 0.220 0.249 0.273 0.300
2 0.000 0.000 0.000 0.000 0.000
3 0.475 0.447 0.433 0.418 0.399
4 0.000 0.000 0.000 0.000 0.000
5 0.040 0.035 0.007 0.021 0.010
6 0.000 0.000 0.000 0.000 0.000
7 0.017 0.003 0.006 0.011 0.002
8 0.000 0.000 0.000 0.000 0.000

Cauchy Scale

1 0.000 0.000 0.000 0.000 0.000
2 0.374 0.426 0.448 0.464 0.480
3 0.000 0.000 0.000 0.000 0.000
4 0.302 0.249 0.220 0.185 0.139
5 0.000 0.000 0.000 0.000 0.000
6 0.108 0.075 0.017 0.014 0.000
7 0.000 0.000 0.000 0.000 0.000
8 0.064 0.013 0.011 0.000 0.002
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1

Fig. 28. Power of the subset chi-square, po5 CVM, and AD tests against normal

.22

scale alternatives. The solid line is CVM; the + ' are AD; the x's are Po..5 ; the
solid line with sparse blocks is the subset chi-square, h = 0.5; the solid line with
dense blocks is the subset ehi-square, h = 0.3; the blocks are the subset ehi-square,
h = 0.2.
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Fi.29. Power of the subset chi-square, pOo.,S, CVM, and AD tests against Cauchy

scale alternatives. The solid line is CVM; the + 'a are AD; the x '8 are Vo.5; the
solid line with sparse blocks is the subset chi-square, h = 0.5; the solid line with
dense blocks is the subset chi-square, h = 0.3; the blocks are the subset chi-square,
h = 0.2.
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Fig. 30. Power of the subset chi-square, WO.3 CVM, and AD tests against Fourier
alternative 1. The solid line is GYM; the +8 are AD; the x'8 are t

line with sparse blocks is the subset chi-square, h = 0.5; the solid line with dense
blockcs is the subset chi-square, h = 0.3, the blocks are the subset chi-square,
h =0.2.

Table 9

Efficacies of the components of the kernel density process, Fourier al-
ternatives, T = 0.5 and -Y = 1.

Bandwidth
Component 0.1 0.2 0.3 0.4 0.5

Fourier Alternative 1
1 0.272 0.245 0.216 0.138 0.062
2 0.118 0.090 0.087 0.068 0.016
3 0.320 0.360 0.395 0.412 0.366
4 0.467 0.484 0.489 0.510 0.526
5 0.425 0.441 0.452 0.514 0.564
6 0.000 0.000 0.000 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000

Fourier Alternative 2

1 0.047 0.039 0.053 0.099 0.073
2 0.008 0.019 0.026 0.087 0.063
3 0.165 0.160 0.180 0.235 0.228
4 0.317 0.308 0.278 0.343 0.458
5 0.225 0.263 0.319 0.165 0.004
6 0.746 0.731 0.737 0.746 0.658
7 0.681 0.628 0.667 0.682 0.715
8 0.000 0.000 0.000 0.000 0.000
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Fig. 31. Power of the subset chi-square, (p j CVM, and AD tests against Fourier
alternative 2. The solid line is CVM; the +'s are AD; the x8s are P2 3 tesoi
line with sparse blocks is the subset chi-square, h = 0.5; the solid line with dense
blockcs is the subset chi-square, h = 0.3; the blocks are the subset chi-square,
h = 0.2.

statistics p2 CVM, and AD is beginning to become clear. The subset chi-square

h,

tests for each bandwidth do substantially better than the traditional statistics

CVM and AD. The po statistic does improve on these two considerably, but

its first component does have a fair sized efficacy for this alternative. Note that

the power of the subset chi-square test no longer decreases with the bandwidth.

The ordering is h =0.3, 0.1, 0.5.

Figure 31 presents what shall be called Fourier alternative 2. Again, in

reference to equation (4.2.4), this alternative is defined by k = 7 and a/ =

(.1978,.3208,-.9395,-1.308,-.1373,1,1)/15. These coefficients are chosen so

that the Wilcoxon, median, normal scores (location), Mood, and normal scores

(scale) tests all have power equal to their size. From Table 9, it can be seen that

this alternative affects mainly the sixth and seventh components. This case is

even more extreme than the last. The subset chi-square with h = 0.3 and 0.1

do very well. The CVM, AD, and p2statistics perform uniformly poorly. The

subset chi-square with h = 0.5 is between these two sets. The ordering of the

power of subset chi-square test by bandwidth is the same as for Figure 30.
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At this point a word about the effect of the bandwidth on the power of

the subset chi-square test is in order. For scale and location alternatives, the

order is according to decreasing bandwidth. As the alternatives move to higher

components, this order changes. Including more components that don't have

much (any) efficacy reduces the power of the test. For location and scale al-

ternatives, only the first two or three components are important. Reducing the

bandwidth adds components to the decision process which carry little or no sig-

nal (efficacy). This translates to a reduction in power. As the alternative moves

to higher components, the larger bandwidth excludes components that carry the

signal. That is, the larger bandwidths simply don't consider alternatives in these

directions. The larger bandwidths then start to be less powerful than the smaller

bandwidths.

These observations strike at the heart of the choice of truncation point. If

one chooses M too large (h too small) then power decreases because one is adding

noise to the process. If one chooses M too small (h too large) the test also loses

power because components with significant efficacy are not considered. In the

worst case the test would be inconsistent if the alternative did not affect the first

M components at all. It is believed that by choosing the bandwidth carefully

in the initial stage these extremes can be avoided. This procedure is certainly

preferable to the alternative of using a standard statistic. In that case, one is

assured of poor performance for alternatives stressing higher components.

The effect of the bandwidth on p2 is less clear-cut. Figures 32 and 33

present power curves for V2 with h =0.5, 0.3, and 0.1 for normal location and

scale alternatives, respectively. The ordering here is more complex. For the

location alternative, the order from most to least powerful is h =0.5, 0.3, and

0.1; for the scale alternative, it is h =0.3, 0.1, 0.5. The location alternative

is easier to explain: h = 0.5 is the most efficient first component (as will be

seen) and it gives the least weight to other components. For scale alternatives,

although h = 0.1 is the most efficient bandwidth, h = 0.3 is not much worse

(again, as shall be seen). However, h = 0.1 gives much greater weight to many

more components (recall Figure 14). This added variability causes p2. to be
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Fig. 32. Power of 2, t-test, and first component (h = 0.5) against normal22
location shifts. The x's are po.5; the solid line with dense blocks is .the + '
are.1; the solid line is the t-test; the blocks are the first component (h = 0.5).
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Fig. 33. Power of p2p, F-test, and second component (h = 0.1) against normal
scale shifts. The x's are WO.5; the solid line with dense blocks is 23; the +'a are

PO .1; the solid line is the t-test; the blocks are the second component (h = 0.1).
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less powerful than p2S"

Figures 32 and 33 each include two more power curves. Figure 32 also

gives the power curve for the t-test and the first component (h = 0.5). Figure

33 includes the power curves for the F-test and the second component (h =

0.1). These curves illustrate several statements made in Section 2. The first is

that a test against a more specific alternative hypothesis will tend to be more

powerful. The tests of the first and second components do better than any of the

portmanteau tests for testing location and scale shifts, respectively. Of course,

if one used the first component to test a scale alternative one would find it did

miserably. This fact is clearly demonstrated in Table 8: the first component

has efficacy equal to 0 for both the scale alternatives. The second point is that

asymptotically, nonparametric tests can do just as well as parametric tests. The

first and second components are not the optimal scores for shifts in the normal

distribution (the normal scores are). Yet they do very well, indeed.

Tables 10 and 11 give the asymptotic relative efficiencies of the first two com-

ponents to standard rank statistics. Table 10 gives ARE's of the first component

to the Wilcoxon, median, normal scores (location), and cosine tests. These are

all tests for location. Table 11 gives the ARE's of the second component to

Mood, normal scores (scale), and cosine tests. These are all tests for scale. The

component is more efficient than the standard rank statistic if the entry exceeds

1. The score functions for all the rank tests but the cosine are given in Table

2. The score functions for the cosine rank tests are below their column title in

Tables 10 and 11. The purpose of including the cosine rank statistics will become

clear shortly.

From Table 10 it appears that the standard rank statistics are more efficient

than the components for the Cauchy and Laplace distributions. For the normal

and logistic distributions, the best component is on a par with the best standard

test.

It is apparent from Table 10 that the bandwidth does influence materially

the properties of the components. Recalling Figures 15 through 17, the score

functions for the first component do materially change with the bandwidth. It is
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Table 10
Asymptotic relative efficiencies of the components to stan-
dard rank statistics for location alternatives.

Standard Rank Statistic
Normal Cosine

Bandwidth Wilcoxon Median Scores cos 7ru

Normal
0.5 1.016 1.518 0.970 1.074
0.4 1.011 1.511 0.966 1.069
0.3 0.996 1.489 0.952 1.054
0.2 0.958 1.431 0.915 1.013
0.1 0.817 1.221 0.780 0.864

Cauchy
0.5 0.593 0.445 0.827 0.499
0.4 0.491 0.368 0.685 0.413
0.3 0.408 0.306 0.569 0.343
0.2 0.318 0.239 0.444 0.268
0.1 0.146 0.109 0.203 0.123

Logistic
0.5 0.939 1.250 0.977 0.950
0.4 0.905 1.204 0.942 0.916
0.3 0.857 1.141 0.892 0.867
0.2 0.781 1.039 0.812 0.790
0.1 0.591 0.786 0.615 0.598

Laplace
0.5 0.722 0.543 0.846 0.668
0.4 0.692 0.521 0.811 0.640
0.3 0.653 0.491 0.765 0.604
0.2 0.574 0.432 0.673 0.531
0.1 0.379 0.285 0.444 0.350



I4

144

Table 11
Asymptotic relative efficiencies of the components to
standard rank statistics for scale alternatives.

Standard Rank Statistic
Normal Cosine

Bandwidth Mood Scores cos 22ru

Normal
0.5 1.009 0.783 1.345
0.4 1.065 0.826 1.418
0.3 1.134 0.880 1.511
0.2 1.219 0.946 1.625
0.1 1.312 1.019 1.749

Cauchy
0.5 1.007 1.611 0.923
0.4 0.940 1.504 0.862
0.3 0.877 1.402 0.804
0.2 0.794 1.270 0.728
0.1 0.613 0.980 0.562

Logistic
0.5 1.006 0.902 1.255
0.4 1.042 0.935 1.300
0.3 1.084 0.973 1.353
0.2 1.125 1.010 1.405
0.1 1.132 1.015 1.413

Laplace
0.5 1.002 0.900 1.216
0.4 1.029 0.924 1.249
0.3 1.071 0.961 1.300
0.2 1.115 1.001 1.354
0.1 1.129 1.013 1.370
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interesting to note that for these four cases a bandwidth of 0.5 is more efficient

than 0.1. There are, of course, cases where the ordering should change. Whatever

the character of the underlying distribution must be for the order to change, it

is not embodied in the examples here. These examples, however, are somewhat

restricted. Although they do cover a range of tail behavior, they are all unimodal

densities which are symmetric about 0.

The second component is generally more competitive against standard rank

statistics than the first as evidenced in Table 11. There is also considerably

less variation across bandwidths. This, too, is not surprising if one reflects back

to Figures 15 through 17. The character of the score functions of the second

component seems to change less than that of the first. A bandwidth of 0.1 is

optimal in each case except the Cauchy in which case a bandwidth of 0.5 is

preferred.

The change in the best bandwidth across location and scale alternatives

for the same distribution is disturbing. This means that one cannot choose

the bandwidth to best protect against both location and scale shifts. One can,

however, select the bandwidth so that both components do nearly as well as

possible for both.

The cosine based rank statistics have been included so that one can com-

pare the method of Section 3 to that of the components of V2 advanced by

Eubank, LaRiccia, and Rosenstein (1987). Their method is based on using a

complete orthonormal basis as a set of score functions; for instance, the cosine

basis {cosj7ru). They do not develop an estimator of the comparison density,

nor do they suggest a technique for testing the components. They do discuss

the components as testing successively higher frequency departures of the com-

parison density from uniformity. They also point out that the components are

asymptotically iid N(0,1).

Filling in the obvious details not in their paper: if one didn't have a trunca-

tion point, M, in mind, one could choose it from the data. The estimate of the

comparison density is an ordinary orthogonal series estimate like those discussed

in Section 2.
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An orthogonal series was not adopted for reasons given in Section 2. One

would have to be careful in the choice of basis. Orthogonal series methods can

impose constraints on the estimated density. The advantages of components

derived from the eigenfunctions were discussed in Section 3.

Admittedly, the methodology based on the boundary kernel is more complex,

particularly computationally, but the burden brings with it the convenience of use

and unification. It has been said already that the goal is to make the statisticiar's

job difficult so that the researcher's job is easier.

If one desired to compare the two methods from a testing point of view, it

would first be necessary to specify the test to be applied to the orthogonal series

components. Any method of Subsection 3.3 is applicable. However, there isn't

any need to go to all this trouble. The result one would be certain to find is that

which is more powerful depends on the alternative being considered. Since both

tests are based on the components, the components with the greatest efficacies

(and hence ARE's) should yield the more powerful test. Examining the ARE's of

the cosine score functions in Tables 10 and 11, one sees that for some alternatives

such as the Cauchy location and scale, the cosine scores do relatively better. For

other alternatives, such as normal scale and location (h 7 0.1), and logistic and

Laplace scale shifts the cosine basis does relatively worse. Certainly, an overall

test would reflect these observations.

In summary, power and asymptotic relative efficiencies were examined in

this subsection. Power curves were found for location and scale alternatives for

the normal and Cauchy distributions. Power curves were also found for two

Fourier alternatives. These curves were derived for the subset chi-square test

applied to the components, 4, CVM, and AD. It was observed that as the

alternative affected higher components, these last three statistics performed ever

more poorly. It was also observed that the most powerful bandwidth is the largest

bandwidth which still has a truncation point which picks up the components most

important to the alternative under consideration.

The ARE's of the first two components to standard rank tests were found

for location and scale alternatives of four underlying distributions: the normal,
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Cauchy, logistic and Laplace. The components generally performed better for

scale alternatives than location alternatives. The bandwidth was seen to affect

the performance of the components. It was also seen one cannot always choose

the bandwidth to protect best against both location and scale alternatives for a

given underlying distribution.

4.3. Size Studies

4.3.1. Introduction. The finite-sample size of the subset chi-square test is

investigated in this subsection. Simulations are run to determine the size of the

test using both the small sample mean and the asymptotic mean when centering

the components. The sizes using the small sample mean are seen to be much

better than those found using the asymptotic mean. The sizes for the small

sample mean also tend to be below their nominal value. This means that the

test is conservative, which is better than being liberal. The estimated sizes using

the asymptotic mean tend to be greater than the stated size.

4.3.2. Size Study. Simulations are used to estimate the small sample size

of the subset chi-square test applied to the components. They are conducted

as follows. For each set of sample sizes, m and n, and for each bandwidth and

truncation point, R iterations are made. Within each iteration, two independent

random samples of sizes m and n are drawn from the U(0,1) distribution. The

boundary kernel estimate of the comparison density is found. From it the compo-

nents are calculated. Either the small sample or asymptotic mean is subtracted,

as appropriate. The subset chi-square test is then applied to the components.

For the jth iteration, Bj is set to 1 if the test rejects and 0 if not. The size of

the test is estimated as

1 R

j=1

There is no reuse of the data here as in the simulations to find power curves.

