
ETL-0537

, 1988 Year End Report
for Road Following

~at Carnegie Mellon

Charles E. Thorpe
Takeo Kanade

Carnegie Mellon University
The Robotics Institute
Pittsburgh, Pennsylvania 15213

DTIC
ELECTF

May 1989 8 081989

Approved for public release; distribution is unlimited.

Prepared for:

Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

U.S. Army Corps of Engineers
Engineer Topographic Laboratories
Fort Belvoir, Virginia 22060-5546

80 8 07 098

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE
II I I II IIFor, Appr'oved

REPORT DOCUMENTATION PAGE OMB No. 0704-078

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED
2a. SECURITY CLASSIFICATION'AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for Public Release;
Distribution Is Unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

MU-R-TR-89-5 ETL-0537

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Carnegle Mellon University (If applicable) U.S. Army Engineer Topographic Laboratories

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

50 Forbes Avenue Fort Belvoir, Virginia 22060-5546
Pittsburgh, PA 15213

1a. NAME OF FUNDING/SPONSORING b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION Defense Advanced (If applicable)
Research Projects Agency ISTO DACA76-85-C-003
Bc. ADDRESS(City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT ITASK WORK UNIT
1400 Wilson Boulevard ELEMENT NO. NO. NO. CCESSION NO.

Arlington, VA 22209
11. TITLE (Include Security Classification)

1988 Year End Report for Road Following at Carnegie Mellon
12. PERSONAL AUTHOR(S)
Charles E. Thorpe and Takeo Kanade
13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (YearMonth, Day) 15. PAGE COUNT
Annual I FROM 1/15/88 TO 3/31/89 May 1989 138

eprogress in VIs n navigation for outdeor mobile robots at the Carnegie Mellon Robotics Institute.
Previous reports in series: ETL-0466 (10/84 to 12/85), ETL-0464 (1/86 to 1/87), ETL-0514 (1/87 to 1/88)

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Road Following, Range Data Interpretation, Expert Systems for
Image Interpretation. Car Recognition, Geometric Camera Calibration

19, ABSTRACT (Continue on reverse if necessary and identify by block number)

This report describes progress in vision and navigation for outdoor mobile robots at the Carnegie Mellon Robotics
Institute from January 1988 through March 1989. This research was primarily sponsored by the Defense Advanced
Research Projects Agency (DARPA) as part of the Strategic Computing Initiative. Portions of this research were also
partially supported by the National Science Foundation and Digital Equipment Corporation.

In the four years of the project, we have built perception modules for following roads, detecting obstacles,
mapping terrain, and rconizing objects. Together with our sister contract, "Development of an Integrated ALV
(Autonomous Land Vehicle) System," we have built systems that drive mobile robots along roads and cross coury,
and have gained valuable insights into viable approaches for outdoor mobile robot research. This work is briefly
summarized in Chapter 1 of this report.

Specifically in 1988 and the first three months of 1989, we have completed one color vision system for finding
roads, begun two others that handle difficult lighting and structured public roads and highways, and buil a road-
following system that uses active scanning with a laser rangefinder. We have used 3-D information to build elevation
maps for cross-country path planning, and have used maps to retraverse a route. Progress on these projects is
described briefly In Chapter 1, and in more detail in the remaining chapters.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
lUNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 03 DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

George Lukes (202) 355-2700 1 CEETI-RI

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

1988 Year End Report for Road Following
at Carnegie Mellon

Charles Thorpe and Takeo Kanade
Principal Investigators

CMU-RI-TR-89-5

The Robotics Institute
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

April 1989

@ 1989 Carnegie Meillon University

This report reviews progress at Carnegie Mellon from January 15, 1988 to March 31, 1989 on research
sponsored by the Strategic Computing Initiative of DARPA, DoD, through ARPA Order 5351, ana
monitored by the US Army Engineer Topographic Laboratories under contract DACA76-85-C-0003, titled
"Road Following." Portions of this research were also partially sponsored by the National Science
Foundation contract DRC-8604199, by the Digital Equipment Corporation External Research Program,
and by NASA under contract NAGW-1 175.

Preface

This report was prepared under Contract DACA76-85-C-0003 for the U.S. Army
Engineer Topographic Laboratories, Fort Belvoir, Virginia 22060-5546 by Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213. The Contracting Officer's Representative was
George Lukes.

Aoeession For

NTIS GRA&I
DTIC TAB 0
Unaunounced 0
Justification

By
Distribution/
rAvail-abiliIty Codas0

"' Ist Special

49'

Table of Contents

Abstract

Introduction and Overview Charles Thorpe and Takeo Kanade 3
Overview 3
Accomplishments 3
Insights and Advice 5
Progress 6
Future Work 10

Chronology 10

Personnel 11

Publications 11

Color Vision for Road Following 13
Jill Crisman and Charles Thorpe

Explicit Models for Robot Road Following 25
Karl Kluge and Charles Thorpe

Building and Navigating Maps of Road Scenes Using an Active Sensor 39
Martial Hebert

3-D Vision Techniques for Autonomous Vehicles 59
Martial Hebert, Takeo Kanade, Inso Kweon

Future Directions 123

Charles Thorpe and Takeo Kanade

Abstract
This report describes progress in vision and navigation for outdoor mobile robots at the Carnegie Mellon
Robotics Institute from January 1988 through March 1989. This research was primarily sponsored by
DARPA as part of the Strategic Computing Initiative. Portions of this research were also partially supported

by the National Science Foundation and Digital Equipment Corporation.

In the four years of the project, we have built perception modules for following roads, detecting obstacles,

mapping terrain, and recognizing objects. Together with our sister contract "Development of An
Integrated ALV System", we have built systems that drive mobile robots along roads and cross country,

and have gained valuable insights into viable approaches for outdoor mobile robot research. This work is

briefly summarized in Chapter 1 of this report.

Specifically in 1988 and the first three months of 1989, we have completed one color vision system for

finding roads, begun two others that handle difficult lighting and structured public roads and highways,
and built a road-following system that uses active scanning with a laser rangefinder. We have used 3-D

information to build elevation maps for cross-country path planning, and have used maps to retraverse a
route. Progress on these projects is described briefly in Chapter 1, and in more detail in the remaining

chapters.

3

Introduction
This report reviews progress at Carnegie Mellon from January 15, 1988 to March 31, 1989 on research

sponsored by the Strategic Computing Initiative of DARPA, DoD, through ARPA Order 5351, and monitored

by the US Army Engineer Topographic Laboratories under contract DACA76-85-C-0003, titled "Road
Following." Portions of this research were also partially sponsored by the National Science Foundation

contract DCR-8604199, by the Digital Equipment Corporation External Research Program, and by NASA

under contract NAGW-1 175.

This first chapter of the report consists of an overview of accomplishments during the four years of the
contract; a compendium of our insights and practical advice for building mobile robots; discussion of
progress during this reporting period; a chronology; a list of personnel; and publications of the research
group. The remaining chapters provide more technical deta,' on particular areas or projects.

Overview of Accomplishments

Outdoor mobile robot research at CMU has been funded by DARPA since January 1985. Although the
contract is titled "Road Following", the research is much broader. The scope of the work has included

cross-country runs and obstacle detection as well as road following; direct 3-D sensors along with video

cameras; object recognition and terrain mapping; and close cooperation with the Warp group and with the
Navlab Integration work (under the contract "Development of An Integrated ALV System"), to build

complete mobile robot systems. Several specific results from the Road Following contract have achieved
wide recognition, and have been integrated and demonstrated at CMU and elsewhere:

* Color-based Road Following. The culmination of our road-following work is a reliable
system that drives the Navlab along a narrow, twisting, tree-lined bicycle path. The heart of
the system uses adaptive color classification, which automatically adjusts for changes in road
appearance or lighting conditions. Variants of the system use two cameras, to extend the
dynamic range to handle deep shadows; find intersections of known shape; incorporate
additional features such as texture; and use the Warp processor for high speed. The latest
version uses the Warp to achieve a 2 second processing loop, allowing vehicle speeds of 1
meter / second even on our narrow test course.

*Terrain Representation and Obstacle Detection We have developed three levels of terrain
representation corresponding to different resolutions at which the terrain is described. At the
low resolution level we describe only discrete obstacles without explicitly describing the local
shape of the terrain. We used this level for fast obstacle detection and avoidance. At the
medium level, we include a description of the terrain through surface patches that
correspond to significant terrain features. At that level, the resolution is the resolution of the
operator used to detect these features. This level of representation is especially useful for
cross-country navigation in which we have to deal not only with large discrete obstacles but
also with the changing shape of the terrain. This representation has been successfully
demonstrated in conjunction with a path planner developed under the Integration contract.
Finally, the description with the highest resolution is a dense elevation map whose resolution
is limited only by the sensor. The techniques we developed for this representation provide a
complete description of the terrain including occluded regions and uncertainty. After the
low-resolution obstacle detection was demonstrated as part of the Navlab, it was ported to

4

Martin Marietta. Work in conjunction with Martin reduced run time to iess than one raf
second, the frame rate of the ERIM scanner. This was the only project during the Mart;n ALV
contract that was developed outside of Martin, integrated into the ALV, and used in one of
the ALV main demos.

" Map Building and Matching. In addition to extracting snapshot maps of the terrain from
range images, we have developed algorithms for matching and merging individual maps into
a single consistent representation. Again, the matching algorithms are applied to the three
levels of representation: At the lowest level discrete obstacles are matched in order to
compute the displacement between consecutive maps. At the medium level, terrain features
are matched to compute the most consistent match between maps. At the highest resolution
maps are directly correlated to compute the displacement by a minimization technique. The
accuracy of the resulting displacement can be as good as the resolution of the map (as low
as 10 cms in our experiments).

" Road Following by Active Sensing. Our ERIM scanner measures not only distance to
each point but also reflectance. If the road surface (e.g. asphalt) has much different
reflectance than the surroundings (e.g. grass), it is straightforward to detect and track the
road.. For situations in which reflectances do not significantly differ, such as dirt shoulders,
we have to pay attention to details of signal attenuation, grazing angle, and surface fitting in
order to find the road border. Since the ERIM uses its own laser as its light source, it is
insensitive to shadows or lighting changes. This system has even driven the Navlab at night.
This method has also been ported to Martin Marietta, and has driven the ALV.

*Systems. The Road Following Contract has provided perception modules for the systems
built by our Integration work. Highlights of these systems include:

" Navigating the Schenley Park bicycle path, starting with a crude map and producing an
updated map. This system included color vision for road-following; range data analysis
for mapping both discrete obstacles (trees) and terrain; intersection recognition and
navigation; a planner that followed the road and avoided obstacles; and sequencing to
predict road appearance and to tell perception when to take an image. The system
was based on CODGER, our adaptation of blackboard ideas for mobile robot
navigation.

" Navigating the CMU sidewalk network, using a preloaded map to predict object
appearance and to choose between a forward-looking and an angle-mounted camera
to see the next sidewalk or intersection. The map was also used to invoke a program
to locate stairs, which used a "colored-range image" built by fusing camera data with
xyz data from the rangefinder.

Other components that have been developed and tested, but not integrated into complete systems.
include:

" Sonar. Some of our earliest successful outdoor runs used Moravec and Elfes's sonar
system, originally developed for indoor use, to drive our Terregator robot in Schenley Park.
The sonar system was very good at mapping and avoiding natural obstacles such as trees.

" Stereo. The FIDO stereo system was ported from indoor laboratory robots to the Terregator,
and reimplemented on a prototype Warp. It successfully steered the Terregator around man-
made outdoor obstacles, but was less successful with trees and bushes. Future systems
could use the complementary strengths of sonar and stereo to build complete and reliable
mapping subsystems.

" Other Road Detection Methods. Our early systems tracked edges, oriented edges, road
cross-section profiles, correlation window outputs, and other features. Each of these
methods works well, but only in particular circumstances. Current research is using several
of these operators together to track the lines, shoulders, and other features of public
highways. A model-based control program will take advantage of the structure of highways
to decide which features to track and how to track them. This approach should be robust as

5

well as efficient. Other current work is exoloring new methods, such as an unsuoervisec
color classification scheme that uses shape information but does not neec-color Gata from
previous images. This scheme is not susceptible to quickly changing illumination, and can
find the road at the beginning of a run to initialize the color tracker.

Calibration. Our multi-sensor perception experiments need to know the geometrical
relationship between sensors. Even for a single sensor, it is important to know the transform
from sensor to vehicle coordinates. Our best calibration system uses images of two grids of
points to build transform lookup tables, or to derive traditional camera parameters such as
location, piercing point, row and column vectors, etc.

Object recognition. In order for a mobile robot to perform a meaningful mission, it must be
able to see and recognize known objects. Examples of our object recognition work are two
programs for recognizing cars, one using color data and the other using range images. Color
car recognition used hierarchical grouping, in which edges are grouped into lines; lines into
parallels; parallels into trapezoids and trapezoids into connected sets that could be car
roofs, windows, trunks, or hoods. Starting with range data, the 3-D system first detected flat
surfaces, then applied single-surface constraints such as range of orientations allowed for a
roof or door, then used surface-pair constraints such as the angle between a roof and door.
Both methods work on several views of different cars.

Insights and Advice

Through the course of our work, we have developed some basic maxims of developing outdoor mobile
robots. While some of these are scientific insights, most of them have the flavor of pragmatic advice.
The most important include:

" Computing is a bottleneck. Our best results use the Warp, rather than a Sun, to gain
processing speed. The extra computer power is mostly used not to drive the robot faster but
to process images more frequently. Processing images more frequently in space means
easier predictions, more objects shared between successive images, and smaller changes in
apparent size and shape. Processing more quickly in time means less sensitivity to lighting
changes. The 100 MFlops of the Warp help give us a 2-second loop for our current color
vision algorithm, but processing remains a bottleneck. Even for the same algorithm, we
could use an additional factor of 60 to get to frame rate, times an additional factor of 64 to
process higher-resolution images.

" Development environments are a bottleneck. While the Warp gives us vast improvements in
processing, until recently it was difficult to harness that power. Hardware developers and
computer engineers tend to expect their users to have a few well-specified algorithms that
can be compiled once and run many times. But it is the nature of research that programs
and parameters need to be changed frequently. To be useful, a supercomputer needs to
have debuggers, hardware diagnostics, easy access to display devices, and compilers that
run in reasonable amounts of time. Fortunately, those are now becoming available on the
Warp.

*Simplicity helps. Object models, algorithms, and systems should be no more complex than
needed. A road model, for instance, that attempts to derive too many geometric parameters
from a single interpreted image, may be subject to large instabilities due to small errors. We
have had much greater success in modeling our road as locally planar and straight. By
solving only for the x and theta of the road, we have a stable solution insensitive to minor
noise. And by processing quickly, we can track the road as it does eventually turn or pitch,
and compensate as we arrive at those points.

