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SECTION 1

INTRODUCTION

Since 1983 there have been nine reported bird impacts on

the F-18 windshield, see Figure 1, resulting in one penetration.

Associated with this penetration was an injury to the pilot. The

number of penetrations can be expected to increase as the F-18

fleet size increases. There are approximately 270 aircraft in

the fleet (mid-1986), with 84 aircraft being added per year to

achieve a total fleet size of 1300 aircraft.

The Improved Windshield Protection Program Office

(AFWAL/FDER) of the Air Force Wright Aeronautical Laboratory was

contacted by NAVAIR to evaluate the F-18 windshield system and

recommended an improved system having a birdstrike resistance

capability consistent with the current and expected future

mission requirements. FDER contracted with the University of

Dayton Research Institute (UDRI) to conduct a seven-part study to

develop and evaluate alternate transparency system concepts and

to recommend a system which will provide the most cost effective

approach meeting the design requirements and goals. The seven

tasks which were considered in this transparency

development/evaluation program are outlined in Figure 2 and

listed below.

o Define the requirements/goals, guidelines, criteria, and

constraints

o Identify alternate transparency systems

o Conduct a parametric analysis of the alternate systems

o Define the baseline bird impact capability

o Evaluate manufacturing, optics, cost, maintenance, life

cycle cost

1
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o Conduct a birdstrike probability risk assessment on the

alternate systems

o Conduct baseline bird impact tests

The following paragraphs discuss the results of each of these

tasks and integrates the findings into the design

recommendations.

The primary purpose of this study was to evaluate

transparency systems with increased bird impact resistance

capability. Because of the limited frontal area of the canopy,

the threat of bird impacts on the canopy was not considered

critical to aircraft survivability. As a result, this effort was

limited to evaluating windshield systems; the canopy was not

considered for redesign.
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SECTION 2

DESIGN GUIDELINES, REQUIREMENTS AND CONSTRAINTS

The UDRI, in conjunction with the AFWAL Project Engineer,

defined the guidelines and constraints that governed the design

of the alternate windshield systems, as well as the evaluation of

each of the design concepts. Similar programs have been

conducted on the T-38, F-4, and A-7 aircraft, and the experience

and knowledge gained in these programs were used to make critical

decisions relating to optics, fabrication, maintainability, and

life cycle costs. The design guidelines used to conduct the

feasibility study are listed below.

(a) Maintain nominal 5-year windshield life.

(b) No decrease in maintainability with respect to existing

transparencies is to occur.

(c) Maintain interchangeability with existing

transparencies.

(d) Provide simplification of fleet retrofit.

(e) The capability to withstand hot gases from aircraft

cannon is to be equivalent with current transparency.

The governing constraints were subdivided into

requirements and goals. The requirements are those which must be

totally satisfied and include:

o Birdstrike protection must be consistent with current and

expected future mission requirements.

o The system must be producible using existing technology.

o Maintenance of alternate systems must be consistent with

current practices.
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o Optics must meet current and expected future mission

requirements including compatibility with night vision

and HUD requirements.

The selected design must satisfy the above requirements and

will consist of compromises between, and the optimization of,

remaining design goals according to their relative importance.

These other design goals are in the form of performance in

certain key areas, namely:

o Minimize weight

o Minimize possibility of catastrophic failure resulting

from birdstrikes above threshold capability

o Minimize cost of ownership

o Minimize technical risk

o Maximize visibility

o Maximize durability

o Maximize thermal integrity

o Minimize changes to exterior moldline, fairings, and

associated hardware

o Minimize spall during bird impact event.

6



SECTION 3

ESTIMATED BASELINE BIRDSTRIKE CAPABILITY

The F-18 windshield system consists of a 0.6-inch-thick

monolithic stretched acrylic panel mounted to an assembled

aluminum frame, fastened to the aircraft at six locations (see

Figure 3), and is hinged at the forward edge. Baseline

birdstrike test results were not available during the initial

phase of this program, so the baseline birdstrike capability was

estimated from parametric equations and test results on similar

systems. These estimated capabilities were experimentally

verified later in the program. Bird impacts above threshold

capability may result in loss of pilot and/or aircraft.

The estimated current F-18 birdstrike resistance capability

is summarized in Figure 4. The critical impact location is just

forward of the aft arch along the aircraft centerline. The

capability at this location was estimated to be 265 knots with a

4-pound bird (all capabilities are quoted for using a 4-pound

bird). The transparency impact capability is generally lower

near the support structure because of stress concentration at the

interface. The 265-knot capability also represents the estimated

capability of the aluminum aft windshield arch. The capability

just aft of the forward arch is estimated to be 300 knots,

increasing to 340 knots for a center-center impact. The

capability increases outboard from centerline toward the sill

because of the decreased bird impact angle.