These simulations are to find point estimates, not estimates of fun zions. Reuse of

the data serves no purpose in this context. For simulations using the asymptotic
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mean, R = 1000; for simulations using the small sample mean, R = 5000. A

greater number of simulations are run using the small sample mean because this

is the case of greater interest. The simulations using the asymptotic mean are

run to illustrate the improvements that result from using the small sample mean.

All subset chi-square tests are conducted at a stated size of 0.05. The simulations

are run for h = 0.5 (M = 4), h = 0.3 (M = 8), and h = 0.2 (M = 12). They are

run for various combinations of m and n ranging from 5 to 100.

Table 12 gives the results using the small sample means. The sizes look

remarkably good. The half width of a joint confidence interval to test Ho: aj =

0.05, for i = 1,. ,30 is

/0.05 •0.95
z0 .97 51/30 0 -0. 0.010.

The joint test is rejected. Ten of the thirty estimated sizes fall outside the

confidence limits. These are n = m = 5 for h = 0.3,0.2; n = 10, m = 5 for

h = 0.3,0.2; n - 100, m = 5 for h = 0.5,0.3,0.2; n = m = 10 for h = 0.3,0.2;

and n = 20, m = 10 for h = 0.2. These are the smallest sample sizes and the

smallest bandwidths. Only one size corresponding to a bandwidth of 0.5 falls

outside the confidence limits.

The sizes which are significantly different from 0.05 fall into one of two

categories. The first category is small but nearly equal sample sizes and very

small bandwidth. With 5 or 10 observations, nobody would use a bandwidth as

small as 0.3 even. In this category are t = m = 5; n = 10, m = 5; n = m = 10i

and n = 20, m = 10. Hence, the fact that these sizes are significantly different

from the stated size is not that much of an issue. The second category is very

unequal sample sizes. This is the case of n = 100 and m = 5. If this sort of

case were to arise, one would need to be aware that the size of the test may

be smaller than stated. However, such extreme differences in sample size don't

usually arise.

Of the sizes found to be different from 0.05, 8 are below 0.05 and only 2

above. Of all the estimated sizes, 6 are above 0.05 and 24 below. The test seems

to err on the side of falling under 0.05. This is good as it means the test is
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Table 12
Estimated small sample sizes of the subset chi-square
test applied to the components centered by their small
sample mean. The stated size of the test is 0.05.

Number of Components
m n 4 8 12
5 5 0.060 0.031 0.117
5 10 0.046 0.035 0.023
5 100 0.036 0.035 0.034
10 10 0.049 0.039 0.024
10 20 0.047 0.042 0.038
10 100 0.042 0.046 0.040
20 20 0.057 0.043 0.040
20 100 0.052 0.049 0.050
50 50 0.048 0.045 0.049
50 100 0.049 0.052 0.047

bandwidth 0.5 0.3 0.2

conservative. When a researcher runs a test at size 0.05, he has decided that he

will accept false rejections 5% of the time. It is better that when the test rejects,

the probability of a false rejection is less than this figure than above. Taken as

a whole, Table 12 presents very encouraging results.

Table 13 presents the estimated sizes of the subset chi-square test applied to

the components which are centered by their asymptotic mean. The situation here

is much less satisfactory than that above. The half width of a joint confidence

interval for testing He: ci = 0.05 for i = 1, ... 33 is

0.05 0.95
z0"9751/33V To- 0.022.

Again, the global test is rejected. Seven of the sizes fall outside their confidence

interval. These are: m = n = 10 for h = 0.3,0.2; m = 20, n = 10 for h =

0.5, 0.3,0.2; and m = 100, n = 10 for h = 0.3,0.2. Table 13 has fewer significantly

different sizes than Table 12 for two reasons. The first is that Table 13 has no

sample sizes below 10. Seven of the ten sigpificant sizes in Table 12 have a sample

size of 5. The second is that Table 13 is constructed with only 1000 replications

and so the estimates are less accurate.
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Table 13
Estimated small sample sizes of the subset chi-square
test applied to the components centered by their asymp-
totic mean. The stated size of the test is 0.05.

Number of Components
I n 4 8 12

10 10 0.063 0.076 0.081
10 20 0.051 0.057 0.048
10 100 0.046 0.043 0.039
20 10 0.073 0.084 0.073
20 20 0.059 0.058 0.052
30 30 0.059 0.050 0.057
50 50 0.048 0.051 0.052
50 100 0.052 0.059 0.053
100 10 0.071 0.091 0.085
100 50 0.046 0.052 0.048
100 100 0.049 0.053 0.055

bandwidth 0.5 0.3 0.2

There are two disturbing features about Table 13. First, it is quite clear

that the test using the asymptotic mean is not invariant. The discussion in

Subsection 3.3.3 predicted that for rn > n, one would reject too often. This

is precisely the case observed here. To reach a different conclusion based on

which sample is termed the first is extremely undesirable. The second disturbing

feature is related to the first. All 7 of the significant sizes are above 0.05; taking

the table as a whole, 24 of the 33 (73%) are above 0.05. If the procedure must

err, it is preferable for the size to be below what is stated, not above.

There are two conclusions to be drawn from this subsection. The first is that

the subset chi-square using the components centered by their small sample means

performs very well in terms of keeping its stated size even for small samples.

This is true as long as a reasonable bandwidth is used and the samples sizes are

not very dissimilar. When it does err, it tends to err on the side of having a

smaller than stated size. This is also good. The second is that subtracting the

small sample mean instead of the asymptotic mean is a good idea. The test is

invariant and the estimated sizes are much closer to the stated value.
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In summary of the section, power and size tests have been run. The subset

chi-square test applied to the components of the kernel density process was seen

to be a credible procedure. It is very competitive with the Cramfr-von Mises

and Anderson-Darling statistics. These latter two statistics were seen to have

very low power against alternatives stressing higher order components. This

deterioration starts with the second component. By the time the fourth and

higher components make up the alternative, these statistics do very poorly. The

subset chi-square test did not exhibit this trait. Instead, the choice of truncation

point plays a crucial role in determining its power. If the truncation point is

chosen too large, then the test loses power because the signal is lost in the noise.

If the truncation point is chosen too small, then the test loses power because the

signal is excluded from the test. A careful choice of bandwidth should reduce

the likelihood of experiencing these extremes.
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5. EXAMPLES AND APPLICATIONS

5.1. Introduction

The two sample procedure derived in Section 3 is applied to two data sets

in this section. The first data set is the observed weekly rate of return to two

savings and loan institutions over a 103 week period while the second data set

is simulated. The two samples are each normally distributed but with differ-

ent means and variances. This is an example of the well-known Behrens-Fisher

problem [see Kendall and Stuart (1979), pages 152 ff.]. The first data set is an

example of a case where none of the standard statistics identify a difference in

the populations. The second is an example in which all the standard statistics

identify a difference in the populations. In the first instance, it will be seen how

the subset chi-square test applied to the components can find differences where

the others fail. In the second instance, it will be seen how the new methodology

can clarify a distinction also found to exist by other methods.

5.2. The Savings and Loan Data

The savings and loan data consist of the weekly rate of return for two New

York Stock Exchange listed savings and loans over a 103 week period. The

observation period is July 3, 1981 to June 30, 1983. The first sample consists

of returns for H.F. Ahmanson and Company; the second consists of returns for

Financial Corporation of Santa Barbara. The data are drawn from Standard and

Poor's Stock Price Data. The return for week t is defined as

R(t) = In P(t)

P(t- 1)'

where P(t) is the price in week t. Dividends are added to the price in the week

they are paid. This definition is often used in the finance literature; see, for

example, Fama (1976) pages 12-20.

The question to be investigated is whether the returns are distributed the

same for the two institutions. One might suppose that the distribution of returns
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differs by region, solvency, or in reaction to some outside event. Often one is

interested in whether returns differ for the same company or industry in two

different time periods. These sorts of questions are not infrequently asked in

finance. See, for example, Dann and James (1982) or Brown and Warner (1980).

The returns for H.F. Ahmanson and Company are given in Table 14. The

returns for Financial Corporation of Santa Barbara are given in Table 15. The

data sets are pictured in Figures 34 and 35. Graphed as time series, they have

much the same appearance. These data are assumed to be realizations of inde-

pendent sets of iid random variables. It is important to check the validity of these

assumptions. Since these data sets are observed economic time series, it would be

reasonable to expect them to be autocorrelated although this effect may well be

reduced by taking the differences of the logarithms of the data. Since each sav-

ings and loan is subject to similar national economic and regulatory conditions,

it is also reasonable to expect the two series not to be independent.

Timeslab [Newton (1988)) is used to determine the correlation structure of

each series. In each case, the CAT [Parzen (1977)] criterion chose an autoregres-

sive order of zero. While not a guarantee of independence, the lack of correlation

is very good news. The sample cross-correlation coefficient between the two series

is calculated as r = 0.429. This value is significant at the 1% level.

A positive correlation between the two series would likely reduce the chance

of rejecting Ho if it were true since the two series would appear more similar. The

extreme case would be if the correlation were 1. Breaking ties by midranking,

the ranks would be

2i- (1/2)

N
which are extremely uniform. Lower levels of correlation should still lead to more

uniform ranks than would otherwise be observed. Hence, tests based on ranks

are expected to be conservative in this case.

This analysis is borne out by a simulation study. Two samples of size 100 are

drawn from the standard normal distribution. Three levels of cross-correlation

are used: 0.447, 0.707, and 0.894. As the savings and loan data appears nearly

normally distributed, this choice of distribution and sample sizes should yield
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Table 14

Weekly returns for H.F. Ahmanson and Company from July 3, 1981 to June 30,
1983. Table values are multiplied by 100.

-1.400 0.000 -6.000 1.500 -0.800 -0.800 3.000
-0.700 -0.800 7.300 -2.900 -6.700 -0.800 0.800
0.000 -4.000 -5.000 0.800 5.700 3.900 -1.500
0.000 -7.200 -1.700 1.700 0.800 -4.200 -14.800

-6.200 6.200 -8.300 -11.500 -2.500 16.100 -11.200
1.700 -1.700 0.000 2.400 0.000 2.300 0.000

-5.800 7.000 0.000 -10.700 -6.500 -8.300 2.900
-4.300 1.500 4.300 -2.800 1.400 5.500 -2.700
2.700 3.900 32.500 -3.800 9.200 -2.700 -0.900
3.600 7.600 11.500 1.400 9.500 3.200 26.900
2.800 8.100 2.600 0.000 0.000 0.400 0.400

-7.800 -3.700 16.300 -26.700 9.400 -1.900 6.500
-1.800 16.800 15.100 -11.300 1.500 -6.500 0.800
8.200 7.900 2.000 1.000 0.300 1.900 -4.500

-10.000 1.800 -1.100 -2.200 -7.300

Table 15

Weekly returns for Financial Corporation of Santa Barbara from July 3, 1981 to
June 30, 1983. Table values are multiplied by 100.

2.740 -2.740 5.407 6.372 -2.500 -6.538 -4.139
-11.955 0.000 6.156 -6.156 -6.560 -5.219 5.219
-5.219 -5.506 -5.827 -4.082 9.909 5.506 0.000
-1.802 -7.551 -4.001 2.020 -2.020 -6.318 -27.329
2..817 -8.701 -3.077 -6.454 -10.536 -3.774 -3.922
0.000 0.000 -8.338 19.671 0.000 -3.637 -25.131
4.652 12.783 7.686 -3.774 -16.705 -4.652 4.652

-4.652 9.097 0.000 4.256 8.004 3.774 -3.774
0.000 3.774 31.508 5.264 -10.821 -8.961 6.063

-2.985 5.884 20.585 6.744 -2.198 2.198 19.671
1.770 -3.572 -9.531 -4.082 6.063 -1.980 -4.082

-15.763 23.767 -10.110 0.000 2.105 0.000 2.062
-2.062 2.062 15.123 -5.407 3.637 17.934 8.577

1.361 7.796 -11.935 0.000 5.481 6.454 -5.129
-4.027 -4.196 -4.380 2.941 4.256
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Fig. 34. Observed weekly returns for H.F. Ahmanson and Company from July 3,
1981 to June 30, 1983. This is the first sample in the analysis.
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Fig. 35. Observed weekly returns for Financial Corporation of Santa Barbara
from July 3, 1981 to June 30, 1983. This is the second sample in the analysis.
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Table 16

Eatimated small sample sizes of the sub-
set chi-square test applied to compo-
nents which are derived from correlated
samples. The stated size of the test is
0.05.

Number of Components
Correlation 6 9

0.447 0.031 0.034
0.707 0.020 0.020
0.894 0.005 0.009

Bandwidth 0.3 0.2

insight into the behavior of the subset chi-square tests in this situation. The

components are found and the subset chi-square test for the truncation points

M = 6, 9 corresponding to bandwidths of h = 0.3, 0.2 is applied to them. The

nominal size of the test is 5%. The indicator Bi is set to 1 if the test rejects and

0 if not. These indicators are then averaged over 1000 replications to estimate

the size of the test. Table 16 gives the results. In each case, the estimated size is

less than 5%. The higher the correlation, the lower is the estimated size. Since

the test is conservative in this case and the reduction in its size for the level of

correlation observed in the data is not extreme, the analysis will continue.

Table 17 presents the summary statistics for the two samples and the pooled

sample. It is quite difficult to distinguish between the two based on these. Figures

36 through 38 present the identification quantile plots for the first, second, and

pooled samples, respectively. These graphs are constructed following Parzen

(1979) and described briefly here. A smoothed version of the sample quantile

function for tne first sample is given by linearly interpolating the points
Q(u) = Xo") for u = M , j = m,

where X(,) is the jth order statistic. The identification quantile function, QI(u),

is defined as

QI(u) = (Q(u) - MQ)/DQ,
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Table 17

Sample statistics for the savinga and loan data.

First Second Pooled
Statistic Sample Sample Sample

Median 0.0019 -0.0115 -0.0004
Twice Interquartile Range 0.1167 0.1971 0.1612
Maximum 0.3254 0.3151 0.3254
Minimum -0.2667 -0.2733 -0.2733
Mean 0.0057 0.0000 0.0029
Variance 0.0060 0.0079 0.0069
Standard Deviation 0.0773 0.0891 0.0832
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Fig. 36. The identification quantile function of weekly returns for fFinahmiaCor-
pado CopantaBaaa
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Fig. 38. The identification quantile function of a pooling of weekly returns for
H.F. Ahrnanson and Company and Financial Corporation of Santa Barbara.

where MQ is the sample median and DQ = 21Q(.75) - (.25)1 is the sample value

of twice the interquartile range. The diagonal reference line in these figures is the

identification quantile function of the uniform distribution. Normally distributed

data will enter and exit near the corners of the box and have an inflection point

at u = 0.5. By subtracting MQ and dividing by DQ, plots of the identification

quantile function attempt to identify classes of distributions apart from location

and scale.

Examining these figures, the data appear to have slightly longer than normal

tails since they exit the boxes short of the corners. The three graphs appear quite

similar. The identification quantile function of the first sample seems to follow

the uniform reference line for a greater distance than the second sample. The

fact that the identification quantile function of the pooled sample falls below the

uniform reference line on about the range u = 0.25 to u = 0.5 where the others

don't may indicate differences. However, there are difficulties in comparing plots

such as these. It is hard to tell if the differences are really there or are due to

random variation.

