Nucleophilic Decontamination Agents

Work has primarily been concerned with an in-depth investigation of mustard reactions with hydroxyl solvents and other more powerful nucleophiles and, to a lesser extent, development of polyether-bound "DFPase" and other catalysts for ester hydrolysis. The mustard work has led to a much better understanding of solvent effects on mustard reactivity and mustard reactions with nucleophiles.

In the polyether work it was shown that PEGs dramatically facilitate solution and reaction of mustard and mustard simulants.
A. Summary of Results

Our work has primarily been concerned with an in-depth investigation of mustard reactions with hydroxylic solvents and other more powerful nucleophiles and, to a lesser extent, development of polyether-bound "DFPase" and other catalysts for ester hydrolysis. The mustard work has led to a much better understanding of solvent effects on mustard reactivity and mustard reactions with nucleophiles. In the course of this work we have observed reaction of mustards by E2, SN2, S1 and oxidative mechanisms and we have: (1) shown that some standard probes for nucleophilic involvement fail, and developed new probes; (2) characterized the transition state for mustard hydrolysis; (3) observed the first direct nucleophilic displacement reaction on a mustard derivative, and shown that most nucleophiles do not react with mustard by SN2 attack; (4) applied phase transfer catalysis to oxidation and elimination reactions of mustards; (5) clearly demonstrated that mustard hydrolysis proceeds exclusively by neighboring sulfur participation to form a sulfonium ion; (6) prepared and characterized a series of mustard analogues including deuterated ones for mechanistic studies; (7) applied the Kamlert-Taft solvatochromic equation to mustard solvolysis and shown that the equation provides chemical insight as well as predictive power; (8) shown that ground-state rather than transition-state solvation can be the dominant factor in controlling mustard solvolysis rates.

In the polyether work we have shown that PEGs dramatically facilitate solution and reaction of mustard and mustard simulants and we have prepared PEG-bound versions of Moss' iodosobenzoate and of Menger's aldehyde hydrate catalysts. The latter compound, CH3(OCH2CH2)4OCH2CH2CHO is 70% hydrated in water, shows promise as a catalyst, and can readily be incorporated into surfactants or attached to solids. Also, we have examined PEG-modification of Tetrahymena thermophila "DFPase" and have found that the resulting enzyme is quite active and soluble in certain organic solvents; however, activity was very low in the organic solvents.
B. Published Work Acknowledging Support of This Contract