The estimated capabilities for the stretched acrylic

transparency were based on test data for similar systems and

parametric equations, see Figure 5. Test results on the T-38

student windshield showed that the 0.6-inch-thick windshield has

a capability of approximately 210 knots just forward of the aft

arch, and 320 knots at the center-center impact point. It was
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estimated that the F-18 would have a higher capability than the

T-38 because it has a lower bird impact angle (240 versus 27.5")

and a more continuous transparency edge attachment (the stretched

acrylic T-38 transparency was mounted to a nylon attachment which

bolted to the frame, Reference 4) whereas the F-18 acrylic

transparency was bolted directly to the frame. In addition, the

7075-T6 aluminum F-18 transparency frame is stronger and stiffer

than the cast magnesium T-38 frame, thus providing better support

to the transparency. The 7075-T6 Al is more than twice as strong

and the modulus of elasticity is 60% greater than the magnesium

casting.

It was estimated that the 3.5" decrease in the impact angle

over the T-38 resulted in an increase of 20 knots in the impact

capability; the remaining difference was expected as a result of

an improved edge attachment and arch design (Reference 1).

The current F-18 production aft arch is fabricated from

7075-T73 aluminum and has the section properties shown in Figure

6. The birdstrike resistance capability of this arch was

estimated by comparing it to the T-38 and F-4 test results

(References 2 and 3). Figure 7 shows a plot of stress (measured

using strain gages at the failure location) versus velocity for

various tests conducted on the F-4 aircraft. AEDC test numbers

have been shown for each F-4 data point. A curve, based on the

structural and geometric properties, was fit to the test data

points. Using the structural and geometric properties for the T-

38, another curve was generated. This curve passes through the

point which corresponds to failure of the arch as determined from

birdstrike testing.

Because of the similarity between these transparency

systems, a high level of confidence was placed on the estimated

birdstrike capability of the F-18 windshield frame. An F-18

curve, based on its structural and geometric properties, was

ii
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plotted as shown in on Figure 7. At approximately 265 knots, the

stress in the arch was estimated to be equal to the ultimate

strength of the material and is, therefore, the predicted

capability.

A major problem with each of these production windshield

frames (F-4, T-38 and F-18) is that the transparency support

structure lacks sufficient toughness which results in the system

failing catastrophically when impacted above the threshold

velocity.

14



SECTION 4

IDENTIFICATION OF ALTERNATE WINDSHIELD SYSTEMS

Alternate windshield system designs were selected by UDRI

in conjunction with AFWAL/FIEA. In past programs, UDRI had

worked in conjunction with major transparency suppliers to select

alternate transparency systems. Now, however, because of the

experience gained from these past programs, UDRI and AFWAL have a

considerable database from which to select alternate systems.

Alternate systems were based on this combined experience of AFWAL

and UDRI, and on the guidelines and constraints which governed

this study. The current monolithic stretched acrylic

transparency provides good serviceability and life; however,

increased bird impact resistance results in an increase in the

acrylic thickness, resulting in a relatively heavy transparency.

When impacted only slightly above the capability, acrylic

materials tend to fail catastrophically (References 1,2,3,5,6).

The McDonnell Aircraft Company proposed a 0.94-inch thick

stretched acrylic windshield with a redesigned frame which was to

have 500 knot capability as a developmental goal (Reference 7).

This was the thickest monolithic stretched acrylic transparency

that could be formed and still meet the optical requirements. It

was believed by UDRI that the highest capability that could be

attained with this system would be about 475 knots (reference

Figure 5) and that considerable development effort would be

required to attain this capability at the critical locations.

Monolithic polycarbonate has been used in the past on the

F-16 aircraft. Bare polycarbonate cannot be used because of its

low durability--being susceptible to surface abrasion and

UV/environmental degradation. To date, there have been

durability problems with the coated polycarbonate materials

15



(Reference 8). New generation coatings, currently being flight-

tested on the T-38 aircraft, may provide adequate durability;

however, these materials must be thoroughly evaluated and tested

before they can be put into production. Another problem with

monolithic polycarbonate is the embrittling effect of minor

surface imperfections (Reference 9). Small imperfections can

result in a catastrophic failure of the transparency at

velocities much lower than the established capability. Multiple

plies of polycarbonate minimize the possibility of a single flaw

resulting in failure, which in the case of a monolithic

polycarbonate ply would be catastrophic.