Figure 39 presents an overlay of the identification quantile functions for each

sample. Here the differences for the left tail (u < 0.5) are brought into sharper
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Fig. 39. An overlay of the identification quantile functions of weekly returns for
H.F. Ahmanson and Company (solid with blocks) and Financial Corporation of
Santa Barbara (solid line).

focus. Still, the question remains whether this difference is really there or is due

to random variation. However, the purpose of these plots is to draw attention to

such possibilities.

Figure 40 presents another type of plot often used to compare two popula-

tions. This is a QQ plot. Each box in the figure represents a pair (X(k), Y(k)).

The graph should be approximately linear with slope near 1 if the two popula-

tions are the same. The function appears quite linear with slope approximately

equal to 1 except in the tail. Again, the question is how far away the pictured

function must be from the ideal for the two populations to be declared different.

Some work has been done in this area; see, for example, Aly and Bleuer (1986).

Their work will not be pursued here.

Figure 41 gives the sample comparison distribution function, DN (u), for the

data and a diagonal line for reference. Immediately apparent is the jump at

u = 0.5. Although less apparent from the other graphs, it can be seen in Tables

14 and 15 that the data has repeats at a value of 0. There are some weeks that

the stock price doesn't change. Repeat values violate the assumption that the

distribution functions F and G are continuous. The analysis seems quite robust
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Fig. 40. A QQ plot of the weekly returns of H.F. Ahmanson and Company
(horizontal axis) and Financial Corporation of Santa Barbara (vertical axis).
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Fig. 41. The sample comparison distribution function for the savings and loan
return data.
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to this departure. The complete analysis has been repeated two different ways

without a major change in results. The first was to add normal white noise with

a very small variance to each series. This randomly breaks the ties. The results

did not change. The second way was to conduct the analysis conditioned on the

return being non-zero. Again, the analysis did not materially change. In the

analysis conducted in this subsection, ties are resolved by midranking.

Returning to Figure 41, one sees some departure from uniformity but not

enough for a clear rejection of H. More informative is Figure 42, which presents

NA(N)I(1 - A(N)[DN(u) - uj. Under Ho, this function converges weakly to

a Brownian bridge process. The maximum absolute deviation of the function

pictured in Figure 42 is not quite large enough for a Kolmogorov-Smirnov test

to reject Ho. However, from the overall appearance of - :, graph, one might

question whether there are enough zero crossings for this to be a sample path

of a Brownian bridge process. The sample path seems somewhat deterministic.

It is below 0 for u < 0.5 and mostly above 0 for u > 0.5. Table 18 presents

the observed and critical values of the Cramr-von Mises, Anderson-Darling and

Kolmogorov-Smirnov statistics. None rejects H. at the 5% level.

Figure 43 presents diagnostics for the choice of bandwidth. The function

pictured is given by linearly interpolating the points

(52.) /NA (N) [hRi/N)  i
(5.2.1) V [h((1/N) or fori= 1,...,m,

where bh(w) = fO dh(u)du. If bh(w) were the true comparison distribution

function, the graphs should appear as a Brownian bridge process. Recall from

Subsection 3.3.7 that the goal is to undersmooth the data slightly. Undersmooth-

ing dh(w) causes the deviations from 0 of the process defined in (5.2.1) to be too

small. Referring to Figure 43, a bandwidth of 0.1 [Figure 43(a)] is clearly un-

dersmoothing. Figure 43(b) (h = 0.2) is also undersmoothed, but not as much:

its deviations from 0 are larger. Figure 43(c) seems about the right amount of

smoothing and Figure 43(d) appears to oversmooth. A bandwidth of h = 0.2 ks

chosen.

Figure 44 gives the corresponding estimates of the comparison density func-
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Fig. 42. The sample null empirical comparison distribution process for the savings
and loan return data. The function pictured is v/N[DN (u) - u].

Table 18

Two sample portmanteau statistics for the savings and loan data.

Observed 5% Critical 1% Critical
Statistic Value Value Value

Cramr-von Mises 0.288 0.460 0.740
Anderson-Darling 1.420 2.490 3.850
Kolmogorov-Smirnov 1.184 1.360 1.640

O.2 9.304 8.931 12.400

A, (a) . (i

- ' ,1 '.2 '3 .4 '5'.6 '.7 .8 ','l " 'J ' .3'4 '. '. '. '.7 '., L

(€) (d)

,.,
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Fig. 43. Sample paths of v/Nt[bh(u) - ul for the savings and loan return data.
Figure (a) pictures the process for h = 0.1; Figure (b) for h = 0.2; Figure (c) for
h = 0.3; and Figure (d) for h = 0.4.
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Fig. 44. Boundary kernel estimates of the two sample comparison density func-
tion for the savings and loan return data. Figure (a) pictures the estimate for
h - 0.1; Figure (b) for h = 0.2; Figure (c) for h = 0.3; and Figure (d) for
h = 0.4.

tion. These support the remarks made concerning the choice of bandwidth.

Having chosen a bandwidth, the statistic po.2 can be calculated. Its observed

and critical values are presented in Table 18. The statistic rejects at the 5%

level, but not the 1% level. This is the first solid evidence that the two samples

come from distinct populations.

A truncation point of M = 9 is selected. This will include all eigenvalues

above 0.01. Figure 45 gives the critical function, C(k), for a test with size 5%. Its

values are the blocks in the figure. The critical value for the next best subset for

each size is given as the x's. Since C(k) exceeds zero for some k, Ho is rejected.

Table 19 gives the values of the squared components. The best subset includes

the components 4, 8, 6, and 2, in that order. The value of X2(.95' /9 ) is 7.648.

The independent tests method would include only the fourth component in the

model. This observation supports earlier contentions about its behavior.

Figure 46 presents the boundary kernel estimate, dO.2 (w), and the orthogonal

series estimate, d4 ,0.2 , of the comparison density function. The blocks are the

boundary kernel estimate and the solid line is the orthogonal series estimate.
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Fig. 45. The criterion function, C(k), for the savings and loan data. Also pictured
are the criterion values for the next best subset.

Table 19

The first nine squared components of the
kernel density process (h = 0.2) for the

savings and loan data.

Component Squared
Number Value

1 0.322
2 2.538
3 0.923
4 8.269
5 0.719
6 3.198
7 0.016
8 3.669
9 1.344
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Fig. 46. The boundary kernel estimate (h = 0.2) and the orthogonal series es-
timate (components 4, 8, 6, and 2) of the comparison density function for the
savings and loan return data. The blocks are the boundary kernel estimate and
the solid line is the orthogonal series estimate.

The two have very much the same character. To interpret Figure 46 one starts

by observing that fQH(u) > gQH(u) for u values between about u = 0.3 and

u = 0.7. The sample pooled quantile, QH(u), appears largely symmetric about 0

(recall Figure 38). This implies that f > g for values closer to 0 and that f < g

in the tails away from 0. This is not merely an artifact of the repeated values at

0. The first sample has 9 repeats at 0; the second sample 10.

From Figure 45 there appear to be two other models which should be exam-

ined. One has three components: 4, 8, and 6. The other has five components:

4, 8, 6, 2, and 9. Figure 47 presents the other two orthcgonal series estimates.

Figure 47(a) pictures the model with three components and Figure 47(b) pictures

the model with five components. The former pictures the comparison density as

rising back above 1 near both endpoints. The latter agrees substantially with

the estimates pictured in Figure 46.

The Cramdr-von Mises and Anderson-Darling statistics failed to reject H,

because the two samples have about the same location and scale. The P2

statistic detected a difference because it gives much greater weight to the fourth

component than the other two statistics. The ratio of the fourth eigenvalue to
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Fig. 47. Alternate orthogonal series estimates of the comparison density function
for the savings and loan return data. Figure (a) is based on a subset of size 3
(components 4, 8, and 6) and Figure (6) is based on a subset of size 5 (components
4, 8, 6, 2 and 9).

the first for p 2 is 0.49; for the Cramkr-von Mises it is 0.0625; and for the

Anderson-Darling it is 0.10.

The new methods suggested by this work were able to detect differences

in the data that the standard portmanteau statistics (Kolmogorov-Smirnov,

Cramer-von Mises, Anderson-Darling) could not. The procedure not only found

differences, but was able to estimate the actual relation between the populations

in a meaningful way. Interestingly, the p2 statistic suggested by this work also

detected a difference in the two populations.

5.3. The Behrens-Fisher Data

A simulated data set exhibiting the Behrens-Fisher problem is analyzed in

this subsection. The Behrens-Fisher problem is to distinguish between two nor-

mal populations which differ in their mean and variance. The first sample is a

random sample of size 30 drawn from the N(0,1) distribution. The second sampl,!

is a random sample of size 30 drawn from the N(1,3) distribution. The tests useu

in this example will clearly indicate that the null hypothesis is false. The value

of such an example is to demonstrate the extra information that can be obtained
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from the methods presented in this work.

The data are listed in Table 20 and presented graphically as Figure 48. Even

from the figure it appears that the two samples are different. The second sample

[Figure 48(b)] appears to be more variable if not possessing a greater mean.

Table 21 gives the sample statistics for the two samples. These statistics also

indicate likely differences in the two.

Figures 49 through 51 present the identification quantile plots for the first,

second, and pooled samples, respectively. One would certainly not detect a

difference based on these plots. Given the origin of the data, one would not

expect to. The two populations are the same up to location and scale. These

graphs remove the effect of location and scale. The pooled sample is bimodal,

but this is not clear from the identification quantile function. Bimodality often

causes the identification quantile to appear short tailed. The pooled quantile in

Figure 51 doesn't appear to be short tailed. Figure 52 presents an overlay of the

identification quantile plots for the two samples. The two appear very similar

indeed.

Figure 53 presents the QQ plot of the two samples. The graph is somewhat

deceiving because the horizontal and vertical axes are not in the same scale. The

values above (0,0) do deviate substantially from the diagonal. The deviations

below (0,0) are less severe. From this figure, one would strongly suspect that

these two data sets are not from the same populations.

Table 22 gives the Crarir-von Mises, Anderson-Darling, Kolmogorov-

Smirnov, and V0.3 statistics. Each rejects at the 5% level. The Kolmogorv-

Smirnov also rejects at the 1% level. That H, should be rejected is also clear

from Figures 54 and 55. Figure 54 presents DN(u). It never falls below the

reference diagonal line and the deviation from the diagonal is substantial. The

process V-[DN (u)- u] drives the point home in Figure 55. The process certainly

does not have the character of a Brownian bridge process.

Figure 56 pictures the process vlN[]bh(u) - u]. The bandwidth is selected

in the same manner as before. Here a bandwidth of h = 0.3 is appropriate. A

bandwidth of h = 0.2 might also be used. Figure 57 presents the corresponding
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Table 20

White noise data exhibiting the Behrens-Fisher problem.

First Sample
0.243 0.258 1.082 -0.897 -0.713 1.486

-1.180 -3.147 0.722 1.108 2.048 0.764
0.062 1.800 0.684 0.462 -1.031 -1.560

-2.100 1.100 -0.250 -0.272 -0.432 0.117
0.047 -1.221 -0.800 -0.370 0.585 0.669

Second Sample
2.858 2.827 -0.260 1.202 -0.290 -1.202

-1.280 1.752 0.183 -0.731 -1.859 5.421
0.376 1.283 1.876 0.445 3.599 1.796

-1.752 -0.354 3.455 2.681 -2.880 1.599
-0.166 -0.796 2.270 2.387 2.278 1.524

6 (a) 6 ()

5 5
4 4
3 3

2 2

I UI

-2 -2
-3 -3

-4 1 i ' 'S '111114 - 1 1 5'1 12 1 224273

Fig. 48. The data for the Behrens-Fisher problem. Figure (a) is the first sample
and is a realization of a random sample from the N(0,1) distribution. Figure (b)
is the second sample and is a realization of a random sample from the N(1,3)
distribution.
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Table 21

Sample statistics for the Behren8-Fisher problem data.

First Second Pooled
Statistic Sample Sample Sample

Median 0.090 1.243 0.317
Twice Interquartile Range 3.044 5.265 4.567
Maximum 2.048 5.421 5.421
Minimum -3.147 -2.880 -3.147
Mean -0.025 0.941 0.458
Variance 1.347 3.607 2.672
Standard Deviation 1.161 1.899 1.635

I
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Fig. 49. The identification quantile function of the first sample of the Behrens-
Fisher problem.
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Fig. 50. The identification quantile fut.ction of the second sample of the Behrens-
Fisher problem.
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35

data.
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II
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Fig. 53. A QQ plot of the two samples of the Behrens-Fisher problem. The first
sample is the horizontal ais and the second sample is the vertical axis.

Table 22
Two sample portmanteau statistics for the Behrens-Fisher problem
data.

Observed 5% Critical 1% Critical
Statistic Value Value Value

Cramer-von Mises 0.623 0.460 0.740
Anderson-Darling 3.532 2.490 3.850
Kolmogorov-Smirnov 1.678 1.360 1.640
o231.8 7.097 10.433

1011

I

.8 I l I J

.7 , . 4 ,5 * ' 8 .
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1.7

l.5

-.5

-i

. . .3 '4 'S ' 6. 7 '. 1, ' 9

Fig. 55. The sample null empirical comparison distribution process for the
Behrens-Fisher problem.
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Fig. 56. Sample paths of /N[Dh(u) - u) for the Behrens-Fisher problem. Figure
(a) is constructed with h = 0.1; Figure (b) with h = 0.2; Figure (c) with h = 0.3;
and Figure (d) with h = 0.4.
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Fig. 57. Boundary kernel estimates of the two sample comparison density func-
tion for the Behrens-Fisher problem. Figure (a) is constructed with h = 0.1;
Figure (b) with h = 0.2; Figure (c) with h = 0.3; and Figure (d) with h = 0.4.

comparison density estimates for these bandwidths. A truncation point of M

6 is used with the bandwidth of h = 0.3. This truncation point includes all

eigenvalues above 0.01.

Table 23 gives the squares of the components of the kernel density process

for h = 0.3. The criterion function C(k) for a size of 5% is given in Figure 58.

The null hypothesis is rejected. A subset of size 2 is selected. The components in

the most significant subset are 2 and 1. A subset of size 3 containing components

2, 1, and 5 might also be considered. The critical function is negative for each

subset which yields the second largest value of C(k). The value of x2(0.95 1/6 )

is 6.922. Examining the squares of components in Table 23 one finds that the

independent tests method would fail to reje.t H.

The boundary kernel and orthogonal series estimates of the comparison den-

sity function are presented in Figure 59. The orthogonal series estimate is some-

what smoother than the boundary kernel estimate. From the estimate, it appears

the two samples differ mainly in scale. However, the first component is undeni-

ably large. It is important that such numeric diagnostics accompany graphs to

help direct the eye to important features.
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Table 23

The first six squared components of the
kernel density process (h = 0.3) for the
Behreno-Fisher problem data.

Component Squared
Number Value

1 4.533
2 6.840
3 0.018
4 0.614
5 1.696
6 0.010

-2

-3

-4

4

Fig. 58. The criterion function, C(k), for the Behrens-Fisher problem. Also
pictured are the criterion values for the next best subset.
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Fig. 59. The boundary kernel estimate (h = 0.3) and orthogonal series estimate
(components 2 and 1), of the comparison density function for the Behrens-Fisher
problem. The line with blocks is the boundary kernel estimate and the solid line
is the orthogonal series estimate.