* The world changes. Our early outdoor stereo work was foiled by wind-blown trees. Early
color vision made assumptions about constant appearance, and ran afoul of variations in the
color of grass from place to place. Fairly sophisticated vision systems can be fooled by a

6

cloud suddenly covering the sun, which changes not only the intensity but also the color of
illumination. The appearance of the road changes from one run to the next, due to our cwr.
tire tracks, oil drops, and other effects.

" Sensors are a bottleneck. Too much effort goes into overcoming insufficient dynamic range,
fighting noise, and modeling errors. Our solutions include using 2 cameras mounted very
close to each other, with different iris settings, to extend the dynamic range. This is an
engineering solution to a technology problem, and diverts effort from science. Yet this sort of
'hack" is needed to use many current sensors.

" Direct sensing helps. Reasoning in 3-0 is much easier when the data starts out in 3-D, such
as from a scanning laser rangefinder. Our ERIM data is not perfect, but gives us an
excellent starting point for obstacle detection, terrain mapping, and 3-D object recognition.

" Image Understanding (IU) is still needed. There is no direct sensor for "road" or "tree".
Furthermore, there are objects and tasks that we do not yet understand how to handle with
simple algorithms and models. So even with good 3-D and color sensing, it is still necessary
to do all the IU tasks of modeling and interpretation. Direct sensing may eliminate some of
the messy low-level interpretation, but does not eliminate the need for fundamental work in
lU.

" Integration is difficult but crucial. Capable mobile robots need multiple sensors, probably with
multiple sensor interpretation methods, and have multiple goals and multiple control
schemes. If the individual components are designed separately, they are not likely to work
together. Much of our design and testing effort has been devoted to working with our sister
Integration effort to build systems that can follow roads and avoid obstacles; that can look for
landmarks while looking for roads; and that can handle other conflicting demands.

" Easy tasks are easier than expected, hard tasks are harder than expected. Following a
well-lit sidewalk, bordered by green grass, is nearly trivial. Following a winding path with dirty
asphalt, bordered by trees, grass, dirt, and fallen leaves, with changing lighting, is much
more difficult.

" Do not trust laboratory simulations, or runs on a few canned images. Simplified or reduced
test data is useful for first debugging, but success in the lab does not guarantee success
outdoors. There is no substitute for lots of experimental runs.

" Mobile robot research is increasingly important. Results from our work have already been
directly applied to interpreting sonar data (for design studies of an underwater autonomous
vehicle) and to mapping terrain for planning footfalls for a walking planetary rover. The ideas
and experience coming from our project have influenced many other mobile robots, ranging
from underground mining vehicles to other road following efforts. And in general, the Road
Following work is part of a paradigm shift in image understanding research, moving from
generic interpretation of single frames of laboratory data to goal-driven analysis of streams of
images from a real, continually moving, outdoor robot.

1988-89 Progress

In 1988 and the first three months of 1989, we neared completion of one of our road following programs.

and began work on three new road followers. Our range data processing built maps and, in conjunction
with NASA sponsorship, began very high resolution terrain analysis. The highlights of these projects, and

of the systems that use them, are briefly described below. Further detail on the major efforts is in the

following chapters.

SCARF: We completed SCARF, our system for Supervised Classification Applied to Road Following.

7

SCARF is the logical continuation of a :ong chain of road following programs that use coior c-ass,f-c3: 3-

The first implementation of SCARF in 1986 ran on Sun workstations, with 32 oy 30 pixel images, in aoou,
12 seconds per image. Later implementations of that version ran on the prototype WarD and on
production Warps, with speeds as fast as one image per 4 seconds.

Over the past year and a half, we have upgraded SCARF to use, first, higher resolution irrages (30 by

64), and, second, two images to increase dynamic range. This slowed our runs to tens of seconds per

image, even on a Warp.

Now, taking advantage of compiler upgrades for the Warp's W2 language, and doing some code
restructuring, we have reimplemented SCARF on the Warp. Our processing time is now down to 2
seconds per image. We moved almost all of the code onto the Warp cells themselves. Further, we
reduced the number of calls to the Warp per image from 14 (last year) to 3 (earlier this year) to 1 (now).
After initialization, we pass the Warp cells each new image, and get back only the new road location. All
of the system state is saved on the cells from call to call. We also have debugging versions that can
extract classification information for display, but those extra Warp calls and data movement slow down
the system. Current running time is 1 second of Warp time per image.

The full formulation of the probability equation used in classification includes the log of the determinant of
each class. Early implementations of SCARF on the Warp have always avoided logarithms, since there is
no log function in W2. On benign data, this did not cause any problems. But running with the Navlao
outside on a snowy day, the system did not work correctly. In our standard test sequences, each class
had approximately the same size determinant (i.e., the classes had approximately equal variance), so we
could safely ignore that term. But on a snowy day, the "snow" and "road" classes each had very small
variance, while the "trees + parked cars + trash barrel" class had a much larger variance. This imbalance
caused improper classifications. We worked with the Warp group to include a log macro and to compile it
into our W2 code. The resulting system performs no better on most of our images, but dramatically
improves performance on snowy days and under similar circumstances.

The resulting system has driven the Navlab many times, along our narrow bicycle path in Schenley Park.
The top speed at which we have run is one meter per second, the length of our test course (comparec
with 20 cm/sec last year). With the fast processing loop and the complete formulation of probabilities, thle
vision results are solid. While vehicle speed has always been a secondary concern of our work, we can
now drive at moderate speeds on our difficult test course, and should be able to use the same system to

drive at higher speeds on wider, straighter roads.

SCARF is described in Chapter 2 of this report, "Color Vision for Road Following".

UNSCARF: One of our new road detection algorithms for this past year is UNSCARF, for UNSupervised
Classification Applied to Road Following. A large problem with our early road perception work was

dealing with rapidly changing illumination. If the sun is covered by a cloud, the lighting is diffuse and we

8

can follow roads with a single camera. If the sun is out, there are prooems Ntfl camera cyra""c " ;-

but our methods that use two cameras work. But if the sun is quickly covered or uncovered by clouas,

then colors change and shadows change and the brightness changes. If object appearance differs

greatly between successive processed frames, current methods have a hard time tracking the road.

UNSCARF places less emphasis on colors and more on shapes. Instead of classifying each pixel

according to statistics from previous images, it groups neighboring pixels using unsupervised clustering

methods. We have found that clustering with 5 parameters (R,G,B and row,col) gives us classes that are

both homogeneous in color and connected in the image. We then piece a road shape together out of

those clusters, instead of from individual pixels. Evaluating candidate roads uses shape cues such as

parallel edges, smooth edges, edges the right distance apart, and so forth. The combination of

unsupervised classification and evaluation with shape cues makes UNSCARF tolerant of the large

illumination changes that have given problems to previous systems.

UNSCARF is also described in Chapter 2, "Color Vision for Road Following".

FERMI: FERMI deals with public highways and roads, that have more structure and variation than our

Schenley Park test site. The key to handling-diverse roads is explicit modeling of the colors, shapes, and

features of each road type. FERMI has a representation that lists width, maximum curvature, cjlor,

surface type, location of lines, type of shoulders, presence of guard rails, type of adjacent vegctation or

soil, illumination conditions (sunny or cloudy), illumination direction, and so forth. Then by having many
simple experts, one for tracking each type of feature, we are able to follow many kinds of roads within the

same control framework. None of the individual trackers (edges, lines, color discontinuities, etc.) that we
explored in our early work were adequate in themselves for road following. But by incorporating many of

them into a single system, and intelligently selecting which tracker to use to follow which feature, we

expect FERMI to be reliable and flexibie. FERMI has been designed and partially constructed, and has

driven the Navlab.

Details of the FERMI design are in Chapter 3, "Explicit Models for Road Following".

ERIM Reflectance: A new project is road tracking using the ERIM reflectance data. Our ERIM laser

rangefinder produces not only range at each point but also magnitude of reflectance. Since the scanner

produces its own illumination, the reflectance images are not distorted by shadows or sunlight or
changing cloud cover. Reflectance is affected by distance (less of the illumination is reflected back to the

scanner from more distant objects), but this can be compensated for by using the range data. So many
of the sources of error in standard video images are not present in active reflectance data.

There still are, however, some problems with using reflectance data. The magnitude of the reflectance

changes with grazing angle: the road at larger distances appears at a shallower angle, and reflects less.

Reflectance also changes from place to place along the road, as the road surface goes from dirty to clean

or from wet to dry. And finally, since reflectance is only a single channel (rather than the three channels

9

of an RGB camera), not all objects have aistinct appearances.

The solution to the grazing angle is to process each image as a series of horizontal bands, so within each

band the grazing angle is approximately constant. We keep separate appearance statistics for each of

the bands. We handle changes from place to place by updating our appearance models each image.

The problem of multiple objects with the same appearance is more difficult. Part of the solution is to limit
processing to a band around the predicted road location. Another answer is to use geometric constraints,

such as expecting road edges to be locally parallel. But the effectiveness of these solutions depends on

the materials that form the road and its borders. Asphalt and grass have much different reflectances, so
the portion of our test path that is grass-lined is easy to segment. Dirt, however, can appear much more
like asphalt, so in dirt-lined segments we have to use more detailed processing, such as tracking a single
road edge when the other edge is indistinct.

Our program to follow roads using ERIM reflectance has run the Navlab many times, including runs at
night. This is thefirst time we have had a usable day/night road following system. The program was also

transferred to Martin Marietta, and successfully drove the ALV.

In addition, this work provides the first step in a new project in building and re-using maps. As we drive,
we record the position of the road (from reflectance analysis) and of obstacles (from range analysis).
When we later retraverse the same path, we use the detected positions of the road and obstac!es to
locate the Navlab on the map. The map can then be used to predict upcoming obstacles or turns in the
road, and to plan paths past the current field of view.

Our work with reflectance processing and road mapping is described in Chapter 4, "Building and
Navigating Maps of Road Scenes Using an Active Sensor."

Terrain Mapping: The algorithms that build a terrain description made of polygonal regions have been
implemented and demonstrated on the Navlab. The resulting description is a mesh of polygons built from

an Erim image, each of which is a feature of the terrain. This terrain modeling program provides the type
of information required by the new path planner. The combination of terrain modeling and path planning
has been demonstrated on the Navlab and is a major step toward cross-country navigation and the

implementation of the Core system.

Terrain mapping work is included as part of an overview of all our range data analysis research in the
past four years in Chapter 5, "3-D Vision Techniques for Autonomous Vehicles".

10

Future Work

We intend to continue our work with vision and planning for outdoor navigation, but with some changes in

emphasis. First, we will concentrate more on off-road, cross-country scenarios. We have developed the
terrain mapping capabilities that are necessary for navigation in 3-rough terrain, and have built small
demonstration systems, but have only begun the work needed for reliable, long-range missions. In
particular, we need to work on representing 3-D shape at different resolutions for different purposes, and
to begin work on terrain typing. Second, we intend to build more systems. 1987 was dominated by a
single system that followed roads, stopped for obstacles, and mapped objects, using two Warps
simultaneously to drive the Navlab through Schenley Park. Recently, we moved away from a single large
system, to concentrate on building individual perception and planning modules. Our systems work was
mainly spent building simple support modules, to make it easy to isolate and test a single research
module. Now, many of the separate pieces are reliable and fast enough that it is once more worth the
effort to put them together into combined systems. We expect in 1989 and beyond to build a cross-
country navigation system and a (perhaps separate) road navigation system. These will provide reliable
bases on which we can base larger missions, such as mapping an area or traversing road networks.

Chapter 6 summarizes our plans for future work.

1988-89 Chronology

Feb Final version of expert system road finding

March Car recognition using range data complete

April LASSIE (car recognition with color data) complete

May Road simulator version 1

June ERIM reflectance used to follow roads

July SCARF implemented in C, drives Navlab

Aug Simple steering / planning programs "quick" and "dirty"

Aug ERIM reflectance and mapping runs Martin Marietta ALV

Sep Night runs of Navlab with ERIM

Oct First offroad runs using Stentz planner with vehicle model

Oct Retraverse route using map built on first run

Oct Car recognition with multiple contexts

Nov UNSCARF runs Navlab

Nov FERMI runs Navlab

Dec SCARF on Warp runs Navlab, under 1 second Warp time

11

Personnel

Directly supported by the project, or doing related and contributing research:

Faculty: Martial Hebert, Katsushi Ikeuchi, Takeo Kanade, Eric Krotkov, Steve Shafer, Chuck Thorpe, Jon
Webb, William Whittaker.

Staff: Paul Allen, Mike Blackwell, Tom Chen, Jill Crisman, Thad Druffel, Eric Hoffman, Ralph Hyre, Bala

Kumar, Jim Moody, Tom Palmeri, Jean-Christophe Robert, David Simon, Hans Thomas, Eddie Wyatt

Visiting scientists: Yoshi Goto, Taka Fujimori, Keith Gremban, Hide Kuga, Masatoshi Okutomi

Graduate students: Omead Amidi, Jennie Kay, Karl Kluge, InSo Kweon, Dean Pomerleau, Doug Reece,
Tony Stentz

Publications

Selected publications by members of our research group, supported by or of direct interest to this
contract.

J. Crisman and C. Thorpe
"Color Vision for Road Following"
In SPIE Conference on Mobile Robots, November, 1988
A different version appeared in the proceedings of SIMAP 88, University of Osaka, Japan, May 88.

J. M. Cuschieri and M. Hebert.

"Sonar Applications for Underwater Vision"
In ASME Symposium on Current Practices and New Technologies in Ocean Engineering, pages 5-11.
ASME, January 1988.

Y. Goto, S. A. Shafer, A. Stentz.
"The Driving Pipeline: A Driving Control Scheme for Mobile Robots"
International Journal of Robotics and Automation, Volume 4, Number 1.
Also appeared as Technical Report CMU-RI-TR-88-8, Carnegie Mellon University, The Robotics Institute,

June 1988.

K.D. Gremban, C.E. Thorpe, and T. Kanade.
"Geometric Camera Calibration using Systems of Linear Equations"
In Proc. 1988 IEEE International Conference on Robotics and Automation, pages 562-567. Computer
Society Press, Philadelphia, Pennsylvania, April 1988.

12

Also in 1988 Proc. of Image Understanding Workshop, pages, 820-825.

Morgan Kaufmann Publishers, Inc., Massachusetts, April 1988.

M. Hebert and T. Kanade.

"3-D Vision for Outdoor Navigation by an Autonomous Vehicle"

In 1988 Proc. of Image Understanding Workshop, pages 593-601. Morgan Kaufmann Publishers, Inc.,

Cambridge, Massachusetts, April 1988.

M. Hebert, T. Kanade, and I. Kweon.

"3-D Vision Techniques for Autonomous Mobile Robots"

Technical Report CMU-RI-TR-88-12, Carnegie Mellon University, The Robotics Institute, August 1988.

K. Kluge and C. Thorpe.

"Explicit Models For Road Following"

submitted to IEEE Conference on Robotics and Automation, 1989.

