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I. STATEMENT OF THE PROBLEM STUDIED

In simple theories of penetration, the material properties of target and
penetrator are often represented only by constant characteristic stresses, as
for example in Tate [1]. Although this approach leads to results that are
qualitatively correct, it can be difficult to use quantitatively. Some prob-
lems have to do with actual deformations in target and penetrator including
lateral motion, and others are associated with the fact that the plastic flow
stress is determined only by the deviatoric components of stress whereas the
spherical or pressure component, which may be quite large ahead of the pene-
trator and contributes significantly to the retardation of the penetrator, is
unrelated to flow stress (e.g. see Wright [2]). Wright [2], in his survey
article on long rod penetrators, ellucidated vividly some of the problems with
the existing penetration models. In another extensive review article, Backman
and Goldsmith [3] discussed superbly the work done in penetration mechanics
until 1977. Jonas and Zukas [4] reviewed various analytical methods for the
study of kinetic energy projectile-armor interaction at ordance velocities and
placed particular emphasis on three-dimensional numerical simulation of perfo-
ration. Anderson and Bodner [5] have recently reviewed the status of the
ballistic impact modeling. A penetration model that is not too difficult to
use has been proposed by Ravid and Bodner [6]. They studied the penetration
problem by presuming a kinematically admissible flow field in the target and
found the unknown parameters by utilizing an upper bound theorem of plasticity
modified to include dynamics effects.

In an attempt to shed some light on questions raised by Wright [2], Batra
and Wright [7] recently studied an idealized penetration problem that simu-
lates the following situation. Suppose that the penetrator is in the interme-
diate stages of penetration so that the active target/penetrator interface is

at least one or two penetrator diameters away from either target face, and the
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remaining penetrator is much longer than several diameters and is still trav-
eling at a speed close to its striking velocity. This situation has been
idealized as follows. It is assumed that the rod is semi-infinite in length,
the target is infinite with a semi-infinite hole, the rate of penetration and
all flow fields are steady as seen from the nose of the penetrator, and that
no shear stress can be transmitted across the target/penetrator interface.
This last assumption is justified on the grounds that a thin layer of material
at the interface either melts or is severely degraded by adiabatic shear.
These idealizations maké it possible to decompose the penetration problem into
two parts in which either a rigid rod penetrates a deformable target or a
deformable rod is upset at the bottom of a hole in a rigid target. Of course,
in the combined case the contour of the hole is unknown, but if it can be
chosen so that normal tractions match in the two cases along the entire bound-
ary between penetrator and target, then the complete solution is known irres-
pective of the relative motion at the boundary. Even without matching the
normal tractions, it would seem that valuable qualitative information about
the flow field and distribution of stresses can be gained if the chosen con-
tour is reasonably close to that found in experiments.

We have continued the work initiated by Batra and Wright [7], and have
studied the axisymmetric thermomechanical steady state deformations of a
viscoplastic target being penetrated by a rigid cylindrical penetrator, and of
a viscoplastic rod striking a known hemispherical rigid cavity. The effects
of heat generated due to plastic deformations, compressibility of the mate-
rial, work-hardening, strain-rate hardening, thermal softening, and the shape
of the penetrator nose in the former case and the cavity shape for the latter
problem have been investigated.

Another important and still totally unresolved pfoblem is that of select-

ing the most appropriate constitutive relation for the material of the body.
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The constitutive relation employed should adequately model the material
response over the range of deformations expected to occur in the problem.
However, the computed values of the deformation fields generally depend
strongly upon the constitutive assumptions made. A way out of this dilemma is
to choose a constitutive relation, solve the problem, check if the constitu-
tive assumptions are valid over the range of computed deformations, and, if
necessary, resolve the problem with the modified constitutive relation.

In the last few years, many new theories {8-10] of large deformation
elasto-plasticity have been proposed. These theories make different kinematic
assumptions thus necessitating the hypothesizing of constitutive relations for
variables which may not be simply related with each other. In an attempt to
determine which of these theories is the most appropriate for the analysis of
penetration problems; we find the histories of the effective stress, second
invariant of the strain-rate tensor, the temperature and the spin at a visco-
plastic target particle being penetrated by a long rigid cylindrical penetra-
tor.

An important failure mechanism in penetration mechanics is the develop-
ment of adiabatic shear bands at or near the target/penetrator interface. In
order to increase our understanding of the factors that enhance/retard the
initiation and growth of adiabatic shear bands, we have analyzed the dynamic
deformations of a viscoplastic block undergoing simple shearing deformations.
The material inhomogeneity or defect has been modelled by assuming an initial
non-uniform temperature distribution within the block.

Results for the aforementioned problems are summarized below.

IT. SUMMARY OF THE MOST IMPORTANT RESULTS
From the results completed under this contract, the following salient

conclusions can be drawn.
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The peak hydrostatic pressure at a material particle is nearly 12
times its yield stress in a quasistatic simple compression test.

The plastic spin at a matérial particle is of the same order of magni-
tude as the plastic strain-rate at that particle.

Severest target deformations occur near the periphery of the blunt
nose. The peak strain-rates there and in the target material ahead
of the penetrator nose periphery are approximately an order of magni-
tude higher than that at other points. Also, for all nose shapes,
strain-rates at target particles abutting the penetrator nose are very
high and drop off rapidly within a short distance. The exact thick-
ness of this layer has not yet been ascertained.

For a thermoviscoplastic rod striking a rigid cavity, peak strain-
rates occur within the rod material adjacent to the cavity wall, and
near the bottom-most point of the free surface.

The maximum temperature computed in the two problems equalled nearly
one-half of the presumed melting temperature for the deformable mate-
rial.

The presence of multiple initial imperfections delays considerably the
initiation of shear bands as compared to the case when there is only
one initial perturbation.

The consideration of dipolar effects delays the initiation of shear
bands, and inertia forces start playing a noticeable role at an

applied overall strain-rate of 5,000 s 1

BRIEF REVIEW OF THE COMPLETED WORK

In their analysis of the steady state axisymmetric deformations of a

rigid perfectly/plastic target Batra and Wright [7] found that the nondimen-

sional resisting force F acting on the hemispherical-nosed rigid cylindrical

.




penetrator is given by

F=23.903 + 0.0773 a, 1 < a <5, (1)

.where a=- pv2/a° is a nondimensional number, p is the mass density of the

o
target material, o, its yield stress, and Vo is the striking speed of the
penetrator. Wright [11] recently used this result to estimate one of the
terms in his re-examination of Tate’s theory. Wright [2] and Pidsley [12]
have pointed out that if the equation of motion for steady flow is integrated
along the central streamline, there is a contribution from transverse gra-
dients of shear stress, unlike the case for a perfect fluid. Figure 1, taken
from Batra and Wright's paper, shows the contributions from various terms and
clearly establishes that the transverse gradients of shear stress make a
significant congribution to the total and that the deviatoric component stays
constant at approximately 0.75 (compared to the theoretical exact value of
0.667) out of a total of 8.5.

Batra [13] studied the effect of the nose shape and various material
parameters on the steady-state penetration of viscoplastic targets by rigid
cylindrical penetrators. The constitutive relation for the viscoplastic
material was taken to be

o= -pl+oay(l+bI)®//3T, 21 = trD? | (2)

|

»

—t 3
/
/
/
/
/
=
_"" ]
$

OIFFERENT TEams

o
-1

!

-

T —

L

i

i

i

-

»
—r

:

ve 18 *

Figure 1. Contributioen of Various Terms in the Bernoulli
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where D is the stretching tensor, o, the yield stress in simple compression,
o t! _ Cauchy stress tensor, p the hydrostatic pressure not determined by the
deformation history of the target, and b and m are material parameters.
Figure 2 shows that the change in nose shape from hemispherical to ellipsoidal
reverses the curvature of the normal stress versus the aﬁgular position curve
from convex downwards to concave downwards. Also, as is evident from Figure
3, the axial resisting force depends strongly upon the nose shape and rather
weakly upon m and a.
When the effects of work-hardening of the target material are also con-

sidered, and the constitutive relation (2) is changed to

¥

o=-pl+o,/ (1l +DbdDH)™1+ —)" D//31 (3)

Yo
where ¥o and n are material parameters, and % is an internal variable
whose growth depends upon the plastic working, Batra [1l4] noticed that the
results are very sensitive to the finite element mesh used. This is due to
the absence of any diffusive term in the constitutive relation for .
Subsequently, Batra [15] accounted for material softening caused by the tem-

perature rise due to plastic working and modified the constitutive relation to

Y
o =-pl+ay 1 +bDM1+—)0(1 - ) D//31 (4)
Yo
i
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Figure 2. Distribution of the normal pressure on the pene-
trator nose for three different nose shapes.
Blunt nose (r,/r, = 0.2); _._._._. hemis-
pherical nose (rp/ry, = 1.0); ----- ellipsoidal
nose (r,/ro, = 2.0).
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Figure 3. Dependence of the axial force upon various fac-
tors.

where vy is the thermal softening coefficient, and # the temperature rise.

For values of material parameters that correspond to a typical steel, Batra
[153] computed the strain-rate distribution depicted in Figure 4. This agrees
qualitatively with the experimental observation of Wingrove [16] that a shear
band forms and thus very high rates occur in the target material near the
periphery of a flat-ended projectile (cf. Fig. 5). Figure 6, taken from Lin
and Batra’s {17) paper, shows the stress and strain-rate histories at three
material particles that were near the centroidal axis in the undeformed target

being penetrated by a blunt-nosed penetrator. The time is clocked from the
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the periphery of a blunt-nosed penetrator.
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(Wingrove (16])
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Figure 6. Histories of stress and strain-rate at three

material particles that were initially near the

centroidal axis.
instant these particles are on the boundary of the spatial domain ana-
lyzed. Clearly the effective stress at each of these particles attains a
maximum and then decreases slowly due to the softening caused by the temper:-
ture rise. This drop in the stress is more pronounced for a blunt nosed
penetrator as compared to that for a hemispherical nosed one. Since a shear
band usually initiates at a point after the stress there has reached the peak
value, there is more likelihood of a band being formed for a blunt-nosed
penetrator as compared to that for a hemispherical one.

Batra and Gobinath [18] showed that the compressibility of the target

material reduces the axial resisting force experienced by the penetrator by

nearly 10 percent, and the peak values of the strain-rate invariant I and the

normal stress, both of which occur at the target particle situated on the
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penetrator nose-tip, by 8.8 percent and 3.2 percent, respectively.

Batra and Lin [19] have analyzed the steady state axisymmetric deforma-
tions of a rod striking a rigid cavity. This problem is more challenging than
the one involving a deformable target and rigid penetrator because of the
presence in it of a free surface whose shape is not known a priori. When the
rod material is assumed to exhibit strain and strain-rate hardening and ther-
mal softening, the axial force experienced by the rod was found to depend
strongly upon a, the peak value of the nondimensional strain-rate invariant
was found to depend weakly upon a, and the maximum temperature equal to nearly
one-third the presumed melting temperature of the rod was found to occur. All
of the material particles abutting the cavity wall had the same temperature,
as shown in Figure 7. Figure 8 depicts the history of the effective stress at

four material particles, two of which initially are located near the centroidal

TEMPERATURE -RISE

Z~COORD. 0.00

Figure 7. Temperature distribution in a viscoplastic rod
upset at the bottom of a hemispherical cavity.
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Figure 8. Stress histories at four material particles, two
of these particles are initially near the cen-
troidal axis and the other two are near the free

surface.

axis and the other two near the free surface of the undeformed rod. The
stress history experienced by the material particles initially near the cen-
troidal axis suggests that the likelihood of a shear band being formed near
the cavity wall is quite high.

In each of the two aforementioned problems, the peak hydrostatic pressure
at a material point was found to be nearly twelve times the flow stress of the
material and the peak plastic spin to be 109-106 sec l. We note that the
constitutive relation employed neither accounted for the dependence of the

flow stress upon the hydrostatic pressure nor accorded any importance to the

plastic spin. Also, no fracture or failure criterion was included in the

model .

In problems aimed at developing an understanding of factors that

enhance/retard the initiation and growth of adiabatic shear bands in armor

-]11-




materials, we found that the consideration of dipolar effects [20] delays
significantly the initiation of adiabatic shear bands. Shear bands initiating
at neighboring defects that would grow independently in nonpolar materials
seem to merge together and develop as a single band in dipolar materials.
Inertia forces start playing a significant role {21] when the applied strain-
rate in a simple shearing problem exceeds 5,000 sec L. During the time the
deformation is localizing, the shear stress in the region of localization
collapses and, if the rate of collapse of the stress is dramatic, an unloading

elastic wave emanates [22] out of this region.
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STEADY-STATE PENETRATION OF VISCOPLASTIC TARGETS

R. C. BATRA
Depurtment of Engineening Mechanics. University of Missourr -Rolla. Rolla. MO 65401-0249. USA.

Abstract  The probiem of steady-state penetration by a semi-infinite. nigid cvlindncal penetrator
with an cihpsoidal nose into an infimite. ngid -viscoplastic target has been studied. The target
matertal 1 assumed to obey g generalized form of Von Mnses yield cnterion to account for the
strain-rate dependence. Contact between target and penetrator is assumed to be smooth. Computed
results show that the deformanon tfield adjacent 10 the nose of the penetrator s significantly
different in the cllipsosdal case from what 1t 1s when the nose i hemispherical. Results presented
graphically include the dependence of the axial resisting force on penetrator speed, the ratio of the
major to minor axes of 1ty ellipsoidal nose. and the strain-rate hardening parameter of the target
Also depicted are the normal pressure over the penetrator nose and the veloaty field in different
parts of the target

INTRODUCTION

In simple theories of penetration. the matenal properties of target and penetrator are often
represented only by constant charactenistic stresses, as for example in Tate [1]. Although
this approach leads to results that are qualitatively correct. 1t can be difficult to use
quanutatively. Some of the problems have to do with actuai deformations in target and
penetrator including lateral motion. and others are associated with the fact that the plastic
flow stress 1s determined only by the deviatonic components of stress whereas the spherical
or pressure component. which may be quite large ahead of the penetrator and contributes
significantly to the retardation of the penetrator. 1s unrelated to flow stress (e.g. see Wright
(211 In deveioping an engineering modei for penetration and perforation. Ravid and
Bodner [3] assumed simple kinematics for the flow around the penetrator and then
adjusted the unknown parameters by utilizing an upper bound theorem of plasucity
modified to include dynamic effects.

In [4]. Batra and Wright have presented a detailed numencal solution to the following
1dealized penetration problem. It was assumed that

(1) the rod is semi-infinite 1n length and that the target 1s infimite with a semi-infinite hole.

{2) the rate of penetration and all flow tields are steady as seen from the nose of the
penetrator.

(3 no shear stress can be transmitted across the target penetrator interface.

14) the deforming material was taken to be ngid perfectly plastic.

They studied the problem of the deforming target and a ngid penetrator having a circular
cvhndncal body and a4 hemisphenical nose.

Batra and Wnght's calculations revealed that strain rates in the target material that s
aheuad of the penetrator are of the order of 10° sec ' Since many materials used in such
applications have strain-rate sensitive properties, we extend herein the previous work to
viscoplastic matenals. Also. the penetrator nose 1s taken to be ellipsoidal. As 1n the previous
work [4]. the objective here s to study the ideahzed penetration problem in detail and
possibly shed some light on the aforementioned factors. The problem studied herein
simulates approximately the following situation: the penetrator 1s 1n the intermediate stages
of penetration so that the active target penetrator interface 1s at icast one or two penetrator
diameters away from either target face. and the remaining penetrator s still much longer
than several diameters and 1s still traveling at a speed close to its striking velocity. For
this case the first two assumptions stated n the second paragraph above are gquie
reasonable and are also made in this work. It should be emphasized that we have not
incorporated any fracture or faillure criterion in our work. Thus the material 15 presumed
10 undergo urhimited plastic deformations.
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FORMULATION OF THE PROBLEM
We presume that the deformations of the target appear to be independent of time to an
observer situated on the penetrator nose and moving with it at a uniform velocity e, €
being a unit vector along the direction of motion of the rigid penetrator. We use a
cylindrical co-ordinate system attached to the center of the penetrator nose, with z-axis
pointing into the target.
Equations governing the target deformations are:

divy =0, (h
ptv-grady = dive. (2)

Here v is the velocity of a target particle as seen by an observer situated on the penetrator,
¢ 15 the mass density and o is the Cauchy stress tensor. £quation (1) implies that the
deformations of the target are isochoric. and eqn (2} expresses the balance of linear
momentum. We neglect the elastic deformations of the target and assume that its matenal
obeys the following constitutive relation for o:

o= —pl+ 2ulD. 1 #0, (3
i)y = gl +h1)"’\§1, (4)
D = [gradv + (grad w)"] 2. (5

I* = LrD? 6)

In these equations. p is the hydrostatic pressure that 1s not determined by the deformation
history of the target. D is the stretching tensor. o, is the vieid stress in simple tension or
compression. parameters h and m describe the strain-rate hardening of the matenal. and
tr(D?) equals the sum of the diagonal terms of the square matrix D?. Equation (3) can
also be viewed as a constuitutive relauion for an incompressible viscous fluid with viscosity
coefficient equal to a4(1 + hN™ (2 3 1). Implicit in eqn (3) is the assumption that the Von
Mises vield surface i1s given by

trs’) = a3l + h)*™. (N
s=0+pl. (&)

The tensor s is the deviatoric stress tensor.
Ravid and Bodner [3] have used a constitutive relation similar to eqn (3) and assumed
that

2ul) = gl + Clog,, (21 { 3 3. (9)

where C 1s a material constant and is taken to be zero for strain rates lower than unity.
The constitutive relation for a Bingham sohid [5] resuits by taking m = | and interpreting
b properly. Zienkiewicz et ul. [6] took

2uth = [og + (21 7 W' (3 (0

and asserted that it corresponds te Perzvna's viscoplastic model. ln egn (10) - and n are
temperature-dependent malterial constants. Our choice [eqns(3.4)] was motivated by the
desire to generalize the power law model used by Burns [7] and Shawki er al. [8] so that
1t s also valid for quasistatic tests. This generalized constitutive model that also includes
thermal softening and struin-hardening has been used by Wright and Batra [9]. and Batra
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[10] to study adiabatic shear bands. For the simple shearing stress state. a curve fit to
Costin et al’s [11] experimental data gives b = 10* and m = 0.025 for a hard steel.

Equation (1) and equations obtained by substitution of eqns (3)-(5) into eqn (2) are the
field equations which together with suitable boundary conditions are to be solved for p
and v. Before stating the boundary conditions. we non-dimensionalize the vanables as
follows: ’

F=rrg. I=z'rg. V= v.r,. b = bryro. (1)

Here (r,-) denote the co-ordinates of a point with respect to the cylindncal co-ordinate
system chosen. and r, is the radius of the cyiindncal body of the penetrator. The field
equations written in terms of the non-dimensional variables are:

divv =0 (12)
—grad p + div {u((grad v + (grad v)"]} = x(v- grad)v. (13)
where
uih) = (1 +bl™ 2 31. (14)
and
1 = pry.do (19

1s a non-dimensional number. In writing egns (12)-(14). we have dropped the superimposed
bars and have used grad and div to denote the gradient and divergence operators in non-
dimensional co-ordinates.

For the boundary condition on the penetrator-target interface. we assume that

t(on) = 0. {16}
v'n=0. (17

where n and t are. respectively. a unit normal and a unit tangent vector on the interface.
The boundary condition (16) represents smooth contact between the penetrator and target.
This appears reaonable since a thin layer of material at the interface either melts or
is severely degraded by adiabatic shear. The boundary condition (17) represents no
interpenetration of the target material into the penetrator and vice versa. At points far
away from the penetrator we require that

,

v+e—=0 as (r-+ )= 7. 2> — 7. (18)
lon| -0 as - — 7, r=r,. (19)

where e is a unit vector along the positive z-axis. as before. That 1s. the target matenal
ahead of the penetrator nose and far away from 1t appears to approach the penetrator
with a uniform velocity and the one behind the nose but very far from 1t 1s virtually
traction free.

Note that the field eqns (13) are nonlinear in v. A solution of eqns (12) and ¢13) under
the boundary conditions (16)- (19}, if there exists one. will depend upon the rate at which
quantities in (18) and (19) decay 1o zero. Even for the prescribed rate of decay. the solution
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may not be unique. We will gloss over these rather difficult questions and seek an
approximate solution of these equations numerically. The hope is that the numerical
solution is meaningful for the physical problem at hand.

FINITE ELEMENT FORMULATION OF THE PROBLEM
We replace the infinite target region by the bounded region R shown in Fig. 1 and the
boundary conditions (18) and (19) by

6,=0. t,=0 on tne surface AB.
6,=0 1v,=0 on the axis of symmetry DE.
v, = 0.

r,=-10 on the bounding surface EFA. {20)

That the region considered is adequate is justified by the computed results presented below
which show that noticeable deformations of the target occur only in the region surrounding
the penetrator and at target particles whose distance form the penetrator is at most 2r,,.

Referring the reader to [12] for details, we simply note that a weak formulation of the
problem detined by eqns (12). (13} (16). (17) and (20} is that equations

J. Yyidivvide = 0, (21
R

J‘ pdivo)dr — j ul)ND:[grad ¢ + grad ¢)"]} dr = 1J'[(v-grad)v]‘¢dr (22)
R R R

44%

~

44,

Fig. 1. The region modeled.
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hold for every smooth functions ¢ and ¢ defined on R such that ¢, = 0 on AB and DE:
¢ = 0 on EFA and ¢-n = 0 on the target-penetrator interface BCD. Since eqns (21) and
{22) are nonlinear in v, the following iterative technique has been employed:

f Yidivv)de = 0, (23)
R

pltdiv @) de ~ J utl' ') D' [grad ¢ + (grad ¢)')} dr = 1J [(v'~ ! gradw'}- ¢ dr. 2
R R (24)

<R
where 1 is the iteration number. The solution was taken to have converged. if at each nodal
point.

wo-v T <001y,
where

R e N

COMPUTATION AND DISCUSSION OF RESULTS

The finite element code developed earlier [4] to solve the problem when the target
material is modeled as rigid-perfectly plastic and the penetrator nose ts hemispherical has
been modified to solve the present problem. It employs six-noded isoparametric triangular
elements with ¢, and r, approximated by quadratic functions over an element and p by a
linear function defined in terms of its values at the vertices of the triangular element. The
accuracy of the code was established by solving a simple problem for an incompressible
Navier- Stokes Ruid.