In general, available test data indicates that laminated

polycarbonate panels, combined with an acrylic outer face ply and

separated by low modulus ductile interlayers, offer high

strength/weight performance for bird impact. The opportunities

to vary stiffness and strength and thus performance are almost

limitless. One may depart from symmetric laminates and vary the

thickness of the structural plies and the thickness and material

properties of the interlayers. Laminated configurations also

facilitate the incorporation of electrically conductive coatings

for deicing and threat suppression capability. Laminated

acrylic/polycarbonate transparency designs can provide an

increased level of bird impact resistance over the current

stretched acrylic windshield system without an increase in

weight. The acrylic surface plies provide protection for the

polycarbonate, the main structural ply of the system.

Maintenance of the outer acrylic surface would be the same as the

current transparency. A range of thicknesses, corresponding to a

range in bird impact resistance, of the laminated transparencies

were evaluated.

In all transparency systems, the edge attachment is

critical for bird impact occurrinq near the panel edge. The

16



importance of considering total system response, edge member

cross-section, and the details of edge member attachment are

clearly demonstrated in References 1 through 6 and 10 through

15.

Seven transparency alternatives and four frame alternatives

were identified; each representing a major trade-off between

birdstrike protection, weight, cost, visibility and durability.

Below are listed each of the transparency and frame alternatives.

TransDarency Alternatives

o Coated monolithic polycarbonate - total thickness

0.6 inches.

o Two plies of laminated polycarbonate separated by a low

modulus interlayer and coated on the interior and

exterior surfaces - total thickness 0.6 inches.

o Two plies of laminated polycarbonate with an exterior

ply of acrylic and an interior coating; plies to be

separated by a low modulus interlayer - total thickness

0.6 inches.

o Monolithic stretched acrylic - total thickness 0.94

inches (Reference 7).

o Two plies of laminated polycarbonate with an exterior

ply of acrylic and an interior coating; plies to be

separated by a low modulus interlayer - total

thickness 0.66 inches.

o Two plies of laminated polycarbonate with an exterior

ply of acrylic and an interior coating. Plies to be

separated by a low modulus interlayer - total

thickness 0.73 inches.

17



o Two plies of laminated polycarbonate with both an

exterior and interior ply of acrylic; plies to be

separated by a low modulus interlayer - total thickness

0.84 inches.

Frame Alternatives

o Current aluminum frame with new composite aft arch.

o Current aluminum frame with new titanium aft arch.

o Current aluminum frame with reinforced aft arch.

o New redesigned aluminum frame for the 0.94-inch-thick

acrylic transparency (Reference 7).

18



SECTION 5

ESTIMATED BIRDSTRIKE CAPABILITIES OF
ALTERNATE WINDSHIELD SYSTEMS

The alternate transparency systems were evaluated to

determine the bird impact capabilities of each system. Each

estimated system capability was based on the estimated capability

of each transparency (this assumed that the transparency support

structure would be designed to optimize the transparency

performance). The bird impact capability of each alternate

transparency was estimated using parametric equations in

conjunction with the results of bird impact tests conducted on

similar transparency systems. As part of this effort, the

strength of the fuselage structure which supports the

transparency was also evaluated.

The analysis of the F-18 critical windshield system support

structure is contained in Appendix A. This analysis evaluated

the fuselage structure which reacts the loads resulting from a

birdstrike on the windshield. The analysis included the

following structure: upper longeron, ribs at station 233.7 and

240.2, effective skin, and critical fasteners. The most critical

component was found to be the rib at station 240.2. The three

possible failure modes and corresponding loads are shown in

Figure 8.

The fuselage station 240.2 rib was analyzed as follows to

determine the peak vertical (axial) load carrying capability. A

constant 500 ft-lb moment was assumed at the ends of the rib when

the axial load capability was calculated. This moment would be

applied to the upper longeron and rib through the base of the aft

windshield arch. The magnitude of the moment was based on finite

analyses of birdstrike resistant transparency systems having a

similar geometry and a bird impact capability of about 500 knots.

Crippling failure of the rib occurs at just over a 5,000 lb axial

19
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load. This failure was not considered critical because at the

onset of crippling the load would redistribute into adjacent

structure, minimizing damage. This type of damage would not

prevent the aircraft from returning to the base.

Bearing failure of the fasteners which connect the rib to

the upper longeron occurs at a load of about 7,000 pounds.

Failure of these fasteners results in loss of the applied moment

(500 ft-lbs), and without this moment the rib would buckle at a

2,000 to 3,000-pound load. This failure could cause loss of

aircraft control if critical aircraft flight controls were

located in this area. This was discussed with NAVAIR and it was

concluded that no critical flight controls were located in this

area and therefore this type of failure would not pose a flight

safety risk.