In this case it is possible to compare the estimated densities with the true

comparison density. Figure 60 presents the true comparison density and the

orthogonal series estimate. The estimate is excellent considering it was derived

from two samples of size 30. In terms of estimating the region where f > g,

the estimate misses on the left on an interval of length about 0.05 and on the

right on an interval of length of only about 0.03. The square of the £2 distance

between the estimated and true comparison density functions for the boundary

kernel is 0.024 and 0.018 for the orthogonal series.

Each method (except the independent tests method applied to the com-

ponents) rejected H,. One can now judge the relative merit of each. The

Kolmogorov-Smirnov, Cramr-von Mises, Anderson-Darling and o2 statistics

give no indication of why they reject, only that they do. In combination with

the identification quantile functions and sample statistics (MQ, DQ), one could

discern that the two samples differ by location and scale factors. If the two dif-

fered by higher order components, these relationships would be much harder to

identify in this manner. The estimate of the comparison density coupled with

the components as diagnostics are as equally applicable to alternatives affecting
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Fig. 60. The orthogondl series estimate (components 2 and 1) and the actual
comparison density function of the Behrens-Fisher problem. The line with blocks
i8 the actual value and the solid line is the orthogonal series estimate.

high and low order components.

The procedure has now been applied to two data sets. The first consisted

of observed returns for two savings and loan institutions; the second was data

simulated to exhibit the Behrens-Fisher problem. The first case exemplified an

alternative which affects principally higher order components. The Kolmogorov-

Smirnov, Cramer-von Mises, and Anderson-Darling tests all failed to detect a

difference in the populations. The subset chi-square test applied to the com-

ponents rejected H. The estimate of the comparison density gave an excellent

graphical presentation of the relation of the two densities. The second data set

exemplified an alternative for which every method rejects. Yet even here the

estimate of the comparison density along with the components as diagnostics

presented the relation of the populations in a clear and concise manner.
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6. CONCLUSIONS

6.1. Conclusions

This work has sought to expand and refine the traditional analysis of two

samples. The commonly used techniques were conceived in an era when comput-

ing facilities were a true constraint on what it was possible to do. Computing

facilities no longer pose a constraint. Indeed, modern desktop personal comput-

er- and workstations are largely wasted on many traditional statistical methods.

The analysis of two samples is one such area. A basic goal of this work has

been to find a procedure more suited to the graphical and interactive computer

environments now available.

A good deal more was sought in this work than just "gee whiz" type graphics

and some number crunching. The desire has been to find a mode of analysis which

provides a deeper understanding of the relation of the two populations under

study. The philosophy has been that such a deeper understanding is possible now

that numerically intensive methods are not ruled out and high quality graphics

in real time are available.

Several desirable features that a procedure should possess were defined. It

was desired to make minimal assumptions about the distribution functions of the

two populal 'ns. A portmanteau test was desired to avoid specifying too closely

the relation of the two distribution functions ... der alternatives. Similarly, a

nonparametric test was required to avoid assuming a parametric family for the

two distribution functions. Finally, it was desired to estimate the relation of F

to G when H, is rejected. Most existing two sample techniques fail to enlighten

one in this regard.

Upon reviewing existing methodologies, it was seen that the comparison den-

sity is an important object in regards to several of these goals. The comparison

density is uniform if and only if H, is true. It is interpretable as the likelihood

ratio of the density of the first sample to that of the pooled sample. An estimate

of this density proves useful in two ways. First, it can be tested for uniformity



178

as a means of testing H. Second, it can serve as an estimate of the relation of

the densities of the two samples.

Parzen (1983) introduced a natural estimate of the comparison distribution

function. The comparison distribution function is simply the distribution func-

tion associated with the comparison density function. This estimator is called

the sample comparison distribution function. The form of the sample comparison

distribution function suggested strongly that a nonparametric density estimator

be used to estimate the comparison density function. Results were to be derived

based on the weak convergence of a centered and scaled version of the sample

comparison distribution function. This centered and scaled process was called

the empirical comparison distribution process.

The relevant nonparametric density estimation techniques were reviewed and

it was decided to use the boundary kernel modification method of Gasser and

Mfiller (1979). Several pointwise results were proved for the boundary kernel

estimator of the comparison density function. Assuming the bandwidth shrinks

to zero at an appropriate rate and several conditions on the kernel hold, it was

proved that the boundary kernel estimate is asymptotically normal under H,.

Assuming a shrinking bandwidth, mild conditions on the kernel, and that the

proportion of the total sample represented by the first sample doesn't change,

the pointwise weak consistency of the boundary kernel estimate was proved. The

boundary kernel estimate was also seen to be asymptotically invariant as to the

choice of which sample is called the first.

A stochastic process called the kernel density process was introduced. It is

a centered and scaled version of the boundary kernel estimate of the comparison

density function. The weak convergence of the stochastic process was proved as-

suming mild conditions on the underlying kernel and a fixed bandwidth. Several

rationales for a fixed bandwidth were given. Among these were: (1) under H.

the boundary kernel estimate is asymptotically unbiased for fixed bandwidths

and (2) the fit of the small sample distribution to the asymptotic distribution

is better if the latter is derived under a fixed bandwidth. The kernel density

process forms the basis of testing the null hypothesis.
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The results for the boundary kernel estimator of the comparison density

function are significant in their own right. No comparable results exist in the

literature. Processes such as the kernel density process are quite novel. This work

marks a different mode of thinking about kernel density estimates in general.

A statistic, ,, was defined. It is a scaled version of the square of the £2 norm

between the boundary kernel estimate of the comparison density function and the

uniform density function. While investigating its limiting distribution, the idea

of components of the kernel density process arose. The limiting distribution of o2

is an infinite weighted sum of squares of these components. The components were

defined in detail. They were seen to be both generalized Fourier coefficients of an

orthonormal expansion of the kernel density process and linear rank statistics.

The orthonormal basis used is the set of eigenfunctions of the covariance kernel

of the kernel density process under H,. A numerical method for finding these

eigenfunctions was presented. The space these functions span was seen to be of

interest. This issue and its ramifications were investigated but not resolved.

The components were seen to be of more interest than the statistic which

motivated them. It was proposed to base a test of the null hypothesis on the first

M components and to give each equal weight in the test. This is in contrast to

standard portmanteau statistics and o2 which employ all the components but

successively downweight them.

Under Ho, the components were proved to be asymptotically iid N(0,1). A

method to test the components was needed. There are no optimal tests such as

UMPU tests in this context. The two commonly used tests are the chi-square

and the independent tests method. A new test was proposed instead of using one

of these. The new test is called the subset chi-square test. It rejects H, if and

only if the sum of squares of some subset of the M components is found to be too

large. Unlike the chi-square test, this test indicates which components are found

to be significant. Unlike the independent tests method, the subset chi-square

explicitly considers the components together and not just singly. As measured

by power, the subset chi-square test was seen to be a good compromise between

these other two.
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The subset chi-square lends itself well to graphical display. Critical values

for the test were found by simulation. By indicating components which are sig-

nificant, the subset chi-square test suggested a subset orthogonal series estimator

of the comparison density. The relation of the orthogonal series estimator to the

boundary kernel estimator was investigated. The boundary kernel estimator was,

itself, shown to be a damped orthogonal series estimator. The orthogonal series

estimator suggested by the subset chi-square test simply includes or excludes

particular frequencies.

The power of the subset chi-square, V, the Cram&r-von Mises, and

Anderson-Darling statistics were compared in Section 4. These last two are

commonly used portmanteau statistics. Powers for these tests were found for

local location and scale alternatives for the normal and Cauchy distributions.

Power functions were also calculated for what were termed Fourier alternatives.

The two Fourier alternatives used stressed the third through sixth components.

Location and scale alternatives significantly affected only the first through third

components.

The weak convergence of the empirical comparison distribution process under

local alternatives was proved. The power of the subset chi-square test applied

to the components of the kernel density process was found by simulation. For

the (, Cramir-von Mises, and Anderson-Darling statistics, power functions

were found by numerically inverting an approximation to their characteristic

functions. A new method for this inversion based on the FFT was introduced.

A theorem concerning the numerical consistency of the method was proved.

The subset chi-square was seen to perform very well. The traditional statis-

tics performed better for location alternatives which affect mainly the first com-

ponent. Their advantage disappeared for scale alternatives. For the Fourier

alternatives, the standard statistics were found to be greatly lacking power in

comparison to the subset chi-square test. These statistics may be consistent

tests and the subset chi-square not, yet this seems little solace given their dismal

performance as measured by power.

Lest one believe that alternatives seen in practice are only location or scale,
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an example was given in Section 5. The data were observed weekly returns to

two savings and loans over a 103 week period. All the standard portmanteau

tests failed to reject H. The subset chi-square rejected Ho at the 5% level. The

fourth component was dominant. Further, the estimate of the comparison density

pictured the relation of the densities of the two populations in an understandable

manner. A second example was also analyzed. This data was simulated to exhibit

the Behrens-Fisher problem: the two samples wvere normal but with different

means and variances. The differences were sufficiently large for the standard tests

to detect them. Yet even in this case the procedure based on the comparison

density gave unity and insight into the relation of the two samples.

In summary, the unified techniques based on the boundary kernel estimate of

the comparison density achieve what was set out in Sections 1 and 2. The proce-

dure is unified and self-contained. The test has good power against a wide range

of alternatives. In fact, the breadth of this class is selected by the researcher.

The procedure has many useful and informative graphical elements. The class of

distributions to which it applies is very broad. When the test rejects H0 , it is also

simultaneously selecting an orthogonal series estimate of the comparison density

function. The orthogonal series estimate is intimately related to the boundary

kernel estimate. The technique has been given a rigorous theoretical foundation.

Its use will give the researcher an opportunity to more thoroughly understand

his data and the information it contains.

6.2. Areas for Future Research

It is only natural to inquire where a piece of research will lead. Are there

opportunities for expanding its scope? Are there other areas to which it applies?

For the methods considered in this work, the answer is "yes" to both of these

questions.

This research has concerned itself with the two sample problem. One could

term it k = 2. It is only natural to ask about k > 3. This is the so-called k-sample

problem and it should be an area rich for research. The basic approach would he

to consider the ranks of each sample in a pooling of all k samples. One then has



182

k - 1 independent comparison densities to estimate. The choice of bandwidth

across the samples and the method of testing the components would need to be

considered in depth. There are certainly substantive issues to be addressed.

The alternative to increasing k above 2 is to decrease it to 1. This is known

as the one sample problem. The one sample problem has just a single sample and

tests a hypothesis of the form H,: F = F, where Fo is some specified distribution

function. The methods of this dissertation should apply almost wholesale to this

problem. All one does is exchange the empirical comparison distribution process

for the uniform empirical process. The rest of the analysis should apply almost

directly.

In summary, there are very good prospects for expanding the methods of

this work to related problems. The two most likely candidates for investigation

are the k sample problem and the one sample problem.
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APPENDIX A

GLOSSARY OF NOTATION

Appendix A is a glossary of the notation used in this work. In general, if

a function is subscripted by (N), the function is not random. The dependence

on N is through A(N), the fraction of the pooled sample represented by the

first sample. For example, the function D(N) (u) is not random. If a function

is subscripted by N, then that function is random. For example, the function

DN(u) is random. Following is a list of the notation used in this work along with

a brief explanation.

* The first sample is X 1, . .. , Xm which is iid with distribution function F, density

function f, and quantile function QF.

* The second sample is Y1 ,...,Yn which is iid with distribution function G,

density function g, and quantile function QG.

or

* The second sample is Ynl,..., Yn which is iid with distribution function G("),

density function g(n), and quantile function Qn) for local alternatives.
( The first sample has m observations.

" The second sample has n observations.

" The pooled sample has N = n + m observations.

" The empirical distribution functions are:

Fm for the first sample,

Gn for the second sample,

HN for the pooled sample.

* The empirical quantile functions are:

QM for the first sample,

Q G for the second sample,

QN for the pooled sample.
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* The ratio of the size of the first sample to the size of the pooled sample is

A(N) = rIN.

This fraction satisfies one of the two following conditions:

A(N) Ao as m A n --+ o, 0 < Ao < 1,

A(N) = A0, 0 < A0 < 1.

e The true or population distribution function of the pooled sample is

H(N)(z) = A(N)F(z) + (1 - A(N))G(z),

or

Ho(z) = AoF(x) + (1 - Ao)G

or

H(N)(x) = A(N)F(x) + (1 - ,(N))G(n)(X),

for fixed m and n, as m A n -- oo and for local alternatives, respectively.

* The true or population quantile function of the pooled sample is

Q(N)(u) = H'()

or

H 1 (u) = H-I()

for fixed m and n and as m A n - oo, respectively.

* The sample comparison distribution function is
DN(u) = (HnQF)-l(u).

" The population comparison distribution function is

D(N)(u) = FQH )(u ) ,

Do(u) = FQH(u),

VA(u) = FQH(u),

for fixed m and n, as m An --+ oo, and for 1\(N) equal to arbitrary A, respectively.
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o The population comparison density function is

d(N)(U) = D(N)(U),

do(u) =!Do(u),

dA(u) = DIX(u),

for fixed m and n, as mAn -- oo, and for AX(N) equal to arbitrary A, respectively.

" The comparison distribution empirical process is

CDN(u) = VNIDN(u) - D(N)(u)].

* The null comparison distribution empirical process is

CDoN(u) = v-[DN(u) - u],

which equals CDN under Ho.

" The limiting process of CDN(u) is

L(u).

" The boundary kernel estimate of the comparison density is

dh -M - Ks([w - u]/h)dDN(u).

• The sample kernel density process is

KDPNh(w) = 1 f K,([w - u h)dCDN(u).

" The null sample kernel density procesb is

KDPON,h(W) = - Ks([w - u]/h)dCDoN(u)

= VNr[dh(w)- 1].

" The limiting process of the sample kernel density process is

KDPh(w) = 1- K,([w - ul/h)L(u)du.

" A normalized estimate of Pearson's phi-squared statistic is

o2h- NA(N) fI [dh(W) - 1]2 dw.

It converges in distribution to

2
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APPENDIX B

PROOFS OF THEOREMS AND LEMMAS

Proof of Theorem 3.2.1

Before starting on the proof of Theorem 3.2.1, a quote from Van Zwet (1983)

seems appropriate. He discusses the proof of the original Chernoff-Savage theo-

rem and subsequent developments:

"It (Chernoff and Savage's proof) struck terror into the hearts of graduate

students at the time because of-what was then considered-its extreme tech-

nicality; in order to approximate the rank statistic by a sum of independent

random variables no fewer than six remainder terms were shown to tend to zero,

each for its own particular reason. Unfortunately, the number of such remainder

terms has increased monotonically over the years and nowadays authors in this

area appear to need at least fifteen."

Start by writing V/-N-hdh(w) - 1] as

[-N-h [ K([w - HN(t)]Ih)dFm(t) - 1].

Let t - QF(u) and perform a change of variable to arrive at the following equiv-

alent expression:

v'N/ K[ - HNQF (tt)jh)dFmQF (t) - 1

These statements hold true for each w E (0, 1) for h sufficiently small. Define the

uniform empirical distribution function for the first sample as r'm(u) - FmQF(u)

and 1'H(u) = HNQF(u), for the pooled sample. Under H,, this last process is

also a uniform empirical distribution function. Substituting these quantities in

the above integral, one arrives at

VrK~hEdh(W) - 11

(B.i1) =VW [f- K((w - rH(,S)J/h)dr F(8) ~]
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The mean value theorem states that for each s E [0, 11 there exists a point tN(s)

between rH(s) and a such that

K([w - rN(s)]/h) = K([w - a]/h) - -K([w - tN(S)I/h)[JrN(s) - ,]

The result of the application of the mean value theorem can now be substituted

into (B.1). This yields

v/'Nh (f I [K([w - a]/1h) - 1 K'([w-tN(s)]1h)[rH(,s) - s drF(8) - 1

= AIN - A2N - BIN - B2N,

where

AiN -h 1.1 K([w -.]/h)dr(.) 