The computational procedure was started by taking v° = 0, u(/%).= 10* It took 19
iterations for the solution to converge when x = 2 and the nose is hemispherical. The
number of iterations required to obtain the solution decreased with an increase in the ratio
r. ro when x = 2. However, for r,;r, = 1. the number of iterations increased with z. but
for r, r, = 2 it decreased with an increase in 2. Numerical experiments with different grids
were conducted first by increasing the number of elements used and then by varying their
size but keeping the number of elements used constant. The grid with 8 rows of elements
in the axial direction, 8 uniformly spaced rows of elements in the circumferential direction
and ¥ rows behind the plane - = 0. was found to be optimum in the sense that the change
in the normal stress at the penetrator nose tip was less than 0.1% with further refinements
of the gnd. The grid used had a pattern similar to that employed in [4]. The dividing
surfaces between elements intersected the z-axis at points distant 0.475, 0.969. 1.483, 2.017,
2,573, 3151, 3.752. 4.377 from the nose tip. The z-co-ordinate of the honzontal surfaces
between rows of clements behind the - = 0 plane were —0.156, —0.335, —0.540, —0.773,
- 1041, - 1.347, —1.697. -2.09. For x =20, r,.r, =20.m=0.0. and b = 0.0, the total
axial force, detined below by egn (29), obtained by using 4. 6, 7. 12 and 13 quadrature
pomts was computed to be 2.6117, 2.6479. 2.6524. 2.6714 and 2.6720 respectively. The
results presented below have been obtained by using 4 quadrature points.

Figure 2 depicts the velocity of the target particles for x = 4 and r.r, = 2.0 as seen by
an observer sitting on the penetrator nose. It 1s apparent that significant deformations of
the target occur at points within 2r, of the penetrator boundaries. The velocity fields for
other cases studied have a similar pattern. At target points that lie to the rear of the center
of the penetrator nose. the flow quickly becomes parallel to the axis of the penetrator. In
Fig. 3 is shown the non-dimensional normal stress on the penetrator nose for different
choices of various parameters. Values of parameters for various curves in this and
subsequent figures. unless specified otherwise. are idenfified in Table 1. The change in nose
shape from hemispherical to ellipsoidal reverses the curvature of the normal stress vs #
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- Table |. Legend for figures

Curve type Parameter values
""" %220 b=10%m=003 =20
ro
:—"= 20.b = 10% m = 003. 2 = 20
0
.20 h=0m=01=20
o
- ?=20h=0_m=01=4.o
[
0 h=0m=03=20
o
- 202 h=0m=012=20

curve from convex downwards to concave downwards. This change was observed even for
r, ro = 1.1. For x = 2, the normal stress at the nose tip was essentially unchanged for
02<r,ro<24 Forr,;ro =0.2, the nose shape is essentially flat and. as expected. the
normal stress on it stays uniform and drops off rapidly near the periphery. The increase
in 2. m or b increases the normal stress on the penetrator nose.

The non-dimensional axial resisting force experienced by the penetrator as various

0a:8,6:m:0

v?uz.o:nuo

/

In:10,0:10%a 2
© | / ’O
14 !
2 sk
- :20,0:10%a:2
[
»
< ; \
6 U
—~——
i | P 1 1 -l
0005 0010 0015 0020 0025 0030
4 b {m)
1 1 1. 1 J
0S 10 15 20
(r, /15)
L e — | 1 " - 1 J
10 15 20 2% 30 35 a0 45 50
(ALFA}

Fig. 4. Dependence of axial force on various factors.

parameters are changed is plotted in Fig. 4. Equations obtained by fitting curves to the

computed data are:

F = 2.58(1 + 0.00738a — 0.000569a°).
F=26111 + 6.761m + 20.465m?>),

F = 4456(1 + 7.28m + 23.478m*).

N2
F = 13.041 [1.0 - l.3086:—“ + 0.9504(’—") —0.3432

0 To

0 < m< 003,

Tn 220, b=10% x=20.

ro

0<m<003.

o0, b

Fo

= 104,

AN P\
<—"> + 0.0477(—") ]
Fo ro

x=20.

x=4
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ro Fo. ro. \Fo

. SN2 Cog "
F= l0.857[l.0 — 10455 & ().6294(’—“) - 0.1975(’—") + 0.0246( ’—") }

’ 2 12
F=2 (n-on)sin Hcosd)[sin:ff + (r—"\) cos? H:' do. (29)

ro

¢ 1s the angle which the unit normal to the nose makes with the penetrator axis as shown
in Fig. 1. The corresponding axial force in physical units 1s given by Finria,). It is clear
from these results that changing the nose shape from hemispherical to ellipsoidal with
ra ro = 2.0 reduces the axial resisting force to one-half of its value. For a fixed r,.r, and
m, the axial force depends rather weakly upon x. This weak dependence of F upon x is
perhaps one reason why the choice of constant target resistance i1n simpie theory of Tate
[1] gives good qualitative results. Even though the coefficient of m* in eqns (25} and (26)
is nearly 3 times that of m. the dependence of the axial force F upon the strain-rate
hardening coefficient m 1s essentially hnear. It is so because the values of m for typical
steels are much smaller than one. This linear dependence of F upon m becomes transparent
from the plots of Fig. 4.

Computed results indicate that for | < x <5, r, r, = 2.0. h = m = 0. the hydrostatic
pressure at the nose tip increases essentially linearly from 5.6 to 8.2 and the normal
compressive stress from 6.22 to 8.84. [t is apparent that the hydrostatic pressure contributes
signtficantly to the values of o, and o,,. Figure 5 shows that the principal stress component
—a,, along the axis in front of the penetrator falls off rapidly with the distance. The
stresses at points situated more than 3r, from the nose tip cannot be accurately determined
since the velocity gradients there are extremely small. The values of #,, at points on the
centerhine which are at a distance of 3r, and more from the nose tip equal essentially the
hydrostatic pressure.

In Fig. 5 1s aiso plotted the variation of the strain-rate measure I along the axial line.
These nondimensional values need to be multiplied by v, -r,. which typically equals 10°
to arrive at the corresponding dimensional effective strain-rate measure /. Thus strain-
rates of the order of 2 x 10%sec” ' occur at points in the vicinity of the penetrator nose.
On the axial line. peak values of [ are higher near the nose tip for r,.ro = 2.0 as compared
with those for lower values of r, r,. However. near the periphery of the penetrator nose
and its cylindrical body. the strain-rate measure / for the blunt nose increases by an order
of magnitude whereas that for the ellipsoidal and hemispherical nose, it drops by a factor
of 10. This is shown in Fig. 6 wherein is also plotted the nondimensional velocity. tangential
to the penetrator nose. {or different values of various parameters. Again the nose shape is
the myjor influencing factor. However. ¢, at points on the centerline ahead of the penetrator
nose is not affected that much by the nose shape except for r, r, = 0.2. The decay rate of

r . . .

|, + el for I £ © < 2.4 is nearly constant but is appreciably less for r, r, = 0.2. The nose
Ty

shape does change rather noticeably the relative =-velocity of points on the lines = = 0 and

= = 2.09. This follows from the results depicted in Figs 7 and 8 which also show that more

of the target matenal at the sides of the penetrator deforms for a penetrator with an
ellipsoidal nose. even though it is not true ahead of the penetrator, as noted earlier. Two
of the curves in these figures essentially overlap.

We note that the target material within some distance inside the boundary EFA does
not deform at all and the deformations are essentially independent of - near the boundary
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AB. It 1s therefore reasonable to conclude that the target region chosen for computation
15 suthicient to obtain a good description of the deformations in the vicinity of the penetrator
nose.

CONCLUSIONS

For the range of values of r,, ro. 2 and m studied. the ratio r,. r, of the radius of the
nose to that of the cylindrical body of the penetrator has the most effect on the axial
resisting force experienced by the penetrator. The retardation force depends rather weukly
on x and m. In all cases. significant target deformations occur onily within 2r, of the
penetrator. Whereas for r, ro = 1.0, the target matenal adjacent to the sides of the
penetrator appeuars to extrude rearwards in a uniform block that s separated from the
bulk of the target matenial by a narrow region with a sharp veloaity gradient. such 15 not
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the case for r,/ro = 2.0. In the latter case there is no noticeable region of steep velocity
gradients.

For x = § and r,.r, = 2.0 the target material seemed to separate from the sides of the
penetrator nose. This provides a limiting value for the validity of our calculations since
flow separation has not been built into our model. Maximum normal stress and the
maximum hydrostatic pressure occur at the nose tip, and fall off rapidly away from that
point. These peak values depend significantly upon a.

We hope that results presented here will prove useful in devising or checking the results
from simpler engineering theories of penetration.
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STEADY STATE DEFORMATIONS OF A RIGID
PERFECTLY PLASTIC ROD STRIKING A RIGID CAVITY

R. C. BATRA and PEI-RONG LIN
Deparment of Engineering Mechanics. University of Missouri-Rolla, Rolla, MO 65401-0249. U.S.A.

Abstract—The axisymmetric steady state deformations of an infinite cylindrical rod made of a
rigid/perfectly plastic material and striking a known cavity in a rigid target are analyzed by the finite
element method. The contact between the deforming rod and the target surface is assumed to be
smooth. It is found that the axial force experienced by the rod depends strongly upon the square of its
speed. Results computed and presented graphically include the velocity field in the deforming region.
the dependence of the shape of the upset head of the striker upon its speed. and the distribution of
normal tractions upon the cavity wall.

INTRODUCTION

Penetration of metal targets by projectiles is influenced by such variables as material
properties, impact velocity. projectile shape, target support position, and relative dimensions
of the target and the projectile. Recently, emphasis has been placed on kinetic energy
penetrators, which for terminal ballistic purposes may be considered as long metal rods
traveling at high speeds. Wright [1]. in his survey article on long rod penetrators. ellucidated
vividly some of the problems with the existing penetration models. In another extensive review
article, Backman and Goldsmith [2] discussed superbly the work done in penetration mechanics
until 1977. Jonas and Zukas [3] reviewed various analytical methods for the study of kinetic
energy projectile-armor interaction at ordance velocities and placed particular emphasis on
three-dimensional numerical simulation of perforation. Anderson and Bodner {4] have recently
reviewed the status of the ballistic impact modeling. A penetration model that is not too
difficult to use has been proposed by Ravid and Bodner [S]. They studied the penetration
problem by presuming a kinematically admissible flow field in the target and found the
unknown parameters by utilizing an upper bound theorem of plasticity modified to include
dynamics effects.

In an attempt to shed some light on questions raised by Wright [1]. Batra and Wright [6]
recently studied an idealized penetration problem that simulates the following situation.
Suppose that the penetrator is in the intermediate stages of penetration so that the active
target/penetrator interface is at least one or two penetrator diameters away from either target
face, and the remaining penetrator is much longer than several diameters and is still traveling at
a speed close to its striking velocity. This situation has been idealized as follows. It is assumed
that the rod is semi-infinite in length, the target is infinite with a semi-infinite hole. the rate of
penetration and all flow fields are steady as seen from the nose of the penetrator, and that no
shear stress can be transmitted across the target/penetrator interface. This last assumption is
justified on the grounds that a thin layer of material at the interface either melts or is severely
degraded by adiabatic shear. These idealizations make it possible to decompose the penetration
problem into two parts in which either a rigid rod penetrates a deformable target or a
deformable rod is upset at the bottom of a hole in a rigid target. Of course. in the combined
case the contour of the hole is unknown, but if it can be chosen so that normal tractions match
in the two cases along the entire boundary between penetrator and target. then the complete
solution is known irrespective of the relative motion at the boundary. Even without matching
the normal tractions, it would seem that valuable qualitative information about the flow field
and distribution of stresses can be gained if the chosen contour is reasonably close to those that
are found in experiments.

Whereas Batra and Wright [6] studied the problem of the deforming target and a rigid
penetrator. we analyze herein the companion problem of a deformable. semi-infinite and
cylindrical penetrator striking a known semi-infinite cavity in an infinite and rigid target. Only
the axisymmetric and steady state problem in which the penetrator material is rigid/perfectly
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plastic has been studied. This problem is more challenging than the one studied earlier by
Batra and Wright [6] because of the presence in it of free surfaces whose shapes are not known
a priori. We hope that the kinematic and stress fields found in this study would help in devising
and/or checking results from simpler engineering theones of penetration.

FORMULATION OF THE PROBLEM
We describe the deformations of the cylindrical rod upset at the bottom of a semi-infinite
cavity in an infinite rigid target with respect to a cylindrical coordinate system with origin at the
center of the hole and z-axis pointing into the rod. Equations governing the steady state
axisymmetric deformations of the rod are

divv =0, (1)
dive = pv, 2.1)
= p(v - grad)v. (2.2)

Here v 1s the velocity of a rod particle. p is the mass density and ¢ is the Cauchy stress tensor.
Equation (1) implies that the deformations of the rod are isochoric. and eqn (2) expresses the
balance of linear momentum. The operators grad and div signify the gradient and divergence
operators on fields defined in the present configuration. We neglect the elastic deformations of
the rod and assume that it is made of a homogeneous and isotropic material that obeys the
Von-Mises vield criterion and the associated flow rule. Thus we take the following constitutive
relation for 6. e.g. see Prager and Hodge [7].

Ty

c= —pl+v§—ID. 3

D = (grad v + (grad v)7)/2, (4)
L1

P=3uD’. (5)

In eqn (3) p is the hydrostatic pressure which cannot be determined from a knowledge of the
deformation because of the assumption of material incompressibility. 1 is the unit matrix, g, is
the flow stress of the material of the rod in simple compression or tension and / is the second
invariant of the strain-rate tensor D. Equation (1) and the equation obtained by substituting
eqn (3) into (2) are the field equations to be solved for v and p subject to a suitable set of
boundary conditions. In terms of the non-dimensional variables

€'=V/U(). 6=0/0(). p-=p/0(), ;=r/rn, Z.=Z/r(), (6)

these field equations are

divv =0, (7)
—grad p + div((grad v + (grad v)7)/2V3 I) = a(v - grad)v (8)

where
a = Pl’.:»/ou 9

is a non-dimensional number. In eqn (6). v, is the speed of the rod and r, its radius. In eqns (7)
and (8) and hereafter the superimposed bars over the non-dimensional variables have been
dropped. The operators grad and div in eqn (8) imply the gradient and divergence operators in
terms of the non-dimensional coordinates. We note that there is only one non-dimensional
number « that governs the steady state deformations of the rod.

For the boundary conditions on the rod/cavity interface. we assume that

t-(om)=0, (10)

v:n=0, (11)

where n and t are. respectively. a unit normal and unit tangent vector on the interface. The
boundary condition (10) represents smooth contact between the rod and target. This appears
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reasonable since a thin layer of matenal at the interface either melts or is severely degraded by
adiabatic shear. The boundary conditon (11) represents no interpenetration of the rod material
into the target and vice versa. On the free surface of the rod,

on=90, (12)
v-n=0, (13)

where n is a unit outward normal to the surface. The boundary condition (13) implies that the
velocity of particles on the surface is tangent to the surface. Out of the boundary conditions
(12) and (13) only the former is needed to specify the boundary-value problem completely
provided the shape of the free surface is known. Since such is not the case. we use eqn (13) to
check whether the presumed free surface is correct or not. On the rod cross-section far from
the cavity bottom

lv+e,|—0 as z—cx, ' (14)
and on the deformed rod material at the cavity outlet
lom|—0 as [r°+ 237>, (15)

Equation (14) implies that the end of the rod far from the bottom of the cavity is moving with a
uniform velocity in the negative z-direction and eqn (15) is equivaient to the statement that the
surface of the deformed rod near the cavity outlet-is traction free. In order to state the problem
more precisely one should specify the rates at which quantities indicated in eqns (14) and (15)
decay. But at the present time there is little hope of establishing an existence and uniqueness
theory for the problem and. therefore. specification of rates of decay in eqns (14) and (15) is
not required. Here we seek an approximate solution of the problem numerically.

FINITE ELEMENT FORMULATION OF THE PROBLEM
To solve the problem numerically we usually consider a finite region. Thus the region of the
deformable rod analyzed is shown in Fig. 1 wherein is also indicated its spatial discretization.
We note that since the shape of the free surface is not known a priori we estimate one and will
subsequently check whether or not it is an appropriate one. If not, we will modify the same and
keep on iterating till a prespecified criterion is met. This is elaborated upon below. The
boundary conditions (10)~(12). (14) and (15) are replaced by the following:

g, =0, v, =0 on the axis of symmetry AB. (16.1)
v-n=0andt- (omn) =0 on the cavity surface BC. (16.2)
on = 0 on the free surface DEF, (16.3)

v, =~-1.0, v, =0on AF, (16.9)

v=v.n and t - (om) = 0 on the outlet surface CD. (16.5)

As before m is a unit outward normal to a surface and t is a unit tangent to the surface. The
boundary condition (16.5) implies that the rod particles at the exit surface CD are traveling
normal to the surface with a uniform speed v, and the tangential traction on it is zero. The
value of v, is computed by equating the amount of material flowing out through CD to that
flowing in through AF. We now obtain a variational statement for the boundary value problem
defined by eqns (7). (8) and (16).

Let ¢ be a smooth vector valued function defined on the region R, shown enclosed by
ABCDEF in Fig. 1, and ¢,=0 on AB. ¢-n=0 on BC, ¢=0 on AF and ¢-n=0 on CD.
Also let y be a bounded scalar valued function defined on R. Multiplying both sides of eqn (7)
with y, taking the scalar product of both sides of eqn (8) with ¢, integrating the resulting
equations on the domain R, using the divergence theorem, the traction boundary conditions in
(16) and the above stated side conditions on ¢ we arrive at the following.

f Y(divv)dV =0, (17.1)
R
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Fig. 1. The region studied and its finite clement discretization.

, 1 . Y4V = . .
Lp(dw ¢)dV—LN§—ID.(grad¢+(grad¢) )dV-aL{(v gradv} -0 dV. (17.2)

Here a single dot implies the scalar product between two vectors and the symbol : stands for
the scalar product between two second order symmetric tensors. Thus a weak formulation of
the boundary-value problem given by eqns (7). (8) and (16) is to find p and v defined on R such
that eqns (17) holds for every y and ¢. y and grad ¢ are square integrable over R, ¢ satisfies
the homogeneous essential boundary conditions stated above and v satisfies the essential
boundary conditions outlined in eqns (16).

We refer the reader to Becker er al. [8] for details of obtaining a finite element solution of
eqns (17). Suffice it to say that eqns (17) are solved by using the following iterative scheme.

JW(diVV’")dV=O. (18.1)
R

LI N - - 1 m . T - -1, .
Lp (dive)dV LZWD :(grad ¢ + (grad¢)’ ) dV afR{(W gradyv”}-¢dV (18.2)

Here m is the interation number. Note that the hydrostatic pressure p appears linearly and its
previous values are not needed. The initial velocity field is taken to be zero for small values of
«. If the solution is known for some a, it is taken as the initial solution when solving the
problem for the next higher value of a. The iteration process in (18) is stopped if. at each nodal
point.

(V" = v = 0.01 fiv"Y| (19)
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where ||v]|* = (v} + vi). When the velocity field corresponding to (a — 1) was taken as the
initial estimate for the solution to be computed for an assigned value of a, it took nearly 10
iterations for the convergence criterion (19) to be satisfied.

TREATMENT OF THE FREE SURFACE

In the preceding finite element formulation of the problem the shape of the free surface DEF
was presumed to be given. Since it is not known a priori we presume one. solve the probiem
and then see if the condition (13) is satisfied on it or not. Improving upon the presumed shape
of the free surface DEF if (13) is not satisfied required a considerable effort. We note that
problems in which the shape of the free surface is to be determined as a part of the solution of
the problem have been solved by Zienkiewicz er al., [9]. Oden and Lin [10]. and Batra er al.
[11]. For us the following technique proved quite effective.

Starting from the point F we found the parabolic curve passing through F and the next two
nodes downstream from it. We then found the tangent to the curve and a unit normal n at the
middle node. We evaluated the magnitude of the error

e=v-n/|v| (20)

at the middle node and repeated this procedure for all of the nodes. Note that the node F is
fixed and the last node D on the free surface was assumed to be on the straight line passing
through the two nodes immediately preceding to it on the free surface DEF. That is. the
curvature of DE near the point D was presumed to be zero. Points where the magnitude of the
error ¢ was not smaller than a preassigned small number were moved along n or —n according
as e was positive or negative and the distance moved was proportional to the magnitude of e. A
check was made to ensure that two different nodes on the presumed free surface are not
mapped into the same location when modifying the shape of the free surface. The procedure
was repeated until the error e at each node on the free surface DEF was less than 0.1. It was
found computationally very efficient to switch to the following method for adjusting the free
surface subsequently. Let H and K be two successive nodes on the free surface downstream
from G. N be the normal vector to the previously assumed free surface at K. T be a vector
parallel to v computed at K and we wish to find the new location K’ of K. It is at the point of
intersection K’ of N with the circular arc that passes through G and H. and has a tangent vector
at K’ parallel to T. This eliminates the likelihood of two nodes ending up at the same location
during a refinement of the shape of the free surface. With this technique the magnitude of e at
each node point on the surface DEF could be reduced to less than 5% and the average of |e|
for all nodes on DEF to less than 1.5% in at most six iterations.

COMPUTATION AND DISCUSSION OF RESULTS

The finite element program developed earlier {6] to solve the companion problem of a rigid
rod penetrating into a deformable target was modified to study the present problem. It employs
6-noded triangular elements and within each element the velocity (pressure) field is
approximated by a quadratic (linear) function defined in terms of its values at 6 (3 corner)
nodes. Thus both the velocity and pressure fields are continuous across interelement
boundaries. We note the element satisfies the Babuska-Brezzi [12] condition. The velocity
boundary condition in (16.2) is accounted for by using the method of Lagrange multipliers. The
sample problem used to establish the validity of the code has been discussed in [6].

In Fig. 2 1s plotted the computed velocity field for & =5.1. The details of the velocity field
within the vicinity of the point where the curvature of the free surface changes sharply are also
shown. As is rather obvious from the plotted results the Lagrange multipler method is quite
effective in satisfying the essential boundary condition (16.2) on the cavity surface. We note
that on the computed free surface the velocity of points is along the tangent to the surface. All
of the results presented herein are for a fixed shape of the cavity given by

= =0.04r".

This shape of the cavity was chosen after several trials: the selection criterion being that the
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Fig. 2. The computed velocity field for a =5.1.

part of the surface over which the deformed rod particles exhibit a tendency to separate away
from the surface BC is as small as possible. Ideally the contact should be maintained over all of
BC but such a goal proved essentially impossible to attain especially for different striking
speeds of the rod.