I. Kweon, M. Hebert, and T. Kanade.
"Perception for Rugged Terrain"

In Proc. of SPIE Conference on Mobile Robots. SPIE, November 1988.

I. Kweon, M. Hebert, and T. Kanade.

"Sensor Fusion of Range and Reflectance Data for Outdoor Scene Analysis"

In Proc. of SOAR'88 Space Operations Automation and Robotics. NASA, Wright-State University,

Dayton, Ohio, July 1988.

D. Pomerleau

"ALVINN: An Autonomous Land Vehicle In a Neural Network"
To appear in Advances In Neural Information Processing Systems, Vol. 1, 1989, D.S. Touretzky (ed.),

Morgan Kaufmann.

C. Thorpe and T. Kanade.
"1987 Year End Report for Road Following at Carnegie Mellon"
Technical Report CMU-RI-TR-88-4, Carnegie Mellon University, The Robotics Institute, April 1988.

C. Thorpe, M. Hebert, T. Kanade, and S. Shafer.
"Vision and Navigation for the Carnegie-Mellon Navlab"

PAMI 10(3), 1988.

Chapter 11
Color Vision for Road Following

Jill D. Crisman and Charles E. Thorpe

Color Vision for Road Following

Jill D. Crisman and Charles E. Thorpe
Robotics Institute, Carnegie Mellon University

Pittsburgh, PA 15213

April 5, 1989

Abstract

At Carnegie Mellon University, we have two new vision systems for outdoor road follow-
ing. The first system, called SCARF (Supervised Classification Applied to Road Following), is
designed to be fast and robust when the vehicle is running in both sunshine and shadows under
constant illumination. The second system. UNSCARF (UNSupervised Classification Applied to
Road Following), is slower, but provides good results even if the sun is alternately covered by
clouds or uncovered. SCARF incorporates our results from our previous experience with road
tracking by supervised classification. It is an adaptive supervised classification scheme using
color data from two cameras to form a new six dimensional color space. The road is localized
by a Hough space technique. SCARF is specifically designed for fast implementation on the
WARP supercomputer, an experimental parallel architecture developed at Carnegie Mellon.

UNSCARF uses an unsupervised classification algorithm to group the pixels in the image into
regions. The road is detected by finding the set of regions which, grouped together, best match
the road shape. UNSCARF can be expanded easily to perform unsupervised classification on any
number of features, and to use any combination of constraints to select the best combination of
regions. The basic unsupervised classification segmentation will also have applications outside
the realm of road following.

1 Introduction
At Carnegie Mellon University, we have been building successful, color vision based, road following systems for several years
[6,7,9,10]. The main emphasis of our road following research is to find unstructured roads in images that are complicated
by shadows, leaves or dirt lying on the road, lighting changes, and the like. We initially used edge based techniques, that
searched for edges in the image to correspond with road edges in the scene. This proved inadequate for our Schenley
Park test site, since often image edges caused by shadows were more distinctive than edges formed from road boundries.
Currently we have been using a color classification system, SCARF (Supervised Classification Applied to Road Following),
where each pixel in the image is labeled as road or non-road based on the match of its color to previously learned colors.
The road is found by looking for the road shape that contains the most 'road' labeled pixels. We also use an unsupervised
classification algorithm, UNSCARF (UNSupervised Classification Applied to Road Following), that groups pixels that have
similar color and location, and then searches for the combination of groups that best matches the road shape. This paper
discusses these two systems.

Other groups have also been working on road-following. In Germany, Dickmanns and Grafe (3,41 view road following
as a control problem. They have developed an elegant control formulation that incorporates a simple road edge detector
with the vehicle model to drive their vehicle at speeds up to 100 kph. They also use constraints of the autobahn shape

"This research is sponsored by the Strategic Computing Initiative of DARPA. DoD, through ARPA Order 5351. and monitored by the
US Army Engineer Topographic Laboratories under contract DACA76-85-C-0003. titled *Road Following.' Portions of this research were
also partially sponsored by the National Science Foundation contract DCR-8604199 and by the Digital Equipment Corporation External
Research Program.

and markings. The autobahns are of constant width and are either straight, constant curvature, or clothoid in shape. The
rapid processing and structured road model help to limit a search window in the image, and discard the extrancous ed:-'
normally found by edge detectors. However, it seems that their trackers could be distracted by the shadows, puddles and
road imperfections that plague our test site.

The University of Maryland (21 has also been working on road following. Their system drove an autonomous vehicle
based on edge detection. Image edges where tracked from the bottom of the image to the top using an edge detector in a
window of the image. Once an edge is located, it is used to constrain the position and orientation of the next window. Then
the edges were grouped using a Hough transform to determine which image edges form the best road edge. This system
worked well when the dominant edges in the image are road edges, but similar systems at CMU have failed when tracking
edges in strong shadows or when leaves or dirt lie on the roads.

At Martin Marietta, the VITS system (81 has achieved impressive speeds on fairly unstructured roads. It projects the
three-dimensional color space (red, green, blue) into one dimension, or in later systems two dimensions. It then differentiates
the road from non-road by a linear discriminant function. The road/non-road threshold is selected by sampling a part of
the image that is guaranteed to be road. This system is similar to CMU road following, but emphasizes speed rather than
general capability. Their system works fast, up to 20 kph, on their test site, but it is doubtful that it will work on other test
sites, since the color projection is uned for the features that are best to discriminate their road from their non-road.

Our goal is to build general color vision algorithms that work in a wide variety of situations. In particular, we are
working on recognizing unstructured roads in various types of illumination and weather conditions. To give our system
general capabilities, we must address the following problems:

* The objects in the scene undergo spatial changes in appearance. For example, under sunlight, roads appear
to be a different color than they appear in the shade.

* Objects in the scene undergo temporal changes in appearance. This may occur when clouds pass over the
sun for instance. The change in illumination will cause identical road segments to have different colors from
frame to frame.

" The dynamic range of our cameras is limited. We cannot digitize meaningful data in dark shadows of a
brightly sunlit image, nor can we capture data in the brightly sunlit regions of a dark image.

" The roads in Schenley Park are very unstructured. There are no center or bordering lines painted on our roads.
as on highways. Many of the road edges are obscured or uneven. The pavement of our roads is deteriorating
in places, and the pavement may be covered with the same leaves, dirt, or snow, that appear off road.

Our two new systems, SCARF and UNSCARF, were built to address these problems. Both systems deal with the
limited dynamic range of the cameras by using two cameras with different iris settings to capture both dark and bright areas
of the scene. SCARF is designed to be a fast, adaptive system. Even though algorithm speed is not a goal of our research,
faster algorithms have the advantage of more overlap between frames, if the vehicle speed is constant. When the images
are processed closer hi time and distance, the lighting conditions are less likely to change dramatically and the road position
in the image will not move far between frames. UNSCARF tackles the temporal and spatial changes by processing each
image independently of the others. No color models are tracked from frame to frame, making this algorithm insensitive to
spatial or temporal changes in color.

In the next section of this paper, we describe the SCARF algorithms and discuss results. UNSCARF is detailed and
discussed in the following section, and finally, general conclusions are drawn in the final section of this paper.

2 SCARF

SCARF has evolved by adding more and more capabilities to a simple road following system. A block diagram of this
system is shown in Figure 1. SCARF uses two cameras to digitize one frame of data. The two color images are reduced by
an averaging filter and sent to the classifier. For each pixel in the reduced images, the classifier calculates a likelihood value
that describes how well the pixel matches remembered road and non-road colors. The interpreter uses the likelihood values
to find the road shape that contains the most likely road pixels. The road location is then used to update the remembered
colors for the next frame. The road location is also used to steer the vehicle. This system has been implemented on the
WARP supercomputer.

a- - 8Wfiw

Ranw a SAngaw Cam

Orp., IrCis CamerCa

Figure 2: Extending the dynamic range using 2 cameras

2.1 Two Camera System

To extend the dynamic range of a single camera, we are using two images of the same scene digitized from the two cameras
mounted on our test vehicle, the Naviab. The cameras were positioned as closely together as possible, and bore-sighted.
minimizing the difference between the camera images. To avoid calibrating the two cameras, we treat the images as if they
were taken from the same camera. This approximation is adequate for our purposes since the baseline of our cameras is
much smaller than the distance to the road.

The improvement in dynamic range results from the different iris settings of the two camera as shown in Figure 2.
One of the cameras is set to capture the shadowed area of the scene by opening its iris. The second camera captures the
sunny areas by using a closed iris.

When the two color images are digitized, they are first reduced by using an averaging filter. This not only reduces the
data size, but wili also reduce the noise content of the image. The reduced input images are used throughout the program.
to increase the speed of the processing.

Two different methods for using the two input images were tested. The first approach is to combine the two reduced
images into one. We used a simple thresholding technique to extend the dynamic range as shown in Figure 2. If the closed
iris image pixel was too dark, then the pixel was selected from the open iris image, otherwise it was copied from the closed
iris image. The second approach was to use both reduced input images to form a six-dimensional color space. Then all six
features, the red, green, and blue bands from the two images, are used in SCARF.

2.2 Classifier

In standard pattern recogniLon theory, a classifier Lakes a d-dimensional measurement vector, x, and chooses the best class
label, wj, from a set of K classes, using a previously computed, class conditional probability, P(xlw,), for each class (5]. The
best class is the class that maximizes the a posteriori probability, P(w/jx). The expression for the a posteriori probability is
normally derived from Bayes rule:

P(Wj1X) = P(x1W)P(w/)P(x)

In our case, each pixel provides a 6 dimensional measurement vector (d = 6), x = [R1G1B1R2 G2 B2]r, formed by
concatenating the red, green, and blue bands of the two reduced input images. We use several classes to model road and
non-road colors, typically 12 road models and 12 non-road models, giving 24 total color models (K = 24). We assume
that the class conditional probability models for each ciass are Gaussian distributions, therefore, P(xlw1) can be completely
characterized by the mean vector and the covariance matrix of the sampled points for class wi. We also assume that the
P(wi) is the ratio of the number of samples in ,, Nj, over the total number of samples, N. Therefore,

2 P(d/211Cl/-1le- (x-m,)rCI-_m,) N1jP(wix) f P(x) N

Rather than calculating P(w lx) at each pixel, we simplify the calculations by chosing the class, a.j, that has the maximum
lnP(wIx). This can be further simplified by noticing that P(x) is identical for all of the classes, so that it can be eliminated
from all of the terms. Therefore our classifier selects the class that maximizes the following likelihood measure:

Aj = .n(!L) i- ln((21r)IICjfI) 1
NV 2

2.3 Interpretation

The interpretation receives a likelihood image, containing Ai, and a classification image, containing wj, from the classifier.
By looking at the classification image, we can label each pixel in the image as either 'road' or 'non-road'. The interpreter
searches for the road having the highest combined likelihood using a voting scheme similar to the Hough technique. The
standard Hough algorithm searches for a line by voting for all of the lines passing through an edge point. However, we
find a road by voting for all the possible roads containing 'road' pixels and by voting against all possible roads containing
'non-road' pixels. The main difference is that all of our pixels vote, not just pixels lying on the edge of the road. We also
use the likelihood measure to determine the weight of each vote.

We assume the road is locally nearly straight, and can be parameterized using v, the column where the road center
line crosses the horizon row, (or the vanishing point) and 0, the angle between the road center line and a vertical image line.
These two parameters are the dimensions of an accumulator used for collecting votes. Each pixel in the likelihood image
votes for all the roads that contain that pixel by adding its likelihood to the proper positions in the accumulator.

For each angle Oi, a given pixel location (r, c) will vote for a set of vanishing points lying between v, and v, as shown
in Figure 3. The starting column position, v,, corresponds the interpretation that pixel (r, c) lies on on the right hand edge
of the road in the image, and the ending column position, v, corresponds to the (r, c) pixel lying on the left hand edge of
the road. The v positions are calculated by:

v, c + (r - horiz) tan 9 - (w/O)(r - horiz)

V, = c + (r - horiz) tan 0 + (w/l)(r - horiz).

where horiz is the horizon row in the image, w is the road width at the bottom of the image, and I is the length from the
horizon row to the bottom of the image. The maximum value of the accumulator is chosen to be the road.

2.4 Model Formation

The new model can be calculated using standard statistical equations for mean and covariance:

I

(I)

, L & 1

U U

S hoi T

Iv
cJ = ZxN - mjj (2)

i

First we have to decide which pixels belong to each class. Once we have a 'road'/non-road' labeling, we calculate statistics
for the road and non-road classes. Then we reclassify each 'road' or 'non-road' pixel using only the road classes for 'road'
pixels and only the non-road classes for 'non-road' pixels. We iterate the calculate statistics and reclassify steps until the
classes converge.

The road location is given from the user in initialization or from the interpretation on subsequen' :-ps. Using this
location, each pixel can be identified as road or non-road. The road region and the non-road region of the 'nage are shrunk.
forming a safety margin at the edge of the road. This is important so that the new color model is not corrupted due to the
discretization of road locations or inaccurate fitting of a straight road model to a gently curving road. The reduced road and
non-road areas are used to sample the colors of road and non-road.

An iterative clustering technique is applied to the road region and an identical procedure is followed for the non-road
region. First, the road pixels are arbitrarily given one of the road class labels. We assign the classes by indexing through
the road pixels and assigning the next road class. The color model, consisting of {Nj, mj, C,} is calculated for each of the
classes using equations (1) and (2). Then all of the road pixels are relabeled by the class whose mean color is closest to the
pixel value, and a new color model is calculated using the new labeling. This 'label/sample' loop is repeated until most of
the pixels remain in the same class.

2.5 WARP Implementation

We have implemented one of our supervised classification systems on the wire-wrapped, prototype WARP supercomputer
(I]. The increase in processing speed, although significant, was limited by the small memory on each cell. Much time was
spent down-loading code and data, at each function call, typically 14 calls per step. Our new PC WARP has more memory
on each processing unit, allowing larger programs and larger global data structures. Therefore, we have one large WARP
function rather than multiple WARP functions, taking advantage of the larger program memory. This results in greater speeds
since data is only downloaded once and the WARP start-up sequence is executed once per image frame.

The inputs to the WARP program are the six reduced images and the statistical model for each class. The WARP
function segments, interprets, and produces the new color model. It outputs the road location and the new color model.

2.6 Discussion
This program has been tested on several sequences of images. The SCARF system has driven over all of the roads of our
test site successfully. We have driven the system in a variety of weather conditions, on different road surfaces, and under
different fighting conditions. It adapts very well to different road surface types and differing off-road objects. Figure 4
shows SCARF running through severe shadow conditions from our test site.

. i

Figure - SCARF examples in dark shadows: The lines show the resulting road location.