A2N = 1 f K'([w - a]h)UH(s)ds,

BIN = h15 [K'([w - tN(s)lIh) - K'([w - al/h)] UNH(a)ds,

B2N = - f K'([w - tN(,)1h)UNH(,)dIrM() - a],

and

uH(a) = v/[rH(s) - a]

is the uniform empirical process for the pooled sample. The first order terms

are AIN and A2N. They will be shown to converge in distribution. The second

order terms are BIN and B2N. They will be shown to converge in probability to

zero. Start with the first order terms. One can rewrite AIN as

AIN =-" h - K([w - Vi]/h ) - 1

where Ui = F(Xi) is uniformly distributed. One can rewrite A2N as

1 fl
A 2 N = -j K([w - aj/h)dUH ( a)

= { K[w - 1]/h)dr( f K([w - sj/h)ds.
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The last term is equal to 1 for h small enough, so one has

A2N = VNihi {AZK([w - (11]/h) + N (w- 1',]h) -1
j=1

where Vj = F(Yj). Now examine AIN - A2N:

AIN - A2N

= VWKh! >K(fw - Uj/h) - A>K(w - UiJ/h)

-1 =1=

1 n

Nh E (([w- h - U/h) - 1 }
j=l

A (N))

= /-N'h1- A(N)h K([w - U Vllh) - lN). K([w - Vjj/h)
= 1=1

l,(N) V m-- F,, g([w - Uil/h) - 1

nh I- , -T(N){ 52.K([,, - Vjjlh)- 1.
X () (nhj=l

Both terms in this last equality can be shown to converge to a limiting normal

distribution by invoking a CLT for triangular arrays. Since both terms are inde-

pendent, one can find the limiting distribution of the sum by finding the sum of

the limiting distributions. One reaches the conclusion that

AIN - A2N d Z

where Z has the normal distribution with mean 0 and variance
1 - '\0  K(t)2 dt

since h -+ 0, (m A n)h -* oo as m A n -- oo.

Next it is shown that BIN converges to 0 in probability. Start by bounding

BIN:

IBINI <_ sup IUH( ) 5 iK'([w - tN(.)]/h) - K'([w -s]lh)ids.

0<8<1
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For rr(a) and s outside the range (w - h,w + h), the integrand is identically

zero. Inside this range, the mean value theorem and the assumption that the

second derivative of K is bounded by M give

K'([, - tN(s)llh) - K'([t - "I/h)() - 8

This yields the following bound on BIN:

IBINI < M sup IUH(8)1h . f"ItN(s)-8Ih(8rH(s))ds

< M( sup IUr(s)l)2  1 fO1 1 H(B.2)N(91) - f_< ih (a,.rN (9)) d,.

since ItN(8) - s < IrH() -, 9 and where ih(s, r%(8)) is 1 if either w - h < < <

v + h or wo - h < r (s) < to + h. An equivalent expression for ih(s, r H(s)) is

(B.3) Ih(8, r ()) = ih() + ih(r -))- h(s)Ih(rN(,)),

where Ih(r) = 1 if to - h < r < to + h and 0 otherwise.

The last integral in (B.2) must be evaluated. Substituting the expression

(B.3) into this integral results in
01 1~ ii. f+ I~N()d

10 Ih (a, rH(s))ds = 2+ j hft H (6)) da Jw h r s)d
- 2 + R1N + R2N.

The function (8) is the empirical distribution function of F(X 1 ),... , F(Xm),

and F(Y 1),...,F(Y,) which are distributed as N iid U(0,1) random variables

under H. One can bound RIN by [QN(W + 1.5h) - QN(W - 1.5h)]/h, where

QN is the empirical quantile function of these N random variables. This last

bound looks like a derivative. Applying Bahadhur's representation to the sample

quantiles, one can show that [QN(w + 1.5h) - QN(w - 1.5h)]/h P P 3 since

(m A n)h2 -- oo. The term R2N is easily handled since 0 < R2N < 2.

Putting all the components together, one concludes that
-- ,, 2< 1 1 h H(' r (s)) ds

IBlNI :M( sup (1sI(9D, )---* 0h[

= O.(l)/V'Nh P PO
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since (m A n)h3 --, oo. The term sup0<s<lIUH(.)I is Op(i) since it converges

in distribution as m A n -- oo. In fact, this term is the Kolmogorov-Smirnov

statistic; see Shorack and Wellner (1986), page 91.

It must now be shown that B2N 2-+ 0. The term B2N is written as IB2NI <

jC1NI -+ C2Nj where

h1.5 0 [K'([w - tN(s)j~h) - K(w- aJ/hll Uff (s)dlr(s m sli

and

C2N =1I' K'(lw - - .Ij.s~~r
Start by examining CIN. It can be shown that CIN is bounded by

CIN~ _ sU f IUN(.)l-g It(S) - slih(s,rH())aTr (a)

0<8<1 150-

+ s U( -tN(s) -81Ih(s,rN(S))dS

(B-4 SUP_<°_< ) M rh (a, rH(s))drP (a)

+ i0 1(, rH())ds.

From above it is known that the second term in the brackets is Op(1). Examine

the first term in the brackets:

Ih(s, rH(,))drF (8)

(a.) "- 101 Ih(s)drF (S) + i 01 Ih(rN(9))drF(.)

- 10 ih(s)ih(rN(8))drrM(8)

The first term of (B.5) is equal to

;WZIh (U)

which is a kernel density estimate at the point w using the uniform kernel. It

converges in probability [cf. Parzen (1962a)] to 2. The second term of (B.5) is
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handled by

11fl0 j ih(rH(s))drF(.)

N

<- s H(z,))

i=1

N

-!-ZIh(i/N) - 2/Ao,

where Zi =Ui for i =1,...,m and Zi+m = Vi for i = 1,...,n. Hence the second

term is Op(1). Similarly, for the third term of (B.5) one has

O ~J~ ih(s)Ih(rH(s))drF ('5)

J Ih(s)drF (q) = OP(1)

Returning to equation (B.4), the term in braces has been shown to be Op(i).

Since (m A n)h 3 -+ o then CIN -E+ 0 as m A n --+ oo.

Now examine C2N. This is the more difficult of the two terms. After some

rearranging, C2N can be written as
N

C2 N = -v,<lh[ .Kw - Z]/h) -1
1=1

- W K'(,, - Uj/h)[r(U) - Ui].
i=1

By repeated application of the mean value theorem, one finds that

N 1 N
DIN = V-'Q[-'j Z K([w - Zil/h) - N-- K([w - (i/N)]/h)

Nh 2 K'([w - rN1h)[rN(z,) - z0, = 0,
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where riN is between Z, and I$H(Zi) and since rHZ,)= i/N. If it can be

shown that

D2 N = V~[ ZK(w - (i/N)]/h) - 1] --*0,

D3N = VWI [1h I Z~ K'(fw - riNj1h) (rNZi

- Nh2  K'([w - Zj/h)[rN(, -ZJ 0,

D4 N = /IVKINh ~ 'I - Zi]/h)[I'(Z)- ,

p mh2  i K'([w - Ui1/h)[r%( 1 -ui 2..4 0,

then C2N p 0 since C2N = -DIN - D2N - D3N - D4N. Start with D2N. Let

g(t) = fo hK([w - .sl/h)ds.

By Taylor's theorem g(t) = g(r)+g'(r)(t-r)+0.5(t-r)2 g"(C) where c is between

t and r. Let t = (i - 1)/N and r = i/N. Then

g([i - 11/N) = g(i/N) - - K([w - (i/N)J/h) + 0(1/N 2 h2 ),
Nh

if i/N > w - h and (i - 1)/N < w + h; otherwise g(i/N) = g([i - 1]1N) =0. So

N1
F[g(i1N) - g([i - 11/N) - 7 .K([w - (i/N)]/h)

t=1h

N
= (I/N 2 h2)I(i/N > w - h)I([i - 1J/N < w + h).

There are about 2Nh terms in this last sum, so 2NhO(1/N 2 h2 ) = 0(1/Nh) and

N1
Lfg(i/N) - g([i - 11/N) - 1 -K([w - (i/N)1/h)

i= 1
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N

= g(1) - g(O) - N K([w - (i/N)lih)
s=1

N

= - K([w - (ilN)1lh) = O(l/Nh).

This implies that D2N = 0(I/v-N-h) and hence D2N --+ 0 since (m A n)h - oo.

Next examine D3N. This term can be bounded by

ID3NIV <5 sup irH(s) _.0<8<1N

1
N

- 1 IK'([w - riNllh) - K'(w - Zil/h)l

MhN
< sup Iu (S)l M iiN- Zil

O<s<1 h

{ih(zt) + Ih(r H(Z,)) - ih(zi)Ih(r H(Z,))}

The last sum results from the mean value theorem and the fact that K'([w -

riN1/h ) = 0 and K'([w - Zi]/h) = 0 if both Zi and rH(Zi) are outside the

interval (w - h, w + h). The first term in the braces is the kernel density estimate

of the uniform density (under H,) based on the Zi's. This quantity converges in

probability to 2 as (m A n)h --+ oo. The second term is actually nonrandom and

is just

N
1h- Ih(ilN)

which converges to 2 as (m A n)h -, oo. The last term in the braces is bounded

by both the first and second terms. Thus
JD3N1 !5 ( 0sup IUWN (8)i1) 2 1Nh O 1

and so one may conclude that D3N PP 0 since (m A n)h 3 -_ oo.

The term D4N is the most tedious to deal with. It can be rewritten as

D4N = (1- A(N))[m'hl. Z K'([w - Ui]/h)UNH(Ui)

K'(w - V41/h) UH()

;h--
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The claim is that D4N Ma 0. One needs to show that E[D4N ] -] 0. Begin by

evaluating the expectation

E[ K'Qw - Zil/h)K'(,w - Zj]Ih)U(H(H

Start for i 54 j and first find the expectation

E[UN(Zl)UH(Z 2)IZx = aZ 2 = t]

After several pages of algebra, this expectation is found to be

min(a,t) - at + 0(1/N).

One can then find the desired expectation from the conditional expectation:

E ' 'Qw- Zi]/h)K'([w - Z2]lh)Uff(ZI)UI$(Z 2)]

EZ ,. 'Qw- Zl/h)K'([w - Z21/h)E [UNH(Z 1)UH(Z 2) IZI, Z2]

- h f j K'(u)K'(v) [min(w- hu,w - hv) - (w - hu)(w - hv)]dudv

+0(1/Nh)

C(h),

for i $ j. The procedure is similar for i = j and one arrives at

E- Zj1/h) 2UN(Zj)2

= _' K'(Y)2 (w - hy)(1 - w + hy)dy + O(l/Nh2 )

=V(h)

Putting these results together, one finds
E[ = +Vh 2 ~h C(h) C(h)

m n m n
It is obvious that

V(h) .-,0 if nh2 -* ,

n
V(h) 0 if mh2 -oo,

C(h) 0 if nh oo,

n
C(h) ,0 ifmh oo,

n
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and hence that D4N -u 0 which implies that D4N - 0. Backing up through

the remainder terms, it has been shown now that C2N Pi 0 so that B2N P 10.

An application of Slutsky's theorem to A1N, A2N, BIN, and B2N yields the

desired result.

Proof of Theorem 3.2.2

Theorem 3.2.2 is concerned with the consistency of the boundary kernel

estimator of the comparison density function. Start by writing

Idh(w) - do(w)l < AIN + A2N + A3N,

where

Ai N I h 0 K([u, - uI/h)dCDN(u)I

A2N = 1h K([w - uI/h)dD(N)(u) -(N)(W)

A3N = Id(N)(W) - do(w)1.

As in Theorem 3.2.1, since h -- 0 it is not necessary to worry about bound-

ary modifications. Each of these terms must be shown to converge to zero in

probability. Start with A1N:1 /o1
AIN 1 f ICDN(u)IIK'([w - ul/h)ldu

V/ih 2 Jo

sup ICDN(u)l I _IK'(yIdy.

One can show sup0 <s._<1 ICDN(u)I is Op(i) in the following manner. It is known

(see Section 2) that CDN converges to a limiting process under fixed alternatives

as well as under Ho. By Theorem 3.11 of Ruymgaart (1988) it follows that

this term converges in distribution to a limiting random variable and hence it is

Op(i). It follows that AIN -? 0 since (m A n)h 2 -- oo by assumption.

The proof that A2N --4 0 follows that of Theorem 1A of Parzen (1962a). Let

g(N() = 1 1 K(Iw - u/h)d(N)(u)du

_ f K(ylh)d(N)(w - y)dy



204

for h sufficiently small. Pick 6 > 0 and write

19(N)(w) - d(N)(w)I

SIfd(w -) - d(N)(W)lhK(y/h)dyI

+ jf>[d(w- -d(N)(W)IhK(y/h)dyl

< max Ild(N)(W - y) - d(N)(w) I /I<6/hIK(z)Idz

+ L>6 d(N)(w - y) K(y/h)dy

+ d(N)(w) j hK(y/h)dy

< max Id{N)(w - Y) - d(N)(w)I /zj<6/h

+ sup IzK(z)I j0 d(N)(Y)dY + d(N) (w) f> K(z)dz.

The strategy is to let m A n - oo for fixed 6 and then let 6 - 0. The last two

terms tend to zero as m A n -- o and h --, 0. This leaves only the first term.

Rewrite the first term as follows:

max id(N)(w - Y) - d(N)(w)l < max Id(N)(w - Y) - do(w - y)l
Ivl__6  Ivl5 6

+ max Ido(w) - d(N)(w)I + max Ido(w - y) - do(w)I.
IYIl<S ly[<6

The second term tends to zero as m A n --+ oo because d(N) is converging to do.

The third term tends to zero as 6 - 0 because do is continuous. This leaves

only the first term. It will tend to zero if d(N) converges to do uniformly. If

-{N) = A 0, then d(N) = do and Theorem 1A of Parzen (1962a) can be applied

directly to show that A2N -" 0. Since d(N) converges to do, A3N --. 0.

Conclude that under these conditions, one has dh(w) -f-. do(w).

Proof of Lemma 3.2.1

Lemma 3.2.1 states that the Gasser-Mfiller boundary kernel satisfies the

Regularity Conditions. It must be shown that for all c > 0 there exists a 6 = 5(t)
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such that

1 IK'([w - u]/h) - K',([v - ul/h)ldu < E

if 1w - vl < 6. Define

P= {u: A(w,[w-ul/h) = A(v,[v -u]/h) =

Q = {u: A(w,[w - ul/h) j A(v,[v - ul/h)},

where
I[-1, 11(t) if h < a < 1 - h

A(s,t)= I[(s - 1)/h, 1(t) if I-h <.<

1[-1,s/h](t) if0 < a < h,
and I is an indicator function. The function A(s, t) is indicating the region where

the boundary kernel is non-zero. One can now writef IK,([w - u]/h) - K,,(tv - ul/h)ldu

-/, IK,'([w - t,/h)- K,,([v,-]/h)Idu

+ J jK([' - u /h) - K,([- u/h)ldu

(B.6) <sup IK,([w - u]/h) -Ko,([, - uI/h)l
uEP

+ ,IK(['w- u]/h)- o,(,- u/h)ldu,

where 8 s(w, h) and s' = a(v, h) index the boundary kernel (see Section 2).