The velocity field for other values of a was quite similar to that shown in Fig. 2. As the speed
of the rod increased the free surface moved away from the fixed cavity so that the thickness of
the region at the outlet increased. The shapes of the free surface for different values of a are
shown in Fig. 3. The radius of curvature near the bottom of the surface decreases sharply as the
speed of the rod is increased. The plot of the thickness at the outlet versus « in Fig. 3 shows
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Fig. 3. a. Shapes of the free surface for different values of a. b. Thickness of the outlet region
versus a.
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Fig. 4. Variation of the second invariant / of the stretching tensor D in the deforming region.

that the thickness increases linearly with a. Since the speed of the rod at the inlet is always
taken to be 1.0, the speed of the particles at the outlet decreases so as to satisfy the balance of

mass.

Figure 4 depicts the variation of the second invariant / of the strain-rate tensor D in the
deforming region. As one would expect severe deformations take place in the region near the
bottom of the cavity. Larger values of / occur near the bottom of the free surface where the
flow reverses. For typical values of the radius of the penetrator these non-dimensional values of

{ are to be multiplied by 10° indicating thereby that peak strain-rates of the order of 10°~10°s™'
occur in the vicinity of the point on the free surface where the flow reverses. We note that the
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Fig. 5. Principal stresses in the deforming region.
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non-dimensional values of / and their locations in the deforming region did not vary much with
a. In Figs 5 and 6 are plotted. respectively, the principal stresses and the hydrostatic pressure
in the deforming region for two different values of a. The lines are oriented along the axes of
principal stresses and their lengths are proportional to the magnitudes of principal stresses at
that point. The arrows at the ends of a line indicate that the corresponding principal stress is
tensile otherwise it is compressive. Whereas for a = 1.8 the material particles whose velocity in
the --direction is opposite to that of the incoming rod experience tensile stresses such is not the
case at the higher value of a. This transition seems to take place around o =3.6. For o = 1.8
one of the principal stresses at points in the region between the free surface and the Lottom of
the cavity is compressive; the other one is essentially zero. At the higher value of a both
principal stresses are compressive. This is possibly due to the increase in the hydrostatic
pressure (cf. Fig. 6) with the speed of the rod. Since the strain rates at points near the inlet and
the outlet surface are negligibly small, and the values of stresses at these points. as given by

< -coordinate

Fig. 6. Distribution of the hvdrostatic pressure p in the deforming region.
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Fig. 7. Vanation of the normal and axial tractions on the cavity wall.

eqn (3), are computed by taking the ratio of two small numbers, the magnitudes of stresses at
these points may not be very accurate. This is one possible explanation for the small tensile
stresses at points near the inlet and outlet surfaces. At a few isolated points in the vicinity of
the bounding surfaces near the inlet and outlet regions the computed values of the hydrostatic
pressure were relatively small negative numbers.

There is a tendency for the material particles to leave the cavity wall near the outlet region.
This is indicated by the negative values of the computed normal traction at these points. The
normal tractions and the axial tractions at different points on the cavity wall are piotted in Fig.
7. The arc length along the cavity surface is measured from the point of intersection of the
cavity and the axis of the rod. For the same cavity surface the point where separation tends to
occur moves away from the centroidal axis of the rod as the speed of the rod is increased. We
note that in our computations material particles were not allowed to leave the cavity surface.
Since the magnitude of the normal tractions at these points is rather small and the distance of
these points from the center of the rod is of the order of 2r,, the computed results especially in
the severely deformed region near the bottom of the cavity are quite meaningful. It is now
obvious that to keep, say. the horizontal distance of the point on the cavity wall where
separation tends to occur from the centroidal axis of the rod constant, the shape of the cavity
should be adjusted as the rod speed is varied. The axial traction plotted in Fig. 7 indicates that
the contribution to the total axial force from points where flow separation would have occurred
is very small. This is due to the fact that the angle between the cavity surface at these points
and the axis of the rod is very small so that the normal to the cavity surface at these points is
essentially perpendicular to the rod axis.

How the total axial force acting on the cavity surface and experienced by the rod depends
upon a is shown in Fig. 8. Unlike the case of a rigid rod penetrating into a rigid/perfectly
plastic target where the axial force acting on the penetrator depended weakly on the penetrator
speed. here the dependence of the axial force upon «a is rather strong. We note that whereas
herein the calculations have been performed with one cavity surface, in the actual penetration
problem the surface separating the deforming penetrator and target regions will aiter with the
speed of the penetrator when all other parameters are kept fixed. In the approximate theory of
Tate [13] the axial force acting at the penetrator/target interface is presumed to be constant.
We have not investigated the dependence of the axial force upon the shape of the assumed
cavity. Since there is very little experimental data available in the open literature it is hard to
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Fig. 8. Dependence of the total axial force acting on the cavity wall upon a.

judge whether or not the cavity surface envisaged here is close to those observed
experimentally.

We note that strain-rates and therefore the rod deformations are negligibly small near the
inlet and outlet regions. This ensures that the assumed finite region considered for solving the
problem numerically is sufficient. The computed solution seemed to be stable in the sense that
either superimposed small perturbations died out to zero or following slightly different paths
gave the same solution.

CONCLUSIONS

For the fixed cavity the thickness at the outlet increases linearly with a, and the total axial
force acting on the cavity wall depends strongly upon a. Most severe deformations occur in the
region near the cavity bottom and the point where the curvature of the free surface changes.
Peak strain-rates in the range 10°~10°s™" invariably occurred at or near the bottom E (Fig. 1)
of the free surface. The hydrostatic pressure increases considerably with «. Whereas at lower
speeds of the rod tensile stresses developed at points on the exist side of the flow these were
overcome by the increase in the value of the hydrostatic pressure at higher speeds of the rod.
The point on the cavity wall where the flow had a tendency to separate from the wall moved
away from the axis of the rod as the striking speed increased.
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STEADY STATE PENETRATION OF COMPRESSIBLE
RIGID PERFECTLY PLASTIC TARGETS

R. C. BATRA and T. GOBINATH
Department of Engineering Mechanics, University of Missouri-Rolla. Rolla. MO 65401-0249. U.S.A.

Abstract—Steady state axisymmetric deformations of a homogeneous. isotropic. compressible and
ngid perfectly plastic target being penetrated by a rigid cylindrical penetrator with a hemisphencal
nose are studied by the finite element method. The steady state is reached with respect to an observer
situated on the penetrator nose and moving with it. Tillotson’s equation. restricted to mechanical
defermations. is used to express the pressure as a function of the mass density. Contact between the
penetrator and the target is assumed 1o be smooth. The effect of compressibility of the material 1y
delineated bv comparing results for compressible and incompressible matenals. Also studied 1s the
effect of the penetrator speed on target deformations.

INTRODUCTION

In an attempt to shed some light on the validity of the approximations made in simple theories
of penetration due to Alekseevskii [1] and Tate [2], and 10 understand better the significance of
various kinematic variables, Batra and Wright [3] studied in detail a steady state penetration
problem that simulates the following situation. Suppose that the penetrator is in the
intermediate stages of penetration so that the active target/penetrator interface is at least one
or two penetrator diameters away from either target face, and the remaining penetrator is
much longer than several diameters and is still travelling at a uniform speed. This stage of
penetration can be idealized as one in which deformations of the target appear to be steady to
an observer situated on the penetrator nose. Wright and Batra [3] presumed that the target is
made of a rigid/perfectly plastic material. and is being penetrated by a long cylindrical rigid rod
with a hemispherical nose. Subsequently Batra [4] showed that the axial resisting force
experienced by the rigid penetrator is considerably reduced if its nose shape is ellipsoidal rather
than hemispherical and also investigated the effect of the dependence of the flow stress upon
the strain-rate. He [5] has extended this work to the case when the target material is thermally
softening but strain and strain-rate hardening.

Pidsley (6] recently studied a complete penetration problem in which both target and
penetrator materials were assumed to be compressible rigid/perfectly plastic. Whereas he gave
a detailed numerical solution for one set of material and geometric parameters. we study the
steady state penetration problem similar to the one analyzed by Batra and Wright (3] and
investigate the effect of the speed of the penetrator and the compressibility of the target
material. We hope that the kinematic and stress fields found in this study will be usefui in
identifying key variables to be included in simpler engineering theories of target penetration.
Since the continuity equation has no diffusive term. it is more chalienging to solve the problem
numerically for compressible materials. Pidsley used the finite difference code HELP developed
by Hageman and Walsh [7] to solve the problem. However. we use the finite element method
and have developed the requisite code.

We note that no failure or fracture criterion is included in our study. Thus the target material
is assumed to undergo unlimited amount of deformations.

FORMULATION OF THE PROBLEM

We describe the axisymmetric deformations of the target with respect to a set of cylindrical
coordinate axes with origin at the center of the hemispherical nose of the rigid penetrator and
z-axis pointing into the target. Equations governing the steady-state deformations of the target
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are
div(pv) =0, (1.1)
dive = p(v - grad)v. (1.2)

Here p is the current mass density of a target material particle. v is the velocity relative to an
observer situated on the penetrator nose tip and moving with it. ¢ is the Cauchy stress tensor.
and the operators grad and div signify the gradient and divergence operators on fields -defined
in the present configuration. Equations (1.1) and (1.2) express, respectively, the balance of
mass and the balance of linear momentum with zero body forces.

We presume that the target material is compressible and obeys the Von-Mises vield criterion
and the associated flow rule. That is+

On =

= - 2
P(P)1+WD. (2.1)
f)=D-§(trD)l. (2.2)
D = (grad v + (grad v)")/2. (2.3)
13=%tr(l-):). (2.4)
p p : <
=Al—-1J+B(—-1}. (2.5)

p(p) (p., ) (p” )

In these equations g, is the flow stress of the target material in simple compression. p, is the
mass density of the undeformed target material. A and B are matenal constants. D is the
strain-rate tensor and D its deviatoric part. Equation (2.5) is obtained from the Tillotson
equation by neglecting the parts that apply to hot expanded metal states and the change in
temperature of a material point. The constant A is related to the bulk modulus of the material.
Equation (2.1) may be regarded as a constitutive relation of a compressible Non-Newtonian
fluid with shear viscosity given by 0,/2V/3/. Equation (2) when substituted into (1.2) gives

—gradp + %(div((grad v+ (grad v)")/21)

— grad((div v)/31)) = p(v - grad)v (3)

which along with (1.1) are the field equations for p and v.
We now non-dimensionalize the variables as follows:

F=rin. I=z/n. v=v/u,. 6=0/0,. p=plo,. P =p/po. 4
A=A/(7“. B=B/an. ( )

Here r, is the radius of the cylindrical part of the penetrator, v, its speed in the z-direction and
the pair (r, =) denotes the cylindrical co-ordinates of a target particle. Hereafter we use only
the non-dimensional variables and drop the superimposed bars. Equations (1.1) and (3) in
terms of the non-dimensional variables are

(grad p) - v+ p(divv) =1} (5.1

1 .
—gradp + v (div((grad v + (grad v))/21) — grad((div v}/31)) = a(v - grad)v. (5.2)

where
a= Pn“ﬁ/on (6)

1s a4 non-dimensional number.

# This constitutive relation 1y discussed brietly in the note at the end of the paper

-42-




Steady state penetration of compressible rigid perfectly plastic targets

For the boundary conditions on the target/penetrator interface we take

v-n=0, : 7.1

t-(om) =0, (1.2)

where n and t are. respectively. unit normal and tangent vectors at a point on the interface.
The boundary conditions (7) ensure that target particles do not penetrate into the rigid
penetrator and the contact surface is frictionless. At points far away from the penetrator nose,
we assume tiat

v+el—0 as (ri+z7) >=x, > —x, (8.1)
jom|—0 as z-— —x, r=l. (8.2)

In eqn (8.1) e is a unit vector along the z-axis. This boundary condition states that target
particles far from the penetrator but not on the back surface appear to move as a rigid body
and those on the back surface are traction free. In order to state the problem precisely one
needs to specify the rates at which quantities in eqn (8) decay-to zero. We now assume that the
nonlinear and coupled equations (5) under the boundary conditions (7) and (8) have a solution
and find an approximation to that solution by the finite element method.

FINITE ELEMENT FORMULATION OF THE PROBLEM

For a numerical solution of the problem we first recall that the target deformations are
assumed to be axisymmetric and therefore consider the finite region shown in Fig. 1 and

5
,,

€ — - — -

A
8

Fig. 1. The fimte region studied and its discretization.
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impose the following boundary conditions:

o..=0, v, =0 on the bottom surface AB. (9.1)
t-on=0, v-n =0 on the target/penetrator interface BCD. (9.2)
g,.=0, v, = 0 on the axis of symmetry DE, (9.3)
v,=0, v. = —1.0 on the boundary surface EFA. (9.4)

The adequacy of the studied region is verified by ensuring that the computed results especially
in the vicinity of the target/penetrator interface are unaffected by the location of the boundary
EFA.

Referring the reader to Becker er al. [8] for details., we note that a weak formulation of the
problem defined on the region R (shown enclosed by ABCDEFA in Fig. 1) by eqns (5) and
boundary conditions (9) is that equations

J’ w((grad p) - v+ p(divv))dv =0, (10.1)
R

Lp(div ¢)dv - 5173 f % D:(grad ¢ + (grad ¢)7) dv = aL ((v-grad)v) - ¢ dv, (10.2)

hold for arbitrary smooth functions y and ¢ defined on R such that ¢, =0 on AB. ¢=0 on
EFA and ¢ - n =0 on the target/penetrator interface BCD. In these equations A:B = tr(AB”)
for linear transformations A and B. Since these equations are nonlinear in v and p, the
following iterative technique has been employed. At the ith iteration, equations

jw((gradp‘)-v‘“+p"‘(divv‘))dv=0. (10.3)
R

L I—I-—D"(grad¢+(grad¢)r)d1v+af ((v"='- grad)v') - ¢ dv
2V3 b . &

= Up(p'-')(div o) dv + 3—\173 L 1—1_—, [(tr D'~ ")div @] dv] (10.4)

are solved for v' and p'. The iterative process is stopped when at each nodal point
" o' = v ="l + 1" = o'~ = eJfv ([ + o] (10.5)

where ||v||* = v] + v:, and ¢ is a preassigned small number.

The lack of a diffusive term in the balance of mass eqn (5.1) necessitates that the test
functions y and the trial solutions p be chosen from different functional spaces. This is usually
referred to as Petrov-Galerkin formulation [9]. We use 9-noded rectangular elements for v and
the four-noded rectangular elements for p and employ the basis functions given by Heinrich er
al. [10] to generate the test functions y. These basis functions involve four constants and the
rate of convergence of the solution depends rather strongly upon the values of these constants.
The test functions ¢ and the trial solutions v are taken from the same space of functions. Thus
we have used the Petrov-Galerkin formulation for the continuity equation and the Galerkin
formulation for the balance of linear momentum.

COMPUTATION AND DISCUSSION OF RESULTS

A computer code based on eqns (10.3) and (10.4), and employing 9-noded rectangular
elements has been developed. The two components of the velocity are taken as unknowns at
each node and the mass density is assumed to be unknown only at the four corner nodes. The
accuracy of the computer code was established by solving a hypothetical problem involving the
flow of a compressible Navier-Stokes fluid in a circular pipe and achieving a favorable
comparison between the computed and analytical results. The sample problem studied and the
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comparison between the computed and analytical results is given in the Appendix. Even
though the formulation of the problem does not require that the mass density be prescribed on
any part of the boundary. the numerical solution of the problem necessitated that it be assigned
values on a part of the boundary. In the results presented below the non-dimensional mass
density was set equal to 1.0 on the part EFA of the boundary. Also the boundary condition
v-n =0 on the target/penetrator interface BCD was satisfied by using the method of Lagrange
multipliers. The finite element discretization of the region studied is depicted in Fig. 1. Note
that only one non-dimensional number a governs the deformations of the target material. Thus
all of the results below are expressed in terms of a. However the compressibility of the
material is governed by the values of A and B in eqn (2.5) which we took as A = 144.231,
B =125.0. These values. taken from Pidsley’s [6] paper, are for aluminum. For a prescribed
value of a, the problem was first solved by presuming that the target material is
incompressible. This solution for v, and v, and p = 1.0 everywhere was taken as the initial
estimate of the solution for the compressible target material. We recall that the basis functions
for y involve four constants. The number of iterations required to obtain the converged
solution depended rather strongly upon the values selected for these constants. In general.
however, the number of iterations needed for the solution to converge increased with the
increase in the value of a. The parameter ¢ in the convergence criterion (10.5) was assigned the
value 0.04.

In Fig. 2 are plotted the variation of the normal stress, tangential velocity and the second
invariant / of the strain-rate tensor on the penetrator nose for o = 5.36 and for compressible
and incompressible target materials. The compressibility of the target material affects most the
values of I near the penetrator nose-tip. Over most of the nose surface the values of / and the
normal stress are lower for the comipressible target material as compared to that when the
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Fig. 2. The variatuon of the normal stress. tangenuiai velocity and the second strain-rate invanant / on
the penetrator nose for & = 5.36. —~—— incompressible material. - - - - - compressible material.

PRI E _45_




R. C. BATRA and T. GOBINATH

target material is modelled as incompressible. Whereas the peak value of / at the penetrator
nose-tip drops by 8.78% when the target material is presumed to be compressible, that of the
normal stress decreases by only 3.19%. In the immediate vicinity of the nose tip the tangential
velocities for compressible and incompressible targets essentially coincide with each other.
However for the angular position @ greater than 12°, the tangential velocity for the
compressible target is lower than that for the incompressible target.

Figure 3 depicts the effect of the compressibility, of the target material on the variation of the
normal stress, strain-rate invariant [ and the relative z-velocity along the axial line. As
evidenced by the values ot /, most of the target deformations occur within a distance of 1.5
times the radius of the penetrator for both compressible and incompressible target materials. In
each case the values of / drop off to zero at points on the axial line whose distance from the
nose surface is greater than twice the radius of the penetrator. Typically these non-dimensional
values of / need to be muitiplied by 10° to get their dimensional counterparts. Thus peak
strain-rates of the order of 10°s™' occur for both compressible and incompressible target
materials. The values of absolute z-velocity decay to zero a little bit slowly for compressible
targets as compared to that for incompressible targets. The rate of decay of the absolute values
of o.. along the axial line in the two cases is nearly the same. The values of |o..| are less when
the target material is modeled as compressible as compared to that when it is taken to be
incompressible. The difference between the two values is primarily due to the difference in the
values of the hydrostatic pressure in the two cases. For 0 < z =2, this difference in the values of
p staved nearly constant and equalled 0.48.

Figure 4 shows the variation of v. with r at z =0 and z = —5.0 and also the dependence of
the axial resisting force F experienced by the penetrator upon a. For both compressible and
incompressible target materials the axial resisting force F depends linearly upon a and the two
lines are nearly parallel to each other. In each case the dependence of F upon « is rather weak
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and explains why the choice of constant target resistance in the simple theory of Tate (2] gives
good qualitative results. Note that the dimensional values of F equal (wrio,) times its
non-dimensional values. The plots of v, versus r indicate the deformations of the target spread
farther to the side of the penetrator than ahead of it. This is true both for compressible and
incompressible target materials. Whereas target points on the axial line and ahead of the
penetrator situated at a distance of three times the penetrator radius have zero absolute
z-velocity, that on the sides of the penetrator and situated at the same distance from the
penetrator surface have non-zero z-velocity. The variation of v. with r on the surface z = -5.0
indicates that the material in the region | =r = 3.5 extrudes as a rigid block.

The value of the compression ¢, defined as (I — p~'). at the nose tip was found to depend
linearly upon a, and for 4 = a = 8 the two are related by

c=(4.75+0.575a)/100.

After having delineated the difference in the solutions for compressible and incompressible
target materials we next studied the effect of the penetrator speed upon the deformations of the
compressible target. We recall that the corresponding results for the incompressible target
material have been given by Batra and Wright [3]. Results presented in Fig. 5 indicate that the
speed of the penetrator has virtually no effect on the tangential velocity of the target particles
abutting the penetrator hemispherical nose. However. the normal stress does increase with a
on most of the nose surface except near its periphery where the normal stress decreases with a.
The normal stress at 8 = 65° seems to be affected little by the values of a. Such a behavior was
also observed at ¢ = 45° for incompressible target materials {3]. The peak vafue of the normal
stress. which occurs at the penetrator nose tip. increases from 7.25 to 9.5 when « is increased
from 2.35 to 6.12. Whereas in the previous work [3], for a = 6.13 the target particles seemed to
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separate away from the penetrator nose surface near its periphery. no such behavior was
observed in the present case. The finite element mesh used herein is finer than the one
employed earlier. Also the mass density is taken as the independent variable here whereas in
(3] the hydrostatic pressure p was taken as an independent variable because of the assumption
of incompressibility. The values of the second strain-rate invariant in the vicinity of the
penetrator nose tip are affected most by a but those at points for which 20° = 6 = 70° seem to
be affected less. The increase in the value of the normal stress on the penetrator nose with a
occurs primarily because the hydrostatic pressure p increases with a.

In Fig. 6 is plotted the effect of a upon the variation of v, (—o0..) and / at target particles on
the axial line ahead of the penetrator. The penetrator speed does not affect to any noticeable
degree the values of / and v.. However. the values of (—0..) at points on the axial line increase
with a: this increase is mainly due to the higher values of p. For all values of a considered here
the target particles within a distance of almost three times the penetrator radius undergo
deformations: those outside this region hardly deform.

On the axial line nearly uniaxial strain conditions prevail. Thus the magnitude of the
deviatoric stress 5.., defined as p + .., should equal 2/3 the flow stress. For points on the axial
line for which 0.0=:=1.5, and for &« =5.36, s.. was computed to be 0.771 and 0.741 for
compressible and incompressible materials. respectively.

We note that the region studied is adequate since the target particles within a distance of one
penetrator radius of the boundary EFA hardly deform and the deformation of particles situated
within one penetrator radius of the boundary surface AB are independent of :.

We are not aware of any experimental work available in the open literature with which we
could compare our computations. Nevertheless. the kinematic and stress fields found in this
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study should help in dewvising or checking the results from simpler theories of target
deformations.

CONCLUSIONS

For the same speed of the rigid cvlindrical penetrator with a hemisphcrical nose. the peak
values of the strain-rate invariant and the normal stress. both of which occur at the target
particle situated at the penetrator nose-tip. are lowered by 8.78 and 3.19% . respectively, for
compressible target materials as compared to that for incompressible materials. The axial
resisting force experienced by the penetrator is nearly 10% less when the target material is
compressible as compared to that when it is incompressible.