Green Green

Non-road Non-road

suasunlit SSunL

Roo Blue Road

s lue Blue
Sunny Overcast

Figure 5: Effects of rapid illumination change

Using two input images does increase the dynamic range beyond that of a single camera. We found that combining
the data into a single image provided a fast means of extending the dynamic range, however, using both input images was
more reliable. Not only does the use of two images increase the effective dynamic range, it also increased the data available
to classify each pixel, thereby increasing classification confidene and accuracy. Moreover, using all the data from both
cameras avoids the potential problems of picking a threshold for selecting data to form a single image.

The classification works well as long as the lighting conditions or the road type does not change drastically between
frames. As the time and distance between frames decrease, the results from the classification improve.

The Hough interpretation provides the robustness of the SCARF system. Since it is an area based technique, there is
more data used in the interpretation than an edge based technique. This makes the system less sensitive to noise. Using this
interpretation, we have been able to drive our Navlab vehicle in a variety of weather conditions. The results are good even
when the mad may be partially covered with the same leaves, dirt, or snow that is on the non-road parts of the image.

3 UNSCARF
UNSCARF was designed to attack the problem with temporal and spatial color appearance changes. In SCARF, models
of road and non-road colors, taken from the previous image, were used to label pixels in the current image. However, if
the color appearance of these objects changed dramatically, for any reason, then the color models no longer represented the
colors of the objects in the new image. SCARF performed well as long as the illumination did not change too quickly. An
example of a failure situation due to rapid illumination changes is shown in Figure 5. A classifier is calculated for sunny
and shaded road and non-road classes in a sunlit scene as shown on the left. In the next image, that classifier will fail, since
the sun is hidden by clouds and the colors of the road and non-mad classes have shifted.

UNSCARF does not use pre-computed color models, instead it groups pixels that are similar in color and location in
the image using an unsupervised classification algorithm as shown in Figure 6. Then the pixels with the same labels, or

21.

CLM MqP SLA~Go am Ot

60G P.m 1 .€)

.... , 4

Figure 6: UNSCARF block diagram

classes, are collected into regions using a connected components algorithm, and polygon approximations are fit to the pixel
regions. Finally we search for the combination of polygons that, taken together, forms the best road shape.

3.1 Unsupervised Classification Segmentation

The unsupervised classification algorithm groups pixels having similar colors and locations by an iterative clustering technique
similar, to the model update of the SCARF system. The main difference is that none of the pixels have a 'road' or 'non-road'
label. The pixels are given an initial classification. Then a statistical model is calculated for each class, and the pixels are
reclassified using the new model This is repealed until the classes converge.

Each pixel of the input image has five features (d = 5) that are used in the clustering-

x = [RED, GREEN, BLUE, row, column]T.

This can easily be expanded to a eight dimensional space by using the RGB bands of a second image. The system has a
fixed number of classes in each image, in ours typically 24. First it labels each pixel of the image with a class, insuring that
the classes are evenly scaered throughout the image. Next, a statistical color model, {N,, i, CJ}, is formulated for each
class, u,, for this class assignment using equations (1) and (2). Then the pixels are labeled using a classification scheme
similar to that of SCARF and a new statistical model is calculated. The 'classify/sample' loop is repeated until most of the
pixels in the image remain in the same class. This usually converges quite quickly, taking between 8 and 15 iteradons unul
95% of the pixels remain in the same class.

The classification scheme can have several different flavors. The first scheme used was a nearest mean classifier. In
other words, the pixels were labeled with the class whose mean was closest to the pixel value. This has a tendency to
form spherical clusters in the feature space. Since we were using the spatial parameters of (row, column) all of the regions
formed from the final class labeling have approximately circular shapes in the image. To allow elliptical shapes to represent
elongated or linear objects we used the nearest class as given by the Mahalanobis distance:

dj = (x - mj)TC -(x - mj).

This distance metric needed to be normalized since once one of the classes had a larger covariance than any of the other
classes, then in the reclassification, even more pixels would be classified as the large class. This would balloon until all of

Good Match'- Low Cost Bad Match - High Cost

Figure 7: Road costs

the pixels were described by one class. To avoid this, we normalize the distance metric, by dividing each element of the
covariance matrices of each class by the doh root of the determinant of that matrix

Cij = CAIlC1l.

Then the Mahalanobis distance metric is calculated using C':

dj = (x - mj)rC'- 1(x - mi).

This allows each class to have a different elliptical shape, while maintaining the same size for each class and thus preventing
one class from dominating the others.

Selecting the initial classes scattered throughout the image, causes the (row, column) parameter statistics to be almost
identical for all classes. Therefore the initial classification is based solely on color. In later steps, however the (row. column)
parameters are valuable. By clustering with color, we assume that an object will have a similar color throughouL By
adding the (row, column) parameters, we are exploiting the constraint that objects are localized in the image. The positional
consaint made segmentations cleaner than strictly color constraints, by eliminating small noisy regions.

3.2 Interpretation

The interpreter is based on evaluating all possible roads that could appear in the image. The evaluation function looks at
the difference between the road shape and the region edges in the image. The interpreter uses the same two road parameters
as in SCARF: v, the column at which the road crosses the horizon, and 0, the angle between the center line and a vertical
line in the image. However, instead of building an accumulator, we step through all of the interpretations and evaluate how
well that interpretation fits the regions of the image.

To evaluate a candidate road, we first decide which regions would be part of the candidate road. This is done by testing
if the center of mass of the region lies on the road. All of the regions lying in the candidate are then grouped together and
approximated with a conglomerate polygon. The area between the road model and the edge of the conglomerate polygon is
used as a cost metric of the interpretation. The candidate road whose conglomerate polygon has the lowest cost is selected
as the result. Figure 7 shows the cost metric of a good fit and a bad fit for the road.

3.3 Discussion and Future Work

In this system, the low-level segmentation uses mainly color constraints to segment the image, while the high-level interpre-
taLion uses only geometric constraints to localize the road. Therefore, the different levels of the system am using completely
different constraints. Figure 8 shows an example of the unsupervised classification segmentation running on a road scene.
The images to the right are the class image, where each class label is represented by a different intensity value. The left
image shows the pixels colored by the mean values of their class labeling. The top pair of images is the initial scattered
classification used to build the initial models. The middle pair of images shows the classification and mean class colors after
two 'classify/sample' loops, and the bottom pair shows the results after five 'classify/sample' steps.

The advantage of the cost evaluation scheme of our interpretation is that new constraints can easily be added to the
total COSL For example, we could add costs so that all of the road regions should have a similar color, different that those

Figure 8: Example Clustering: Top left image is the original image. Each pair of class images corresponds to an
iteration of the clustering algorithm. The right images have each class assigned a different intensity, and the left
images have each pixel colored by the mean RGB class value. The bottom right pair is 7he final class images.

of the non-road regions. We could also add a cost insuring that the road region is similar in color to the road seen in the
previous image. A cost can be added so that conglomerate polygons with straight edges are preferred over those with jagged
edges. Although these additional cost have not been necessary on the images tested, they may become more important as
we become more experienced with this interpretation system.

The system takes about 3-20 minutes to process one frame of the sequence. To speed up the processing, we have
implemented the unsupervised clustering algorithm distributed on a multiple number of Sun workstations. Using this method,
we have achieved a speed up proportional to the number of Suns used.

We will expand the unsupervised classification algorithm in several ways.

First, if the system could decide the number of classes needed to characterize the data, rather than having a
fixed number of classes specified, then the regions would be more representative of the data. As an initial
attempt, we will split and merge regions after each reclassification step. Large regions will be split, and regions
with very close mean values will be merged. This way, the system will decide how many regions it needs to
adequately represent the data.

* We will expand the road interpretation to detect intersections. We will apply the road searching that we have
currently implemented. Then we will enumerate all of the possible branches from the road, and search for
intersection branches with the same cost evaluation method used for the main road. We may need to add a
color constraint to the algorithm, since in our test site sometimes the shadows of the trees can form intersection
shapes.

* We believe that the basic unsupervised segmentation algorithm described here can be used for many different
vision applications. To show this we will use this system to do terrain typing for our cross-country navigation
experiments.

4 Results and Conclusions

SCARF and UNSCARF have been prototyped and tested individually. Our current efforts include speed and algorithmic
improvements to each system. We are also considering cooperation between SCARF and UNSCARF. One idea is to use

UNSCARF as a bootstrapping program and use SCARF as the generL ,)ad-follower. If SCARF should realize that ,ts
results are not good. then control can be returned to UNSCARF.

The second possibility is to use lessons learned from one system to improve the other. We intend, for instance, to track
the colors of the road regions detected by UNSCARF. Analyzing the changes in colors over time may provide cues which
can improve the supervised classification in SCARF. This combination of different methods for scene segmentation will
continue to expand the Navlab's capabiities for paved roads, dirt roads, and for terrain typing for cross-country navigauon.

References
(1] M. Annaratone, E. Arnould, T. Gross, H. T. Kung, M. Lam, 0. Menzilcioglu, and J. Webb. The warp computer.

architecture, implementation and performance. In IEEE Transactions on Computers, pages 1523-1538, December
1987.

[2) D. DeMenthon. Inverse Perspective of a Road from a Single Image Technical Report CAR-TR-210, University of
Maryland, 1986.

[3] E. Dickmanns and A. Zapp. Autonomous high-speed road vehicle guidance by computer vision. In Proc. 1Oth IFAC.
Munich, 1987.

[4] E. Dickmanns and A. Zapp. A curvature-based scheme tot improving road vehicle guidance by computer vision. In
Proc. SPIE Conference 727 on Mobile Robots, Cambridge, 1986.

[51 R. Duda and P. Hart. Pattern Classification and Scene Analysis. John Wiley and Sons, Inc., 1973.

[6] T. Kanade, C. Thorpe, and W. Whittaker. Autonomous land vehicle at CMU. In Proc. ACM Computer Conference,
Cincinnati, February 1986.

[7] C. Thorpe, M. Hebert, T. Kanade, and S. Shafer. Vision and navigation for the Carnegie-Mellon Navlab. PAMI, 10(3),
1988.

[8] M. Turk, D. Morgenthaler, K. Gremban, and M. Marra. VITS-a vision system for autonomous land vehicle navigauon.
IEEE Transactions on Pattern Analysis and Machine Intelligence, May 1988.

[9] R. Wallace, K. Matsuzaki, Y. Goto, J. Webb, J. Crisman, and T. Kanade. Progress on robot road following. In IEEE
Conf. on Robotics and Automation, San Francisco, 1986.

[10] R. Wallace, A. Sternz, C. Thorpe, H. Moravec, W. Whittaker, and T. Kanade. First results in robot road following. In
Proceedings of IJCAI 85, August 1985.

Chapter III
Explicit Models

for Robot Road Following

Karl Kluge and Chuck Thorpe

27

Explicit Models
for Robot Road Following

Karl Kluge and Chuck Thorpe

Carnegie Mellon University School of Computer Science
Pittsburgh, PA 15213

Abstract

Robots need strong explicit models of their environment in order to reliably perceive and navigate. An
explicit model is information directly available to the program itself, used for reasoning about what to look
for, how to look for it, and how to interpret what it has seen. We discuss the need for explicit models in
the context of road following, showing how road followers built by our own and other groups have suffered
by not having explicit models. Our new road tracking system, FERMI, is being built to study explicit
models and their use. FERMI includes explicit geometric models and multiple trackers, and will use
explicit models to select features to track and methods to track them.

Implicit Models Considered Harmful

We claim that vision systems need to have strong explicit models in order to do reliable recognition.
This is especially true in difficult situations, such as perception for an outdoor robot operating in an
environment with no control over objects or illumination. Our particular domain is color vision for road
following.

During the last four years there has been intense research on robot vision for following roads. Several
different systems have been developed, many of them under sponsorship of DARPA as part of the
Autonomous Land Vehicle program. Although there have been many solid contributions to road
following, there is still no reliable general purpose road tracking vision system. Most existing road
trackers work well for only a particular road, or only under benign illumination. They have impoverished
models that do not allow them to reason about failures in their low level feature trackers. Weak models
and weak or nonexistent high levels make them brittle in the presence of disturbances such as
disappearing features or illumination changes.

Each system has a model of the road, including expectations about road shape and appearance, and
the changes in shape, location, and appearance from one location to the next. The models are used to
guide recognition, predicting how and where a road should appear and what methods should be used to
find it. The models are also used for vehicle guidance, providing continuity while digitizing and processing
each image.

A complete model of the road encompasses assumptions made by the programmer, and procedural
knowledge for road recognition, as well as the data structure used by the program for road description.
The assumptions made in road modeling fall into three loose categories: subconscious models which are
implicit to the programmer; implicit models, representing decisions made by the programmer but not

28

available to the program: and explicit models which the program itself can access and modify

Each kind of assumption is appropriate in some circumstances However, the more information is
made explicitly available to the program, the wider the range of circumstances the program can handle
autonomously. This is especially true for models of highly structured roads, such as well-marked streets
and highways.

Typical subconscious assumptions, for instance, are that the road doesn't move, doesn't change color
at any one location, is continuously connected, doesn't bend so sharply that it goes entirely out of the
camera field of view, doesn't fold violently in 3-D. Many of these assumptions derive from the
functionality of a road: if a narrow road makes a sudden right-angle bend, it is impossible for a vehicle to
follow, and therefore is no longer a road". Assumptions at that level are safe, and are applicable to a
wide variety of roads. Other subconscious assumptions are much more insidious. One road following
program begins with the (correct) implicit assumption that road edges are locally parallel, then
(incorrectly) makes the subconscious assumption that feature-extraction routines will find the correct
edges. This leads to drastic errors in inferred geometry when the subconscious assumptions are violated.
Such an assumption may be not only wrong, but also hard to pinpoint and eliminate, since it was never
consciously made or documented.

Implicit models show up in papers and in documentation, but not in code or data structures in any form
that the program itself can access or modify. Typical implicit models are that the road is locally nearly
straight, that the road is always brighter than its surroundings, or that the dominant edges in the scene
are the road borders. Such implicit assumptions are often used by the programmer to select a single
algorithm for recognizing that particular road type, or for calculating road geometry under that assumption.
Well-constructed programs that rely on those road models are understood by their authors to only work in
those cases where the underlying assumptions hold. In particular, for unstructured roads that do not
have lane or edge markings and that do not follow rules of curvature or shape, the road model is very
limited. With such a limited road model, it may not be possible or practical for the program itself to use an
explicit model. If there is only one feature that can be tracked reliably, and only one algorithm for feature
tracking, then there is no need for explicit program reasoning.

Explicit models are most useful in the opposite case, in which the road follows strong rules of shape
and appearance, and there are many possible features and a variety of recognition algorithms. Then the
program itself can select the correct features and algorithms, and can watch for changes in the road and
change its strategy accordingly. Moreover, an explicit model that includes road semantics can help tie
together separate phenomena. By "semantics* we mean labels such as "intersection" or "right turn lane",
and the associated rules and descriptions that prescribe road appearance and shape in those situations.
For instance, a program with only implicit models may notice that a feature it had been tracking has now
disappeared. Only with an explicit model will it be possible for the program to understand that the feature
was a double yellow line, that its disappearance might mean an approaching intersection, and that it is

now past time to start looking for crossing traffic.