In order to determine the velocity at which fuselage

failure could occur, a family of vertical sill load versus

birdstrike impact velocity curves was generated for various

fighter aircraft (reference Figure 9). The failure points for

the F-4 and T-38 aircraft were based on experimental test results

and were used as input in generating the curves.

Since these curves were tightly bounded, a relatively high

level of confidence was placed on the sill load that was

predicted for a given birdstrike velocity. The F-18 curve

predicts a 7,000 lb sill load at about 475 knots. A transparency

system for the F-18 having a birdstrike capability higher than

475 knots may result in damage to the fuselage or require some

fuselage modification to prevent failure of the fuselage.

The transparency capability for each alternate transparency

system was estimated using parametric equations and experimental

test results from aircraft with similar transparency systems.

The results of the parametric equations for a 4-pound bird

impacting a center location at 24° have been summarized on Figure

21
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10. This range is based on curves by Ingelse & Wintermute (Ref.

6), Bosik-Bolted Edge Attachment (Ref. 1), Rockwell (Ref. 1),

Goodyear Aerospace Corp. (Ref. 1), and West and Clayton (Ref. 4).

The predicted penetration velocity for the various equations

diverge at higher velocities (greater thicknesses). Several

reasons for this divergence are as follows:

o First, the transparency edge condition becomes more

critical at higher velocities making it difficult to

accurately predict the birdstrike capability.

o Second, the thicker the transparency, the more the

transparency cross section can vary, which further

increases the range of capability.

o Third, variations in the overall windshield geometry

(i.e., overall size and single or double curvature) can

have a significant effect on the birdstrike capability.

Confidence in, and accuracy of, the estimated capabilities

were increased by using the birdstrike test results from similar

aircraft systems; actual capabilities being compared to the

estimated capabilities. Experimental birdstrike test results for

various aircraft transparency systems have been summarized on

Figure 11. These actual capabilities were used to substantiate

and make adjustments for overall geometry, edge conditions, etc.

to the parametric equations (Figure 10) to more accurately

evaluate F-18 alternate transparency systems. For example, the

T-38 windshield has about the same thickness and impact angle as

the F-4 side panel; however, the T-38 capability is about 400

knots where as the F-4 side panel has 500-knot capability. This

is a significant difference due entirely to panel geometry--not

accounted for in the parametric equations. This example
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demonstrates the need to include available relevant experimental

data when evaluating system birdstrike capability.

The estimated capabilities for the F-18 alternate

transparency systems have been summarized on Figure 12, 13

and 14. Figure 12 shows two 0.6-inch-thick polycarbonate

transparencies with a coated interior and exterior surfaces.

These transparencies would weigh about the same as the current

system and increase the birdstrike capability by over 60 percent.

In the past, materials with outer surface coatings have exhibited

durability and maintenance problems (e.g., embrittling the

polycarbonate, loss of coating adhesion, difficulty to repair in

the field, etc.). New coatings, yet to be used in production,

may prove to have much improved durability over currently used

materials. At this time, new coatings are being evaluated in the

prototype stage but are yet to be qualified in production.

Four laminated acrylic/polycarbonate transparencies were

evaluated (Figures 13 and 14). These transparencies offer

different levels of bird impact resistance capability. This

basic design has been proven in service for over nine years. A

0.6-inch-thick transparency would provide 450-knot capability; a

0.66-inch-thick transparency would provide 475-knot capability,

and 0.73-inch-thick transparency would provide 500-knot

capability. The 0.84-inch-thick design has both exterior and

interior acrylic plies and a bird impact capability of about 540

knots.

A 0.94-inch-thick stretched acrylic transparency is shown

in Figure 14. This transparency would require an R&D program to

achieve this level of protection (Reference 7). The best acrylic

windshield edge attachment design would allow the transparency to

have a capability near the forward and aft edges to approach the

capability at the center of the panel. An inherent problem with
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acrylic transparencies is that impacts above the threshold

capability result in catastrophic failure and potentially lethal

spall enters the cockpit (References 12, 13).

30



SECTION 6

BIRDSTRIKE RISK ASSESSMENT

The birdstrike probability risk assessment was conducted to

provide statistical data concerning the effect of alternate

levels of bird impact resistance on the number of penetrating

birdstrikes. Six models, representing the six alternate

transparency capabilities (see Figures 12, 13, and 14) were

constructed and analyzed. The aircraft history, see Figure 15,

is used to validate this analysis. The analysis predicts the

number of penetrating birdstrikes over a I@oyear:period.

Because of unknown future changes in the number of in-service

aircraft and mission profiles, the analysis may not accurately

represent the total number of penetrating birdstrikes. However,

the predicted percent reduction in the number of future

penetrating birdstrikes per low level flight hour for an

alternate windshield system will be representative of the actual

reduction.