Both for compressible and incompressible target materials. significant deformations occur
only at points that are less than three penetrator radii from the penetrator. and the target
seems to deform farther to the side than ahead of the penetrator. In each case the target
material adjacent to the sides of the penetrator appears to extrude rearwards as a uniform
block that is separated from the stationary target by a deforming region.

Note added in proof

Recent unpublished work by Batra and L invoiving dynamic plane strain simpie compression of viscoplastic solids
defined by the constitutive relation (2.1) has shown that. for short times after the application ot the load. material lines
in a direction perpendicular to the axis of the compressive load are also shortened. The consuitutive relation

. Iy
0—.{7({))"“\7{,0 (NI)
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with / defined by egn (2.4) rules out this anomalous behavior. The constitutive relation (N1) can be rewritten as

== ~ O T
o=-{pp) \/SltrD)l+\/3lD. (N2)

Thus. for a given D. eqns (2.1) and (N1} give identical values of the deviatoric stress.
For the steady state problem studied herein. constitutive relations (2.1) and (N1) give essenually the same results.
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APPENDIX

In order to assess the validity of the developed finite clement code and establish the reliability of the computed
results we solved the following problem for compressibie Navier—Stokes fluids. We replaced egn (2.1} by

a=-p(pIl+D. p(p)=p/10 (Al)
and the balance of linear momentum (1.2) by
dive=p(v-gradv)+b (A2)
where b 1s the body force per unit mass. The fields
v,=r7720 ve=—rzf2. p=i =14, (A3)
with
A | :
R TR heTaetv (Ad)
T
Q
R
<)
I
L S ‘
|
! L 2o

- -

Fig AT The timite clement gnid tor the sample probiem
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Tablc Al Companson of analvtical and numerical solution

Pownt Analvucal values Computcd values ¢ Drftcrence
v, =-v, o t, -, » v, v, p
P 2.53128 1 40628 033124 258307 1 4335K ) 342852 (TR L) 1 943 0472
0 33453 164063 1) 35435 3 358K IR 1359417 0.391 274 1 432
R R B 1 8750 (1.52250 311498 I 91764 0 82810 032 20 1072
S 2.83128 1 XK1} 061077 250815 1 85314 0 61R03S 8913 | 368 118y
T R IRL2S 2579813 () R4SRS 376938 2 S9KKI () XIRSO7 034 [ 1X) (1.K6n

satisfy the balance of mass and the balance of linear momentum. Values of v, and v, as given by the presumed tields
were assigned on the boundary faces BC. CD and DA of the domain shown in Fig Al: those of v, and o,, were
prescribed on AB and values of p were prescribed on AD and DC Note that b, and b. would appear on the night-hand
side of eqn (10.4) and their vaiues. as given by eqn (A4). were nput into the computer code. In Tahle Al are
compared the values of v,. v. and p as computed from expressions (A3) and the computer code with ¢ 1n eqn (10.5) set
equal to (LO0S It 1ok 10 aterations for the solution to converge. The maximum error in v,. v, or p at any of the node

-

points was found to be less than 3.2577
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g£FFECT OF NOSE SHAPE AND STRAIN-HARDENING ON STEADY STATE
PENETRATION OF VISCOPLASTIC TARGETS *
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University of Missouri-Rolla

Rolla, MO 65401-0249 U.S.A.

SUMMARY

Steady state penetration of viscoplastic targets by rigid
cylindrical penetrators with an ellipsoidal nose has been stu-
died by the finite element method. The target material is
assumed to obey a generalized form of Von-Mises yield crite-
rion to account for strain-rate and strain hardening depen-
dence. The ratio of the major to minor axes of the ellip-
soidal nose is varied so that the nose shape corresponds to
essentially a flat surface, a hemisphere or an ellipsoid.
Frictional forces at the contact surface are assumed to be
negligible. Computed results show that the nose shape effects
significantly the deformations of the target material in the
vicinity of the penetrator/target interface, and the axial
recisting force :xperienced by the penetrator is coasiderably
higher for the blunt nose as compared to that for the ellip-
soidal nose. The axial force depends rather weakly upon the
speed of the penetrator for every nose shape.

INTRODUCTION

In an attempt to shed some light on the approximations
made in simpler theories of Tat [1] and Alekseevski [2],
Batra and Wright (3] gave a detailed numerical solution,
obtained by the fimite element method, to the foliowing ideal-
ized axisymmetric penetration problem. They assumed that the
penetrator is semi-infinite in length, the target is infinite
with a semi-infinite hole, the rate of penetration and all
flow fields are steady as seen by an observer situated on the
penetrator nose, no shear stress can be transmitted across the
target/penetrator interface, the penetrator nose is hemispher-
ical, and the target material is rigid/perfectly plastic.
This problem simulates the intermediate stages of the penetra-
tion process wherein the active target/penetrator interface is
at least one or two penetrator diameters away from either tar-

*Work supported by ARO Contract DAAG 29-85-K-0238
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Errata "Effect of Nose Shape and Strain-Hardening on Steady State Penetration

of Viscoplastic Targets"

by R.C. Batra

Page No. Location Printed Should read
1 -1 13 Tat[1] Tate [1]
4 -12 ...in find a numerical... ...in finding a...
-19 ...the solutions may be.. ...the solution may not be...
6 114 ...the governing... ...The governing...
-12 "‘rn/ro<l‘0"'°f between. .. ...rn/ro>1.0...of 8 between
7 -1 13 values of I... value of I...
8 17 "rb/ro’" ...rn/ro... '
9 13 ...various for a ... ...various quantities for a...
10 1 5-6 ...rather than hemispherical... ... rather than blunt. As for
a hemispherical...
-1 10 ...with that... ...with o that...
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get face, the remaining penetrator is still much longer than
several diameters and is traveling at a speed close to its
striking velocity, and the target material is much softer than
the material of the penetrator. Subsequently, Batra [4] stu-
died the problem when the penetrator nose can be ellipsoidal
and the target material viscoplastic. Herein we extend this
work further and investigate also the influence of strain-
hardening of the target material.

FORMULATION OF THE PROBLEM

We use cylindrical coordinate axes attached to the pene-
trator nose with the positive z-axis pointing into the target.
Equations governing the steady state deformations of the tar-
get are

divy = 0, (1)
div ¢ = p(y+grad) v . (2)

Here v is the velocity of a target particle as seen by an
observer situated on the penetrator noce and moving with it, o
is the current mass density, o is the Cauchy stress tensor,
and div and grad denote, respectively, the divergence and
gradient operators. Equation (1) expresses the balance of
mass and equation (2) the balance of linear momentum in the
absence of body forces. In equation (1) it has been assumed
that the deformations of the target are isochoric.

We neglect the elastic deformations of the target and
agsume the following constitutive relations for its material.

g=-pl+2u(l,y)D, L£D$0, ¢h
) :

er(s) <2 o2 (14 VoL a0, (%)

s=g+pl, (5)
o .

u (Iy) =2 (1 +b DD Y yn, (6)

u F ¥) Vi ( ® (1 + wo)

(1 + ¥/¥)n = er (eD)

212 = er(p?) (8)

2D = grad v + (grad v)T ., (9

Here p is the hydrostatic pressure that is not determined by
the deformation history, D is the stretching tensor, oo 35 the
yield stress in simple tension or compression, parameters b
and m describe the strain-rate hardening of the material, a
superimposed dot stands for material time derivative, and
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parameters Y, and n characterize the strain hardening of the
material. Equations (3), (5) and (6) imply that

(Ger 828 = 7% o (1 + BI)B (1 + y/4y)0 (10)

which may be viewed as generalized Von-Mises yield criterion
when the flow stress (given by the right-hand side of (10)) at
a material particle depends upon its strain-rate and work-
hardening parameter ¢. Equation (7) describes the evolution
of the work-hardening parameter Y.

A constitutive relation similar to equatioﬁ (3) has been
used by Zienkiewicz et al. (5] who took

2u = (9o + 2U/3)1/mY/3 1, (11)

where v and n are functions of the temperature. In their
study of the penetration and perforation problem, Ravid and
Bodner [6] postulated that

2u(I) = g4 (1 + ¢ logyg (21/73))/V3 1 (12)

where ¢ is a material constant and is set equal to zero for
strain rates lower than unity. We note that where as the
effect of work hardening is included in equation (6), it was
not considered by Zienkiewicz et al. and Ravid and Bodner.

Equation (1) and equations obtained by substituting from
equations (3), (6), (9) and (10) inco (2) are the field equa-
tions which together with appropriate boundary conditions are
t2 Ye solved for p and v. Before ntating tte bouncdary condi-
tions, we introduce non-dimensional variables as follows:

9=9/0g , P=p/0 + §=8/0g, ¥ =V/Vg, T =rltg,
Z=z/tg, b =bvy/tg,a=pviog, ¥ =y . (13)

dere v, is the speed of the penetrator and ry the radius of
its cylindrical body.

The governing equations in terms of non-dimensional var-
idbles are

divy =0, ' (14)
div g = alvegrad)v , (15)
tr(eD)
(TW")? = (vegrad) v, (16)
<0 le
e 1
S N R UL L O 7L TV (17)
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grad and div now stand for the gradient and divergence opera-
tors in non-dimensional variables and we have dropped the sup-
erimposed bars. Henceforth, unless stated otherwise, we will
use non-dimensional variables only. We note that besides the
ratio of the major to minor axes of the ellipsoidal nose of
the penetrator, there are five non-dimensional numbers a, b,
m, Yo and n. All of these characterize the target material
and o is also proportional to the square of the penetrator
speed.

For the boundary conditions we take
t-(gn) =0, (18)

ven =0 , (19)

on the target/penetrator interface, and
lv + el »0as (r2 + 2)l s 0,25 =, (20)
lon| +0asz+-=, r>r,, (21)

at points far away from the penetrator. In equations (18) -
(21), n and t are, respectively, a unit normal and a unit
:angent vector on the bounding surface, and e is a unit vector
along the positive z-axis. The boundary condition (18)
asserts that the tangential traction on the target/penetrator
interface is zero. This is justified since a thin layer of
material at the interface either melts or is severely degraded
by adiabatic shear. Equation (19) implies no interpenetration
of the target material into the penetrator and vice versa and
equation (20) states that the target material ahead of the
penetrator back surface and far away from the penetrator
appears to be moving with a uniform velocity. That target
particles behind the nose and on the bounding face perpendi-
cular to the axis of the penetrator are traction free is
embodied in equation (21).

Note that the governing equations (l4) - (l17) are coupled
and nonlinear in v and ¢. Their solution, if there is one,
under the boundary conditioms (18) - (21) will depend, in
general, upon the rate at which quantities in (20) and (21)
decay to zero. For a prescribed rate of decay of quantities
in equactions (20) and (21), the solutions may be unique. Also
equation (16) giving the evolution of the strain-hardening
parameter ¥ does not have any diffusive term in it. We will
gloss over the rather difficult questions of existence and
uniqueness and seek an approximate solution by the finite
element method. We hope that this solution is meaningful for
the physical problem at hand.

The first step in find a numerical solution of the
problem is to approximate the infinite target region by a
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finite region R shown in Fig. 1. Whether this region is suf-
ficient or not can be determined by solving the problem for

€
0 R
al®
%0
i
—rc F
|
2.1,
e -
8 __ Al_t

| [} 5.247,,

Fig. 1. The region to be studied.

two domains, one larger and containing the other, and ascer-
taining that the two sets of solutions essentially agree with
each other at target points in the vicinity of the penetrator.
The region shown in Fig. 1 was found to be adequate and has
been used in results presented below. The boundary conditions
(18) and (19) are taken to hold on the target/penetrator
interface BCD. On other bounding surfaces following boundary
condicions instead of equatiors (20) and (21) are appl ed

Ve =0, dgz = 0 , on the axis of symmetry DE ,
vz = -1.0 , vp = 0 , on the bounding surface EFA , (22)
Ve =0, 063, = 0, on the bounding surface BA .

COMPUTATION AND DISCUSSION OF RESULTS

In order to obtain an approximate solution of the problem,
-¢ first cast equations (14) - (17), (18), (19) and (22) into
‘1 equivalent weak form by using the Galerkin mecthod. The
‘eader is referred to the book by Becker et al. [7] and the
"iper by Zienkiewicz et al. (5] for details and to references
}-41 for a weak form of somewhat similar equations. The
vsence of a diffusive term in equation (16) necessitates the
‘3¢ of either a superfine mesh or a reasonable fine mesh with
v arctificial diffusive term added to the equation. Brooks
f“d Hughes [8] have discussed in detail the justification for
°“C;uding such a term and have given equivalent ways of
‘Chieving the same objective. We added a diffusive term and
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conducted numerical experiments with its coefficient 6. The
two sets of values of p, vy and v, obtained with § = 10=6 and
10=7 at nodes near the penetrator/target interface differed by
less than one percent at each node. The results presented
below are for § = 1076,

A finite element code employing six noded isoparametric
triangular elements has been developed. The incompressibility
constraint (14) and the boundary condition (19) on the tar-
get/penetrator interface are satisfied by using the method of
Lagrange multipliers. On an element, a quadratic variation of
the velocity field and a linear variation of the pressure
field defined in terms of its values at the vertices are
employed. Six quadrature points are used to evaluate various
integrals numerically. the governing nonlinear equations are
solved iteratively. The iterative process is stopped when, at
each nodal point,

vt - vi-1| + |oi - pi-1} < e(jvi-l|| + [vi-1]) , (23)

where ||v|[2 = v + vZ, and ¢ is a preassigned small number.
Values of p* are not included in equation (23) since p appears
linearly in the governing equations. The validity of the
computer code has been established by solving a hypothetical
problem that simulates the flow of an incompressible Navier-
Stokes fluid in a circular pipe. The results for this sample
problem are given in reference 3.

Values of various material parameters b, m, ¥y, 0 and o4
found from the experimenta. .ata in torsion of Costin et al.
[9} are assumed to be valid under a more general state of
stress studied herein. These and other parameters have been
assigned the following values in the uumericai results pre-
sented below.

ne .09, yo=.017 , b= 104 sec”! , m = .025
(24)
p = 7800 kg/m3 , o, = 180 x 106 Pa , ¢ = 0.02 .

Alllof the results stated below are in terms of non-dimen-
sional variables.

Figure 2 depicts the effect of the nose shape on some of
the variables. For a relatively blunt nose for which the rativ
of the radius of the nose tip to that of the cylindrical por-
tion of the penetrator is taken as 0.2, the normal pressure on
the nose surface stays essentially constant and drops off
sharply to zero near its periphery. The abcissa is the angu-
lar position 6 in degrees. For rj/ro < 1.0, the normal
pressure versus 0 curve is concave downwards, it is concave
upwards for .rp/ro < 1.0 and for values of between 0 and 70
degrees. In every case the peak values of the normal pressure
occurs for 6 = 0° and the least value at 6 = 90° where the
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Figure 2. Effect of the ratio of the nose radius to the
radius of the penetrator on the normal stress dis-
tribuction at the penetrator nose and on the vari-
ation of -0,z and I at points of the target along
the axis ahead of the penetrator.

penetrator nose meets its cylindrical part. On the axial line
(r = 0), the magnitude of the principal stress ¢,, decreases
slowly with the distance from the nose tip for the blunt nose
as compared to that for other values of rp/r,. The rate of
decay of (-0,) with the distance from the nose tip increases
noti:esbly with the increase in the ratio ry/ro. Said
differently, the deformations spread to a larger distance ror
a2 blunt nosed penetrator as compared to those for a penetrator
with a sharp nose. This is also confirmed by the plot of the
strain-rate measure I on the axial line. Note cthat the peak
values of I increases markedly with the increase in the ratio
*n/ry. However, with an increase in the ratio ry/rgy, I drops
2{f sharply with the distance from the nose tip. In all five
<ises studied, I essentially becomes zero at points distance
J{o from the nose tip. Thus at these points nonzero values
‘'t 3,5 are due to the contribution from the hydrostatic pres-
~ure p. The dimensional values of I typically equal 107 ctimes
their non-dimensional values. Thus strain-rates of the order
102 - 106 sec~! occur at points near the target/penetrator
‘aterface.

) The non-dimensional axial resisting force F experienced bv
‘1€ rigid penetrator is given by

/2 r
F=2 J (n+on) siné cos¢ [siﬁze + (;2)2 cosGli de ,
0 o
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where angles 6 and ¢ are defined in Fig. 1. The corresponding
axial force in physical units is given by F(wr%oo). A curve
fit by the method of least squares to the calculated values of

F for different values of r,/r, gives
r r .
F = 19.536 (1 -~ .647 = + .1409(=)2) ,
[o] [o]
a=4.0, b=10%sec”! , m=.025,n=.09.

We note that an increase in the values of rp/ry from 0.2 to
2.0 results in more than three-fold decrease in the value of

F.

The influence of the values of strain-hardening exponent n
upon various quantities is shown in Fig. 3 for am ellipsoidal

STRALU-RATY miASUmL |

DISIANCE FROR Twg 6OSE TP

Figure 3. Effect of strain-hardening parameter on the normal
stress distribution at the penetrator nose and on
the variation of -0,, and I at points of the target
along the axis ahead of the penetrator.

nosed penetrator. The normal pressure on the penetrator nose
increases with n and so does the magnitude of the principal
stress 0y, on the axial line. However, the values of
strain-rate measure I at points on the axial line seem to be
affected a little by the value of n. A curve fit to the com-
puted values of the axial resisting force F gives

F=4.525(1 + 1.793n) ,

a=4,rg/tg =2, b=10% sec”! , m=0.25,
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implying thereby that F depends linearly upon n.

Results plotted in Fig. 4 illustrate the effect of the
speed upon various for a blunt nose penetrator. Recall that
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Figure 4. Effect of speed of the penetrator on the normal
stress distribution at the penetrator nose and on
the variation of -0z, and I at points of the target
along the axis ahead of the penetrator.

tue non-aimensional numb:ar a Is proportio-al to the square of
tite speed. The normal pressure on the penetrator nose
increases with a. Note that for lower speeds, the normal
pressure near the extremity of the penetrator nose increases
Sviore dropping off sharply to zero. For higher speeds this
sirenomenon is absent and the normal pressure is uniformly
<:»tributed on most of the nose surface and drops off rapidly
“ear the edges. At a point on the axial line, the magnitude
- the principal stress g,, increases with the speed. At
- “¢r speeds, the peak value of I at points on the axial line
© v~ not occur act the nose tip but at a point whose distance
"7 7 the nose tip is nearly equal to the radius of the pene-
‘Titur. At higher speeds, the strain-rate I becomes essen-
*.tlly constant over a distance equal to half the radius of
- penetrator and then gradually drops off to zero. In
C.iner case L approaches zero at points on the axial line
* ~v distance from the nose tip is 2.5 o or more. The
“ieindence of the axial resisting force F upon a is given by

F

14.641(1 + .04211a) , ty/rg = .2 , b = 10% sec~!,
a = ‘025 » O = -09-
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Thus F depends upon a rather weakly. This provides a justi-
fication for the assumpt.on of the constant target resistance
in the simple theory of Tate [1].

In Fig. 5 is plotted the effect of spéed on target defor-
mations when the penetrator nose is ellipsoidal rather than

Mnse #031TI0R o (DfGOLES
(LI » “ " - P »
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Figure 5. Effect of the penetrator speed on the normal stress
distribution at the penetrator nose and on the var-
iation of -0, and I at points of the target along
the axis ahead of the penetrator.

hemispherical nosed penetrator in Ref. 3, the value of the
normal pressure on the penetrator nose at 9 equal to approxi-
mately forty-five degrees is unaffected by the penetrator
speed. At points on the penetrator nose for which 8 is less
than 45°, the normal pressure increases with a and on the
remainder of the surface, it decreases with a. However, the
relative decrease is smaller than the percentage increase at
points situated equal angular distance from the 6 = 45° line.
At a point on the axial line ahead of the penetrator, whereas
the magnitude of o,, increases with that of I essentially
remains unchanged except at a point on the nose tip where it
increases slightly with a. The rate of decay of (-0z;) and 1
with the distance from the nose tip is essentially unchanged
as the penetrator speed increases. Values of I essentially
approach zero at points on the axial line whose distance from
the penetrator nose tip is at least 1.5 r,.

A curve fit to the computed values of the axial resistance
force F at various values of a gives

F = 4,955(1 + .0l51a) ,
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implying, as before, that F depends weakly upon a.

Figures 6 and 7 compare, respectively, the variation of I
and ¢ in the target region considered for two different nose
shapes of the penetrator. When the penetrator nose is ellip-
soidal, peak values of I occur at the nose tip and I decreases
as one moves away from it in any direction. However, for a
blunt nosed penetrator peak values of I occur at points on the
target/penetrator interface where the nose meets the cylin-
drical portion of the penetrator.: The peak value of I at any

-
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Comparison of the variation of the strain-rate
measure [ in the target region for an ellipsoidal

nose and a blunt nose.

Tigure 6.

>oint in the target is nearly three times larger when the
denetracor has a blunt nose as compared to that when it has a
-narp ellipsoidal nose. The strain-hardening parameter exhi-
“.ts a totally different behavior. For a blunt-nosed pene-
-rator the peak value of ¢ occurs at the nose tip and it drops
iC rather sharply as one moves away from it. It stays prac-
“.cally unchanged on most of the penetrator/target interface.
T2t oan ellipsoidal nosed penetractor the peak value of ¥ does
">t occur at the nose tip but at a point an the penetra-
‘:t’target interface which is on the penetrator nose and for
siich 8 = 1°, From this point on the value of ¢ stays prac-
sically the same on the remainder of the target/penetrator
‘lterface. Again the peak value of ¢ at any target point for
- 3lunc nosed penetrator is roughly two and a half times as
‘T3¢ as that for an ellipsoidal nosed penetrator. A possible
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Figure 7. Comparison of the variation of the strain-hardening
parameter ¢ in the target region for an ellipsoidal
nose and a blunt nose.

reason for the difference in the variations of ¥ and I in the
two cases is that the governing equation for ¥ is convection
dominated whereas that for I does have a natural diffusive
term in it. As depicted in Fig. 6 of Ref. 3, the tangential
velocity on the penetrator nose is quite different in the two
cases. Whereas for a blunt nosed penetrator it increases from
zero at first slowly and then quite rapidly when 8 is close to
80°, for the ellipsoidal nosed penetrator it increases rapidly
for 0 < 8 < 18° and gradually afterwards.