Concentrate on the first term of (B.6). For u E P, one has A(w, [w - ul/h) = 1

and A(v, [v - u]/h) = 1, so that

sup IK'([w - ul/h) - g',([v - u]/h)I
uEP

= sup I(0g + O,(w - u)/h)K([w - u]/h) + OsK([w - u]/h)
uEP

- (08, + 0,,(v - t)/h)K'([v - ul/h) - ,,,([v - ts]/h)l

_ (MI + M2 + M3 + 2M 4 + M 5)E*,

if

Iw - vI < h6(,E) = h min(bj(e*), b2(e ° ) ,3(,E"), f4(,"), b (iE*)),
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where

M 1 = sup IK'(u)

M2 = sup 16.1

M 3 = sup IeK'(8)J

M 4 = SUP I1

M 5 = sup IK(9)l.

The 6(f*)'s result from the uniform continuity (u.c.) of the following functions:

61(E*) 0S is u.c. in a

62(c*) K'(t) is u.c.

3(') : ,s is u.c. in 8

4() WtK'(t) is u.c.

bs(c*) :K is u.c.

Thus one can choose e* so that

(B.7) sup IjK([w - u]/h) - K,,([v - uI/h)l <E/2
SEP

if jw - V < 6(E).

Moving to the second term of equation (B.6), the claim is that Q is either (1)

empty, (2) an interval of length less than 1w - vI, or (3) the sum of two intervals

the sum of whose length is less than 21w - vI.

Define IQI to be the Lebesgue measure of Q. The above claim is proved by enu-

merating all possible combinations of cases of the boundary kernel: left boundary,

interior, and right boundary.

1. If w = v then Q is empty.

2. If0<w<hthenK'([w-u)/h)isnonzeroon0<u w+h;if0<v <

then K,,([v-u]/h) is nonzero on 0 <s < v+h. Thus Q has measure lw-vI.
3. If 1 -h < w < 1 then K,([w - u]/h) is nonzero on w - h < u < 1; if

1-h < v < 1 then K',([v-u]/h) is nonzero on v-h < u < 1. Then

IQI = IW - v1.
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4. If O< w <h thenK, ([w-u]l/h) isnonzeroon O< u w+h; if h< v < 1-h

then K,,([v - uj/h) is nonzero on v - h < u < v + h. If the two supports

don't overlap, then IQI = 3h + w < 21w - vi. If the two supports do overlap,

then

IQi = 1w - vl + Iv - hi _ 21w - vi.

5. If h < w < 1 - h then K,([w - u]/h) is nonzero on w - h < u < w + h; if

h < v < 1-h then K,,([v - u]l/h) is nonzero on v - h < u < v + h. If the

two supports don't overlap, then iQi = 4h < 21w - vj. If the two supports

do overlap, then IQi = 21w - vj.
6. If I - h < w < 1 then K,([w - u]/h) is nonzero on w - h < u < 1; if

h <v < 1 - h then g,([v- u]/h) is nonzero on v - h < u < v + h. If the

two supports don't overlap, then iQN = 3h + 1 - w < 2iw - vi. If the two

supports do overlap, then

iQi = 1w - vj + 11 - h - vi -- 21w - vi.

7. If O < w < h then K,([w-u]/h) isnonzeroon O < u < w+h; if l-h < v < 1

then K ,([v - ul/h) is nonzero on v - h < u < 1. If the two supports don't

overlap, then iQi = 1 + 2h + w - v < 4h < 21W - vi. If the two supports do

overlap, then

IQi = Iv - hl + 11 - h - wl - 21w - vj.

Hence iQi - 21w - vj. This implies that

(B.8) IQ IK,'([w - u]/h) - K,,([v - u]/h)du < 4Miw - vi

where M = sup,,t iKg(t)I < oo because K' is continuous and 6(f) = (18M.

Finally, choose

b"(c) = min(6(e),e/8M).

Combining (B.7) and (B.8) with this choice of b(c) one sees that

f IK(Iw - u lh) - K',(Iv - u]/h)ldu <c
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if 1w - vI < 6(e). Hence, the result is uniform continuity and the Regularity

Condition holds.

Proof of Lemma 3.2.2

It is to be proved that the sample paths of KDPh exist and are continuous with

probability 1. Start the proof by showing that L(u) is continuous with probability

1. Pyke and Shorack (1968) give the following representation for L(u):

L(u) = (1 - AO){ ~d(u)UID-'(u)1 - 1 F_____ ~ ujj

where Uo and V, are independent Brownian bridges and
Y- (u) = FQH(u),

dGj(,,) = dQH (u),

d 0
dF(u) = d DcFU

duQ (u) = o()
QoU) = Ho-'(.),

Ho(z) = A0F(x) + (1 - o)G(x).

It is known [see Billingsley (1968), page 61] that the sample paths of a Brownian

bridge are continuous with probability 1. As a result of the assumptions made

about the two distributions, the functions DF, DG, dF, and d'7 are continu-

ous. Since the compositions, products and differences of continuous functions

are also continuous, conclude that the sample paths of L(u) are continuous with

probability 1.

Since L(u) is continuous with probability 1, the integral defining KDPh exists

with probability 1. Define r(w) by

r(w) = -f K'(w - uj/h)c(u)du,

where c(u) is any continuous function. It must be shown that r(w) is continuous.

This is done by bounding jg(w) - g(v)I as follows:

jg(w) - g(v) <_ sup Ic(u)II [K'([w - u]/h) - K'([v - ul/h)ldu.
O!<u<1
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Since c(u) is continuous, sup0 <u<l c(u)I < oo. It was shown in Lemma 3.2.1

that the integral can be made smaller than any e > 0 if 1w - vi < 6(c). Hence

g(w) is continuous for any continuous function c(u). Thus, it may be concluded

that KDPh is continuous with probability 1.

Proof of Theorem 3.2.3

The proof of Theorem 3.2.3 is patterned after the proof of Theorem 3.9 of Ruym-

gaart (1988). This latter theorem concerns the weak convergence of the uniform

empirical process to a Brownian bridge process. Before proving Theorem 3.2.3,

a lemma is stated and proved.

Lemma B.1. Let

1~w f j U(t)Kl ([W - tJ/h)dt,

where U E D[O, 1]; K,(t) is the first derivative of a boundary kernel satisfying the

regularity conditions and s = s(w, h). Then g(w) is uniformly continuous and
1

sup jg(w) - g(v)l < 1 sup IU(t)I(6),
w-v<6 T20<t<1

where 0(6) is defined in the statement of the Regularity Conditions in Subsection

9.2.2.

Proof.

The term Ig(w) - g(v)I can be bounded by

1 Lp IU IK([w - t]/h) - Ks,([v - tl/h)ldt.
O<t<l

Taking the supremum of the above over jw - vi < 6 yields

sup 1g(w) - g(v)l : sup IU(t)I8(6).
IW-,,1<6 h !ot<_

From this it follows that g(w) is uniformly continuous since the bound on the

right does not depend on w or v. The bound on the right is finite since U E D[0, 1]

implies that supo<t<1 IU(t)I < os (see Gaenssler (1983), page 90, for a statement

of this].
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The strategy for proving the weak convergence of KDPN,h to KDPh is to show

that

E[g(KDPN,h)] -- E[g(KDPh)] as m A n --- oo,

where g is any bounded and p-uniformly continuous functional, g: C[0,11 -] R.

The norm p is taken to be the sup-norm.

Start the proof of Theorem 3.2.3 by defining C* to be

C* = {g: C[0, 1] -+ R: g is p-uniformly continuous,

bounded and measurable.

and choose g to be any function in C;. Define

g(e) = sup g(t) - 08)1,
p(8,t) <C

C = sup Ig(t)l,
t gls) for a =O/1, 1,.,(1 - 1)/l, 1/l,

AL(g;s) = 1(.s - W [i -]l-)g(il1)

+(ill- s)g([i - il/)] for [i - 1/ < s /

It is easily seen that Al(g; a) is piece-wise continuous with nodes at (i/I, g(i/l)).

To show that the expected value converges, the quantity

IE[g(KDPN,h) ]- E[g(KDPh) l

will be shown to be bounded by terms decreasing to zero. Start by applying the

triangle inequality:

JE[g(KDP N ,h)] - E[g(KDPh)] I

_ JE[g(KDPNh)] - Elg(Aj(KDPNh))1I

+ JE[g(AI(KDPN,h)) - E[g(AL(KDPh))]

+ jE[g(AI(KDPh))] - E[g(KDPh)]j

(B.9) _ 6 g(E) + 2CP[p(KDPN,h, AI(KDPNh)) > ]
+ jE[g(A(KDPN,h))1 - E[g(Al(KDPh))] I

+ g(e) + 2CP[p(KDPh, AI(KDPh)) > El.
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The first two terms of (B.9) result by splitting the space S h into two subspaces:

one where

p(KDPN,h, AI(KDPN,h)) <

and one where

p(KDPN,h, AI(KDPN,h)) > '.

On the first region, lg(KDPN, ) - g(AI(KDPN,h))I < 6 g(E) and so the expected

values differ by less than bg(E). On the second region,

lg(KDPN, h) - g(AI(KDPNh))I < 2C,

and so the second term results. The last two terms of (B.9) are derived in an

identical fashion.

First handle the term P[p(KDPN,h, AI(KDPNh)) > el. By Lemma B.1, one has

1
sup IKDPNh(w) - KDPNh(v)l 1 Sup ICDN(t)10(b).

Iw-Vl<6 - 0:_t<l

By the construction of Al, it can be seen that

p(KDPN,h,AI(KDPN,h)) < sup IKDPNh(w) - KDPNh(v)I.
Iw-Vl< 1/1

These two facts lead to:

P[p(KDPN,h, AI(KDPN,h)) > C]

<_ P[I sup ICDN(t)1O(1/1) > e]
h2O<t<l

P[ sup ICDN(t)I > h2E/O(1/)

-P[ sup IL(t)l > h2 E/6(1/1)] as m A n -- oo
o<t<1

-- 0 as I -- oo.

The convergence of the probability as m A n --+ oo is a consequence of
d

sup ICDN(t)I dp sup IL(t)j.
o<t<l 0<t<l
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This convergence in distribution is a result of the weak convergence of the process

CDN to the process L. One need only apply Theorem 3.11 of Ruymgaart (1988)

to obtain the convergence in distribution result.

Examine now the last term of (B.9). A consequence of Lemma (B.1) is that

KDPh is uniformly continuous with probability 1. This result implies that

p(KDPh,AI(KDPh)) --+ 0 as I -+ oo with probability 1. Hence one has the

result

P[p(KDPh,A(KDPh)) > El -- 0 as I -- o.

All that remains to be shown is that

JE[g(A(KDPNh))] - E[g(AI(KDPh))]l --+ 0 as m A n -- oo.

It can be shown quite easily that KDPN,h(w) d) KDPh(w) for each w E (0,1].

This is shown by appeal to Theorem 3.11 of Ruymgaart (1988). It is similarly

shown that for 0 < w_ ... w2 W: :_ 1 and (bl,...,bk) E IRk, one has

k k
ZbiKDPN, h (w i ) dE biKDPh(wi)"

i1 ill

This result follows from the above convergence in distribution and the fact that

integrals are linear operators. By the Cramkr-Wold device, one may conclude

that

(B.1O) (KDPN,h(l),... , KDPN,h(wk)) - (KDPh(wl),... , KDPh(wk))

as m A n --+ oo. Convergence in distribution implies that

E[h(KDPNh(wl), ... , KDPN,h(wk))] --- EIh(KDPh(wi), ... , KDPh(w;)) ]

as n A n - oo for any bounded and continuous function h: JRk --+ R. Define

0 ,1** ,z1 ) =

where z(s) E C[O, 1] and zk = z(k/l). The function 0 maps IR+1 into JR since

the function Al depends on only I + 1 values of the function z(.). Since g is
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bounded and continuous in the sup-norm, 0 is bounded and continuous in the

Euclidean norm. Combining (B.1O) with these results concerning 4 yields

E[g(Aj(KDPN,h))] = E[4,(KDPN,h(O/L), KDPN,h( 1/1),..., KDPN,h(1/1))]

E[j6(KDPh(O/I), KDPh(1/), ... , KDP h(1/I)) ]

= E[g(AI(KDPh))I.

The convergence occurs as m A n --- o and holds for all I > 1. Hence

JE[g(Aj(KDPNh))] - Elg(AI(KDPh))] --* 0

as m A n ---+ oo for all I > 1.

Combining all these results one has

lim lim IE[g(KDPN, - E[g(KDPh)]- 26 g(,E) --0
1L1-+oo mAn-cc I I(DN~)

as e --* 0. Thus KDPNh =* KDP h in (C[0, 11, Cp, p) as m A n -, 0o.

Proof of Lemma 3.2.3

The covariance kernel, Ch(W,v), of V/10/(1 - Ao)KDPh(w) is given by

Ch(w,V) = -j f Ks(Iw - s1/h) K',([v - tl/h)Imin(s,t) - stldsdt.

See Kannan (1979), page 154, for a proof of this result. Letting

(B.1) f() = K'([W - al/h),
1 K',o([v - tilh),

(B.12) (t)t

an equivalent expression for Ch(w, v) is

Ch(wv) = f f'(s) j g(t)[min(s,t) - stlddt

(B.13) = f f f'(s)g'(t)min(s,t)dsdt- f af'(s)ds f tg(t)dt.
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The first term of (B.13) is

' jf (s)gt(t) min(s, t)dsdt

- f jf() jS tg'(t)dtds + 1 sf'(S) js g(t)dtds

=f, f'(S) [tg(t) r- f g(t)dt] di.9

+ j sf'(s)[g(1) - g(s)]ds

= ' f'(,) [,g(s) - j a g(t)dt] ds

+ g(1) fol sf'(s)d-- o sg(a)f'(s) des)

10 f'(s)g(t)dtds + g(1)f(1) - g(1) j

= g(.s)f(s)d - f(1)1 g(t)dt + g(1)f(1)- g(1) j f(.)d.

The second term of (B.13) becomes:

f 'f(a)ds " foa tgd(t)dt

= [f(1)- j f(s)ds] [g(1) - 11g(t)dt].

There is much cancellation when these are combined to find Ch(w, V). The result

is

Ch(w, v) = fo g(s)f()ds - fo f(s)ds- fI g(t)dt.

Defining f'(s) and g'(t) as in (B.11) and (B.12) gives
1

f(9) = - K,(1w - s]/h)
h1

g(t) = -1K,,v - t]/h).
h

The final form for Ch(W, v) is then

Ch(,W,V) = T11 K([w - sj/h)K,,Qv - sj/h)ds - 1.
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The '-1' arises since the kernel integrates to 1.

It is possible to derive a closed form representation for Ch(w, v). This is very

desirable as it is necessary to evaluate Ch(w, v) many times while approximating

the eigenvalues and eigenfunctions. The process of finding this representation

starts by evaluating the integral:

Jq K,(u)Ks,(u + [v - w]/h)du,

which results, by a change of variable u = [w - 8]/h, in the integral

(B.14) 1'f K. ([w - sJ/h)Ii([v - sJ/h)ds,

where z and y will be determined shortly. Writing out the formula for the

boundary kernel, one can actually perform the integration in closed form:

J Ks (u)K,,([v - w]/h + u)du

(B.15) = f + .+ u)(9,, + 0,,,(u + fw - vl/h)K(u)K(u + Jw - vj/h)du.