Road following programs to date use only subconscious and implicit models. This is due partly to the
kinds of roads being tracked, which often do not have enough structure to make strong models necessary

or possible. In other cases, however, the road has strong structure, but the designer has made all the
decisions implicitly. Many road following systems have only a single road-tracking algorithm, and have a

29

fixed road model. The designer uses an implicit model to pick the "best" method for following the road.
The resulting system appears relatively simple and efficient, since t has only one algorithm to code and
needs no higher-level reasoning.

Simple appearances are deceptive. Such implicit road models detract from system performance, and
contribute to brittleness, and to difficulty in debugging and making enhancements. Furthermore, systems
based on such a preprogrammed model of the world tend not to be as simple as they would at first
appear. Since the world is rarely as static as an implicit, preprogrammed, model, those programs need
many special cases, exceptions, recovery mechanisms, and other complications.

We contend that it is possible and advantageous to make the road model explicit, and to not only
model appearance and shape information but also to include semantics in the model. Moreover, using
such a model will make it easier to program and debug a road follower, and will lead to efficient programs.
The bulk of the processing can be done by simple operators that needn't be concerned with special
cases, while the costlier recovery procedures and switching between operators will occur infrequently.

The first haf of this chapter revtews other road followers, and outlines the road models and hidden
assumptions used by each program. In the second haf, we introduce FERMI, the Following Explicit Road
Models Intelligently, and describe its construction and performance.

Systems, Models, and Assumptions

In this section, we describe several systems, describe their road models, and critique the implicit
models in each.

SCARF: Color Classification
Implicit model: road colors mostly constant from one image to the next, known road shape (either

known width, locally straight and parallel for Hough interpretation, or arbitrary but known for ground
search)

Subconscious model: constant lighting and cameras so that constant road colors map to constant
road images

SCARF, for Supervised Classification Applied to Road Following, has been developed over the last
three years at Carnegie Mellon [8]. SCARF keeps color models for typical road and nonroad features,
typically 8 road and 8 nonroad features. Each color model represents the means, and covariances of the
color values for that feature, and the number of pixels in that class. An image is classified by comparing
each pixel to each class, and determining the most likely classification for that pixel as well as the
probability of that classification. The most likely road is found by convolving a known road shape with the
classification output, looking for the road position that has the greatest sum of road probabilities inside the
road shape and nonroad probabilities outside the road shape. In practice, this can be done efficiently
using an adaptation of the Hough transform that votes for areas instead of lines.

Once the most likely road has been found, SCARF builds new color models by supervised
classification. The area inside the road is used to build new road models, and the area outside the road
for the new nonroad classes.

30

SCARF was designed for use on a narrow, twisting, tree-lined bicycle path near the CMU campus.
With constant illumination, it works well. Various color classes typically represent shady road, sunny
road, leaves, wet patches, dirt, and so forth. As the vehicle moves onto a new type of road, classes
adjust to represent the new appearances, as long as there is enough overlap between scenes that the
majority of the road has been seen and modeled in the previous image.

The biggest weakness of SCARF is in changing illumination. If the sun goes behind a cloud between
images, the appearance of road and nonroad features can change, rendering color models incorrect. A
second weakness is the reliance on known road shape. If the road curves sharply, or if it changes width,
the assumed shape model (locally nearly straight, known width) is invalid. Finally, SCARF suffers from
the lack of features in its environment. It is difficult to build explicit models, since its environment has few
features: the bicycle path has no lines, stripes, guard rails, or shoulders.

UNSCARF: Unsupervised Classification
Implicit model: road is a collection of homogeneous regions that together form a "road shape*

(currently known width, straight edges)

Subconscious model: road edges are clean

UNSCARF, for UNSupervised Classification Applied to Road Following, was designed by Crisman at
CMU to overcome the problems of SCARF with rapid illumination change [3]. UNSCARF does not keep
color models from image to image, and does not classify pixels as road or nonroad. Instead, for each
image, it starts from scratch and finds the classes that best describe the image. It uses the classes to
divide the image into regions of similar appearance, then searches for the combination of regions that
forms the best road. *Best", in this case, currently means closest match to known road shape. Other
heuristics being considered include shape constraints, such as edge smoothness and straightness, and

color constraints.

UNSCARF uses a weaker model than SCARF. By eliminating the subconscious assumption that
lighting is constant, UNSCARF successfully finds roads in cases where that assumption is violated. But
UNSCARF also gives up a great deal of useful information for the many occasions when illumination does
not change between successive images. A better solution would start by detecting illumination changes
explicitly, and using colors from previous images if illumination is constant. This is one of the themes of
our current work. The best solution would be to improve the illumination model from a binary decision
(changed / constant) to a quantitative analysis of how colors change with changing illumination. A
complete analysis requires understanding the interactions of direct lighting; diffuse illumination from sky,
clouds, and leaves; object colors and highlights, camera sensitivity; and digitizer effects. While work has
begun in those directions [61, it is far from being applicable to unconstrained outdoor scenes.

Maryland
Implicit model: small-scale road edges dominate the scene, edges are parallel, vehicle motion is

accurate

Subconscious model: edge-finding is accurate, edges are clean and linked, limited curvature

Davis, LeMoigne, Kushner, and Waxman, at the University of Maryland, have a long history of research
in perception for road following. Their strongest system, and the only one to actually drive an

autonomous vehicle, is based on finding edges and grouping them into lines with Hough transforms (I I].

31

During road tracking, an initial window is placed at the bottom of the image on the predicted road location.
The search for the road edge in this window has two degrees of freedom, for location and orieniat'cn.
Once this edge is located, other windows are placed above the initial window. In each succeeding
window the road edge position is constrained by the lower window, so the Hough search need only look
for orientation. This technique can work adequately for scenes in which the dominant edges are road
borders. Similar techniques at CMU were defeated by strong, straight, shadow edges from trees and
buildings, and by scenes in which road edges were obscured by leaves or dirt.

Besides road tracking, the Maryland research also considered 3-D shape reconstruction. The higher-
level attempts at 3-D interpretation of road scenes were extremely sensitive to noise. DeMenthon [41
shows how Waxman's model can lead to perceived roads folding back over themselves, and proposes a
new geometry that ameliorates some of those problems.

VITS
Implicit model: consistent colors within one image (road has at most 2 classes, for sunny and

shaded), known vehicle motion and road model to seed process

Subconscious model: The color combination chosen is assumed to be always adequate despite
changing illumination & dirt on road; this implies road appearance is constant from day to day

The Martin Marietta VITS system [91 has achieved some impressive goals. It has followed roads at
speeds up to 20 kph, ana detected and avoided obstacles on the road. Their system projects the 3-D
color of each pixel onto a single dimension or, in later systems, onto a 2-D plane. Pixels are classified
into road or nonroad based on a linear discriminant function. Once each pixel is classified, blob coloring
gives the location of the road. The most interesting part of the Martin Marietta research is in selecting the
road / non-road threshold. In each new scene, vehicle motion is combined with the previous road model
to calculate the portion of the image guaranteed to contain road. This road area, called a power window,
is sampled to determine the typical road color for this image. The Martin system is a tightly-engineered
combination of perception, control, modeling, and highly tuned hardware. In many ways, their system is
similar to some of the CMU road-following, but driven by speed constraints rather than generality of
experiments. Where CMU's SCARF uses full color (or even 6 channels of color from two cameras) to
track a variety of road appearances, they have selected the best combination of colors for their particular
road. SCARF keeps many different possible appearances for both road and offroad, while VITS has at
most two, again sacrificing general capability for speed.

Dickmanns and Grafe
Implicit model: gray-level edges of roads dominate the scene, road follows clothoid shape, physical

constraints and fast processing limit feature motion, known relationship between road features to be
tracked

Subconscious model: all interesting features are oriented edges, no simultaneous distractions

Dickmanns and Grafe have demonstrated road following with a Mercedes van equipped with special-
purpose computing (5]. They have achieved impressive performance, tracking a new section of the
autobahn at speeds up to 100 kph. The heart of their system is an elegant control formulation, in which
road geometry, vehicle turning radius and speed, and the location of visually tracked features are all fed
into a single filtered state model. When running at high speeds, their system takes advantage of the

geometry of the German autobahn. The road consists of straight lines, constant radius curves, and

32

clothoids smoothly connecting curves and straights. German roads have known lane widths and well-
defined markings.

The major weakness of this system is its extremely simple perception model. They use a monochrome
camera and do simple edge detection. Their rapid processing and structured road model help them to
detect and discard anomalous edges, but it nevertheless appears that their trackers could get distracted
by shadows, puddles, road imperfections, or changing illumination.

FERMI

All of the above road followers have implicit and subconscious models of the road. But none of them
has more than one means of tracking the road, or does any higher-level reasoning about the road, or has
any explicit road model available to the program. Yet it is important to build and to use explicit road
models. Highways, freeways, rural roads, even suburban streets have strong constraints. Modeling
these explicitly makes reasoning easier and more reliable. When a line tracker fails, for instance, an
explicit model of road and shoulder colors adjacent to the line will help in deciding whether the line
disappeared, became occluded, turned at an intersection, or entered a shadow. This kind of geometric
and photometric reasoning is vital for building reliable and general road trackers. We are now building the
FERMI road tracking system to study !explicit modeling, and to study the use of those models in building
reliable vision.

Explicit Models
Our goal in constructing FERMI is to follow structured roads as reliably as possible. Our central

principle is to make explicit as much as possible: road features, geometry, and other effects. We are first
of all building individual knowledge sources that know how to model and track specific features:

" road edge markings (white stripes)

" road center lines (yellow stripes)

" guard rails

• shoulders

" type and color of road surface
We also have an explicit geometric model of the road. This model consists of a series of generalized
stripes. A generalized stripe is the 2-0 analog of a generaized cylinder. It consists of a spine curve
(currently restricted to arcs of constant curvature), and the description of a cross-section which is
translated along the spine. The model of the road in Figure 1, for instance, looks something like

* Spine: Curvature - 0.0.
* Feature 1: starts -304 cm ± 15 cm, height 0 cm, type shoulder, description asphalt.
" Feature 2: starts -273 cm ± 0 cm, height 0 cm, type line, description white.
" Feature 3: starts -262 cm ± 0 cm, height 0 cm, type road, description asphalt.
" Feature 4: starts -24 cm ± 0 cm, height 0 cm, type line, description yellow.
" Feature 5:...

The program will explicitly note transient road phenomena such as
" shadows
" local changes in road surface, e.g. patches
" global illumination changes, such as the sun going behind a cloud
" camera changes (auto-iris, auto-gain)
" 3-D effects such as going up and down hills

33

Explicitly modeling all these different features will be the basis for efficiency and reliability. The system
will be efficient because the geometric constraints can specify subwindows of the image for each feature
tracker, and-tracker history from frame to frame can predict appearance and shape. Another reason for
efficiency is that many simple trackers can be easily implemented on parallel hardware. Reliability will
come first because of the strong geometric constraints among trackers, and the ability to detect and
ignore anomalous outputs. The ability to use a strong geometric model of the road to focus on a small
area of the image to look for a feature reduces the chances of being misled by extraneous image
features. More importantly, the system will be reliable because one tracker, on discovering a shadow
edge or road curvature change, can pass that information to other trackers and keep them from being
caught by the same phenomenon.

Trackers
Many of the individual feature trackers have already been developed. We have done some preliminary

experiments using, for example, the oriented edge operator used to drive the Terregator in 1986 and a
simplified version of the color classifier developed in 1987. Customizing these feature trackers to follow
lines, stripes, and edges will make them faster and more robust than the general-purpose trackers
needed for our park scenes.

We currently have five trackers implemented:
" Oriented edge profile: Intensity profiles are extracted from a training window oriented

perpendicular to the direction of the feature. These oriented templates are matched by
correlation with intensity profiles from later images. The implicit model is that the color
intensity profiles of an edge are roughly uniform along the length of the edge.

" Ideal oriented edge profile: This tracker searches for an ideal step edge in intensity profiles
extracted from an oriented window. The implicit model is that there is a single strong
oriented step edge separating two features.

" Extended linear feature tracker: Intended for use tracking such features as white and yellow
road stripes. An unsupervised clustering algorithm is used on the RGB pixel values in a
training window to split the image window into two clusters: the line and the background. The
mean RGB values for the two clusters are used in later images to classify the pixels in a
search window. A line is fit to the pixels which are classified as being part of the linear
feature, giving an estimate of the location and orientation of the linear feature in the image.
Implicit model: that the dominant color phenomenon in the training and search windows
arises from the contrast between the line and the background, and remains approximately
constant from image to image.

* Color boundary tracker: Used on ragged edges such as a grass/road boundary. Performs
the same sort of clustering as the previous tracker, splitting the pixels in the training window
into two classes. The pixels which have neighbors that have a different label are marked, and
a line fit to these boundary points to estimate the edge position and orientation. Implicit
model: assumes that the dominant color phenomenon in the training and search windows is
the contrast between the colors of the two features whose boundary is being tracked.

*Matched filter tracker: A small training window is selected. In later search windows the
training window is correlated with the search window. The maximum correlation value in
each row of the search window is selected as an edge point, and a line is fit to the edge
points. Implicit model: the appearance of the feature is constant enough for correlation to be
used.

Our current method of selecting a tracker looks at the size in the image of each feature. If the feature is
narrow (i.e. a line or stripe), it selects a linear feature tracker. If the feature is wide (e.g. a lane of the
road), it chooses to track the edge of that feature, and selects an edge operator su"1 as the oriented

34

edge tracker. Figure 1 shows the road described earlier, with boundary and oriented edge trackers
tracking the white lines on the left and right side of the road and the left edge of the right lane.

We expect that various road phenomena (shadows, patches of different color, wet spots, etc.) will give
rise to characteristic sorts of changes in the behavior of various feature trackers. For instance, if a color
boundary tracker suddenly fails and the pixels in the current search window contain more blue than the
current color models would predict, then that area may be in shadow.

This requires finding a good set of measures to characterize how appropriate a given tracker is for a
particular feature (for instance, how well separated the color classes are in a color-based tracker), as well
as how well the tracker worked on a particular search window (how high is the best peak and how does it
compare to other local maximal correlation values in a correlation-based tracker; given a road/shoulder
boundary found by a color-based tracker, how many pixels were misclassified on each side of the edge,
etc.). We are currently working on formulating appropriate sets of measures for each of the trackers.

Tracker fusion
It is necessary to merge the estimates of feature locations and orientations returned by the trackers

placed on various features at various points in the image into a single estimate of where the vehicle is
relative to the spine of the generalized stripe that is currently being transversed. The method of fusion
needs to take into account the possibility of trackers failing or returning erroneous estimates.