The birdstrike probability program has been used to

evaluate the relative performance of aircraft transparency

systems in terms of birdstrike resistance. The probability of a

birdstrike causing damage (penetration) on a system can be

evaluated and the total number of birdstrikes and penetrations

for a given number of flight hours can be calculated. This

program is most useful as a tool for comparing relative

performance of different transparency systems for a given

aircraft. Because of the uncertainty involved in the input data,

the penetration numbers generated by this program should not be

considered in any way absolute and are only as good as the input.

A complete description of the mathematical theory is contained in
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Reference 16 and a detailed description of how to use the program

is contained in Reference 17.

The Birdstrike Risk Assessment program mathematically

models the real world by using a given bird density per cubic

mile, determining the volume of space swept out by the aircraft

windshield using the windshield frontal area, time in the bird

environment, and mean velocity in the bird environment, and then

calculating the total birdstrikes. The number of birdstrikes, N<

is calculated by

N = pA Vavg T5000 Reference 17 (1)
p = bird density/cubic mile

V = average aircraft velocity in the bird
avg

environment

T5000 = time spent below 5000 ft AGL (in the bird

environment

The average aircraft velocity and time below 5000 ft was provided

by NAVAIR, and the frontal area (485 in2 ) was determined from the

design drawings. In past programs, the bird density was

estimated by the size and types of birds that impacted the

specific aircraft. However, in the case of the F-18, which has a

relatively short in-service history, this was not possible. As a

result, the bird density for the entire F-4 fleet (2.862

bird/miles3 ) was used (Reference 3).

The analysis was conducted for F-18's using an average of

360 flight hours per aircraft per year with 35 percent of this

time, or 126 hours, in the bird environment. An average fleet

size (over the next 10 years) of 683 aircraft was used. The

predicted number of penetrations is obtained by multiplying the

total number of birdstrikes by the probability of damage.
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The probability of damage is calculated as follows: The

unconditional probability that a random birdstrike will be

damaging can be expressed as:

P(D) = foh(K) P(D/K) dK Reference 17
0

where h(K) is the probability density function of impacting

kinetic energies which is based on the birdweight distribution,

aircraft velocity profile. P(D/K) is the transparency strength

distribution function.

Birdweight distribution is obtained from Norton or BASH

birdstrike data files for the particular military aircraft, or

from specific studies of bird population weight distribution.

From this data a birdweight cumulative distribution curve given

by

P(w) = 1.0 - exp(-w/B2)A2  Reference 17

is developed. The birdweight cumulative distribution curve used

for the F-18 is shown in Figure 16 and is the same as that

developed for the entire F-4 fleet.

The aircraft velocity profile in the bird environment can

be obtained from projected or actual mission profile data, or

from service life data. Note that only data from below 5,000

feet AGL should be used, because the bird population above 5,000

feet AGL is minimal. The aircraft velocity used for this

analysis is shown in Figure 17 and was obtained through NAVAIR.

Transparency strength distribution can be obtained from either

birdstrike tests or it can be estimated. The estimated

transparency strength distributions for the alternate windshield

systems were used and are shown in Figures 18 through 25.

The results of the birdstrike risk assessment are

summarized in Table 1. With the current monolithic acrylic
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Figure 18. Windshield Strength Distribution Function,
Current F-18 0.60" Stretched Acrylic.
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Figure 19. Windshield Strength Distribution Function,

Proposed F-18 0.60" Coated Monolithic Polycarbonate.
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Figure 20. Windshield Strength Distribution Function,
Proposed F-18 0.60" Coated PC/PC Laminate.
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Figure 21. Windshield Strength Distribution Function,
Proposed F-18 0.60" AC/PC/PC Laminate.

38



1.0 IoI
0 0.9-

0.8
wa . 0 .7 --
0 0.6

0.5 0/

0:0o 0.4
0.3 PROPOSED F-18

0.2-- 0.94" STRETCHED ACRYLIC

0.01 I

450 500 550 600 650

VELOCITY (KNOTS)
Figure 22. Windshield Strength Distribution Function,
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Figure 23. Windshield Strength Distribution Function,

Proposed F-18 0.66" AC/PC/PC Laminate.
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Figure 24. Windshield Strength Distribution Function,
Proposed F-18 0.73" AC/PC/PC Laminate.
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system, 15.8 penetrations were predicted in 10 years. The 0.6-

inch-thick bird proof polycarbonate transparencies increase the

birdstrike resistance capability, lowering the expected

penetration by over 60 percent without significantly increasing

the weight. The 0.94-inch-thick stretched acrylic transparency

has the same minimum capability (475 knots) as the 0.66-inch-

thick laminated acrylic/polycarbonate transparency; and results

in a total of about three penetrating birdstrikes in a 10-year

period.