Finally we note that an extension of this work to the the
thermo-mechanical problem when the target material can also
thermally soften will appear in Ref. 10.

CONCLUSIONS

During the intermediate stages of penetration of a target
all of whose dimensions are very large as compared to the
penetrator radius and whose material is much softer as com-
pared to that of the penetrator, the shape of the penetrator
nose has most influence upon target deformatioms. For a blunt
nosed penetractor the deformations spread to a larger distance
away from the target/penetrator interface as compared to that
for an ellipsoidal nosed penetrator. In every case the axial
resisting force experienced by the penetrator depends weakly
upon the penetrator speed. Also the deformation related field
variables depend smoothly upon the strain hardening exponent.
The peak values of strain-rate measure I and strain-hardeniny
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parameter ¥ are higher for a blunt nosed penetrator as com-

pared to those for an ellipsoidal nosed penetrator. Points

where these peak values occur are situated quite differently
in the two cases.
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Steady state penetration of thermoviscoplastic targets
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Abstract. Steady state thermomechanical deformations of a target hit by a rigid cylindrical penetrator with an ellipsoidal
nose are studied. The material of the target is assumed to be thermally softening but strain and strain-rate bardening. Results
computed and presented graphically include the pressure distribution on the nose of the penctrator, dependence of the axial
resisting force upon the speed of the penetrator, and the variation of ficld quantities such as the temperature and strain-rate
in the target. Computed resuits show that the ratio of the major to minor axes of the ellipsoidal nosc has a significant effect
on the deformations of the target particles in the vicinity of the penetrator nose.

1 Introduction

In an attempt to shed some light on the validity of the approximations made in simple theories of
penetration due to Alekseevskii (1966) and Tate (1967, 1969), Batra and Wright (1986) studied in
detail the penetration problem that simulates the following situation. Suppose that the penetrator
is in the intermediate stages of penetration so that the active target/penetrator interface is at least
one or two penetrator diameters away from either target face, and the remaining penetrator is much
longer than several diameters and is still traveling at a uniform speed. Thus steady state deformations
of the target, presumed to be made of a rigid/perfectly plastic material, and being penetrated by a
long cylindrical rigid rod with a hemispherical nose were analysed. Subsequently Batra (1987)
showed that the axial resisting force experienced by the rigid penetrator is considerably reduced if
its nose shape is ellipsoidal rather than hemispherical and also investigated the effect of the depend-
ence of the flow stress upon the strain-rate. Herein we study the steady state penetration problem
when the target material is thermally softening but strain and strain-rate hardening.

Pidsley (1984) has recently given a detailed numerical solution of the penetration problem in
which both materials are considered to be deformable and rigid/perfectly plastic. We refer the reader
to his paper for more references on this subject. Even though we study a somewhat simpler situation,
our material model is more general in that we account for the effect of strain and strain-rate
hardening and thermal softening. We note that the peak strains and strain-rates encountered during
steady state deformations of the target are of the order of 10 and 10° sec~! respectively. Also the
temperature at target points may rise to as much as half of the melting point of the target material.
We study the effect of these competing factors as well as of the penetrator speed and the shape of
its nose on the deformations of the target.

2 Formulation of the problem

Since the axisymmetric deformations of the target appear to be independent of time to an observer
situated on the penetrator nose and moving with it, we choose a cylindrical co-ordinate system
attached to the nose tip with the positive z-axis pointing into the target material. With respect to
these axes translating with a uniform velocity vye, ¢ being a unit vector along the penetrator axis
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and in the direction of its motion, equations governing the thermomechanical deformations of the
target are

dive =0, (1)
dive = o(v - grad) o, P))
—divg + tr(¢D) = g(v- grad) U, 3)
tr(eD) = (v - grad) x, (C))
D = (grad v + (grad o)} . . )

Equations (1) through (4) written in Eulerian description of motion express respectively the balance
of mass, linear momentum, internal energy and. the evolution of the work hardening parameter x.
In Eq. (4) we have neglected the elastic deformations of the target and in Eq. (3) assumed that all
of the plastic working, rather than a part of it (¢.g. Farren and Taylor 1925) is dissipated in the form
of heat. The operators grad and div signify the gradient and divergence operators on fields defined
in the present configuration. Furthermore, ¢ is the Cauchy stress tensor, ¢ is the mass density of the
target material, v is the velocity of the target particle relative to the penetrator, ¢ is the heat flux per
unit present area, D is the strain-rate tensor, and U the specific internal energy. Equations (1)
through (4) are to be supplemented by constitutive relations and boundary conditions.
We assume the following constitutive relations for the target material.

= —kgradd, ()
U=cH, )
=—pl+2u(l,0,p)D, f D#0, 3
2 p\»
tr(s?) < -aj(l —a0)2(l + —) , f D=0, )
3 Yo
s=o+pl, (10)
2u(l,6,p) = V"g"—l(l +bIy(l —aH)(l + ;‘f’-o) an
%(p) = ao¥ (1 + v/p,)", (12)
12=1tr (D?). (13)

Equation (6) is Fourier’s law of heat conduction, k is the thermal conductivity, & is the change in
the temperature of a material particle from that in the underformed configuration, c is the specific
heat which is assumed to be constant, p is the hydrostatic pressure not determined by the deformation
history, and g is the yield stress in a simple tension or compression test. The material parameters
b and m describe the strain-rate sensitivity of the material, the material parameter a describes its
thermal softening, and y, and n characterize the strain hardening of the matenal. An integral form
of Eq. (12) with x interpreted as the true stress and y the plastic strain represents the stress-strain
curve in a quasistatic reference test. Equation (8) may be interpreted as a constitutive relation for
a Non-Newtonian fluid whose viscosity u depends upon the strain-rate, temperature and a material
parameter p. Equation (8) implies that

(% tr52>*=71§ao(1 + b1y (1 —a0)<| + w%) | (14)

which can be viewed as a generalized Von-Mises yield criterion when the flow stress (given by the
right-and side of (14)) at a matenal particle depends upon its strain-rate, strain and temperature. A
constitutive relation similar to Eq. (8) has been used by Zienkiewicz et al. (1981) who took

2u= oo+ QUY3IN"MI/31, (15)
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where y and n are functions of 6. They asserted that it represents Perzyna’s viscoplastic model. For
a simple shearing deformation, Litonski (1959) proposed that

t=c(l —a®)(d-+ byy"y" (16)

where t and y equal the shear stress and shear strain, and c is a material constant. Note that this
relation implies that z is zero whenever 5 = 0. Another stress-strain law proposed by Lindholm and
Johnson (1984), based on fitting curves to experimental data obtained from torsion tests, is
oW O —0

t=(A4+ By")(1 + Cin(¥/1e))
Om - 00

where 6,, is the melting point of the material, 6, is a reference temperature, and 4, B and C are
matenial constants. Lin and Wagoner (1986) recently reported that the following curve

o = 556 (¢ — 0.014)%219(£/0.02)°0'8(1 — 0.0012 (¢ — 298)) MPa, (18)

fitted well their experimental data derived from a uniaxial tension test on Armco L F. steel. In Eq.
(18), o and ¢ are the axial stress and the axial strain respectively and 6 is in °K. The linear dependence
of the flow stress upon temperature has also been observed by Bell (1968).

The constitutive relation (8) with g given by Eq. (11) is an attempt to-generalize the one used by
Wright and Batra (1986) for simple shearing deformations of nonpolar and dipolar materials. They
used it to study shear strain localization phenomenon in metals and derived it by using arguments
similar to those employed by Green, Mclnnis and Naghdi (1968). A curve fit to the torsion test
data of Costin et al. (1979) for a 1018 cold rolled steel gives n = 0.09, wo = 0.017, b = 10* sec—! and
m = 0.025.

Before stating the boundary conditions we non-dimensionalize the variables as follows.

(17)

&=0/06y, p=p/oy, S=S5/0y, D=0fvg, F=rfry, Z=2[ry, G=0/6,,
(19)
b= br—' d=ab,, a=pvj/oy, B=kllecvory), 0= ao/(ec).
0
Substituting from Egs. (6) through (12} into the balance laws (1) through (4), rewriting these in
terms of non-dimensional variables, and denoting the gradient and and-divergence operators in non-
dimensional coordinates by grad and div, we arrive at the following set of equations.

divo=0, o)
dive = a(v - grad) o, 1)
tr(oD) + Bdiv(grad 6) = (v - grad) 6, | 22)
tr(cD)

0~ (v-grad)y, 23
T+ ooy~ ERDY @
where

o’=—pl+l—/7l§r;(l+bl)'"(l-—09)<1+%’>"D, 24)

and we have dropped the superimposed bars.
We assume smooth contact at the target/penetrator interface. Thus the boundary conditions on
this surface are

t-(cm)=0, (25.1)
v-n=0, (25.2)
g-n=h(06-6,), (25.3)

where 4 is the heat transfer coefficient between the penetrator and the iarget, 0, is an average
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temperature of the penetrator, and a and ¢ are, respectively, a unit normal and a unit tangent vector
to the surface. At points far away from the penetrator '

lo+e =0, 80, p—=0 as (r2+z) w00, z>-00, (26.1)
lc'd—’os M""-’o, ‘P"o as z——00, rz2rp (26.2)

The boundary condition (26.1) states that target particles at a large distance from the penetrator
appear to be moving at a uniform velocity with respect to it and experience no change in their
temperature. Equation (26.2) implies that far to the rear the traction and heat flux fields vanish.

Note that the governing Eqs. (20)~23) are coupled and are nonlinear in o, § and . Their
solution, if there is one, may not be unique and will depend, in general, upon the rates at which
quantities in (26) decay to zero. Since we are unable to solve these equations analytically and prove
any uniqueness theorem, we will seek a numerical solution of these equations which we hope will
be physically meaningful.

3 Finite element formulation of the problem

The numerical solution of the problem necessitates the consideration of a finite region. Since the
target deformations are axisymmetric, only the target region R shown in Fig. 1 is studied. The
adequacy of the finite domain considered will be verified by solving the problem for two separate
regions, one larger and containing the other, and ensuring that the two sets of computed values of
various field quantities are close to each other. The boundary conditions (26) are replaced by the
following.

o0
6,=0, v,=0, == 0 onthesurface 4B, (27.1)
aé .
6,=0, v,=0, — =0 ontheaxisofsymmetry DE, (27.2)
r .
v, =0, v,=—-10, 8=0, p=0 ontheboundarysurface EFA. (27.3)

Referring the reader to Becker et al. (1981) and Zienkiewicz et al. (1981) for details, we simply note
that a weak formulation of the problem defined on the region R by Egs. (20)<24) and boundary
conditions (25) and (27) is that equations

[i(divo)dv=0, (28.1)
R
3
<
™
| S (2 R
I
i®
‘]
P4
8
= c FI=y
8 Al_{
L’!. 325:,,-——J Fig. 1. The finite region studied
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jp(div @)dv — [ u(1,0,p)(D:(grad ¢ + (grad@)"))dv = aj((v -grad)v) - @dr, (28.2)
R
j((u grad)0)n do + Bfgrad - gradmao + h | Ondd = jn(o' D)du— | houndd, (28.3)
/R
j((v grad)zp)fdv—]~—(c—i- Edo, (28.4)

2

hold for arbitrary smooth functions 4, ¢, n and ¢ defined on R such that ¢, =0 on A8, ¢ =0 on
EFA, ¢ - n =0 on the target/penetrator interface BCD, and n = ¢ = 0 on EFA. In these equations,
A:B = tr (A BT) for linear transformations A and B, and 3, R denotes the target/penetrator interface
BCD. Since these equations are nonlinear in v, 8 and vy, the following iterative technique has been
employed. At the i** iteration, equations

fidivoido=0, 29.1)
R
[P (dive)do = fu(l-',6-",v~")(D': (grad ¢ + (grad )”))dv = a_[((v‘“ -grad) v') - ¢ dv, (29.2)
R

f((v'=! - grad)0')ndv + Bfgrad & - gradndv+ h | 6'ndA = _\'ry(c‘ 1:D'-Ydv - { h0,ndA,(29.3)
R 3R 3R

) -1. -1
f (v - grad)p)Edo= i——"—l- £do, (29.4)
" (e2)
Yo
are solved for ¢, &, y* and p'. The iterative process is stopped when, at each nodal point,
o' — o= +10' = 0 + lp' — = < e[l =" + 107" + ly'~ 1] (30)

where || o]|2 = v2 + v2, and ¢ is a preassigned small number. Values of p’ are not mcluded in Eq. (30)
since p appears linearly in Eq. (29.2).

4 Computation and discussion of results

The finite element code developed earlier [Batra and Wright (1986)] to solve the problem when the
target material is modeled as rigid/perfectly plastic and the penetrator nose is hemispherical has
been modified to solve the present problem. It employes six-noded triangular elements with o,, v,,
v and 6 approximated by quadratic functions over an element and p by a linear function defined in
terms of its values at the vertices of the triangular element. The validity of the code was established
by first modifying Eqgs. (29) to include arbitrary source terms on their right-hand sides, and then
solving simple problems for incompressible Navier-Stokes-Fourier fluids. The source terms were
adjusted so that the governing equations were satisfied by the presumed analytic expressions for v,,
ve, P, 0 and . Results for a sample problem that does not include thermal effects are given in Batra
and Wright (1986).

A major difference between the problem studied herein and those studied earlier by Batra and
Wright (1986) and Batra (1987) is that Eq. (28.4) does not have any diffusive term in it. This
necessitates the use of either an ultrafine mesh or a fine mesh with an artificial diffusive term included
in Eq. (28.4). Brooks and Hughes (1982) have discussed in detail the justification for including such
a term and have given equivalent ways of achieving the same objective. We added a term
5 [ grady - grad £ dv to the left-hand side of Eq. (28.4) and computed resuits for § = 10~%and 10-7.

R

The two sets of values of 8, p, v, and v, differed by less than one percent at each node. The resuits
presented below are for & = 10-%. We next ascertained the adequacy of the region considered by
" increasing DE in Fig. 1 from 3.25r¢ to 4.5ry. Again the difference in the values of 4, p, v,, v, and
at points in the vicinity of the penetrator nose was negligible.
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We note that experimental data for the range of deformations expected to occur in the penetration
problem under study is not available in the open literature. Therefore, values of material parameters
b, m, a, yo and n in Eq. (14) found by fitting a curve to the experimental data in torsion of Costin
et al. (1979) were assumed to be valid under the more general state of stress studied here. This
should enable us to undertake the parametric study for a reasonable range of values of various
material parameters. The values of various parameters used to compute numerical results are:

n=0.09, Po=0.017, b=10%sec , m = 0.025, a = 0.000555/°C, k=48W/m°C,
c=4731/kg°C, o=7800kg/m’>, o,=180x106Pa, h=20W/m?°C, ro=2.54mm,
£=0.02, 6,=0.

However, the results presented below are in terms of non-dimensional quantities and the variables
that are assigned values different from those given above are so indicated in the figures along with
their new values.

In Fig. 2 is plotted the pressure distribution on the penetrator nose for a relatively blunt nose
(rafro = 0.2), a hemispherical nose (r,/ro = 1) and an ellipsoidal nose (r,/ry = 2.0). As expected the
normal pressure on the blunt nose stays essentially uniform over most of its surface and drops off
sharply near its extremities. Note the change in the curvature of the pressure curve in going from
hemispherical to an ellipsoidal nose. The non-dimensional axial resisting force decreased from
17.091 for the blunt nose to 8.902 for the hemispherical nose and further t0.5.085 for the ellipsoidal
nose. The axial resisting force Fis given by

2
F=2 f (n-on)sinfcose [sm’@-{-( ) cos?@ :]*dﬂ,
ro

where angles 6 and @ are defined in Fig. 1. The corresponding axial force in physical units is given
by F(rria,). The normal pressure on the hemispherical and the ellipsoidal nose surface for the
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Fig. 2. Distribution of the normal pressure on the penetrator
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angle 0 greater than nearly 75° is not plotted because of the difficulties encountered in computing
it accurately. The mesh in this region was not fine enough to yield reliable values. Figure 3
depicts the variation of the strain-rate invariant / and temperature change 0 on the nose surface.
Whereas the maximum value 4.21 of I occurs at the penetrator nose tip for the ellipsoidal nose, it
assumed very high values at the extremities for the blunt nose. For these two nose shapes significant
values of 7 occur near the nose tip and the nose periphery respectively. For the hemispherical nose
shape I decreases almost linearly from its maximum value of 2.16 at the nose tip to 0.4 at its
periphery (0 = 90°). The dimensional values of J equal 1.1 (10%) times the non-dimensional values.
The values of temperature at the nose tip do not depend that much on the nose shape. However the
temperature decreases with 6 for the ellipsoidal and the hemispherical nose, it increases with ¢ for
the blunt nose. Because of the high-strain rates near the vicinity of the periphery of the blunt nose,
there is a lot of heat generated in this narrow region. Since material particles near the periphery of
the nose are moving relatively slowly, not much of the heat produced is convected or transported
away. In Fig. 4 is plotted the variation of the strain rate / and temperature change 6 on the axial
line. For the blunt nose, the deformation has spread to a larger distance as compared to that for
the ellipsoidal nose. Accordingly the temperature drops off slowly for the blunt nose than it does
for the other two cases. The actual temperatures in °C are obtained by multiplying their non-
dimensional values by 48.9. Thus temperatures as high as 605°C occur at and near the nose tip.
The maximum value of strain-rate / on the axial line appears to occur at a point slightly away from
the nose tip. This initial rise is probably only an artifact and the curves should be extended smoothly
to the nose-tip.

[
gp =4

TEMPERATURE
STRAIN-RATE MEASURE I
N
;‘r’

(] as w0 [ 20 25 30 35
DISTANCE FROM THE NOSE-TIP

Fig. 4. Variation of the temperature change and strain-rate measure / on the axial line for three different nose shapes.
Blunt nose (r,/ro=0.2); ~---- hemispberical nose (r,/r, = 1.0); ~-—-~ ellipsoidal nose (r,/ry = 2.0); a = 4.0

TEMPERATURE

NORMAL PRESSURE

Fig. 5. Pressure and temperature distribution on the
ellipsoidal penetrator nose for different values of a.
aw= 10 —-—-~ ax=20; ~-—~ a=30;
----- amdQ, - - -a=50
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Figures 5 and 6 illustrate the effect of speed of the penetrator on various solution parameters at
or in the vicinity of its ellipsoidal nose with r,/ro = 2.0. As shown in Fig. 5, the normal pressure
near the penetrator nuse tip increases with the speed but decreases near its periphery. Near 3§ = 45°,
the speed has no effect on the normal pressure. Such a behavior was also observed for a hemispherical
nose and a rigid/perfectly plastic target material by Batra and Wright (1986). The dependence of
the non-dimensional axial force F upon the speed (through non-dimensional variable a)
is given by

F=5021+0.0732a, ellipsoidal nose (r,/ro = 2.0)
F=871 +0.2145a, hemispherical nose.

For rigid/perfectly plastic materials, Batra and Wright (1986) obtained F = 3.903 + 0.0773« for a
hemispherical nosed penetrator, and Batra (1987) computed F=2.58 4- 0.019« for a penetrator
with an ellipsoidal nose having r,,/r, = 2.0. Thus the consideration of strain and strain-rate hardening
and thermal softening effects more than doubles the axial resisting force. In every case studied so |
far, F depends upon a weakly. This weak dependence of F upon a seems to explain why the choice
of constant target resistance in the simple theory of Tate (1967, 69) gives such good qualitative
results. On most of the nose surface, the temperature decreases with a. This is shown in Fig. 5.
Figure 6 depicts that most of the target deformations are concentrated near the penetrator nose.
The peak value of I on the axial line appears to occur not at the nose tip but slightly away from it.
The plots of strain-rate invariant I and the temperature change in the target region, shown in Fig.

et

7, confirm that significant target deforr:. - - s occur in the vicinity of the target/penetrator interface.
4

- w

g s 3

= 1]

o« 0

Py &

= a

w 2F o

g £

i g

S 3

é 1 - [+ 4

5 g

A T
o y A1 i | —J 0 1l i L | ' 3

0 Ql Q2 o] X} Qs Q Qs 0 1L) 20 2s 0
DISTANCE FROM THE NOSE-TIP DISTANCE FROM THE NOSE-TIP

Fig. 6. Variation of the hydrostatic pressure and the strain-rate mesure / on the axial line for different values of «. Explanations
see Fig. 5

\&le

Cw

= 8

g 6

@

w *

a 2

& o
s
-~
g 4
ck 3
-z
g9 ?
a4
£ os
neZ 4

ELLIPSOIDAL NOSE (s, /ro * 20)
a=30

Fig. 7. Temperature and strain-rate distribution in the target region for a = 3.0.

-73=~ |




R.C. Batra: Steady state penetration of thermoviscoplastic targets

How different material parameters influence the deformations of the target is demonstrated by

results presented in Figs. 8 through 11. Figure 8 shows that strain-rate hardening increases the
normal pressure more than the work-hardening does. The inclusion of thermal softening affects
little, if any, the normal pressure distribution on the penetrator nose. Near the nose tip (Fig. 9) the
inclusion of work-hardening and strain-rate hardening decreases the value of the strain-rate invariant
I but increases the temperature. This is due to the fact that these hardening effects increase the
material’s flow stress and cause more plastic working which is converted into heat. The thermal
softening has a noticeable effect on the temperature distribution at the penetrator nose. From the
plot of the strain-hardening parameter y on the penetrator nose and on the axial line in Fig. 10,

NORMAL PRESSURE

STRAIN-RATE MEASURE 1

STRAIN-HARDENING PARAMETER

B

[r]

20 30 4 50 60 70 80 90°

ANGULAR POSITION

3

TEMPERATURE

STRAIN-HARDENING PARAMETER

Fig. 8. Effect of different material parameters on the pressure
distribution at the penctrator nose (r,/ro=2.0; a=1.0;
full model;, - -- no thermal softening;
----- strain hardening only; ----- rigid perfectly plastic)

Fig. 9. Effect of diflerent matenial parameters on the
temperature and strain-rate distribution at the penctra-
tor nose (r,/ro = 2.0). Explanations see Fig. 8

DISTANCE FROM THE NOSE-TWP

. 1 1 1 1
0 20 3 4 30 6 M 80 %0

Fig 10. Effect of different material parameters on the strain-hardening parameter y. Explanations see Fig. 8
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Fig. 11. Effect of strain-hardening, strain-rate hardening and thermai softening on relative z-velocity, temperature change
and the hydrostatic pressure at points on the axial line. Explanations see Fig. 8.

one may conclude that the thermal softening reduces its value significantly, especially at points near
the nose surface. On the axial line as well as on the nose surface, strain-rate hardening in turn
increases strain-hardening. We should add that a steady-state penetration problem is being studied
and thus it is tacitly assumed that the increased energy required for deforming the target is available
whenever necessary. Fig. 11 depicts the variation of the hydrostatic pressure, temperature and
relative z-velocity on the axial line. The hydrostatic pressure, the temperature and the absolute
z-velocity of a target particle on the axial line increase with the inclusion of hardening effects but
change very little by the consideration also of thermal softening. In order to investigate further the
effect of thermal softening, we arbitrarily doubled the value of the thermal softening parameter a.
This increased the value of the strain-rate invariant / but changed very little the value of other
quantities on the penetrator nose.