The first approach to tracker fusion being considered is a Hough technique. Let us suppose that the
spine of the current stripe is a straight line (the technique extends in a straightforward way to arcs of
known constant curvature). Since the road is likely to be almost straight ahead of the vehicle, let's
represent it as a line of the form y - m* x + b, where the x-axis points straight ahead of the vehicle and
the y-axis points to the left. Let's suppose we have a feature tracker tracking a white stripe whose center
is offset from the road spine by offsetstri, and that the tracker has returned (xi , yi) as it's estimate of the
location of the center of the stripe. For a given m value, the y-intercept of the white stripe center line is
given by b3G - Yi- m x, and the y-intercept of the spine by bapine , b,,,p + offset,,, / cos(atan(m)).
Figure 2 shows the relationship between the feature position and the spine of the associated generalized
stripe.

Each tracker votes for all possible spines that are consistent with its position estimate for its feature.
The largest peak in the accumulator array is taken as the position of the road spine. Trackers whose
position estimates are not consistent with that spine estimate are anomalies which need to be explained.

An alternate approach is to formulate tracker fusion as a linear least squares problem. This is the
approach taken by Mysliwetz and Dickmanns [7]. They position their trackers in a way that allows them to
formulate equations that are linear in the vehicle offset from the lane center and the average curvature of
the road. They don't attempt to detect rogue trackers, however. We are experimenting with applying
statistical methods for outlier detection in linear regression ([1], [21) to the problem of detecting incorrect
tracker responses.

Interpretations
The system does not currently attempt to explain anomalous tracker responses. At a higher level, we

can use the semantics of the model to interpret tracker failure. Tracker failure may be noticed by the
tracker itself, or the tracker may give a response that is inconsistent with the output of other trackers. In
either case, the monitoring system will notice the failure and will try to explain the underlying cause, and

Figure 1: Road with oriented edge and boundary trackers

36

y = m X + b stripe

y =m X + bspineoffset bpn

(-278 cm)

b spine = bstripe + offset / cos(atan(m))

Figure 2: Stripe feature and spine locations in the Hough space

use that explanation to update its model. Examples of such reasoning include:
" double yellow -> single dashed yellow: no change
" double yellow -> none: intersection appearing, predict all other lines disappear, start

intersection-traversal behavior
" white line disappears -> <many possibilities>

" road / shoulder: nothing
" all road with no border -> possible side road turning off
* dark scene: check for shadow
" uninterpretable: check for occlusion

Current Status
The program which currently exists contains:

" Code for dealing with an explicit road model described as generalized stripes with spines
which are arcs with constant curvature.

" The five trackers described above.

• A simple tracker selection mechanism to decide which tracker should track which feature.

" Prediction code that positions each tracker correctly based on the perceived position of the
road in the previous image and the vehicle's motion.

" Two methods of tracker fusion. One uses a Hough technique to determine the vehicle
position relative to the spine of the current road stripe. The other assumes that the road is
locally almost straight and uses statistical techniques to detect outliers in a least squares
formulation.

" A simple facility for producing synthetic road images in order to test the effects of errors in
calibration and the road model separate from the image processing problems.

We have run this program on the CMU Navlab on a section of path in the park near campus. Each
digitize-track-fusion-steer cycle took about 20 seconds, running on a single Sun 3/180. The main goals of

37

our initial work have been to develop a family of trackers that work well in many situations, and to check
auxiliary functions such as path planning and camera calibration.

We are just beginning the second phase of our programnming, which will exploit our explicit feature
models. The first item on our agenda is fully automatic selection of features to track and tracker type and
placement. The user currently decides which features of the road model should be tracked. Possible
heuristics for automatic feature selection include both a priori reasoning (what is the expected contrast
between these two adjacent features?) and run time reasoning (what is the actual contrast in the
initialization image?).

A second step is implementation of mechanisms for explaining tracker failures. Once tracker fusion has
detected that a tracker has failed the system needs to determine why it failed, both to prevent other
trackers from falling into the same trap, and to allow detection of interesting road phenomena like
intersections.

We also need to model the semantics of road markings. Cues such as a double yellow line turning into
a dashed yellow line can predict the road becoming straight and flat.

We also will build and test additional simple feature trackers as we gain experience with failure modes.
No one tracker is likely to be reliable in all circumstances, so the greater variety of trackers available the
greater the chance of having one that works for a particular condition. Perhaps more important than the
proliferation of operators is implementing them efficiently on the Warp, our high-speed experimental
parallel processor (101. Most of our processing time is consumed in local image processing operations
which are relatively easy to implement on parallel hardware.

Acknowledgements
Our thanks to Jill Crisman, who developed the oriented edge tracker, and Thad Druffel, who developed

much of the code for the other trackers.

38

References

[1] Barnett, Vic, and Lewis, Toby.
Outliers in Statistical Data.
John Wiley & Sons, 1984.

[2] Beckman, R. J., and Cook, R. D.
Outlier s.
Technometrics 25(3):119-149, May, 1983.

[3] J. Crisman and C. Thorpe.
Color Vision for Road Following.
In Proc. SPIE Conference 1007 on Mobile Robots. Cambridge, 1988.

[4] D. DeMenthon.
Inverse Perspective of a Road from a Single Image.
Technical Report CAR-TR-210, University of Maryland, 1986.

[51 E. Dickmanns and A. Zapp.
A curvature-based scheme for improving road vehicle guidance by computer vision.
In Proc. SPIE Conference 727 on Mobile Robots. Cambridge, 1986.

[6] Klinker, Gudrun J.
A Physical Approach to Color Image Understanding.
PhD thesis, Carnegie Mellon University, May, 1988.

[7] Mysliwetz, Birger D., and Dickmanns, E. D.
Distributed Scene Analysis for Autonomous Road Vehicle Guidance.
In Proceedings SPIE Conference on Mobile Robots. November, 1987.

[8] C. Thorpe, M. Hebert, T. Kanade and S. Shafer.
Vision and navigation for the Carnegie-Mellon Navlab.
PAMI 10(3), 1988.

[91 M. Turk, 0. Morgenthaler, K. Gremban and M. Marra.
VITS-A Vision System for Autonomous Land Vehicle Navigation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, May, 1988.

[10] E. Amould, H. T. Kung, 0. Menzilcioglu and K. Sarocky.
A Systolic Array Computer.
In Proceedings of 1985 IEEE International Conference on Acoustics, Speech and Signal

Processing, pages 232-235. March, 1985.

[11] A. Waxman, J. LeMoigne, L. Davis, S. Srinivasan, T. Kushner, E. Liang and T. Siddalingaiah.
A visual navigation system for autonomous land vehicles.
Journal of Robotics and Automation, Vol. 3, 1987.

Chapter IV
Building and Navigating Maps of Road Scenes

Using an Active Sensor

Martial Hebert

Building and navigating maps of road scenes
using an active sensor

Martial Hebert
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract
This paper presents algorithms for building maps of road scenes using an active

range and reflectance sensor and for using the maps to traverse a portion of the world
already explored. Using an active sensor has some attractive advantages: It is indepen-
dent of the illumination conditions, it does not require complex calibration in order to
transform observed features to the vehicle's reference frame, and it provides 3-D terrain
models as well as road models. Using the map built from sensor data facilitates naviga-
tion in two respects: The vehicle may navigate faster since less perception processing is
necessary, and the vehicle may follow a more accurate path since the navigation system
does not rely entirely upon inaccurate visual data. We present a complete system that
includes road following, map building, and map-based navigation using the ERIM laser
range finder. We report on experimentation of the system both on the CMU NAVLAB
and the Martin Marietta ALV

1 Introduction
Autonomous road following using visual information is an important application of
mobile robots. In addition to navigating on roads, the visual information can be used

"This research was sponsored by the Defense Advanced Research Projects Agency, DoD,
through ARPA Order 5351, monitored by the US Army Engineer Topographic Laboratories
under contract DACA76-85-C-0003

to build maps of the observed environment. An area of research that has not been
explored is to close the loop by using the map built from previous observations to guide
the navigation on a portion of the world already explored. Such a capability of map
based navigation would enable us'to improve the performances of the vehicle in three
directions:

* Faster navigation: Perception is typically the bottleneck in autonomous mobile
systems because images have to be processed as often as possible to compensate
for the lack of knowledge about the world. If apriori knowledge of the envi-
ronment is available from previous observations, perception is needed only to
periodically check that the vehicle stays on the path prescribed by the map. The
perception bottleneck is therefore reduced, thus leading to faster navigation.

* More reliable navigation: Autonomous navigation is unreliable because of the
uncertainty associated with any sensor data and processing. Relying more on
a map means relying less on sensor data acquired during the execution of a
navigation plan. Map based navigation should therefore provide more accurate
navigation.

e Simpler perception: A map can provide the expected appearance of the envi-
ronment at any location. That includes the expected location of objects, and the
expected position and appearance of the road. This additional knowledge allows
for simpler perception processing.

Athough map based navigation algorithms could be used with a man made map
(e.g. from surveying), using a map built from sensor information does not make any
assumptions on the amount of knowledge available to the system, thus leading to a fully
autonomous system. This is also important since it is difficult to obtain the resolution
of a map built from sensor data by using surveying alone.

Most of the existing road following systems are based on intensity or color image
processing [12,16,13]. In this paper, we investigate the use of active sensing, namely
laser range finding, for both road following and map building. Using such a sensing
modality has some attractive features such as its stability with respect to illumination
conditions and the direct conversion to world coordinates without calibration. Our goal
is therefore to build a complete system from road following to map building using active
sensing, whereas previous research on active sensing for autonomous vehicles focused
on 3-D map building or obstacle detection [2,3,6,4].

The images used in the experiments reported in this paper are range and reflectance
images from a laser range finder, the ERIM scanner [15]. The images are 64 rows by
256 columns 8-bit images. The maximum range is 64 feet corresponding to a pixel
value of 255. The vertical (resp. horizontal) field of view is 30* (resp. 80*).

Even though the road following programs were demonstrated on the Martin Marietta
vehicle (the ALV), all results presented in this paper were obtained using the Carnegie-
Mellon vehicle (the NAVLAB) [9].

2 Following roads using active reflectance images
Early work on road following from active sensing focused on the use of range data to
find the edges of the road [10,1]. The drawback of this approach is that it assumes that
the road is limited by edges that correspond to discontinuities of the terrain surface. This
assumption limits severely applicability of the algorithms. An alternative approach is to
use the active reflectance images for road following. Active reflectance images have two
characteristics that make them attractive for road-following applications: First, they are
insensitive to outside illumination, that is no shadows are cast by objects in reflectance
images and the influence of the level of ambiant light on the image is minimal (in
fact, any program using reflectance images would work as well under night conditions).
Second, each pixel in the reflectance image is also a range pixel whose position in
space can be derived from the geometry of the scanner. This allows us to compute
the position of the edges of the road found in a reflectance image in the vehicle's 3-D
world without any of the calibration procedures that are typical of the video-based road
following algorithms [5].

Edge detection would be the natural way of finding road edges in grey level images.
The nature of the reflectance data, however, suggests the use of a region-based technique

for two reasons: First, the dynamic range of the image is low, many spurious edges that
are of similar strength as the road edges will be found. Second, the intensity of the road
in reflectance images is very stable because it is insensitive to shadows and changes
in illumination. This is to be compared with video images in which the appearance of
the road region varies significantly, thus requiring the use of multiple classes of road
and non-road regions [12]. Instead of extracting the road edges directly, a road region
extractor identifies the pixels that are part of the road based on the road location and
appearance predicted from a previous image.

The principle of the road region extractor is to keep the mean mi and variance o,

of the reflectance values inside the road region for each group i of four scanlines in the
image. The statistics are computed on groups of scanlines instead of the entire image
in order to account for the intensity attenuation at long range and for the presence of
small markings on the road that would have an effect on a few scanlines only instead of
propagating to the entire road region. The statistics am computed on the first image by
selecting the road region interactively. The road region is extracted from the reflectance
image by thresholding the pixels in swath i that are between mi + oi and mi - 2 * ai,
where (mi, ai) are the values computed on the previous image. The resulting binary

image is then processed to remove small isolated regions. The road region is extracted
from the set of remaining regions by using three criteria: the shape of the boundary that
is the value of the elongation, the size of the region knowing the average width of the
road, and the position of the region in the image as predicted from the previous image.
Once the road region is extracted, the values mi and ai are computed for each swath in
order to process the next image. This algorithm is similar to [12,131, except that it uses
only one road class, that is only one set of statistics, and that it computes and predicts
the road appearance over small swaths instead of the entire image.

The final output of the road finder program is the direction of the center line of the
road. The line is computed by fitting two parallel lines to the left and right edges of the
road polygon. If the two lines are parametrized by a direction 9, which is the direction
of the road common to both edges, and the signed distances of the lines to the origin
dt and d, (Figure 1), the best fit is computed by minimizing:

(pl.V+di)2+ E (,V z,) (1)
leftedge rightedge

The center line of the road is the middle line of (7, d,) and (9, d,), ,he width of the road
is w = Idl - d1. Figure 2 shows the result of the road following program on a typical
reflectance image. The top part of Figure 2 shows the reflectance image, the bottom
part shows the road edges and the center line of the road projected on the ground plane.
The scale on the left side on the image is in meters; the road is found between five and
fifteen meters in this case.

In order to drive the vehicle, two points on the center line are sent to a local
path planner. The path planner generates a sequence of circular arcs using a "pure
pursuit" algorithm derived from (141. The road following program successfully drove
two vehicles, the CMU NAVLAB [8] and the Martin Marietta ALV, over several hundred
meters at a speed of 40cm/s. In both cases, the road following is implemented on a
Sun3 workstation. The average computation time is 3 seconds per reflectance image
which allows for enough overlap between consecutive images.

3 Building maps from range and reflectance images
The main problem in building a map from a sequence of consecutive images is to
compute the relative positions of features observed from different vantage points in
order to merge them in a consi-tent map expressed in a single coordinate system. Two
types of information may be used to compute the relative positions: The matching of
geometric features from image to image, and the best estimate of the current position
of the vehicle as given by the dead reckoning. The position estimate from the motion

t /mean,
variance

Road edge
pixels

Conversion to 3-D

d

d
r

Figure 1. Road finding algorithm

Figure 2: Road following on a reflectance image

of the vehicle cannot be used alone unless a sophisticated navigation system is used as
in [31 since positional errors do accumulate in time, thus leading to unacceptable errors
in the position estimate. The final position estimates should be a combination in which
the estimate from the dead reckoning is used to predict matches between features, and a
set of consistent matches is used to estimate the resulting displacement between images.
In general, if F! and F; are two sets of features extracted from two images, It and 12, we
want to find a transformation T and a set of pairs Ck = (F!, F2) such that F2 -:z t(F,
where T(F) denotes the transformed by T of a feature F. We first investigate the feature
matching algorithm independently of any particular feature type so that we can then
apply it to any level of terrain representation.