Two transparency alternatives were evaluated which have

greater than 475-knot capability and these may require some

fuselage modification to support the impact loads. The

transparencies would provide 500 and 540-knot capability and

further reduce the number of expected penetrations to about 15%

and 10%, respectively, of the current windshield system.
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SECTION 7

PRELIMINARY TRANSPARENCY DESIGN/CROSS-SECTION EVALUATION

A method of rating the various transparency design cross

sections was devised to systematically evaluate the variables

involved in determining the best transparency configurations for

further consideration. Nine categories, which included initial

cost, life cycle cost, weight, producibility, durability,

maintainability, optics, visibility, and birdstrike resistance

were evaluated using a matrix evaluation technique. Note that an

in-depth evaluation was not performed in each of the above

categories; all ratings were relative to each other and not

absolute. Seven transparency cross sections were evaluated.

These candidate cross sections resulted from transparency

configurations that have been used in the past on similar

aircraft or that have been suggested as alternate designs by

industry.

The transparency evaluation represents the combined rating

of UDRI and AFWAL/FDER and were based on their experience gained

in past programs. The rating or weighting factors were assigned

in each category after considering the explanations listed in the

following pages.

o The "design requirement weighting factors" are a rating

of the categories relative to each other based on the

projected Navy requirements. For example, bird impact

was rated higher than weight or cost. The most

important category was assigned a "10"; other categories

are rated according to the relative importance.

o The "transparency rating" prioritizes each transparency

cross section in a given category. The best material is

given 10 points. All other cross sections are to be
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rated relative to the best, on a scale of 0 to 10.

Listed below is an explanation of each category.

- Initial Cost - initial cost of making the retrofit

(cost of all hardware and the work required for

installation, reflecting any development cost).

- Life Cycle Cost - cost of replacing transparency on

an annualized basis.

- Weight - relative weight of the windshield assembly.

- Producibility - rating should reflect the development

time required and potential production difficulties

(proven vs. new technology).

- Durability - if possible, should be based on the

actual service life of similar transparencies.

- Maintainability - any maintenance required on the

windshield system.

- Optics - rating reflects expected optics which could

be achieved and maintained during production and

service.

- visibility - rates the relative visibility between

designs.

- Birdstrike Resistance - rates the relative birdstrike

resistance of each design.

o The "Overall Windshield Rating" is the summation of the

products for each category of the "Design Requirement

Weighting Factor" times the "Transparency Rating."

All transparency designs are a compromise of many different

and sometimes conflicting design requirements and goals. This

evaluation is an attempt to quantify these requirements and goals

in order to objectively select the best alternative. AFWAL/FIER

and UDRI conducted this evaluation as objectively as possible

based on their combined experience in aircraft transparencies.
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The evaluation has been summarized on Table 2. The design

requirements weighting factors are summarized in the first line

of the table. The transparency rating factors are summarized

next, followed by a summary of the overall ratings.

The results of this evaluation are as follows: The 0.6

through 0.73-inch-thick acrylic faced polycarbonate

transparencies had the highest overall rating. The 0.94-inch-

thick stretched acrylic transparency followed--this design was

negatively impacted by weight. The transparency designs with an

outer surface coating had the lowest rating.
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SECTION 8

BASELINE BIRDSTRIKE TEST RESULTS

Baseline birdstrike tests were conducted at Arnold

Engineering Development Center (AEDC), Arnold Air Force Station,

Tullahoma, TN, during August 1987. The results of these tests

are contained in Reference 18. Figure 26 shows the two impacted

points on the transparency. Table 3 presents a summary of the

birdstrike test results. All tests were conducted using a 4-

pound bird. Two impacts were made at the critical location

(along the aircraft centerline just forward of the aft arch), a

225-knot pass and a 269-knot failure. Four birdstrike tests were

conducted on the center of the windshield resulting in a pass at

309 knots and a failure at 330 knots.

Twenty-one strain measurements were made on each shot for

shot numbers 975 through 978 and 980. Figures 27 and 28 show the

strain gage locations, and cross section properties.

The strain data from test no. 975 was used to validate the

windshield support structure analysis contained in Appendix A.

This was the only shot on impact point 1 (the most critical loca-

tion) which passed--loads in the aft arch would be lower for

shots at other locations, and strain data from a shot which fails

cannot be used for validation calculations because the amount of

energy absorbed in the system would be unknown. The strain gages

on the aft arch showed the arch began to yield during this 225

knot test.