The kernel K(u) is taken to be the biweight kernel, K(u) = a(1 - u 2) 2 with

a = 15/16. Substituting this form of K into equation (B.15) and after much

simplification, one arrives at the solution

10
JK(u)K,, (u + [v - w]/h)du = a2 1 + +)fpi=O +

where

bo = a0 d,

bl = aid + aoe,

b2 = a2 d + ale + aof,

63 = a3d + a 2e + alf,

b4 = a4 d + a 3e + a2 f,

b5 = a5d + a4e + a3f,

b6 = a6d + a5 e + a4 f,
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b7 = a7d + a6e + as5 f,

b8 = a8d + a7e + a6f,

bg = abe + a7f,

blo= agf,

a 0 = 1 - 2c 2 + c 4,

a, = 4c(c 2 
- 1),

a2 = -2(c 4 - 5C2 + 2),

a 3 = -4c(2c 2 - 3),

a4= 6 - 14c 2 + c4

as = 4c(c 2 - 3),

a6 = 2(3c 2 
- 2),

a7 = 4c,

a 8 = 1,

c =(v - w)/h,

d = e, + 030,c,

e 6 8,08 + 0*4?, + 0 808'c,
f =0808's.

The relation of z and y of equation (B.14) and p and q of equation (B.15) is

w- Y

q= h

q h

The limits x and y need to be determined so that

Ks([w - ul/h)Ks,([v - uj/h)

is non-zero a.e. over this range so that the formulas for the boundary kernel

employed to arrive at (B.15) are valid. Recall that the support of the left-hand

boundary kernel is (-1,s] and the right-hand boundary kernel is [-s,11. The

integrand will be non-zero outside these intervals so it is very important to limit
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the range of integration. The limits are given for the various cases below. Assume

without loss of generality that w < v.

Case 1: O<w <handO<v<h. Takex=Oandy=w+hwhich gives

p = -1 and q = w/h.

Case 2: 0<w<handh<v<1-h.

Case 2a: w + h < v - h means the integral is zero.

Case 2b: w + h > v - h. Take z = v - h and y = w + h which gives

p = -land q = 1- c.

Case 3: 0< w<h and 1-h<v< 1.

Case 3a: w + h < v - h implies the integral is zero.

Case3b: w+h > v-h. Takez=v-h andy = w+hwhichgives

p= -land q =l-c.

Case4: h<w<l-handh<v<l-h.

Case 4a: w + h < v - h implies the integral is zero.

Case4b: w +h > v-h. Takez= v-h andy =w + h which gives

p=-land q= 1-c.

Case5: h<w<l-handl-h<v<l.

Case 5a: w + h < v - h implies the integral is zero.

Case 5b: w + h > v - h. Take z = v - h and y = w + h which gives

p = -l and q = 1 - c.

Case 6: 1-h< w< land 1-h<v< 1. Takez=v-handy= 1 which

gives p = (w - 1)/h and q = 1 - c.

After implementing these formulas, one finds Ch(w, v) by rewriting it as

Ch(, v) = -[- Ks([ - u]/h)K,([v - uI/h)du] - 1.

Proof of Lemma 3.3.1

To prove that Ch(w, v) is continuous on the unit square, it must be shown that

for all e > 0 there exists a 6 > 0 such that

(B.16) Ich(W1,v,) - Ch(w, v)I < ,,
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if I(wi,vi) - (w,v)II < 6 where II is the Euclidean norm. Equation (B.16)

can be rewritten as

Ch~l, 1)- Ch * v)I

= ICh(wl,v) - Ch(,wl,v) + Ch(wl,,v) - Ch(w,v)

(B.17) 5 sup 1 Ks(t)l f lK(JVi - U]/h) - K([v - u1Ih) du

+ sup1 Ks(t)I f 'IK([wl - U1/h) - K([w - uI/h) du.
9, t I T -

With a proof completely analogous to that of Lemma 3.2.1, one can show that

up jKw - u]/h) - K(fw - tl/h)Jdu < e(6),
IWI-Wl<6I

where 0(6) - 0 as 6 --+ 0. This implies that (B.17) can be made smaller than e

if 6 is taken sufficiently small and

jW - w1 < 6,

Iv,- VI < 6.

Note that II(wl,vj) - (w,v)I < 6 implies these last two conditions. It must also

be shown that

supIKs(t)l < oo,
St

for any of these bounds to be meaningful. By definition,

Ks(t) = (Os + ,st)K(t).

For the supremum to be infinite, it is clear that either

sup I8, I = 00

or

sup I,1 = 00,
8
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since K(t) is bounded and the set over which the supremum is taken with respect

to t is also bounded. Without loss of generality, consider the left hand boundary

kernel. It is constructed to satisfy

fKa(t)dt = 1,

for all s E [0, 1]. Hence the supremum of 0. and 0, must be bounded.

It has now been shown that Ch(w, v) is continuous on the unit square. In

fact, Ch(w,v) is uniformly continuous on the unit square. Continuity implies

that Ch(w, v) is bounded and integrable. Hence both integrals given in parts (ii)

and (iii) of the lemma are finite.

Proof of Lemma 3.3.2

The results of Lemma 3.3.2 will be proved in reverse order. Since Ch(w, v) is

continuous on the unit square, the series

00

Ch(w,v) =

j=1

converges absolutely and uniformly by Mercer's theorem [see Shorack and Wellner

(1986), page 208]. Proposition (ii) of Lemma 3.3.2 is a direct consequence of

Lemma 3.3.1 and Proposition 2 of Shorack and Wellner, page 208. Proposition

(i) of Lemma 3.3.2 is that the eigenfunctions, '(w), are continuous on [0, 1].

Start with the series representation given by Mercer's theorem. Since this series

converges absolutely, it must be that

(B.18) < 00,

for all w, v E [0, 1]. Since 04(w)is an eigenfunction, by assumption 04(w) 0 0.

Let w be such that 04(w) j 0. Combining this result with (B.18) implies the

existence of Mi such that

for al v < M[ < 10,

for all V E [0, 1].



220

The defining equation for 04(w) and 0h leads to

f f'[Ch (Vw') -Ch (v, w) k(v) dt3

f ' Ch(v, W') - Ch(v, w) I 0(v)dv
3

1j Ij(v)dv, if Iw'-wl<6,
3

<em

Thus 04(w) is continuous on [0, 1]. Thee appears because Ch(w,v) is uniformly

continuous on the unit square.

Proof of Lemma 3.3.3

The result of Lemma 3.3.3 was outlined in the text. It remains only to specify

some of the details. Choose (bj,...,bM) E RM and define
M

XN = ib, ZN

i=1 S

Z1
= fR(w)KDPN,h(w)dw,

where
M

R(w) = ZbiO'(w).
s=1

Clearly R(w) is continuous since each 04(w) is. The functional

f(G) = j R(w)C(w)dw

is continuous on (C[O, 1,p) and measurable (B, Cp) (see Ruymgaart (1988), pages

40 ff.). By Theorem 3.11 of Ruymgaart (1988), one can conclude that

dXN --*X
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as m A n -- oo, where X is given by

X = R(w)KDPh(w)dw

1M

[ZbjO4(w)] KDPh(w)dw
f=l

M
=Zbif O,(w)KDPh(w)dw'

i=1

since integrals are linear operators. This last equality is clearly M biZ i . It

has now been shown that for (bl,..., bM) E IRM one has

M MSbi ZNi di E bi Zi"

/=1 i=1

It may be concluded by the Crame'r-Wold device that

(ZN1,...,ZNM) d (Z1,...,ZM).

Proof of Lemma 3.3.4

Let g(w) be any element in S h . The condition for Ch(w,v) to be positive semi-

definite is that there exist a g E SZ such that

fo fo g(w)Ch(w,v)g(v)dwdv = 0.

The integral can be rewritten in the following manner:

f 1 og(w)Ch(w, v)g(v)dwdv

= f f g(w) f 101K,([w - ts]/h)

- Ks,([v - u]/h)du - 1]g(v)dwdv

(B.19) = j 1 f g(w)K([w - ul/h)dw

f~ g(v)Ki([v - uI/h)dv] du - [fg(t)dt]2
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where a = a(w, h) and a' = ,(v, h). Let

7(u) = 1 1 g(w)Ks([w - ullh)dw,

and note that

f1 r(u)du = 101 g(t)dt.

Substituting r(u) into equation (B.19), one obtains

J j g(w)Ch(W,V)g(v)dwdv

= 1 r(U) 2du _ 112

= f 'fr(u) - U] 2du,

where

I jr(u)du.

If r(u) c then

S[r(u) -1]2du -- - c]2 du - .

Conversely, if

(B.20) J [r(u) - isl2du - 0

then

(B.21) r(u) = c.

This follows since the integrand in (B.20) is non-negative and r(u) is continuous.

Putting these results together one finds the following two results.

1. If there exists a g E Sh, g $ 0, such that r(u) = c then (B.20) holds and

thus

(B.22) j fog(w)Ch(w, v)g(v)dwdv = 0.
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2. If there exists g E h , g $ 0, such that (B.22) holds then (B.20) also holds

and hence r(u) = c.

Thus there exists a g E Sh , g 0 0, such that (B.22) holds if and only if there

exists a gE Sh , g 0 0 such that (B.21) holds.

It may be concluded that the condition that there exist a g E Sh such that

1foK.(w - u]/h)g(w)dw = c, VuE[0,11h

is equivalent to the condition for positive semi-definiteness.

Proof of Lemma 3.3.5

The subset chi-square test depends on the data only through the components.

The components are invariant when centered by the small sample mean. Hence,

the chi-square test is invariant.

Proof of Lemma 3.3.6

The invariance of the orthogonal series estimator also results from the invariance

of the components. Lemma 3.3.5 states that the set of components selected by

the subset chi-square test will be the same irrespective of which sample is called

the first. This result is due to the invariance of the subset chi-square test applied
to the components. Let dhM be the orthogonal series estimate and U/j be the

unnormalized components when the population with distribution function F is

termed the first sample. Let dM be the orthogonal series estimate and VAj be

the unnormalized components when the population with distribution function

G is termed the first sample. Let X(N) = m/N be the proportion of the total

sample represented by the population with distribution function F.

The claim is that

A(N)dh,M(W) + (1 - X(N))hM(w) = 1

for all w E 10, 11. Let the normalized components be UN i and VNI. They are
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given by

UNS= NA(N) U*

Nl Oh - I\ (N. )

and

VN, N(I - A(N)) .

Nn

V me V~i-
=

The invariance condition for the components is UNi = -VNi. In terms of U]j

and VAj this is

(B.23) mU~j = -nVk,.

Let S represent the set of components in the models and write out the invariance

condition:

A(N)dMw)+( A(N)) hM(w)

+ n [1 : U~io] )
N ES iES

=1+~ F(mUj + nV~~)k(w)
iES

=1,

in light of equation (B.23). Thus, the orthogonal series estimator is invariant.

Proof of Theorem 4.2.1

The proof of this theorem will make heavy use of the theorems and techniques of

Pyke and Shorack (1968). In fact, the weak convergence will be shown for their

process. Since the process CDON is asymptotically equivalent to their process

(see Section 2), it will inherit the result.
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It must be shown that

ILON(t) - Lo(t) - (1 - Xo)-l/ 2A(t)jj
< ILN(t) - Lo(t)jj + I1v/-N[DFN~t tj (I A0)-1/2A(t)jj P 0,

as m A n -- oo, where

ION(t) = VI[FmQO(t) -t],

LN(t) = V [FmQH(t) -D

L o (t) = AOB(t)

H(N)(z) = A(N)F(x) + (1 - A(N))G(n)(X),
H

Q(N)(t) = HCN1)(t ) ,

DN) = FQ )(t),

B(t) is a Brownian bridge and denotes the sup-norm. By assumption, one

has the result

IIv11iN[DN)(t) - t] - (1 - Ao)- 2A(t)I - 0,

as m A n --+ oo.

Start by giving an alternate representation of the Pyke-Shorack process, LN(t),

in the Skorohod space

LN(t) = (1 A(N)){ 1 [ N

A (N)
) B N (t)mF j )

1 AN(t)Vn[G(n)Q (t) } + 6 N(t)
VII-A)(N)

where
6fN(t) = AN(t)-i[HNQH(t) - t],

AN(t) = [DF.)(Ut) - DFN)(t)](ut - t),

ut = H(N)QN(t),
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A\(N)AN(t) + (I - A(N))BN(t) = 1,

IAN(t)I _ I/A(N),

IBN(t)I !5 /(1-

16NI 5/(,(N)V),
DoN~t = H )ii (t),
DN)(t) = n)(

Um(t) = v-l[FmQF (t) ti,

NOt= Vn--1GnQ .)(t) -

It will be shown that supo<t<l LN(t) - Lo(t) - 0 as m An -+ o. The process

Lo is the limiting process of LN under Ho.

The proof divides the interval [0, 1] into three subintervals: [0, 1/N], [1/N, 1 -

1/N], and [1 - 1/N, 1]. For the first and last intervals, the goal is to show that

sup ILN(t)I -- + 0,

sup ILo(t)I R 0,

as m A n -- 00. Start by examining the LN(t) on the first interval:

sup ILN(t)I _ sup - + D t
O<t<1/N 0<t<1/N m

since

LN(t) = VN[FmQH(t) - D t

and

FmQH (t ) <5 1 on0< 1
-- M1 N*

Bound D )(t) on [0, 1/N] in the following manner:

A(N)D(N)(t) + (1 - A(N))DO()(t) = t

for 0 < t < 1, so

A(N)DN)(t) = t - (1 - A(N))D(N) t
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and
t 1

(N, A(N) - NA(N)

on [0, 1/N]. Hence

0 < sup ILN(t)l_ 1VN + 1
-Ot<l/N m vNA(N)

Similarly, it can be shown that

sup ILN(t)i - O.
1-1/N<t<l

Equation (2.5) of Aly, Cs6rg6, and Horvith (1987) gives

lim P[ sup IB(t)l> b] = 0,
e-*0+ o<t<e

lim P[ sup IB(t)l ! 6] = 0,
f-0+ 1-e<t<1

for all 6 > 0. Let E = 1/N and choose 6 > 0, then

P[ sup ILN(t) - Lo(t)I > 6]
o<t< i/N

< P[ sup ILN(t)I + sup ILo(t)l > 6]
O<t<1/N O<t</N

_ P[ sup LNW(t)I _ 6/2] + P[ sup ILo(t)l > 6/2]
O<t5/N O<t<l/N

0 as m A n --+ oo.