For each feature F!, we can first compute the set of features F2 that could correspond
to F! given an initial estimate To of the displacement. The FZ's should lie in a prediction
region centered at To(F). The size of the prediction region depends on the confidence
we have in To and in the feature extractors. For example, the centers of the polygonal
obstacles are not known accurately The confidence on the displacement T is represented
by the maximum distance 6 between a point in image I and the transformed of its
homologue in image 2, IITp2 - pill, and by the maximum angle e, between a vector
in image 12 and the transformed of its homologue in image I by the rotation part of
T. The prediction is then defined as the set of features that are at a Cartesian distance
lower than b, and at an angular distance lower than e from To(F2). The parameters
used to determine if a feature belongs to a prediction region depend on the type of
that feature. For example, we use the direction of a line for the test on the angular
distance, while the center of an obstacle is used for the test on the Cartesian distance.
Some features may be tested only for orientation, such as lines, or only for position,
such as point features. The features in each prediction region are sorted according to
some feature distance d(F, To(F.)) that reflects how well the features are matched. The
feature distance depends also on the type of the feature: for points we use the usual
distance, for lines we use the angles between the directions, and for polygonal patches
(obstacles or terrain patches) we use a linear combination of the distance between the
centers, the difference between the areas, the angle between the surface orientations, and
the number of neighboring patches. The features in image I1 am also sorted according to
an "importance" measure that reflects how important the features are for the matching.
Such importance measures include the length of the lines, the strength of the point
features (i.e. the curvature value), and the size of the patches. The importance measure
also includes the type of the features because some features such as obstacles are more
reliably detected than others, such as point features.

Once we have built the prediction regions, we can search for matches between the
two images. The search proceeds by matching the features F! to the features F2 that are
in their prediction region starting at the most important feature. We have to control the

search in order to avoid a combinatorial explosion by taking advantage of the fact that
each time a new match is added both the displacement and the future matches are further
constrained. The displacement is constrained by combining the current estimate T with
the displacement computed from a new match (F!, F2). Even though the displacement
is described by six components, the number of components of the displacement that
can be computed from one single match depends on the type of features involved:
point matches provide only three components, line matches provide four components
(two rotations and two translations), and region matches provide three components. We
therefore combine the components of T with those components of the new match that
can be computed. A given match prunes the search by constraining the future potential
matches in two ways: if connectivity relations between features are available, as in the
case of terrain patches, then a match (F!, FZ) constrains the possible matches for the
neighbors of (F!) in that they have to be adjacent to F.. In the case of points or patches,

an additional constraint is induced by the conservation of the relative placement of the
features in the scene: if F, is to the left of F2 in one image, then the corresponding
features F'j and F must be ordered in .the same way in the next image, provided that
the images a close enough and that the features are far enough from each other.

The result of the search is a set of possible matchings, each of which is a set of
pairs S = (F!, F2)k between the two sets of features. Since we evaluated T simply by
combining components in the course of the search, we have to evaluate T for each S in
order to get an accurate estimate. T is estimated by minimizing an error function of the
form:

E d(F! - T(F')) (2)
k

The distance d(.) used in Equation (2) depends on the type of the features involved: For
point features, it is the usual distance between two points; for lines it is the weighted sum
of the angle between the two lines and the distance between the distance vectors of the
two lines; for regions it is the weighted sum of the distance between the unit direction
vectors and the distance between the two direction vectors. All the components of T
can be estimated in general by minimizing E. We have to carefully identify, however,
the cases in which insufficient features are present in the scene to fully constrain the
transformation. The matching S that realizes the minimum E is reported as the final
match between the two maps while the corresponding displacement t is reported as the
best estimate of the displacement between the two maps. The error E(l) can then be
used to represent the uncertainty in T.

This approach to feature based matching is quite general so that we can apply it
to many different types of features, provided that we can define the distance d(.) in
Equation (2), the importance measure, and the feature measure. The approach is also

fairly efficient as long as 6 and E do not become too large, in which case the search
space itself becomes large.

In addition to the road edges, the features that we consider for map building are poly-
gons that describe the surface of the terrain and the discrete obstacles. The algorithms
for extracting the polygonal description are reported in [7] and [6]. To summarize, the
features used in the matching are:

" The polygons describing the terrain parametrized by their areas, the equation of
the underlying surface, and the center of the region.

" The polygons describing the trace of the major obstacles detected (if any).

" The road edges found in the reflectance images if the road detection is reliable
enough. The reliability is measured by how much a pair of road edges deviates
from the pair found in the previous image.

The obstacle polygons have a higher weight in the search itself because their detec-
tion is more reliable than the terrain segmentation, while the terrain regions and the road
edges contribute more to the final estimate of the displacement since their localization
is better. Once a set of matches and a displacement T are computed, the obstacles and
terrain patches that are common between the current map and a new image are com-
bined into new polygons, and the new features are added to the map while updating the
connectivity between features.

In the current implementation, the initial estimates of the displacement To are taken
from the central database that keeps track of the vehicle's position using dead reckoning.
The size of prediction region is fixed with 6 = one meter, and c = 200. This implemen-
tation of the feature matching has performed successfully over the course of runs of
several hundred meters. The final product of the matching is a map that combines all
the observations made during the run, and a list of updated obstacle descriptions that are
sent to a map module at regular intervals. Since errors in determining position tend to
accumulate during such long runs, we always keep the map centered around the current
vehicle position. As a result, the map representation is always accurate close to the
current vehicle position. As an example, Figure 4 shows the result of the matching on
five consecutive images separated by about one meter. The scene in this case is a road
bordered by a few trees. Figure 3 shows the range images (right) and the reflectance
images (left) used in the matching. Figure 4 is a rendition of the combined maps using
the displacement and matches computed from the feature matching algorithm. This
display is a view of the map rotated by 450 about the x axis and shaded by the values
from the reflectance image.

Figure 5 shows a map built from twenty images over sixty meters. In this display,

only the road edges, the center line of the road, and the discrete obstacles are shown. To

Figure 3: A sequence of range and reflectance images

Figure 4: Perspective view of the combined map

obtain this result, the vehicle was driven by the road following algorithm of Section 2
at a continuous speed of 20 cm/s. The road following and map building modules are
separated because the map building module requires an average of fifteen seconds of
computation time per image which would prevent stable continuous motion. The overall
structure of the map building/road following system that was used in this experiment is
shown in Figure 6. The map building and road following modules are executed on two
separate processors (Sun3's). They both access the ERIM scanner)rough a network
interface. The road following module sends a new path that is a sequence of arcs to a
separaL,: helm module running on a third processor, The helm also provides initial esti-
mates of the vehicle position ,he map building module. The communications between
the helm and the two other mdules are handled through the CODGER system [91.

0

a

00

Figure 5: Complete map of a road scene

4 Map-based road following
In this Section, we investigate the last part of the system, that is the use of the map
built from road following to traverse the same portion of the world.

The map-based road following must proceed in three steps: computation of the
starting position, path planning in the map, path execution. The first step is needed to
avoid constraining the starting position and heading of the vehicle at the beginning of
the traversal of the map to those used to initiate the map building stage. The position

Heim

Arcs

Posii 7esuznaies
for matching

in'lizaion

Center lineCI
Map builder _ - Road finder(road+regians chnnlmatching). .[-- can)

-20 seconds 3 3secoads

Figure 6: The map building/road following system

and heading of the vehicle with respect to the map are computed by matching the
features, road edges and objects, observed in an image taken at the starting position
with the features of the map that are predicted to be visible given a rough initial guess
of starting position. The matching algorithm is basically the same as the one used for
the map building except that in the current implementation, only road edges and discrete
obstacles are used. For example, Figure 7 shows the initial guess of the starting position
(marked by a cross) and the portion of the road and the obstacles that are used for the
matching. The map features are predicted by intersecting the sensor field of view with
the map.

Given the starting position, the second step is to compute a path that follows the
road using the map. This step is the most straightforward in that any path planner that
provides for smooth paths can be used. For example, Figure 8 shows a path composed
of a sequence of circular arcs. The path is computed by dividing the center curve of
the road into small segments over which the pure pursuit path planning algorithm of
Section 2 is applied.

Once a path is computed, the vehicle is ready to follow the road based on the
map. Ideally, the vehicle should be able to correctly execute the path without any

perception at all. In practice, however, the vehicle will drift away from the ideal path
due to wheel slippage, and the accumulation of small controller errors and numerical
errors. Therefore, the position and heading of the vehicle with respect to the map must
be recomputed periodically by comparing the features that are actually observed while
executing the path and the features that am predicted from the map given the current
estimate of the vehicle's position. The question now is how often should we make a

X

Figure 7: Estimation of the starting position and heading

position correction, that is take an image, extract road edges and objects, and match
them with the map, in order to stay within reasonable bounds of the original path. This
problem is the key to map-based navigation: If the corrections are performed too often
we are back to the original road following approach and we loose the benefit of having a
map. If, on the other hand, we do not perform enough corrections along the path, we may
drift significantly far from the nominal path and eventually run off-road. Furthermore,
the corrections should be meaningful in the sense that enough features should be present
at the time of the correction to ensure that the newly computed position is indeed closer
to the truth than the currently available estimate. Several strategies are possible to
choose the locations at which corrections should be performed. An attractive strategy
is to estimate the uncertainty on the position and heading as the vehicle moves, a new
correction is requested whenever the uncertainty reaches a threshold that indicates that
the vehicle is too far from its nominal path [11]. This approach guarantees that the
distance between the vehicle's path and the nominal path always lies within preset
bounds. It does not, however, guarantee that the images taken at the time at which
a correction is needed contain enough features of interest. Another possible approach
is to make a correction whenever the map predicts that features of interest may be
observed from the current position. In our case, it is important to guarantee that the
corrections are performed when objects are visible, since otherwise the correction would
be computed on the basis of the road edges only and would therefore be ambiguous. A
correction is therefore computed whenever at least one object is predicted to be visible
from a position along the path. Matching the predicted objects and mad edges from

Figure 8: Path planned using a map

the map with the observed road and objects provides an unambiguous new estimate of
the vehicle's position and heading. Figure 9 shows the locations at which new images
are taken for computing the corrections along the path of Figure 8. The road edges
and objects that are matched with the corresponding observed features are shown as
bold segments of the road edges and dark circles .espectively. The crosses along the
path indicate the successive positions of the vehicle at regular intervals of one second
(at a speed of 20 cm/s). The position is not displayed if an image is being processed,
therefore the gaps in the stream of positions in this display illustrate the time spent in
processing images while executing the initial path (The percentage is in reality a bit
lower than what appears on this display because the map, range image processing, and
helm modules normally run on different processors whereas this display was produced
with all the modules executing on one Sun).

Figure 9: Locations at which images are taken along the path

Computing a correction gives an offset A = (Ax, Ay, A0) between the nominal
position and heading and the actual values at the time the image is taken. This offset

must be used to correct the current coursc of the vehicle. This is achieved by shifting the
path that has been executed while the image was being processed by ,A, by replanning
from the current position as given by the shifted, and by replacing the pending set of
motion commands by this new path. Figure 10 illustrates such a sequence of events: As
the vehicle comes into view of the first objects, an image is taken and matched against
the map, the new position is shown as a cross on the left of the initial path, a new path
is planned that takes the vehicle back to its original course.

Neu predicttea tro map I

o*rocted pealliem

Figure 10: Corrected path

These results show that it is possible to use a map to efficiently guide the navigation
of an autonomous vehicle. The main benefit is that considerably fewer images have to be
processed while retraversing the map. For example, the map of Figure 9 requires seven
images to be processed. Following the same road at the same speed without the support
of a map would require at least 25 images for a displacement of two meters between
consecutive images. The reason for the discrepancy is that even if the position of the
road were computed perfectly from each individual image, the path planner would not

have information far enough in front the vehicle to plan a stable path that is guaranteed
to remain on the road. Although the same results could be obtained by using a map
that is entered manually, it is important to note that the combination of map building
from sensor data and map-based navigation results in a fully autonomous system that
can learn its environment and use its new knowledge to navigate it.

5 Conclusion
The road following and map building system shows that road environments can be
efficiently navigated and mapped using an active sensor such as a laser range finder.
The map based navigation system shows that the information gathered during an initial
traversal of the road can be used to improve the navigation over a portion of the stretch
of road already explored. Specifically, using the map provides an initial path to follow,
and a list of optimal locations at which visual data should be processed in order to correct
the vehicle position that drifts over time. The combination of those three components
provide a basis for autonomous navigation of roads including 3-D terrain modeling and
knowledge gathering and utilization through map building and map based navigation.

We are currently extending the ideas used in those systems to the case of cross-
country navigation and combined on road/off road navigation in which the map contains
a representation of terrain regions in addition to the road model and the discrete ob-
stacles. This type of information is currently extracted but it is not used for the map
based navigation. The system presented here uses a simple path planner based on the
pure pursuit control scheme. Our plan is to use the path planner described in (I I] to
take into account vehicle model and uncertainty, and to be able to apply this approach
to cross-country navigation.

Acknowledgements

Mike Blackwell, James Frazier, and David Simon made the NAVLAB experiments
possible. Chuck Thorpe provided the path planner used in this system. Keith Gremban
ported and demonstrated the road following program on the Martin Marietta ALV.

References
[11 J. Beyer, C. Jacobus, and F. Pont. Autonomous Vehicle Guidance using Laser

Range Imagery. In SPIE Vol. 852, Mobile Robots I1, Cambridge, 1987.

[2] M. J. Daily, J. G. Harris, and K. Reiser. Detecting Obstacles in Range Imagery.
In Image Understanding Workshop, Los Angeles, 1987.

[31 M.J. Daily, J.G. Harris. and K. Reiser. An Operational Perception System for
Cross-Country Navigation. In Proc. Image Understanding Workshop, Cambridge,
1988.

[4] R. T. Dunlay and D. G. Morgenthaler. Obstacle Detection and Avoidance from
Range Data. In Proc. SPIE Mobile Robots Conference, Cambridge, MA, 1986.

[51 K.D. Gremban, C.E. Thorpe, and T. Kanade. Geometric Camera Calibration Us-
ing Systems of Linear Equations. In Proc. Image Understanding Workshop, Cam-
bridge, 1988.

[6] M. Hebert and T. Kanade. 3-D Vision for Outdoor Navigation by an Autonomous
Vehicle. In Proc. Image Understanding Workshop, Cambridge, 1988.

[7] M. Hebert, I. Kweon, and T. Kanade. 3-D Vision Techniques for Autonomous
Vehicles. Technical Report CMU-RI-TR-88-12, The Robotics Institute, Carnegie-
Mellon University, 1988.

[8] S. Shafer and W. Whittaker. June 1987 Annual Report: Development of an Inte-
grated Mobile Robot System at Carnegie Mellon. Technical Report CMU-RI-TR-
88-10, The Robotics Institute, Carnegie-Mellon University, 1988.