The strain data for three points on rib 240.2 are shown in

Figure 29. Peak strains occurred at about 1.74 milliseconds into

the impact event. Using the stress equation shown in Figure 30,

a static load on the rib was calculated which would result in the

measured strain (averaged strains were used from the left and

right sides).
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GAGE 5

X 0.69 -~Left Rib

t A Station 240.21 T.
M. YZ0.406

Y, Y3

GAGE 4 -. GAGE 6

x, wd x

MY GAGE TYPE: CEA-13-125UW-350

Section A-A Strain Gage Locaticns

Section A-A Gage I Gdg 2 Gage 3

Right Rib 13.9" 13.9" 13.9"

Gage 4 Gage 5 Gage 6

Left Rib 13.87 14.25 14.0"

RIB SECTION PROPERTIES

4x I = -0.39 in. YI 0.19 in. I X = 0.086 in e = -3.36 in.1 .. -

X2 = 0.22 in. Y2 = 0.40 in. Iy = 0.111 in A = .366 in'

X3 = 0.91 in. Y3 = 0.19 in. E = 10.6xl06 psi

Figure 27. Summary of Strain Gage Locations and Cross Section
Properties on Rib Y240.2.
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Figure 28. Summary of Strain Gage Locations and Cross Section
Properties for Windshield Aft Arch.
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Where: Mx = Bending moment about the x-axis.

MY = Bending moment about the y-axis.

P = Axial load.

A = Cross-sectional area.

E = Modulus of elasticity.

e = Eccentricity of the axial load.

Ix = Moment of inertia about the x-axis.

Iy = Moment of inertia about the y-axis.

Xi = Distance measured from gage i to the
neutral x-axis.

Yi = Distance measured from gage i to the
neutral y-axis.

o i = Stress calculated in gage i.

E i = Strain measured in gage i.

Figure 30. Stress Equations for Reducing Strain Data.
(Reference 19)
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The average peak load on the rib at station Y240.2 was 1170

lbs. downward force with an outward moment of 380 ft. lbs. The

actual load in the arch at the sill was then calculated as shown

in Figure 31. This resulted in an applied down force from the

arch to the sill, of 1680 lbs. The compares favorably with the

estimated load (1590 lbs.) predicted from Figure 9.

7s a result of these birdstrike tests and structural

analysis (Appendix A) it was estimated that some fuselage damage

could occur in the 450 to 470-knot velocity range. Damage to the

fuselage in this area as a result of birdstrike would not be

expected to prevent the aircraft from returning home, based on

discussions with NAVAIR concerning the location of critical

flight control components.
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SECTION 9

CONCLUSIONS

The windshield system alternatives have been summarized in

Table 4 along with information in eight key areas. These areas

include birdstrike capability, predicted number of penetrations,

weight change, optics, peak deflection at design capability,

technical risk, durability and life cycle cost.

The following paragraphs summarize the various windshield

alternatives and present the trade-offs that each represents.

o The 0.6-inch-thick coated monolithic polycarbonate

transparency would provide a capability of 425 knots,

reducing the number of penetrating strikes from 15.8 to

5 in a 10-year period. There is no weight change for

this alternative (a new aft windshield arch could add

several pounds). All of the existing windshield frame

could be used except for the aft arch, which would have

to be redesigned. Optics would be slightly degraded

rrom the current system (a result of the coating) and

peak deflection from birdstrikes would be about 4.5

inches. Technical risk is high because new coating

systems which provide adequate durability have yet to be

proven in production.

o The 0.6-inch-thick coated laminated polycarbonate

transparency is very similar to the monolithic

transparency. However, the laminated transparencies

facilitate the incorporation of electrically conductive

coatings for deicing and threat suppression. There is a

reduction in optics due to laminating the material. The

bird impact resistance would be about 450 knots--again,

the coatings represent a higher technical risk.
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o The 0.6-inch-thick acrylic faced laminated polycarbonate

transparency is similar to the other two 0.6-inch-thick

transparencies; however, this type of cross section

design has been proven to have adequate durability on a

production basis on other aircraft and represents a low

technical risk. Optics would not be as good as

monolithic designs; however, they should be adequate to

meet mission requirements.

o The 0.94-inch-thick monolithic stretched acrylic

transparency could provide up to 475-knot capability,

but may require a substantial development program making

it a high technical risk. When developed, peak

deflection would be only about an inch reducing the

possibility of damage to the HUD. The potential exists

for catastrophic failure of this transparency system

when impacted at velocities slightly higher than the

threshold velocity. It provides good optics and

durability; however, the weight of the windshield would

increase by 26.4 pounds. This transparency would

require an all-new, completely redesigned frame.

o The 0.66-inch-thick acrylic-faced laminated

polycarbonate transparency is essentially the same as

the 0.6-inch-thick acrylic-faced laminate. The

difference is a slightly higher bird impact resistance

at a slightly increased weight (about 5 pounds).