On the axial line uniaxial strain conditions prevail approximately. Thus the magnitude of the
deviatoric stress s,, at a point should equal 2/3 the effective flow stress g, defined as

o, = ag(1 + 61Y"(1 — ab)(1 + w/y,)".

Of all the points on the axial line, the nose tip is the most cnitical one since the strain-hardening
parameter y assumes very high values there. In Table 1 below are compared the values of (—s.,)
and 2/3 0, at the nose tip. Whereas the error is negligible when the target matenial is rigid/perfectly
plastic, it is rather high for the other three cases. A possible reason for the high error is that values
of y at the center are sensitive to the value of the artificial viscosity § eventhough other field variables
show negligible dependence upon the precise value of § within a certain range. To support this
reasoning, we list in Table 2 values of the same variables but with the effect of strain-hardening -
neglected. Note that these are for a higher value of the speed of the penetrator.

Finally we remark that results presented here are valid only for the constitutive model used
herein.
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Table 1. Values of 5., and 2/3 g, at the nose-tip for different materiai models (x = [)

Model -0 -p -3y 2/3a, % difference
Perfectly plastic 6.34 5.64 0.7 0.67 45
Strain-hardeniug 7.05 6.36 0.69 1.12 40.2
+ Rate dependence 11.07 9.88 1.19 2.01 40.7
+ Thermal softening 11.10 10.25 0.8s 1.42 40.1

Table 2. Values of s, and 2/3 ¢, at the nose-tip for different material models (a = 5)

Model -0y ~-p —5, 2/3¢, % difference.
Perfectly plastic 8.97 8.35 0.62 0.67 7.46
Rate dependence 12.36 11.26 1.10 1.17 5.98
+ Thermal softening 12.28 11.39 0.89 0.96 7.29

Fig. 12. Variation of strain-hardening parameter v in the target region. (x = 3.0, r,/r, = 2.0)

Conclusion

The computed results show that during the steady state portion of the penetration process, the
penetrator nose shape has a significant effect on the deformations of the target. Whereas the strain-
rates are higher for the sharper ellipsoidal nose, deformations spread to a larger distance away from
the nose surface for the blunt nose. The speed of the penetrator has a weak effect on the axial
resisting force experienced by the penetrator even though the hydrostatic pressure does increase
with the speed. The inclusion of thermal softening effects increases the strain-rate in the target
material but does not alter the pressure distribution on the penetrator nose.
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EFFECT OF MULTIPLE INITIAL IMPERFECTIONS ON
THE INITIATION AND GROWTH OF ADIABATIC
SHEAR BANDS IN NONPOLAR AND DIPOLAR
MATERIALS

Y. W. KWON and R. C. BATRA
Department of Engineering Mechanics, University of Missouri-Rolla, Rolla, MO 65401-0249, U.S.A.

Abstract—Simple shearing deformations of a wviscoplastic block made of nonpolar and dipolar
materials, and placed in a hard loading device are studied. Multipie defects in the block are modeled
by perturbing the uniform temperature within the block when the matenal just starts deforming
plastically to that given by a cosine function which assumes relative maximum values at several points
in the block. It is found that for simple materials, the deformation localizes at points where the
perturbed temperature has relative minima when the average applied strain-rate ¥, is 500s™' and at
the locations of the relative maxima of the perturbed temperature when the applied strain-ra:e is more
than 1000s™". This transition occurs possibly due to different thermal lengths and the dme scales
associated with the work-hardening in the two cases. For dipolar materials the deformation localizes
near the boundaries of the block abutting the loading device when 7, =5005"" but at the locations of
the relative maxima of the perturbed temperature when 7, = 50,000s™*. For both simple and dipolar
materials the initiation of the localization of the deformation is considerably delayed as compared to
the case when the temperature perturbation has only one bump with its center coinciding with the
center of the block.

[NTRODUCTI ON U TN OU D Lot e

Recently there has been considerable interest in the study of the localization of the shearing
deformation in bodies being deformed at very high strain-rates. These narrow regions of severe
deformation are usually referred to as adiabatic shear bands because of the littie time available
for the heat generated to diffuse away to colder regions of the body. These shear bands are
believed to be precursors to shear fractures.

Most analytical studies (e.g. Recht [1], Staker [2], Clifton [3], Burns {4}, Bai [S] and Shawki
et al. [6]), aimed at delineating factors that inhibit or enhance the initiation and growth of
adiabatic shear bands, have involved analyzing the thermomechanical deformations of a block
undergoing simple shearing deformations. Whereas Recht, Staker and Clifton derived
conditions based on the assumption that the material point becomes unstable when the shear
stress at that point attains a maximum value, Burns, Bai and Shawki et al. studied the growth
of small perturbations superimposed on a finitely deformed body. In these latter anaiytical
studies the governing equations were linearized around the finitely deformed state. Clifton et
al. [7], Wright and Batra [8, 9], Wright and Waiter [10] and Batra [11] studied, numerically, the
effect of introducing a perturbation on a finitely deformed body and did not need to linearize
the governing equations. Subsequently Batra [12] introduced the temperature perturbation
when the body just starts deforming plastically and investigated the effect of various matenal
parameters on the vaiue of the average strain at which the deformation begins to localize.
These perturbations are supposed to simulate the flaws or inhomogeneities present in the
material. Whereas in previous works one or two flaws/defects were presumed to be present,
here we assume that the flaws are periodically distributed and represent these by an initial
temperature distribution given by a cosine function which assumes relative maximum values at
several points in the specimen. It is found that the presence of many flaws/defects delays
considerably the initiation of the localization of the deformation.

Wright and Batra (9] and Batra [11] have shown that the inclusion of the strain gradients as
an independent kinematic variable has a stiffening effect in the sense that it delays considerably
the onset of shear bands. Batra [11] also studied the interaction among shear bands in sir le
and dipolar materials. His numencal calculations revealed that two bands that will grow
independently in simple materials will ccalesce in dipolar materials. Herein it is found that in
dipolar materials the defcrmation localizes near the boundaries of the specimen at an applied
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strain-rate ¥, of 500s™' but at the locations of the relative maxima of the initial temperature
when 7,=50,000s". In simple materials the deformation localized at points between the
locations of the relative maxima of the initial temperature at y,=500s"'. However, at
¥o=50,000s~" the points where the deformation localized coincided with the locations of the
relative maxima of the initial temperature.

FORMULATION OF THE PROBLEM
Equations governing the thermomechanical deformations of a block occupying the region

—1=<y=<+1 and made of a viscoplastic material undergoing simple shearing deformations may
be written [9, 11] as

1

] =;(s -lo,), (1)
8=k6 ,, +A(s>+ o), (2)
$=u(v, — As), 3)
d=lu(v,yy—%a), (4)
. 5 \ l n

v=A(s +a~)/(1+%). (5)

(sz+ o.2)i t/m

A = max{ 0, ( ¥ -1 [b(s* + ) 1. (6)

+=—) (1-ab
1 Wo> (1-ab)
These equations are written in terms of nondimensional variables. Equations (1) and (2)
represent, respectively, the balance of linear momentum and the balance of internal energy.
The balance of mass simply gives that the mass density p stays constant since the simple
shearing deformation is isochoric. Here v is the x-velocity of a matenal particle, 6 its
temperature change from that in the reference configuration, s is the shear stress in the x
direction acting on the plane y = constant, o is the dipolar stress on this plane, £ the thermal
diffusivity, parameters y, and n describe the strain-hardening of the material, parameters b
and m characterize the strain-rate sensitivity of the material, the parameter a defines the
thermal softening, the parameter / is the material characteristic length, and y is the shear
modulus. The parameter y may be thought of as an internal variable and eqn (5) its growth
equation. It is used to describe the work-hardening of the material. Note that the numerator on
the right-hand side of eqn (5) equals the plastic working. A comma followed by y signifies
partial differenti: iion with respect to y and a superimposed dot stands for the matenal time
differentiation. Implicit in eqn (2) are the assumptions that the specific internal energy equals
the specific heat multiplied by the change in temperature, Fourier's law of heat conduction
holds and that all of the plastic working is converted into heat. The material characteristic
length / equals zero for nonpolar matenals and is positive for dipolar matenals.

In eqns (1)-(6) it has also been assumed that the strain rate y = v, and its gradient d= U,y
have additive decompositions into elastic y., d. and plastic parts y,, d,. That is

Y=Y+ 7V, d=d +d, (7)
For the plastic parts y, and dp we have made the following constitutive assumptions:
. . Ao
Yp = As, d,=—. (8)

{

A in these equations equals zero whenever the deformations are elastic and 1s posiive for
plastic deformations. In order to determine whether a matenial point i1s deforming elastically or
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plastically, we presume that a scalar loading or yield function f exists such that

f(s,0,8, ¥,,d,) =« 9
and
of
— 10
ETN (s, 0,0, As, Ao) <0 (10)

for all admiss. .le values of s, 0 and 6. x in eqn (9) describes the work hardening of the
material. The criterion for elastic and plastic deformation at a material point is

f(s, 0,6,0,0) =<0, elastic (11)
f(s, o, 6,0, 0)>0, plastic. (12)

When eqn (12) holds, eqn (9) has a unique solution for A because of the requirement (10).
Equation (6) gives the value of A for the choices

o (s*+ o)

, 0,6, v,,d,)= - : , 13

[0, 8. Yoo do) = 20N T+ (72 % DT (1)
and

/ ' )"

k={1+—]. 14

Yo (14)

The details of deriving eqns (1)-(6) may be found in Wright and Batra [9] and Green et al.
[13].

The governing equations (1)~(6) are to be supplemented by initial conditions and boundary
conditions. For the former we iake

v(y,0)=y, 6(y,00=0, o(y,0)=0, y(y, 0)=0,
6(y, 0) = (1 + cos 20y)/20,
5(y, 0)=[1-aé(y, 0)], (15)
and for the latter
v(xl, )= %1, 0,(x1,1)=0, o(xl1,1)=0. (16)

"Thus the material point is initially presumed to lie on its yield surface that corresponds to

ouasistatic deformations, no work hardening and its initial temperature. The initial stress
distribution is nonuniform and y, = 0 initially at all points in the body.

We seek solutions of eqns (1)-(6) subjected to initial and boundary conditions (15) and (16)
that exhibit the following symmetries and antisymmetries:

U(—y, ’)=_U(Y: t)r 9("}’; ‘)=6(y' ’)’
(17)
o(=y,)=—=0(y, 1), s(=y,t)=s(y, 1), Y(-y. t)=y(y,1).

However we do not assume a priori that the solution is periodic. Hence we can reduce the
domain of study to {0, 1] and replace boundary conditions (16) by

v(l,1)=1, v(0, t) =0, 6,(1,1)=0, 8,00, 6)=0,

(18)
o(1,1) =0, g(0, ) =0.

The nonlinear coupled governing equatic.is (1)-(5) under the side conditions (15) and (18) are
solved numerically by the finite element method. We note that there are no existence and
uniqueness theorems available for such a system of equations. Also there is no hope of solving
these equations analytically, therefore we solve them numerically.
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COMPUTATION AND DISCUSSION OF RESULTS

We introduce the auxiliary variables

Uu=vy, g§=10,, P=0y (19)
and rewrite eqns (1)-(4) as
!
U= ; (s =1Ip),, (20)
B=kg,+ A+ 0%), (21)
§ = u(u - As), (22)
A
o=l - o). (23)

Whereas Batra [11] integrated eqns (19)-(23) and (5) by the Crank~Nicholson-Galerkin finite
element method to find «, g, p, v, 6, 5, 0 and y at a node point, we have integrated eqns
(1)-(5) by the same method and computed v, &, 5, ¢ and y at a node point. For a test
problem. the computed results by the two methods were identical but the core storage needed
and the CPU time used was considerably less with the present method. Here we divided the
domain [0.1] into 400 uniform subdomains or finite elements and used At=5x 10" in
computing the results.

The values of the nondimensional parameters a, u, n, 9, and m do not depend upon the
applied average strain-rate ¥, but those of p, k and b vary as 73, 75" and y, respectively. The
values of these vanables, which correspond to a typical hard steel, used to compute numerical
results are

a =0.4973, u =240.3, n=0.09, Yo =0-017, m =0.025

and
p=3.928x1073, k=3.978x 1073, b =5x 10°when ,=500s"",

p=3.928x10"", k=3.978 x 1077, b =5 x 10® when y, = 50,000s~".

The presumed value of the thermal softening coefficient a is approx. 7 times the value for a
typical steel. This is done so that the peak in the shear stress—shear strain curve occurs at a
lower value of the average strain and therefore the computational time for the problem is
significantly reduced. This choice of the value of a should not affect the qualitative nature of
results presented here. '

For homogeneous deformations of the block Fig. 1 depicts the shear stress-shear strain curve
for an applied strain-rate of 500s™'. The peak in the curve occurs at an average strain of 0.093.
At the higher strain-rate of 50,000s™' the shear stress peaks ¢ at an average strain of 0.085.
The temperature perturbation was introduced at an av - .«ain corresponding to point | in
Fig. 1.

Figure 2 shows how the temperature, plastic strain-rate and the shear stress s evolve in the
steel block when it is modelcd as a nonpolar material, the initial temperature distribution is
nonuniform, and the block is deformed at an average strain-rate of 500s~'. Figure 3 depicts the
corresponding results for an applied strain-rate of 50,000s™'. Note that the initial temperature
has the relative maximum value of 0.10 at y = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and
1.0. In each case the shear stress s becomes essentiaily uniform after a short while and stays
uniform throughout the thickness of the block. It first rises because ot the work hardening and
strain-rate hardening effects and begins to decrease when these hardening effects are overcome
by the thermal softening. At the lower strain-rate of 500s~' there is no noticeable drop in the
shear stress even when the deformation has started to localize but at the higher strain-rate of
50,000s"' the shear stress s decreases considerably after the deformation begins to localize.
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Fig. 1. Shear stress-strain curve for simple shearing deformations of a steel block at 7, = 500s™".

This rather noticeable drop in the shear stress with increasing average strain after the
deformation begins to localize has been pointed out by Wright and Walter [10]. Note that the
temperature rise in the two cases at places where the deformation localizes is nearly equal to
each other at the instant of the onset of the localization process. However, the temperature is
more evenly distributed at 7, =500s"" as compared to that at y,=50,000s"" in the sense that
the difference between the maximum and the minimum temperature stays small for yo = 500s~"
even after the deformation localizes. The rate of growth of the plastic strain-rate is more
gradual at y,=500s"' as compared to that at y,=50,000s"".

The striking differences between the two cases are outlined below.

(a) First is the average strain at the instant the deformation begins to localize. For
¥0=500s"" the average strain of 0.624 at which the deformation has essentially localized is
nearly 7 times the strain at which the peak stress occurs during homogeneous deformations of
the block. However, for y,=50,000s~" the localization of the deformation occurs at an
average strain of 0.09 which almost equals the strain of 0.085 at which the shear stress attains
the maximum value during homogeneous deformations of the block. For comparison purposes
we note [14] that when a temperature perturbation with a single bump centered at y =0 is
introduced, the shear bands form at an average strain of 0.0814 and 0.206 for y,= 500 s™' and
50,000 s~", respectively. On the hypothesis that a temperature perturbation simulates material
inhomogeneities or flaws in the body, the present results indicate the initiation of shear bands is
delayed for y,= 500 s~! when there are more defects uniformly distributed in the specimen,
and for y,=50,000s~' when there is only one defect present in the specimen.

(b) Secondly, the places where the peak temperature rise and the peak plastic strain-rate
occur are quite different in the two cases. Whereas at y,= 500 s~! the peak values of the
temperature rise and the plastic strain-rate occur at places where the initial temperature
perturbation had relative minimum values, at y, = 50,0005~ the peaks of the temperature rise
and the plastic strain-rate coincide with the locations of the maxima of the temperature
perturbation. That the centers of shear bands for y, = 50,000 s~! coincide with the locations of
the maxima of the initial temperature perturbation was also observed in the case the imtial
temperature perturbation assumed peak values at six equidistant points rather than eleven. In
this case, the deformation localized at an average strain of 0.1122.

In order to understand the reasons for the above differences we note that, for nonpolar
materials (i.e. [ =0), imbedded in the governing equations (1)—(6) are three Iength scales
{9, 12] namely, the geometric length, a thermal length and a viscous length, and seven
non-dimensional parameters, namely, the mass density p, the elastic modulus u, the rate of
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Fig. 2. Evolution of the temperature. plastic strain-rate and the shearing stress in nonpoiar matenals
at y, =500s"

ther nal softening a, two for work hardening n and y,, and two for rate hardening b and m.
Whereas the thermal length varies as 75 ', the viscous length does not depend upon y, but is a
function of the material parameters. The non-dimensional thermal length ( = thermal
iength/height of the specimen) is reduced from 0.6307 to 0.006307 when y, is increased
from 500 to 50,000 s'. That the decrease in the thermal length is among the factors responsible
for the aforementioned differences was confirmed by running the yo=500s"' case with the
thermal conductivity arbitrarily set equal to zero. In this case the thermal length is zero and the
peak strain-rates occurred at the locations of the maxima of the initiai perturbation as
expected. To seek an answer to the question “For what value of y, does the above referred
transition occur?”’, we conducted numerical experiments for different values of y, between 500
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Fig. 3. Evolution of the temperature, plasuc strain-rate and the shear stress in nonpolar matenials at
=50,000s""

and 50.000s”' and found ¥,=1000s"' to be the critical strain-rate above which the
deformation localized at points of maxima of the initial temperature perturbation and below
which it localized ut other points.

It appears that it is the higher value of the thermal length at y,=500s"" that delays the
initiation of the localization process too. A close examination of the computed results indicated
that initially the material points at the locations of the temperature maxima experienced peak
plastic strain-rates and higher values of the work hardening parameter y as compared to their
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neighbors. Since the shear stress became essentially uniform shortly after the temperature
perturbation was introduced, the increased value of y resulted in reduced values of A, v, and
the heat generated due to plastic working at these points. This coupled with the heat
conduction tended to make the temperature virtuaily uniform throughout the specimen. Of
course the temperature and work-hardening parameter did not become exactly uniform
because if they did, the specimen will subsequently undergo homogeneous deformations only.
To lend credence to this hypothesis we increased artificially the thermal conductivity to 100
times its previous value but kept yo=2500s"' In this case no shear band formed and the
temperature field within the specimen became uniform and stayed so during the ensuing
deformations. To understand the role played by the work-hardening, we conducted a numerical
experiment with n=0 and y,=500s"'. This resulted in neglecting the effect of the
work-hardening on the deformations of the block. In this case the deformation localized at
points where the initial temperature perturbation assumed peak values.

Another reason for the localization not to occur at the locations of the peaks in the initial
temperature could be improper choices of the mesh and At. We reduced At to one-half of its
value, but used the same mesh and recomputed results for y,=500s™'. For smaller time step
the deformation localized at the same points as it did earlier for the large time step.

Since the distance between the locations of the points where the plastic strain-rate eventually
peaked and points of maxima of the initial temperature perturbation equals approximately the
length of 20 elements, it is unlikely that the finite-element mesh caused the shift.

When 7, is increased from 500 to 50,000s~', the.non-dimensional mass density increases
from 3.93 X 107° t0 3.93 X 10™". In [14] the initial temperature perturbation had only one bump
centered at y =0. It was found that the shear stress distribution within the specimen was
uniform for ¥, =500s! but non-uniform with the lowest value at y =0 for y,=50,000s"'. No
such non-uniformity in the shear stress distribution has been observed for the periodic initial
temperature perturbation introduced herein. _

In Figs 4 and 5 are plotted the evolution of the temperature, plastic strain-rate and the shear
stress s when the material of the block is modeled as a dipolar material with / =0.01 and the
block is deformed at an average strain-rate y, of 500 and 50,000s™" respectively. Whereas for
70=500s"' only one shear band with center at y =1.0 forms, at y,=50,000s" the
deformation localizes around the location of the peaks of the initial temperature. In each case
the initiation of the localization of the deformation is delayed as compared to that for nonpolar
materials {14]; the delay is more pronounced at the higher applied strain-rate. Whereas for
nonpolar materials the average strain at which the deformation localizes for y,=500s"" is
nearly seven times that for ¥, =50,000s"", for dipolar materials the average strains at which
the deformation localizes in the two cases are nearly equal to each other. Also for nonpolar
materials the shear stress s becomes essentially uniform throughout the specimen soon after the
initial perturbation is introduced and stays uniform within the block, such is not the case for
dipotar materials. For dipolar materials the amplitude of the oscillations in the shear stress
distribution is extremely small for 7, =500s"" but at y,=50,000s""' it is noticeable and seems
to grow as the deformation localizes. Note that for dipolar materials it is (s — /o) and not s
that acts as a flux for the linear momentum. The average shear stress s exhibits the same
behavior as that for nonpolar materials in the sense that it first increases and subsequently
begins to drop when thermal softening effects exceed the combined effects of strain and
strain-rate hardening.