The procedure for the interval [1 - 1/N, 1] is perfectly analogous. This leaves the

interval [1/N, 1 - 1/N]. The limiting process, Lo(t), can be represented by

Lo(t) = (1- AO) [1 oUo(t) - V, VO (t)] ,

where Uo(t) and Vo(t) are independent Brownian bridges and are the limiting

processes of Umn(t) and Vn(t), respectively. Consider the following inequality:

sup jLN(t)- Lo(t)l
1/N<t<1-1/N
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= supI(1 - X(N)) BNCt)Um[QHNC'I

SI AN(t)V[G,,Q(t) + 6N(t)}

/O - I (N)
-(1 - Ao){ =Uo( ) - 1 1 1t

R1N + R2N + R3N + R4N + RSN,

where
R "P= up [-A(N) I-A-o BN(t) m[FQ(t)]I,

VA(N) IT

R2N ~ = AU O [BN(t)Unj[FQH(t)] - U0(t)],

R3N = SUP I 6N(t),

R4N = sup[VY-A- 1- A(N)AN(t)Vn[G(n)QN(t)]I,

RSN = SUPt VT-XA AN (t) Vn G(l)Q0(t)) - V. (t)]

The suprema are taken over the range 1/N < t < 1 - 1/N. Henceforth, if

there is no range indicated on a supremum, it is assumed to be over the interval

[1/N, 1 - 1/N]. Each of the terms RIN through R5N must be shown to tend to

zero in probability as mAn --- oo. Terms R1N and R4N tend to zero in probability

because A(N) - A0 , Urn and Vn are each bounded in probability (their suprema

actually converge in distribution to proper random variables), and AN(t) and

BN(t) are bounded (see above). Now examine term R2N in detail:

sup BN(t)Um[FQH(t)] - Uo(t)I

SSIN + S2N + S3N,

where

SIN = sup JBN(t)- JUm[FQH(t)] Uo[FQH )(t)]I,

S2N = sup IBN(t)I - Uo[FQIHN)(t)] - Uo(t)j,

S3N = sup IUo(t)I IBJN(t) - 11.
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The term BN(t) is bounded as given above. Theorem 2.2 of Pyke and Shorack

states that

sup UmfFQH(t)l - U, Q )0

as m A n - oo uniformly in all continuous F, G and 0 < A(N) < 1. So it matters

not that G(x) = G(,.) (z). Thus term SiN converges in probability to zero.

Since IIFQI)(t) - tl -- 0 (by Poiya's theorem) and U, is uniformly continuous

almost surely, the term S2N converges in probability to zero.

The term S3N is all that remains. Rewrite BN(t) as

BN(t) = DG)IH(N)QH(t)I - DG )(t)
H(N)QH(t) 

- t

The mean value theorem implies the existence, for each t E [1/N, 1 - 1/N] of

8 = SN(t) between t and H(N)QH(t) such that

BN,(t)= ,(,

g(' ) [Q)

N)[N)(s)+ (1 - A(N))g(n) tQ(N)()I

1
(B.24) 1

1(- A(N) + A(N)f(u)/g(n)(u ) '

where u -- Q~()(8) = Q(N)1sN(t)] and is between QH )(t) and QH(t). Define

the event EN to be

EN =aN _ QH(t) bN for 11N <t < 1 - 1/N}

and E$, to be its complement. By assumption

(B.25) P[ENI- 1 as m A n -- oo.

For 6 > 0:

P[sup IBN(t) - 11 > 6]

(B.26) = P[sup IBN(t) - 11 > 6IEN]" P[ENI

+P[sup IBN(t) - 11 > 6Ey] . P[Ey .
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Consider sup IBN(t) - 11 given that EN holds. Using (B.24) one can rewrite

IBN(t)- l as

IBN(t)- 11
A(N)t1 - f )g(n))]

I - A(N) + A(Nf(u)/g(f (u)

Recall that u = uN(t) is between Q(N) (t) and QH(t) so that

eN < UN&(t) -.5 f for 1/N < t < 1 - 1/N,

where •N and fN are as defined in the statement of Theorem 4.2.1. Hence, one

has

sup BN(t) - 1i

< A(N) suPeNv5zqNfv I1 - f( )/9(n)() 0

- 1 - A(N) + A(N) infe,:<z 5f f()/g(n)(z)

as m A n - oo since by assumption,

sup f(z)/g(n)(X) - 1,

and

inf f)/g()() -- ,

as m A n --- oo. Hence, it has been shown that

P[ sup IB(t) - 11 > 61EN] - o.
1IN:5t< 1-11N

Returning to equation (B.26), it is concluded that

P[ sup IBN(t) - 11 > 61 -- 0
1/N! t 1- 1/N

in light of (B.25) and the above result. Since supo<t<_l 1Uo(t)l is a proper random

variable (in fact, it is the limiting distribution of the KS statistic), term S3N tends

to zero in probability. Term R5N behaves in an analogous fashion. Hence it has

been proved that

IILON(t) - Lo(t) - (1 - A0)-/ 2A(t)II -
p 0,
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in the Skorohod construction and so weak convergence results for the original

process.

Proof of Lemma 4.2.1

Lemma 4.2.1 gives the uniform convergence of v/-[D(N)(u) - u] to A(u) for

location and scale alternatives. The complete proof will be given for location

alternatives. Changes necessary for scale alternatives will be indicated at the

end. Recall, by assumption, that A(N) = A0 , hence D(N)(u) = D(")(u). The

n enters because of the local alternative, m does not enter. Start the proof by

showing some useful facts:

V'n[D()(u) - u] = v/l-[FQ )(u) - u]

(n(= - U

= v-FQ,)(u)- H(.) (u) QH)(u) -

(B.27) = (1 - Ao)-f (c),

where c =cn(u) is between Q)((u) and Qt')(u) - -y/,fi-. Next it will be shown

that Q(H)(u) . QF (u) on [6, 1 - 6] for each 0 < 6 < 1/2. Start with the identity

u H(n) (t) (u)

,o- AoFQ)~(u) + (1 - Ao)F[Qi(u) -

Differentiate this last identity with respect to n:

0 = )O H d Q

+ (1 AO) f[Q (u) - "/vn(dQ)(u) +-(2n')

The resulting formula for (dldn)QH)(u) is

dH [(1 - Ao)-y/(2n'"')] f[QH) (u) - /vfn

dn n) U) -,Of QH)(u) + (1 - Ao)f [QH)(u) _ -/V ]<0

Thus QH)(u) I QF(u) for each u E [6,1 - 6] for 0 < b < 1/2. Since QF(u) is

continuous on 16, 1-6], conclude by Dini's theorem that QH converges uniformly

to QF(u) on 1b, 1 - 6].
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The preliminaries are now taken care of and the proof of the lemma may begin.

Choose 6 such that 0 < 6 < 1/2 and break the interval [0, 11 into [0, 61, [6, 1 - 61,

and [I - 6, 1]. Now write

sup Ivln-[((U) - UI -A U0<u< 1

:5 A1,(6) + A2U() + A 3n(6) + A4 .(6) + A5 n(b),

where

A,.(b)= SUP j,/[D(.)(U)-1 I,

A 2n(6) = sup IA(uI,
0<t<6

A 3 .() = sup I v[Dcn(u) - U] - A
6_5u:51-6'

AsW(6 = SUP IAMuI.

Clearly,
5

lim sup Iv/n-D(n)(u) -uI -A(u)I < lim A n(M In--*oo 0<u<l' n--+oo
• i=1

for all 6 > 0 and so
5

lim sup I4[D(n)(U) - I] - A(U) - lim lim Ain(6).
n - O<u< 6"-+o+ n-oo

The strategy will be to evaluate the limits on the right of this last inequality.

Start with Ain(6):

sup I/n-[()s) - U11t = Osup6(1 - O-f()1O~u<0<u<6

from (B.27), and so

s iup6l-[D(n)(u) - u]J < sup (1- O)_Yf Q(H) (U),
_ _ 0<u<6
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since c - cN(u) < QH (u) and fQH (u) - 0 as u -- 0+ .Then

sup I Vn[D()(u) - u] 1_ sup (1 - \o)"ff QH) (u),
O<u< O<u<6

since Qf(s) Q(n)(u) and fQH)(u) -+ 0 as u --+ 0+ .Thus,

Slim Ivf[D(n)(U) - U1I < nlir lir (1 - )_) sup fQH)(u)
6---o +  n----o 6--+o+  n.-oo O<u<b U

lim (1 - A0) sup fQ1)(u) = 0,6--+0+ 0<u<6

since limu_.o+ fQF(u) = 0 and f is continuous.

For A2n one has

lir lir sup IA(u) = 0,b--o + n--*oo0<U<5b

since A is continuous and A(0) = 0.

For AU,, one has by equation (B.27) that

sup /- [D(n)(u)- u]- A(u)j = sup (1 - A0)_[f(c) - fQF(u)].
<u<1-6 <u<1-6

Expand f(c) about QF(u) to arrive at

sup v/n[D(n)(u) - u] - h(u) = sup (1- Ao)-yf'(d)[c-QF(u)]
6<u<1-6 " 6<u<1-6

where d = dn(u) is between c = cn(u) and QF(u). One can write

Ic - QF(u) <_ max( QF (U) - QH) 1,)IQF(u) - _ )" - 1

<_ IQF(U) -QH-() /

since c is between Q and QfH) - -y/v/. Substituting this result in the above

formula yields

sup ,/n[D( )(u) ] - A()

6<u<1-6

< sup (1 - A0)-yf'(d)j. [IQF(u) - QH )(u)I + - 0
6<u<1-(
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as n - oo for all 0 < 6 < 1/2 since f' is bounded and QH converges uniformly

to QF on all intervals of this form. Hence

lim lim sup ,v'n[Dn)(u)-u]-A(u)
.-.o+ n--oo6 <u<l_6  [ .

= lim 0=0.6-0+

The terms A4n and A5h behave the same as Ain and A 2n, respectively.

The procedure for scale alternatives is very similar. In this case, one finds that

d H (1 - Ao)'fi /(1 + " lv/- ]Q)O(u)/[2n'S(l + "y,/ )'1

(u= - A~f Qn(u) + (1 - Io)f[Q')(U)/(1 + /-1 )/(1 +/

which has at most one sign change so that the convergence is still uniform on

[6, 1 - 6]. In this case, the mean value theorem gives

V/-[D(n)(U) - U] = (( - Ao/f(c)Q )(u)( + -1 / V),

where c = cn(u) is between Q(n)(u) and QH)(u)/(1 + -/v'n). The term

y/-[D(n}(u) - U]- A() can be written as

(1 - A~o)-[f(c)[QHf)(u) - QF(u)l/(l + _1Y/i/)

+ QF(u)[f(c) - IQF(u)]1(1 + "Y/Vn)

+ fQF(u)QF(u)[1/(1 + /Vi)- I].

The intervals [0,61 and [1 -6, 11 are handled as before. The interval [6, 1 -6] uses

the result just above and the uniform convergence of Q[n) to QF on [6,1 - 6].

Hence, the convergence of v/n[D(n)(u) - U] to A(u) is uniform for both location

and scale alternatives satisfying the conditions of Lemma 4.2.1.

Proof of Theorem 4.2.2

Define

g(t,z) = cos(tz)Re[O(t)] + sin(tz)Im[O(t)],

M N

iN,M(z) = ;- Ljg(-M + 2M(j- 1)IN, x),
j=1
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k l la 1k
FN,M(ZTk) [fN,Mzj) - fN,M(xl) - -f,~kJ

rk
forzk= , k=0,...,[N/21,

FN,M(X) = ffN,M(t)dt.

The function PN,M(b) is defined by linear interpolation if b cannot be written in

the form 7rk/M, for some integer k between 0 and [N/2].

The proof that FN,M(b) - F(b) will be divided into two parts. First rewrite

FN,M(b) - F(b) as

FPN,M(b) - F(b) =[,PN,M(bI - FN,M(b)] + [FN,M(b) - F(b)j.

Each of the two terms will be shown to tend to zero.

Define xb to be the nearest z less than or equal to b such that

7rk
Xb = -MI

for some integer k, 0 < k < [N/21. Let za be the next greatest x of this form:

k+1
aKM

Clearly Xa I b and x b T b as M,N -+ oo. Since FN,M(xb) is approximat-

ing FN,M(zb) by the trapezoidal rule, one has the bound (see Press, Flannery,

Teukolsky, and Vetterling (1986), page 1051

FPN,M(--b) - FN,M(b)l

<k'1 N, M (b) - FN, M (xb) + IFN,M (X6) - FN, M M)
d2  z IO(bIM2)+ IfN,M(b)(zb b)l + o(x b  b),(B.28) _ sup -2IM, N'I''-

0<z<b ad

since k - bM/7r for large M and the trapezoidal bound is

O(a3/n2) sup If"(x),
O<z<a
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when integrating f(z) over the range [0, a] with n grid points. Young's form

of Taylor's theorem is used to derive the last two terms of (B.28). The term

fN,M(b) can be seen to converge to f(b) by the results below and so

!fN,M(b)(xb - b)[ -* 0

as N, M --+ co and M/N - 0. The same result holds for FN,M(xa). The second

derivative with respect to z of IN,M(z) can be bounded:

d2 M N 82

S -1 j_ lJt Re[0(tj)J +-  Ejt Im[0(tj)]j ]N= Nj=

where t= -M + 2(j - 1)M/N. The expression in the brackets is converging to

L .t2Re[0(t)]Idt + fL' k2m[,(t)jdt2

as M, N --+ co, and MIN --* 0 and so is bounded since these integrals are by

assumption. One may conclude that

FN,M(xa) - FN,M(b) -+ 0,

FNM(xb) - FNM(b) -- 1 0,

as M, N --+ co and M/N -+ 0 because the differences are O(b/M 2 ). Since

FPN,M(b) is between PrN,M(xb) and FN,M(xa), it may be concluded that

FPN,M(b) - FN,M(b) -+ 0,

as N, M -+ co and MIN -+ 0.

Next it will be shown that FN,M(b) - F(b) is tending to zero. Write

FN,M(b) - F(b) = [N,M(x)- f(x)]dx

= fbtfNM(x) - fM(x)]dx + [fM(x) - f(x)]dx,
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where

fm (X) f Mg(t, x)dt.

Examine these terms separately:

fb[INM(x) - fM(.)Idxl j. fw!,M(x) - fM(x)ldx

< b sup IfN,M(x)- fM(x)
O<z<bsu a 2  M 3

_, Sup IW (tlz)IW2 N21

tOO,x[O,b-

since M 3/N 2 --- 0 and (82/ct 2)g(t,x) is bounded by assumption. The point

t = 0 is not included since it is always the endpoint of a sub-interval for N even.

The points at which the derivative of g(t, x) is evaluated are in the interior of

these sub-intervals.

Now handle the next term:

[f () - f (x)d= f Lg(t,z)dtdZ - f f(z)dz

= g (t, z)dxdt - f(z)dz.

Billingsley (1986), page 356, proves that

1f fobg(t,z)dzdt-- F(b) as M -. oo.

Thus

ob[fM(z) - f(z)dz 0 as M - oo.

Thus the result FNM(b) - F(b) -. 0 has been achieved.

Proof of Lemma 4.2.2

First find the moment generating function of Y = (Z + d)'(Z + d), where

Z - NQ(0,V) and V = diag(vj,...,vQ). Let my(t) be the moment generating
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function. Then

my (t IR (2wr)Q/2(II v)1/2 exp~t(z + d)'(z + d)] expj-z'V-lz/2]dz

JBQ (27r)Q/ 2 (Hlv,) 1/2

ex* I - 2(V-' - 2tIf-ltdJ'(V-' - 2tI)[z - 2v1- 2tl)l'td/2]

exp[td'd + 2t2 d(V1 - 2tI)f1d1

(H v 1) 1 /2 exp [t + 2t2 (v 1 - 2tIf'Ijd]

1H V 1i)( 1/2]

IRQ (27r)Q/2 V' -t/ ex [- --a) 2t) (z -a)/1d

(2tj'/ "'1/

Let

A V- 1 -2t1 = diag(l/vj - 2t),

which implies that

(V- 1 - 2tI)Y.1' 1/ Q1 /

(TIv) 2  11 j(1)2t

and

d'(t + 2t2 A'd-~ .tv)

Formally, by substituting t =it, one finds the characteristic function to be

.Y (t) = r[ (1 - 2,tv,) 1 ePdsN1-2t,]

Identifying v3 = 0, and d, = \l9jbj yields the resuit.
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