This transparency has the same minimum capability (475

knots) as the 0.94-inch stretched acrylic windshield,

and represents a low technical risk.

o The 0.73-inch-thick acrylic-faced laminated

polycarbonate transparency is the same cross-section

that has been used on the USAF F-Ill aircraft for the

past 8 years. This alternative would provide 500
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knot birdstrike protection (may require some fuselage

modification) and would weigh 12 pounds more than the

current transparency. Also, the entire windshield frame

would have to be redesigned because of the additional

transparency thickness.

o The 0.84-inch-thick acrylic-faced laminated

polycarbonate transparency would provide 540-knot

birdstrike protection (may require fuselage

modification) and reduce the predicted number of

penetrations by 90%. This cross-section alternative is
similar to the 0.73-inch-thick transparency except it has

acrylic face plies on both the inside and outside

surfaces and would result in a weight increase of 19

pounds over the current system.

Four aft windshield arch design concepts (see Figure 32)

were evaluated. Each arch was designed to support a transparency

having a 4-pound, 475-knot-birdstrike resistance caoabilitv.

The aft arch is the most critical (in terms of the bird impact

performance) to the overall performance of the windshield system.

The composite, titanium, and reinforced aluminum arch designs can

be used with all of the transparency alternatives except the 0.94-

inch-thick monolithic acrylic, which would use an aluminum

design.

o An all-composite (glass/Kevlar/epoxy) aft arch has yet

to be demonstrated in service but has the advantage

(over a metal arch) of rebounding back into its original

shape after being bird impacted.

o A titanium aft arch has been used on the USAF F-1ll BIRT

and ADBIRT windshield systems. This type of arch may

plastically deform leaving an air gap between the

windshield and canopy. This design, however, may have
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the lightest weight and provide the greatest

visibility.

o A composite reinforced aluminum arch would be similar to

what has been developed for the USAF T-38 aircraft.

This design provides a compromise between the all-metal

and all-composite arch designs. A prototype design for

the T-38 is being flight tested; however, there is no

long-term in-service history. The advantage of this

design is that on a retrofit, the original arch is

reinforced and incorporated into the new windshield

system, minimizing the amount of new structure that has

to be designed and requalified.

o The aluminum frame design for the 0.94-inch-thick

transparency was conceived by the McDonnell Aircraft

Company. As shown in Figure 32, the visibility would be

degraded compared with the titanium arch. This arch

would have to be developed to provide support to the

transparency without degrading the system impact

performance. The adhesive/sealant used between the

transparency and arch would be critical to the overall

system performance.
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SECTION 10

RECOMMENDATIONS

The following recommendation, summarized on Figure 33, was

presented as a result of this study.

The existing 0.6-inch-thick monolithic stretched acrylic

windshield should be replaced to reduce the risk of penetrating

birdstrike. A 0.66-inch-thick laminated acrylic/polycarbonate

transparency is recommended because it significantly reduces the

birdstrike hazard (by over 80%). Similar transparency designs

have been used on USAF high-performance fighter aircraft (F-16,

F-Ill, T-38, and F-4), resulting in a low technical risk. Also,

laminated designs facilitate the incorporation of coatings for

deicing and threat suppression.

The 0.66-inch-thick laminated acrylic/polycarbonate

transparency was selected for three reasons. First, it would

provide a level of protection that would minimize the possibility

of damage to the fuselage while significantly reducing the

birdstrike hazard. Second, initial cost and development time

would be minimized by using the existing windshield frame (except

for the aft arch). Third, weight increase over the current

system would be minimized (about a 10% increase).
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APPENDIX A
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1. Colurm is assumed to take the shape of a circular
arc.

2. Column is assumed to have either a fixed-pinned
end condition or a pinned-pinned end condition.

3. Skin covering column is assumed to have si.ly
supported ends, one simply supported side, and
one free side.

4. Arch applies a distributed noent to the column
upon birdstrike. This mcment will increase the
birdstrike load.

CRITICAL FAIL POINTS

crippling failure: P = 5540 lbs (pinned-pinned)
I max

Pmax = 5 6 9 0 ibs (fixed-pinned)

buckling failure: P = 9200 P_'s (pinned-pinned)

Pmax = 9752 lbs (fixed-pinned)

bearing load failure: P = 7020 lbsmax

NOIE: P m the maximun allowable birdstrike load
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