At y,=500s"" the initial temperature distribution tends to become uniform throughout the
block and stays virtually uniform until the deformation begins to localize near y = 1.0. At that
instant the temperature near y = 1.0 increases slightly more than that at other places. Of course
the temperature at every point in the body keeps on increasing because of the piastic working.
Why the shear band forms near y = 1.0 and not near y = 0.0 is not clear. At the higher applied
strain-rate y,=50,000s"' neither the temperature nor the piastic strain-rate ever becomes
uniform within the block. It seems that the amplitude of the temperature osciliations keeps on
increasing with the increase in the average strain in the specimen. ‘

:;xm-:l:.::a-‘&;&h‘G:fb'ul\l»'T

For dipolar materials, in addition to the thermal and viscous lengths, there are three length
scales [13] characteristic of the material. Herein as well as in two previous studies [9, 11] the
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Fig. 4. Evolution of the temperature, piastic strain-rate and the shear stiess in dipolar matetials
(/=0.01) at y,=500s"".

three length scaies have been set equal to each other. The problem when the three length
scales are different is under investigation and will be reported on in a future paper. The
previous work with y,=500s"" and with a single temperature perturbation centered at y =0
indicated that the inclusion of dipolar effects delays considerably the localization of the
deformation. The delay observed here by comparing results plotted in Figs 3 and 5 is
significantly more as compared to that found previously and also that computed presently for
Yo =50,000s""'. The main reason for the difference between the previously computed [9, 11]
and current results is due to the number of flaws/imperfections considered in the two cases. An
explanation for the difference between the results computed at y, = 500 and 50,000s™"' lies in
the different values of the thermal lengths in the two cases. At y,,=500s"' the temperature
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Fig. 5. Evolution of the temperature, plastic strain-rate and the shear stress in dipolar materials
(1 =0.01) at y,=50,000s"".

imtially tends to become uniform because of heat conduction and once the temperature
fluctuations die out the block deforms homogeneously. What eventually causes the temperature
to rise at y = 1.0 and not at y = 0.0 is unclear.

We note that the CPU time required to compute results for the dipolar materials is nearly
four times that needed for non-polar materials. Thus not many numerical experiments could be
conducted for dipolar matenals.

CONCLUSIONS
For nonpolar matenals the initiation of the shear bands is significantly delayed at y, = 500s""
when a periodic temperature perturbation with eleven peaks is introduced initially as compared

to the case when the initial temperature perturbation has a single bump with peak at the center
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of the block. However, for ¥,=50,000s""' the reverse happens. In the former case the
deformation localizes at points where the initial temperature has relative minima values, in the
latter case the centers of shear bands coincide with the places where the initial temperature has
relative maximum values. These transitions are found to occur at 7, = 1000s~' and seem to be
caused by the lower value of the thermal length at the higher value of y, and the different time
scale associated with the work-hardening in the two cases.

For dipolar materials the average strains in the specimen at which the deformation localizes
at ¥, =500 and 50,000s"' are nearly equal to each other. These values of average strains are
higher than the corresponding values for nonpolar materials. Only one band forms at
Yo=1500s"" but the number of shear bands equal the number of peaks in the initial
temperature at y, = 50,000s"
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THE INITIATION AND GROWTH OF, AND THE
INTERACTION AMONG, ADIABATIC SHEAR BANDS
IN SIMPLE AND DIPOLAR MATERIALS

R. C. BATRA

University of Missouri-Rolla

Abstraci - The problem ot simple shearing of a block of simple (nonpolar) and dipolar ther-
moviscoplastic materials is studied with the objectives of exploring the imtiation and growth
of. and the interaction among, adiabatic shear bands. A shear band is assumed to have formed
it the addinon ot a perturbation to the homogeneous fields just before the peak stress is reached
results in a localization of the shear strain. The effect of adding perturbations ol different sizes
and of the same size but a1 different locations in the slab 15 investigated. It is shown that in
simple materials, two shear bands coalesce if the distance between them is small but grow inde-
pendently, although at a slower rate, if the distance between them 1 large. However, for dipolar
materials. the two bands coalesce even when the distance between them at the ime of their imiu-
ation iy 20 times the material characteristic length.

. 1. INTRODUCTION

Adiabatic shear is the name given 1o a localization phenomenon that occurs during high-
rate plastic deformation, such as machining, explosive forming, shock impact loading,
ballistic penetration, fragmentation, ore crushing, impact tooling failure, and metal
shaping and torming processes. The localization of shear sirain has been observed
mostly in steeis, but also in nonferrous metals and polvmers. Practical interest in the
phenomenon derives from the fact that progressive shearing on an intense shear band
provides an undesirable mode of material resistance to imposed deformation, and the
bands are often precursors to shear fractures.

Shcar band formation is s=nerally enhanced at high strain rates because the lack of
time for heat diffusion - nonuniform straining to cause nonuniform heating. Non-
uniform temperatures enhance plastic flow in the hotter regions and reduce plastic flow
in the colder regions. Furthermore, heat generation is greatest in the regions ol high-
est strain rate. Thus, the strain rates in the hot, high-strain-rate regions tend to become
larger, while those in the cold, low-strain-rate regions tend to become more nonunitorm
and may localize into a narrow region referred to as a shear band. Whether or not this
thermoplastic instability mechanism leads to shear bands seems to depend upon strain
hardening, strain-rate hardening, thermal softening, thermal ditfusivity, and the strength
of the initial inhomogeneity.

ZENER and HoLLoMAN [1944] recognized the destabilizing effect of thermal soften-

" ing in reducing the slope of the stress-strain curve in nearly adiabatic deformations. The
dyvnamic torsional experiments ot CtLVvER [1973] on mild steel, titanium, and 6061-T6
aluminum indicate that the localization began near the peak in the stress-strain curve
for each material tested. This observation seems to be borne out by the experimental
work of Costin et al. [1980). They found that in dynamic torsion tests on short speci-
mens of 10'S CRS and 1020 HRS, the shear bands appeared in the 1018 CRS specimens
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and not in 1020 HRS specimens. Extensive experiments, conducted at different temper-
atures and strain rates, revealed that the shear stress-shear strain curve for HRS was
increasing monotonically, whereas the curve for CRS had a peak in it.

JOHNsON et al. [1983] and LinpHOLM and JoHNsON [1983] reported dynamic torsion
test data on six ductile metals and six additional materials of much less ductility. They
proposed a constitutive relation that accounts for strain and strain-rate hardening and
thermal softening. Their analysis indicates that high ductility tends to produce a rela-
tively wide shear band when compared to other materials. In their experimental setup,
the frictional force at the grips provided a constraining axial force. Thus, an axial load
or stress component developed with increasing torsional deformation. However, this
axial load component was not measured.

StakEeR [1981] made use of an instability analysis to model the appearance ot adia-
batic shear bands in the controlled explosive expansion of steel cylinders. He argued
that because of the short times involved in explosive loading the detormation could be
considered adiabatic and there was no need to consider the thermophysical properties
of materials. RECHT [1964] included heat conduction and thermal softening in the
interpretation of shear bands formed during high-speed machining. In his investigation
of instability in the shear zone ahead of a cutting tool during orthogonal machining,
he used a thermal model incorporating uniform, constant-rate heat generation at a plane
in an infinite medium. He showed that the critical strain rate for catastrophic shear in
mild steel is 1400 times greater than that for titanium. Based on these data it can be
shown that the difference in the thermophysical properties of St and Ti contributes a
factor of 6, the ratio of yield stresses a factor of 4, and the difference in mechanical
behavior a factor of 58. This last factor is directly proportional to the material’s capacity
1o strain-harden and inversely proportional to its tendency to thermally soften.

In a departure from the notion of a criterion based on a stress maximum, CLIFTON
{1980} and Bai (1981] examined the growth of infinitesimal periodic nonuniformities
in an otherwise uniform simple shearing deformation. They included strain hardening,
thermai softening, strain rate sensitivity, and heat conduction. Bai also included the
effect of inertia torces. Both linearized the field equations about the unperturbed time-
dependent homogeneous deformation state and found that the magnitude ot the im-
perfections may grow or decay in time, depending on the material parameters, t.:
average rate ot strain, and the fixed spatial wavelength ot the initial impertection. Burxs
[1983] used a dual asymptotic expansion to include the time dependence of the homo-
geneous solution in the analysis of the growth of an imually small perturbation. His
work suggests that initiation of an unstable shear band, tollowed by exponenual growth,
occurs alter a critical shear strain corresponding to the peak stress in the homogencous
detformation for the same overall strain rate is reached. On the other hand, SHAWK!I ¢/
al. [1983], by using both numerical and perturbation techniques. concluded that expo-
nential growth is not a sutficient condition for judging whether or not a shear band
forms, as the corresponding homogencous detormation may also grow extremely rap-
idly once the peak stress has been reached and growth is not restricted to a narrow band.

ErLicH ef af. [1980] noted that according 1o simple wave theorv applied to one-
dimensionai plastic wave propagation, the strain level at which the shear tangent modu-
lus becomes zero propagates at zero speed. They postulated a criterion ot adiabate shear
band tormation based on this “wave trapping”™ tdea. This idea was applied by Orson
et al. [1981] in a numerical finite element simulation o! plastic shear wave propagauon
under adiabatic conditions. The numerical solution did indeed exhibit a concentration
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of shear strain in a layer of finite elements that was similar in nature to observed adi-
abatic shear bands.

In studying the growth of shear bands in the center of a finite slab after initiation
at a small imperfection, MERZER [1983] concluded that the final width of the band
depends on the thermal diffusivity and the overall strain rate. Wt and FREUND [1984],
in studying the formation of shear bands at a moving boundary, concluded that ther-
mal diffusivity has little influence on the final shape of the band. The detailed geome-
try and constitutive equations considered in these two papers are quite different, so
perhaps it is not surprising to find apparently contradictory results. In fact, in both
papers there are two natural length scales: one arising from the rate effect in the con-
stitutive equation and one arising from heat conductivity. In the latter paper, these scales
have been arbitrarily set equal to each other, whereas in the former paper the relative
effect of heat conductivity has been examined parametrically for at least one specific
type of constitutive equation.

Recently, WRIGHT and BATRA {1985a, 1985b, and 1986] described the resuits of com-
putations that simulate the formation of a single shear band from a local temperature
inhomogeneity in simple and dipolar materials. A general theory of thermoviscoplastic-
ity, obtained by modifying the dipolar theory of GREEN er al. (1968) to include rate
effects, was used. Wright and Batra’s calculations for simple materials, as well as the
experimental observations of Moss [1981], indicated that peak strain gradients reached
0.2 per um or higher. Therefore, thev considered worthwhile to investigate the dipo-
lar effects. Their computations show increasing inhomogeneity in the strain-, temper-
ature-, and strain-rate fields, with the central amplitudes growing at an accelerating rate.
The inclusion of dipolar effects has a stiffening effect in the sense that the rate of
growth of central amplitudes of the strain, temperature, and strain-rate fields is lower
as compared to that for simple materials. For dipolar materials there are at least three
length scales: one is from viscous stress effects, the second is from thermal conductivity,
and the third is the material characteristic length. WRIGHT and BATRA [1986] studied
the case when all three length scales are equal to one another.

This paper describes the results of some numerical experiments conducted with the
objective of analyzing the interaction between two shear bands. It also examines the
effect of the amplitude and distribution of the initial inhomogeneity on the initiation
and growth of a shear band. It is shown that a narrower inhomogeneity results in a
rapid growth of the band as compared to a wider one having the same central ampli-
tude. A stronger inhomogeneity results in the formation of a shear band even before
the peak in the homogeneous stress-strain curve 1s reached. The two shear bands that
would grow independently in simple materials seem 10 coalesce in dipolar materials even
when the material characteristic length is s, of the distance between them at the time
of their initiation.

We note that there ts no experimental evidence available on the interaction between
two or more shear bands in simple or dipolar materials.

. FORMULATION OF THE SIMPLE SHEARING PROBLEM

We study the simple shearing deformations ot a dipolar viscoplastic material and
assume that all of the variables have been nondimensionalized. Thus. the body occu-
ptes the infinite slab bounded by the planes v = = 1. Referring the reader 10 WRIGHT and
BaTrA [1986] for details, we note that the governing equations are

-9]~




R. C. BATRA
.| .
U=_(S—Iovv)’_v1 (1)
2 !
§=kf,, +A(s*+0%), (2)
s = plv,, —.15), 3
. .1
o=lu(u,,.‘.— 70). 4
. _ : : d/ n
v=Ms"+a)/ |1+ — ], (5)
Yo
(S2+o:)l 2 1 m
A =max |0, ¢\ -1 tbtsT +07) %) (6)
(l + —) (1 —af)
[}
with boundary conditions
vizlht)==x1, 0, (x1,1)=0, o(xl,t})=0 (7)

and a suitable set of initial conditions. Equations (1) and (2) express the balance of linear
momentum and internal energy, respectively. Herein v is the velocity of a material par-
ticle, / is a material characteristic length, 4 is the temperaturc change of the material
particle from that in the reference configuration, and s and ¢ may be interpreted as the
shear stress and the dipolar shear stress, respectively. A superimposed dot indicates
material time differentiation, and a comma ftollowed by v signifies partial ditterentia-
tion with respect to v. The nondimensional variables are related to their dimensional
(barred) counterparts as tollows:

v=Y/H, =iy, y=vo d=vov. y=53.+5,. d=d +d..
v=0Hyy, S=5Sx0, 0=0d'xg, HB=0pC ny, (8)
y=9. d=dH., $.=5. 50 d,=d.H 50, 1=.1n 30

Besides m, n, and ¢, there are six other nondimensional parameters, which are related

to their dimensional (barred) counterparts as follows:

a4 =dxy 5, b=hvy,, k=k péy,H". I=[H,
(N

W=k, p= l_)H:'Yu: Ky -
In cqns (8) and (9), o = 0(H,)/H is the average applied strain rate between the
boundaries Y = £+ H, and x, is the yield stress in a reference quasistatic test.

The constitutive relations (3)-(6) give one possible model of viscoplastic materials.
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Equation (6) implies that the plastic parts, .1s and .10//, of the strain rate and the dipolar
strain rate vanish when

(s:+03)‘35<l+f—)(1—06). (10)

0

The material parameters v, and n describe the strain hardening of the material. g the
thermal softening, and b and m the strain-rate sensitivity of the material.

We presume that the initial values of 6, s, and y are symmetric and the initial val-
ues of v and ¢ are antisymmetric in v and seek solutions of eqns () through (6) with
the same symmetry. Thus, the problem is to be studied over the spatial domain {0,1]
and the boundary conditions become

v(0,0) =0, 6,.0,0) =0, ¢(0,7)=0, (an
v(l.n =1, 6,.(1,0=0, o(l,r)=0. (12)
For the initial conditions we take
v(rv.0)y=1yv, a(ry.0)=0, Y(v.0)= 1:’«,.
8(1.0) =8, + (v, (13)

s(v.0)=5,= (l + "L—“) (1 4+ b6A3,)"(1 —af(v.,0)).

[§)

The vaiues of 8, $,, and v, are such that during homogeneous deformations of the
block the shear stress 3, and the strain corresponding to ¥, lie on the shear stress-shear
strain curve for the material. .1 in eqn (13)< is given by eqn (6), with ¢ = By, 5 = 30,
Y = 4o, and o = 0. The function # describes the aberration in the initial temperature
distribution and will result in nonhomogeneous deformations of the body.

1. NUMERICAL INTEGRATION OF GOVERNING EQUATIONS

With the auxiliary variables

u=v,., g=40,, p=oa,, (14)
we rewrite eqns (1)-(4) as

1
U= _(Sg_[p)v;'v (ls)

0
6=kg, +.1(s°+0°), (16)
§=plu—.1s), (N

. A

o=1p.(u,‘—— 70). (18)
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Thus, only first-order spatial derivatives of the unknowns v, 8, s, g, u, g, and p appear
in the governing equations. Let /' denote the space of functions defined on {0,1] the
square of whose first-order derivative is integrable over [0,i]. We approximate the
unknown functions v, 8, s, etc. by linear combination of the finite element basis func-
tions {¢;(y), i=1,2, ... ,N} in an N-dimensional subspace of A#'. For example,

v(y.1) =u,()eo,(v). (19)
Throughout the article, a repeated index implies summation over the range of the index.

Using Galerkin’s method (e.g., see BECKER er al. [1981]) we thus reduce egns (14)
through (18) to the following set of equations:

‘w'/ u = ‘Q‘/ Uis ‘w'/gl = —QUHH ‘v’llpl = —Ql/ Uz 20)
. 1 / .
M,o,=—-A,s,+ -Q,p,, M,0, =-kQ,g +.1P,, 20
o p
."Vl,,S', = pu\/l,, u, - u_‘l,S‘ R,/A s .WU d, = ““/Q,/ u, - !‘-1,01. I'\)”A , (22)
where
! I
M, =1 o0dv=M, Q, =f 0,0, ,4dy, (23)
0 0
Qu = Ql/ - (¢,¢,)f(l), (24)
l .
Rl/k=f ‘D,@,d’l, d.v=RlA/ =Rkl/v (25)
[}
i
R,=f(mqw3+oﬂdv=ap (26)
4]

We note that because of the nonlinear dependence of P, and .1 upon s, 0. v, and #. the
coupled set of ordinary differential eqns (20)-(22) i1s not that easy to integrate. The
matrices M,,, Q,.. 0,,, R,., and P, have been evaluated by using the linear basis tunc-
tions. Also, v,(r) denotes the velocity of node / at time 7.

We use the Crank-Nicolson method to integrate eqns {20)-(22), with respect to time
t. In it, eqns (20)-(22), assumed to hold at time (¢ + 47/2), are used to predict the values
ot v, 8,s, 0,8 p, u, and ¢ at time (¢ + J1¢7) from a knowledge ot their values at time
(. This is accomplished by approximating 8,(¢ + J31/2) by (6,(¢ + 3¢) — #,(0)), J¢.
0,0t +3¢72) by (6,(r+3d1) +6,(0))/2, and so forth and by first evaluating the non-
linear terms on the right-hand side of eqns (20)-(22) at time /. The resulting svstem
of linear aigebraic equations is solved tor v, (¢ + 4¢), et¢., the right-hand side in
eqns (20)-(22) is now evaluated at time (¢ + J1/2), and the system ol equations is solved
again tor v,(r + 4¢) etc. This iterative process is continued until at cach nodal point,

Fdv c g ds 0 T4y
=+ — + — +

— + do+ Jdg + dp+ du <. (27
v l s v
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where the subscript / has been dropped from v, and elsewhere, 4v denotes the differ-
ence between the newly found value of v and that used to compute the right-hand side
in eqns (20)-(22), and ¢ is a preassigned small number. The initial conditions (13) were
used to find v,(0) and so forth.

1V. COMPUTATION AND DISCUSSION OF RESULTS

In order to compute numerical results. the following values of various nondimen-
sional parameters that correspond to a typical hard steel and the average applied strain
rate 3o = 500 sec ' were chosen.

p=3.928x10"°, £=3978x 107", a=0.4973, pu=240.3,
n=0.09, ¢,=0.017, b=5x10° m=0.025.
For homogeneous deformations of the block, the peak (marked as point P in Fig. 1)
in the shear stress-shear strain curve occurs at a strain of 0.093. The uniform temper-

ature 8, = 0.1003 in the block when v = 0.0692, corresponding to the point / in Fig. 1,
was perturbed by adding a smooth temperature bump

B(v) =60(1 — v = y3i)ye ¥ ¥ (28)
20 ISOTHERMAL CURVE
a=0, b#0
(7] T ———
- ADIABATIC CURVE

Q5 070, b#0
L
0 ad
’.—
wn
@ REFERENCE CURVE
< a=b=0
LIJ lo =
I
N

05 IS & | |

~0 005 010 015 0.20.

AVERAGE STRAIN, Tve

Fig. 1. Average shear stress-average shear strain curve for a tvpical steel.
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and the resulting initial-boundary-value problem was solved by using the aforemen-
tioned method. The domain was divided into either 20 uniform subdomains (usually
called finite elements) or 20 nonuniform subdomains, with nodes at 0, 0.0025, 0.01,
0.0225, 0.04, 0.0625, 0.09, 0.1225, 0.160, 0.2025, 0.2500, 0.3025, 0.360, 0.4225, 0.490,
0.5625, 0.640, 0.7225, 0.81, 0.9025, and 1.0. The two temperature perturbations for
d6,=0.1, p=9, @ =5 and for 46, =0.1, p =2, a = | are shown in Fig. 2. For non-
polar materials, Fig. 3 depicts the growth of the central plastic strain rate in time for
the two subdivisions of the domain. Numerical experiments with different values of 4/
indicated that 47 =5 x 10°* gave accurate results. All of the results presented herein
are for this value of 4s and ¢ = 0.01. Unless otherwise noted. the nonuniform grid has
been used. WRIGHT and BATRA [1986] gave a heuristic reasoning to explain that the pla-
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teau was formed because of the coarse mesh. The plot in Fig. 2 cleariy proves that.
Also, for the wider perturbation the rate of growth of the central plastic strain rate is
quite a bit slower. Whereas for the narrower perturbation the shear band is tormed
when the average strain in the block corresponds to the point just past the peak in the
shear stress-shear strain curve, the broader perturbation results in the formation of the
band well past the peak in the average shear stress-average shear strain curve, which
oceurs at 7 = 47.6 usec after the temperature field was perturbed. That a band is indeed
formed for the wider perturbation should be clear from the plot of Fig. 4. It is appar-
ent that the rapidly deforming region progressively narrows down to the one close to
the center. The width of the rapidiy deforming region i1s narrower for the tiner mesh.
Whether we have obtained the final band width or not is not quite clear vel, since we
have not experimented with other fine meshes. Figure § depicts how the central shear
stress changes in time. It decreases at a very slow rate and essentiaiiy follows the aver-
age shear stress-shear strain curve. It stavs nearly uniform throughout the specimen.
Numerical instabilities developed for values of time ¢ a little bevond the one up to which
results are plotted here. These can be due to the improper size of the time increment
and/or to the mesh size, among other tactors. Efforts are now under way to overcome
these and to extend calculations for longer values ot time.

Figures 6 and 7 depict the effect of the amplitude 16, ot the perturbation upon the
growth of the central plastic strain rate for simple and dipolar materials with / = 0.01.
Obviously, for larger amplitudes of the perturbation, the shear band is formed well
before the peak in the average shear stress-average shear strain curve is reached. A com-
parison of the results presented in Figs. 3, 6, and 7 clearly brings out the stiffening
caused by the inclusion of the dipolar stresses.
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In order to understand the interaction among shear bands. we introduced a pertur-
bation in the temperature centered at different points along the thickness of the slab.
Because of the symmetry of 8 about the horizontal axis, this amounts to introducing
two aberrations symmetrically placed about the center line v = 0. The hypothesis here
is that if the resulting nonhomogeneous fields, such as the plastic strain rate, temper-
ature, and the plastic strain, eventually peak out at the center of the slab, then the two
bands have coalesced; otherwise they grow independently. Perturbations in the temper-
ature centered at v = 0.025, y =0.05, and v =0.1 but 16, =0.1 were introduced and
the ensuing initial-boundary-value problems were solved. Figures 8 and 9 show the dis-
tribution of the plastic strain rate through the thickness of the slab for simple and dipo-
lar materials, respectively. For simple materials (Fig. 8), the two bands initially centered
at y = £0.025 coalesce but the ones centered at +.05 and +.1 grow independently of
each other. The rate of growth of the peak strain rate (not the strain rate at v = 0) is
considerably less as compared to that when either only one band appears at v =0 or
two bands initially centered at y = +£.025 merge and grow as a single band. For dipo-
lar materials, the bands coalesce in all three cases. Recall that the material character-
istic length is 5'(—, of the distance between the bands originating at v = +0.].

The distribution of the dipolar stress across the slab is plotted in Fig. 10. Because of
the boundary conditions ¢(0,7) = o(1,¢) = 0 and the fact that the dipolar stress for the
elastic problem is proportional to the curvature, the maximum value of ¢ cannot occur
at the center of the slab. Note that ¢ is very small as compared to 1.0, whereas s is gen-
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erally greater than or equal to 1.0. At a point where y, #0, d,, # 0, the dipolar stress
has negligible contribution to the effective stress (s* + ¢°)' * that determines whether
A >0 or.1 =0 at that point.

V. CONCLUSION

It is shown that the constitutive model proposed by WRIGHT and BATRA [1986] does
predict adiabatic shear bands in a block undergoing simple shearing. The rate at which
a band grows depends upon the strength of the inhomogeneity, herein modeled as a per-
turbation in the otherwise uniform temperature within the block. Perturbations of larger
amplitude result in the formation of a shear band even before the peak in the shear
stress-shear strain curve is reached. Also, a wider perturbation results in the shear strain
localization at a lower rate as compared to the narrow perturbation, both being of the
same amplitude. The inclusion of dipolar effects results in a very stiffening effect in the
sense that the formation of bands is delayed considerably as compared to that in sim-
ple materials. In addition, two bands that would grow independently in a simple mate-
rial coalesce when dipolar effects are included. Of course, the minimum distance
between two shear bands to grow independently of each other will possibly depend
upon, among other factors, the value of the material characteristic length /.
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Abstract—The thermomechamcal problem involving simple sheaning of a finite slab made of an
sotropic and viscoplastic material 1s studied with the objective of finding the effect of the strain
hardening parameter. strain-rate hardening parameters. thermal softening coefficient and thermal
conductivity on the imtiation and growth of adiabatic shear bands. The body is placed in a hard
loading device, 1.¢. the velocity is prescribed at its top and bottom surfaces. A shear band is presumed
to have formed if the addition of a perturbation in the temperature at the onset of plastic flow
results 1 a localization of the shear strain. The critical strain at which the band begins to form s
found and its dependence on vanous material parameters 1s investigated.

INTRODUCTION

IN 1944 Zener and Hollomon(1) recognized the destabilizing effect of thermal softening in
reducing the slope of the stress—strain curve in nearly adiabatic deformations. They pos-
tulated that a negative slope of the stress—strain curve implies an intrinsic instability of the
material. Thus the strain at which the shear strain localization may initiate corresponds to
the peak 1n the stress—strain curve. They observed 32 um wide shear bands in a steel plate
punched by a standard die and estimated the maximum strain in the band to be 100.
Recht[2], assuming that the instability occurs at the peak in the stress—strain curve and this
curve 1s independent of the strain rate, derived values of strain rate necessary to produce
shear strain localization and compared these values for different materials. Staker{3] used
the same instability criterion but included the dependence of the flow stress upon strain
rate also. Assuming parabolic strain and strain-rate hardening laws, he concluded that
important material parameters are the specific heat. slope of the temperature dependence
of the flow stress. and parameters indicating the strain hardening capacity of the materiali.
The thermal conductivity. yield strength and strain-rate sensitivity do not enter in as a first-
order effect.

Instead of presuming that the material becomes unstable at a stress maximum.
Clifton[4] and Bai(5) studied the growth of infinitesimal periodic perturbations superimposed
an a body deformed by a finite amount in simple shear. Both investigators included the
effect of strain hardening, strain-rate sensitivity, thermal softening and heat conduction.
Bai also included the effect of inertia forces. Bai's instability criterion is essentially insensitive
1o strain-rate hardening parameters and for a parabolic type strain hardening material gives
the same value of critical strain as that derived by Staker([3]. Burns{6] used a dual asymptotic
expansion to account for the time dependence of the homogeneous solution in the analysis
of the growth of superimposed infinitesimal perturbations. He showed that the growth rate
of small perturbations is controlled by the ratio of the slope of the homogeneous stress vs
strain curve Lo the rate of change of the plastic flow stress with respect to the strain rate.
However. this growtl: rate was not large enough for Litonski’s{7] constitutive relation to
account for the experimental observations of Costin er al.[8]. Costin er al. observed 370~
500 um wide shear bands dv-‘ng dynamic torsion tests involving strain rates of 500 s~ ' on
short specimens of 1018 co: -olled steel. Similar observations on twelve ductile materials
have been reported by J.- v s er al.[9] and Lindholm and Johnson[10].

Merzer(11], by usin. « material model due to Bodner and Partom(i2)], studied the
problem of twisting of a thin tubniur specimen having a notch in its periphery. He concluded
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that the thermal conductivity played a key role in determining the width of the shear band.
On the other hand Wu and Freund[13}. by using a different material model, studied
wave propagation in an infinite medium and concluded that the thermal conductivity has
essentially no effect on the width of a shear band.

Clifton er al.[14] used both numerical and perturbation techniques to study the
initiation and growth of shear bands. They used a power law model and reported that the
thermal conductivity had virtually no effect on their resuits. They did not compute the band
width explicitly. Also the rate of growth of the nonuniformity increased strongly with
decreasing strain-rate sensitivity.

Recently. Wright and Batra[l5-17] and Batra[l8} described the results of computations
that simulate the formation of a shear band from a local temperature inhomogeneity in
stmple and dipolar materials. The constitutive relation was derived by modifying the dipolar
theory of Green er al.[19] to include rate effects. For simple materials this constitutive
relation reduces to one that is very similar to that proposed by Litonski{7] and Lindholm
and Johnson{10]. Whereas Litonski, and Lindholm and Johnson suggested constitutive
relations valid for simple shearing deformation of a ductile material. that proposed by
Wright and Batra is easily amenable to a general state of stress. Wright and Batra[15-17]
and Batra[l8] studied the simple shearing of a block made of an isotropic and viscoplastic
material and perturbed the homogeneous solution by adding a temperature bump just prior
to the occurrence of the peak stress. The stress field was calculated so that every matenal
point was on the yield surface corresponding to its new temperature when all other variables
were held fixed. The full set of non-linear coupled governing equations was solved numeri-
cally. In Ref. [18] Batra used a similar method to study the interaction among shear bands
in simple and dipolar matenals.

Herein, for simple materials, we study the effect of various material parameters on the
initiation and growth of adiabatic shear bands by adding the temperature perturbation in
the configuration when the body just starts deforming plastically. Since this point is far
from the peak in the stress—strain curve. our results should reflect the dependence ol the
rate of growth of the perturbation upon the material parameter being changed. We should
add that the complete set of coupled non-linear equations are solved numerically by the
Galerkin—-Crank-Nicolson method. The computed results show that for the problems
studied in which the non-dimensional thermal length varied from 0 to 0.063. the thermal
conductivity has no noticeable effect on the strain at which the shear strain localization
occurs. In all but one of the cases studied. the stress—strain curve had a peak in it and a
narrow region near the center eventually deformed very rapidly with the rest of the material
essentially not deforming at all. For the exceptional case noted earlier, the combination of
the values of material parameters was such that the stress—strain curve had no peak in it.
In this case no localization of deformation occurred even when the amplitude of the inital
temperature perturbation was increased to three times its value tor other cases. This
seems to confirm that the peaking out of stress is a necessary condition for the shearing
deformation to localize.

FORMULATION OF THE PROBLEM

We study the simple shearing deformations of a semi-infinite. isotropic and viscoplastic
body bounded by the planes ¥ = + A and consider deformation fields of the type

x=X+ulY n. v=1V7., =2, =Y. 0. )

Thus. with respect to a rectangular Cartesian set of axes, (x. v. o) denote the current
coordinates of a material point that occupied the place (Y. ¥, Z) in a stress-free reference
configuration. The functions v and # give. respectively, the displacement of the matenal
point in the x-direction and its temperature change from that in the reference contiguration.
In the absence of body forces and external sources of heat. the balance ot linear momentum
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divided into 20 subdomains (finite elements) with nodes at 0. 0.0025, 0.01. 0.0225. 0.04.
0.0625. 0.09, 0.1225. 0.160. 0.2025. 0.2500. 6.3025. 0.3600. 0.4225. 0.4900. 0.5625. 0.6400.
0.7225. 0.8100, 0.9025. 1.0. The uniform time increment Ar = 5x 10~ % was used in the
Crank-Nicolson method. -

The following values of material parameters that correspond to a typical hard steel
were chosen :

p=7860 kg m™ ', k=49216 Wm™' C', u = 80 GPa.
Ko = 333 MPa, a =0.00552"C~ ", ¢, =473)kg ' C ', (20)
m = 0.025, n = (.09, Yo =0017, h=10%s.

For this choice of parameters, 8, = 89.6°C. Also we took 7, = 500s 'and A = 2.58 mm.

As pointed out by Wright and Batra[15]. implicit in eqns (16) are two relative length
scales, namely a thermal length (k/pc.joH*)" " and viscous length (b/H) (ko/p)' *. The effect
of a change in these as well as in the values of parameters describing thermal softening.
work hardening, and rate hardening of the material is studied. The viscous length was
varied by altering the value of the material parameter b while keeping the values of all other
parameters unchanged. Figure | shows the shear stress, the temperature change and the
plastic strain rate at the center vs the time elapsed. Since the average strain rate in the
specimen is kept fixed at 500 s~ '. the average strain y,,, plotted as abscissa in Fig. 1 and
other figures is related to the elapsed time At in seconds by 7,., = 500 Ar. We note that the
shear stress in the specimen was initially nonuniform. However. after a brief interval during
which the field variables essentially regain their balance. the shear stress becomes uniform
throughout the slab and stays uniform up to the time results plotted here. It is obvious
from the stress—strain curves plotted in Fig. | that with the increase in the value of 4 the
peak stress increases but this peak occurs at a lower value of average strain. The amount
by which the peak moves to the left decreases with every 10 fold increase in the value of &
suggesting that eventually an increase in the value of  will not affect the strain at which
the peak stress occurs. The central plastic strain rate increases rather slowly first. but begins
to increase rapidly as the peak in the stress—strain curve is reached and eventually increases
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at an infinite rate when the average strain in the specimen is well past that corresponding
to the peak stress. This point is indicated by F on the stress—strain curves. The temperature
at the center first increases linearly but soon begins to increase at a faster rate and eventually
grows extremely rapidly. Since the shear stress decreases once the peak is passed. the rate
of increase of temperature is not as fast as the rate of increase of the plastic strain rate. For
the same value of average strain. a higher value of 5 resuits in a higher value of 8. We
should add that unlike the shear stress. the temperature. plastic strain. plastic strain rate.
and particle velocity fields are not uniform throughout the thickness of the siab. Figure 2
depicts the cross-plots of the plastic strain rate. temperature change and the particle velocity
for different values of . The values of time elapsed or the average strain for different curves
are not quite the same. This is due to the fact that computed results were printed for
identical values of ¢ but the explosive growth in central plastic strain rate occurs at different
times. Except for a narrow region near the center, the temperature distribution within the
specimen is unaffected by a change in the value of material parameter 5. As expected the
deformation has localized, and the majority of the block away from the center moves as a
rigid body.

Following Wright{22] we define the width of a shear band as twice the distance of the
point from the center where the value of the plastic strain rate drops to one-tenth of its
maximum value at the center. We note that during the development of the shear band. the
plastic strain rate is maximum at the center. At a time later than the one when a dramatic
rise in the growth rate of the central plastic strain rate occurs. the value of the plastic strain
rate at a node adjoining the center of slab becomes greater than that at the center. This is
due to the grid being not as fine as is perhaps required for the proper resolution of the
deformation field. Notwithstanding this shortcoming. one can still investigate the effect of
the viscous length on the band width. For all five values of the viscous length, the band
width came out to be 116 um. In each case, the central plastic strain rate had reached a
value of 80 times the applied average strain rate of 500 s '. Numerical experiments with a
mesh that was finer near the center yiclded the same value of the band width and gave
a4 maximum value of the plastic strain rate at the center. We are currently developing
a computer code that will refine the mesh adaptively and give a much better resolution of
the deformation fields near the center of the slab.
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and internal energy may be written as
pli=s, (2)

pé=su,—q.,. (3)

Here p is the mass density which stays constant since the deformations considered are
isochoric and the effect of temperature changes on the mass density is being neglected. s 15
the shearing stress in the x-direction on a plane v = constant, ¢ is the specific internal
energy. ¢ is the heat flux. a superimposed dot indicates material time derivative. and a
comma followed by 1 signifies partial differentiation with respect to . We assume that the
shear strain has an additive decomposition

FEU, =+, 4y
and that a loading or yield function f exists such that
[ 6. 5,)=x (5)

where / is a monotonicallv decreasing function in ', and « 15 a measure of the work
hardening of the material. The criterion for elastic and plastic loading is

f(s. 8. 0) <k, elastic (6)

f(s.0.0) > w. plastic. (7N

In the latter case. the sign of 7, is the same as that of s and its absolute value can be found
uniquely from eqn (5) because of the assumed monotonicity of /. The reader is referred to
Wright and Batra[15. 17] for further discussion of the yield surface.

Here we make the following choice of constitutive functions

pe = tuyi +pc.t (8)
g= —k8, 9
, ‘//)"
K=ng|l 1+ (m
{1+,
Ky = 57, . (fn
I =5V —af)y (1 + b5, )" (12)

where u is a constant shear modulus, ¢, is the specific heat at constant volume, 4 is the
thermal conductivity,  is the plastic strain in a slow isothermal reference test for which
the stress—strain curve (neglecting elastic strains) is given by eqn (10). parameter ¢ describes
the thermal softening of the material and material parameters  and m give its strain-rate
sensitivity. From eqn (8) it follows by using standard thermodynamic arguments {17 that

5= py.. (13
Therefore
§ = p(F =) (14)
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Before stating the initial and boundary conditions we introduce non-dimensional
variables (indicated by superimposed bars in eqn (15)) as follows:

v = Hy, u = Hi, 5 = Kof. 0= b- d=0,0.
I _ . . ey
t= 5 L, =7 K = KoK. Y =4, FHyy =1
d=ab,, b=ty p=pHYiKke, k=ki(pe it (15)

Here ¥, is the average strain rate imposed in the problem. Dropping the overbars, the
complete set of equations in non-dimensional variables may be written as

v= -5,
g = kb, +s7,

. (16
s =ule., =) )

v

i
o (1+7)

.' s Im "
7p = Mmax [O‘ {<<l +w/wo>"u—c79‘)) - ‘}z ”]‘

Whereas we have assumed that all of the plastic work is converted into heat. some authors
(e.g. Sulijoadikusumo and Dillon(20]) assume that only about 90% of the plastic work is
transformed into heat. Farren and Taylor{21] found that in tensile experiments on steels,
copper and aluminum, the heat rise represented 86.5. 90.5-92 and 95%. respectively. of the
plastic work. In eqns (16) v is the particle velocity in the x-direction. The boundary
conditions

t(+l. = +1, 0.(+l.n=0 (17N

ensure that the overall applied strain rate is 7, and the deformations are adiabatic. For the
initial conditions we take

vl 0) =y, Yy, 0) =0, Hr. M =01(1-r) e ™ (18a)
str,0) = (l—ab(y. M) +H)" (18b)

Thus the initial perturbation in the temperature is introduced when the material just starts
deforming plasticaily and the initial stress distribution 1s adjusted so that ail of the material
points are on their corresponding yield surfaces.

We seek solutions of eqns (16)-(18) such that ¢ is antisymmetric in v, and v and ! are
symmetric in v. Thus we can study the probiem on the domain [0, 1] and replace boundary
conditions (17) by

(0, 1) = 0, #.,0.0=0. e(l.n =1, a.(l.n=0. (19

RESPONSE TO PERTURBATIONS

The details of integrating the governing equations (16) under side conditions (18) and
(19) by the Galerkin-Crank-Nicolson method are given in Ref. {18]. The doman [0. 1] was
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Fig. 3. Stress-strain curves and the evolution of the central plastic strain rate and temperature for
different values of m.

Another way to alter viscous effects in the materials is to keep b fixed but change the
rate sensitivity exponent m. The effect of this change in the value of m is depicted in Figs 3
and 4. Whereas an increase in the value of m from 0.005 to 0.015 resulted in higher values
of the criticai strains at which the peak P in the stress-strain curve occurs, subsequent
increases in the value of m hardly changed the critical strain. However. the difference
between the value of the average strains corresponding to point F when the explosive
growth in the central plastic strain rate occurs and the point P increases with m. Our
numerical results agree with the analytical results of Staker{3] and Clifton e¢r a/.[14] if we
restrict ourselves to m = 0.015, a value typical for many metals. Clifton ¢r ul.[14] also noted
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Fig. 5. Stress-strain curves and the evofution of the central plastic strain rate for different values
of n.

that even though the critical strain may be insensitive to the value of m, subsequent growth
of the instability will be affected by its value. At early, times. the central temperature is
unaffected by m. Curves representing the evolution of the central temperature more or less
coincide until the temperature at the center begins a sharp rise. This behavior differs from
that when the values of b were increased. Figure 4 depicts the distribution of the plastic
strain rate, temperature and particle velocity through the thickness of the slab. Note that
these curves do not correspond to the time when the shear band had fully developed in each
case. Achieving that goal would have required sorting through a tremendous amount of
computer output.

Figures 5 and 6 show resuits for different values of the strain-hardening exponent n.
An increase in the value of n increases the strain at which the peak P in the stress-strain
curve occurs and also the value of the strain at which the explosive growth in the central
plastic strain rate occurs. Whereas Bai(5] and Staker[3] showed that the critical strain is
proportional to n, our computed values of the critical strain divided by n gave 8.67. 11.4,
12.14, and 12.67 for n = 0.03, 0.05, 0.07. and 0.09. respectively. They assumed a parabolic
type (y,)" hardening rule and we have represented this etfect by (1 +y ). Since ¥, « I,
our criterion will increase the flow stress more than the simple parabolic hardening rule will
for the same amount of plastic deformation and identical vaiues of n. In Fig. 6 are plotted
the central temperature vs time or average strain, and the distribution of the particle
velocity, temperature and plastic strain rate within the specimen. Again these plots of
quantities vs the distance from the center are at different stages of the shear band develop-
ment for different values of n. These depict that qualitatively there is no change in the
way various field variables evolve in the specimen as the strain-hardening exponent is
increased.

In Fig. 7 are plotted the shear stress at the center. the central plastic strain rate and
the central temperatures vs the average strain for three different values of the thermal
softening coefficient a. For a = 0.000552, no peak in the stress-strain curve occurred for
strains up to 35%. and the central plastic strain rate grew at a snail’s pace. the central
temperature increased linearly with average strain and the particle velocity (cf. Fig. 8) had
a linear variation through the thickness of the specimen. The temperature was slightly
higher at the center than it was at the edge. To see if the increase in the amplitude of the
temperature perturbation given by eqn (18a) would result in shear-strain localization, two
more cuses with the central amplitudes equal to 0.2 and 0.3 were tried. In neither case
did the deformation localize. When similar numericai experiments were conducted with
« = 0.00552. the deformation localized near the center at values of strain well below the
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ones at which the peak stress occurred. This supports the viewpoint that the existence of
the peak in the stress—strain curve is a necessary condition for the deformation to localize.

The expressions for the critical strain derived by Staker[3] and Bai[S] imply that the
critical strain is inversely proportional to the thermal softening coefficient a. When we
halved the value of a from 0.005552 to 0.002776. the peak in the stress—strain curve occurred
at an average strain of 0.0551 instead of 0.15. Whereas we have solved a complete set of
equations both Staker and Bai approximated the change in temperature caused by plastic
working. As in the other cases studied. the dramatic growth in the central plastic strain rate
occurs at a value of strain well past the peak in the stress-strain curve. The width of the
shear band is hardly affected by the value of the thermal softening coefficient a provided
that the deformation does localize.
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Finally we investigated the effect of the thermal length by changing the value of the
thermal conductivity k. We note that for the values of p. 7, and H given in eqns (20), the
non-dimensional thermal length decreases from 0.0631 to 0 when the values of thermal
conductivity k are changed from 49.216 to C. For values of k in this range, the stress—strain
curves. plotted in Fig. 9. up to the peak stress are unaffected. However. beyond this peak
the drop in the stress is slightly affected by the value of the thermal conductivity. Also the
strain at which the explosive growth in the centrai plastic strain rate occurs increases slightly
with an increase in the value of k. [n Fig. 10 are plotted the variations of the plastic strain
rate, temperature and particle velocity in the specimen. Again qualitatively there is no
difference in these plots when the thermal conductivity is varied.

For all four values of the thermal length used. the band width came out to be |16 um.
In each case, the central plastic strain rate had reached a value of 80 times the applied strain
rate. These results are in agreement with those of Wu and Freund(13] but disagree with the
conclusions drawn by Merzer{11]. Note that the constitutive relation and the method of
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studying the shear band development used herein are different from those employed by
Merzer. and Wu and Freund.

CONCLUSIONS

The problem of shear strain localization in simple viscoplastic materials has been
studied by using a constitutive relation proposed earlier by Wright and Batra(l5]. A shear
band is presumed to have formed if the addition of a temperature bump at the center of the
specimen in the configuration in which it just deforms plastically results in the localization of
the deformation. The complete set of coupled non-linear equations is integrated numerically
by using the Galerkin—Crank-Nicolson method.

These numerical experiments reinforce the belief that the existence of a peak in the
stress—strain curve is a necessary condition for the shear band to develop. The non-dimen-
sional thermal length with values between 0 and 0.063 has little effect on the critical strain
at which the peak in the stress—strain curve occurs, the strain at which the plastic strain
rate at the center begins an extremely rapid rise and the width of the band. The critical
strain did not come out to be inversely proportional to the thermal softening parameter as
has been approximated in some theoretical studies. Even though values of the rate-hardening
exponent m greater than 0.015 did not increase the value of the critical strain. the strains
at which dramatic growth in the band development occurs did increase with m. Thus from
a practical viewpoint, higher values of the strain-rate hardening exponent m. the viscous
length and the strain hardening exponent n would delay the development of a shear band.

Finally we note that conclusions drawn herein are strictly applicable to the constitutive
model used.
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