[9] S. A. Shafer, A. Stentz. and C. E. Thorpe. An Architecture for Sensor Fusion in a
Mobile Robot. Technical Report CMU-RI-TR-86-9, Carnegie-Mellon University,
the Robotics Institute, 1986.

[101 U.K. Sharma and LS)avis. Road Following by an Autonomous Vehicle using
Range Data. In S7 A. 727. Mobile Robots 11, Cambridge, 1986.

[11] T. Stentz. The NAVLAB System for Mobile Robot Navigation. PhD thesis,
Carnegie-Mellon University, Fall 1988.

[12] C.E. Thorpe, M. Hebert, T. Kanade, and S.A. Shafer. Vision and Navigation for
the Carnegie-Mellon Navlab. PAMI, 10(3), 1988.

[13] M.A. Turk, D.G. Morgenthaler. K.D. Gremban, and M. Marra. VITS- A Vision
System for Autonomous Land Vehicle Navigation. PAMI, 10(3), may 1988.

[14] R. Wallace, K. Matsuzaki, Y. Goto, J. Crisman, J. Webb, and T. Kanade. Progress
in robot mad-following. In IEEE International Conference on Robotics and Au-
tomaton, 1986.

[15] R. Watts, F. Pont. and D. Zuk. Characterization of the ERIM/ALV Sensor - Range
and Reflectance. Technical Report, Environmental Research Institute of Michigan,
Ann Arbor, MI, 1987.

(161 A.M. Waxman, J.J. LeMoigne, L.S. Davis, B. Srinivasan, T.R. Kushner, E. Liang,
and T. Siddalingaiah. A Visual Navigation System for Autonomous Land Vehicles.
Journal of Robotics and Automation, Vol. 3, 1987.

Chapter V
3-0 Vision Techniques

for Autonomous Vehicles

Martial Hebert, Takeo Kanade, Inso Kweon

3-0 Vision Techniques
for Autonomous Vehicles

Martial Heber, Takeo Kanade, nso Kweon

Absract

A mobile robot needs an inte re semarice of is envionmen in order to accomplish its mission.
Building such a representation involves a-nsforutng raw data from sensors into a meaningful geometic

presentauon. In this paper, we introduce techniques for building terrain reresentations fom range data
for an outdoor mobile mboL We inoduce three levels of represen a ions that correspond to levels of
plaminV obstacle maps terrain patches, and high tesoluini elevanon maps. Since trrain representazions

fim individual loc =in am not sucim for may navigaon tasks, we also inuoduce techniques for
_wnb ninlg nultiple maps Combining maps may be achieved either by using features or the raw elevation

data. PInaly, we inuoduce algorithms for combining 3-D descriptions with descriptions from other
sensors, such as color cameras. We examine the need for this type of sensor fusion when some semantic

information has to be exacted from an observed scene and provide an example application of outdoor

scene analysis. Many of the techniques presented in this paper have been tested in the field on three

mobile robot systems developed at CMU.

62

1 Introduction
A mobile robot is a vehicle that navigates autonomously through an unknown or partially known environ-
ment. Research in the field of mobile robots has received considerable attention in the past decade due
to its wide range of potential applications, from surveillance to planetary exploration, and the research
opportunities it provides, including virtually the whole spectrum of robotics research from vehicle control
to symbolic planning (see for example [18] for an analysis of the research issues in mobile robots). In
this paper we present our investigation of some the issues in one of the components of mobile robots:
perception. The role of perception in mobile robots is to transform data from sensors into representations
that can be used by the decision-making components of the system. The simplest example is the detection
of potentially dangerous regions in the environment (i.e. obstacles) that can be used by a path planner
whose role is to generate safe trajectories for the vehicle. An example of a more complex situation is
a mission that requires the recognition of specific landmarks, in which case the perception components
must produce complex descriptions of the sensed environment and relate them to stored models of the
landmarks.

There are many sensing strategies for perception for mobile robots, including single camera systems,
sonars, passive stereo, and laser range finders. In this report, we focus on perception algorithms for
range sensors that provide 3-D data directly by active sensing. Using such sensors has the advantage
of eliminating the calibration problems and computational costs inherent in passive techniques such as
stereo. We describe the range sensor that we used in this work in Section 2. Even though we tested our
algorithm on one specific range sensor, we believe that the sensor characteristics of Section 2 are fairly
typical of a wide range of sensors [4].

Research in perception for mobile robots is not only sensor-dependent but it is also dependent on
the environment. A considerable part of the global research effort has concentrated on the problem
of perception for mobile robot navigation in indoor environments, and our work in natural outdoor
environments through the Autonomous Land Vehicle and Planetary Exploration projects is an important
development. This report describes some of the techniques we have developed in this area of research.
The aim of our work is to produce models of the environment, which we call the terrain, for path planning
and object recognition.

The algorithms for building a terrain representation from a single sensor frame are discussed in
Section 3 in which we introduce the concept of dividing the terrain representation algorithms into three
levels depending on the sophistication of the path planner that would use the representation, and on the
anticipated difficulty of the terrain. Since a mobile robot is by definition a dynamic system, it must process
not one, but many observations along the course of its trajectory. The 3-D vision algorithms must therefore
be able to reason about representations that are built from sensory data taken from different locations. We
investigate this type of algorithms in Secion 4 in which we propose algorithms for matching and merging
multiple terrain representations. Finally, the 3-D vision algorithms that we propose are not meant to be
used in isolation, they have to be eventually integrated in a system that includes other sensors. A typical
example is the case of road following in which color cameras can track the road, while a range sensor
can detect unexpected obstacles. Another example is a mission in which a scene must be interpreted
in order to identify specific objects, in which case all the available sensors must contribute to the final
scene analysis. We propose some algorithms for fusing 3-D representations with representations obtained

r3

from a color camera in Section 5. We also describe the application of this sensor fusion to a simple
natural scene analysis program. Perception techniques for mobile robots have to be eventually validated
by using real robots in real environments. We have implemented the 3-D vision techniques presented in
this report on three mobile robots developed by the Field Robotics Center: the Terregator, the Navlab. and
the Ambler. The Terregator (Figure 1) is a six-wheeled vehicle designed for rugged terrain. It does not
have any onboard computing units except for the low-level control of the actutors. All the processing
was done on Sun workstations through a radio connection. We used this machine in early experiments
with range data, most notably the sensor fusion experiments of Section 5. The Navlab [36] (Figure 2) is a
converted Chevy van designed for navigation on roads or on mild terrains. The Navlab is a self-contained
robot in that all the computing equipment is on board. The results pre=ented in Sections 3.3 and 3.4
come from the 3-D vision module that we integrated in the Navlab system [42]. The Ambler [21 is an
hexapod designed for the exploration of Mars (Figure 3). This vehicle is designed for navigation on very
rugged terrain including high slopes. rocks, and wide gullies. This entirely new design prompted us to
investigate alternative 3-D vision algorithms that ame reported in Section 3.5. Even though the hardware
for the Ambler does not exist at this time, we have evaluated the algorithms through simulation and
careful analysis of the planetary exploration missions,

Figure 1: The Terregator

2 Active range and reflectance sensing
The basic principle of active sensing techniques is to observe the reflection of a reference signal (sonar,
laser, radar..etc.) produced by an object in the environment in order to compute the distance between the
sensor and that object. In addition to the distance, the sensor may report the intensity of the reflected

Figure 2: The Navlab

Figure 3: Trhe Ambler

signal which is related to physical surface properties of the object. In accordance with tradition, we will
refer to this type of intensity data as "reflectance" data even though the quantity measured is not the actual
reflectance coefficient of the surface.

Active sensors are attractive to mobile robots researchers for two main reasons: first, they provide
range data without the computation overhead associated with conventional passive techniques such as
stereo vision, which is important in time critical applications such as obstacle detection. Second, it is
largely insensitive to outside illumination conditions, simplifying considerably the image analysis problem.
This is especially important for images of outdoor scenes in which illumination cannot be controlled or
predicted. For example, the active reflectance images of outside scenes do not contain any shadows from
the sun. In addition, active range finding technology has developed to the extent that makes it realistic to
consider it as part of practical mobile robot implementations in the short term [4].

The range sensor we used is a time-of-flight laser range finder developed by the Environmental
Research Institute of Michigan (ERIM). The basic principle of the sensor is to measure the difference of
phase between a laser beam and its reflection from the scene [46]. A two-mirror scanning system allows
the beam to be directed anywhere within a 300 x 800 field of view. The data produced by the ERIM
sensor is a 64 x 256 range image, the range is coded on eight bits from zero to 64 feet. which corresponds
to a range resolution of three inches. All measurements an relative since the sensor measures differences
of phase. That-is, a range value is known modudo 64 feet. We have adjusted the sensor so that the range
value 0 corresponds to the mirrors for all the images presented in this report. In addition to range images,
the sensor also produces active reflectance images of the same format (64 x 256 x 8 bits), the reflectance
at each pixel encodes the energy of the reflected laser beam at each point. Figure 5 shows a pair of range
and reflectance images of an outdoor scene. The next two Sections describe the range and reflectance
data in more details.

2.1 From range pixels to points in space

The position of a point in a given coordinate system can be derived from the measured range and the
direction of the beam at that poinL We usually use the Cartesian coordinate system shown in Figure 4,
in which case the coordinates of a point measured by the range sensor are given by the equations1 :

x = Dsin0 (1)

y = DcosOcos8

z = DsinocosO

where 0 and 0 are the vertical and horizontal scanning angles of the beam direction. The two angles
are derived from the row and column position in the range image, (r, c), by the equations:

0 = O0+cx,6O (2)

.0 = 0o+rx do

'Note that the reference coordinate system is not the same as in [20] for consistency reasons

where Oo (respectively 0o) is the starting horizontal (respectively vertical) scanning angle, and 10 (re-

spectively /10) is the angular step between two consecutive columns (respectively rows). Figure 6 shows
an overhead view of the scene of Figure 5, the coordinates of the points are computed using Eq. (3).

.Sensor

, Sensor Measured range stored
,S in range image

Y

Terrain

Figure 4: Geometry of the range sensor

Figure 5: Range and reflectance images

2.2 Reflectance images

A reflectance image from the ERIM sensor is an image of the energy reflected by a laser beam. Unlike
conventional intensity images, this data provides us with information which is to a large extent independent

a-fl,',.

Figure 6: Overhead view

of the environmental Iumination. In particular, the reflectance images contain no shadows from outside
illumination. The measured energy does depend, however, on the shape of the surface and its distance to
the sensor We correct the image so that the pixel values are functions only of the material reflectance.
The measured energy, P,., depends on the specific material reflectance, p, the range, D, and the angle
of incidence, -y:

Kp cos7(Fret&^ = --- -- .(3)

Due to the wide range of P, m., the value actually reported in the reflectance image. is compressed

by using a log transform. That is, the digitized value, P&. is of the form (44]:

P,,W = A log(p cos-) + B logD (4)

where A and B are constants that depend only on the charucteiscs of the laser, the circuitry used for the
digitization, and the physical properties of the ambiant atmosphere. Since A and B cannot be computed
direcdy, we use a calibration procedure in which a homogeneous flat region is selected in a training image:
we then use the pixels in this region to estimate A and B by least-squares fitting Eq. (4) to the actual
ref eczancelrange data. Given A and B, we correct subsequent images by:

P,,.wc* = (Pp - BlogD)/A (5)

The value P,... depends only on the material reflectance and the angle of incidence. This is a
sufficient approximation for our purposes snce for smooth surface such as smooth terrain, the cos-,
factor does not vary widely. For efficiency purposes, the right-hand side of (5) is precomputed for all
possible combinations (Pi,,g,, D) and sted in a lookup table. Figure 5 shows an example of an EIM
image, and Figure 7 shows the resulting corrected image.

Figure 7: Corced reflectmnce image

2.3 Resolution and noise
As is the case with any sensor, the range sensor returns values that are measured with a limited resolution
which are corrupted by measurement noise. In the case of the ERIM sensor, the main source of noise
is due to the fact that the laser beam is not a line in space but rather a cone whose opening is a 0.51
solid angle (the instantaneous field of view). The value returned at each pixel is actually the average of
the range of values over a 2-D ara, the footprint, which is the intersection of the cone with the target
surface (Figure 8). Simple geometry shows tha the are, of the footprint is proportional to the square of
the range at its center. The size of the footprint also depends on the angle 0 between the surface normal
and the beam as shown in l:igum 8. The size of the footprint is roughly inversely proportional to cosO
if we assume that the footprint is small enough and that 9 is almost constant. Therefore. a first order
approximation of the standard deviation of the range noise, o is given by:

D (6)
Cos0a

The proportionality factor in this equation depends on the characteristics of the laser transmitter, the
outside illumination, and the reflectance p of the surface which is assumed constant across the footprint
in this fi-sm order approximation. We validated the model of Equation 6 by estimating the RMS error
of the range values on a sequence of images. Figure 9 shows the standard deviation with respect to the
measured range. 'Me Figure shows that a follows roughly the D2 behavior predicted by the first order
model. The footprim affects all pixels in the image.

Them am other effects that produce distortions only at specific locaions in the image. The main effect
is known as the "mixed point" problem and is illusmted in Figure 8 in which the laser footprint crosses
the edge between two objects that are far from each other. In that case, the returned range value is some
combination of the range of the two objects but does not have any physical meaning. This problem makes
the accurate detection of occluding edges mor difficult. Another effect is due to the reflectance properties
of the observed surface; if the surface is highly specular then no laser reflection can be observed. In that
case the ERIM sensor returns a value of 255. This effect is most noticeable on man-made objects that
contain a lot of polished metallic sufaces. It should be mentioned, however, that the noise characteristics
of the ERIM sensor are fairly typical of the behavior of active range sensors [5].

Insmritaneous
field of view t

rcclngn edg

t terain~ltLaser footprint

4 from object 2

Figure 8: Sources of noise in range datm

a

Figure 9: Noise in range damn

7 (

3 Terrain representations
The main task of 3-D vision in a mobile robot system is to provide sufficient information to the path
planner so that the vehicle can be safely steered through its environment In the case of outdoor navigation.
the task is to convert a range image into a representation of the terrain. We use the word "terrain" in
a very loose sense in that we mean both the ground surface and the objects that may appear in natural
environments (e.g. rocks or trees). In this Section we discuss the techniques that we have implemented
for the Navlab and Mars Rover systems. We first introduce the concept of the elevation map as a basis for
terrain representations and its mlanonship with different path planning techniques. The last four Sections
spell out the technical details of the terrain representation algorithms.

3.1 The elevation map as the data structure for terrain representation

Even though the format of the range data is an image, this may not be the most suitable strucurng of the
data for extracting information. For example7 a standard representation in 3-D vision for manipulation
is to view a range image as a set of data points measured on a surface of the equation z = f(x, y) where
the x- and y-axe am pamllel to the axis of the image and z is de measured depth. This choice of axis
is natural since the image plane is usually parallel to the plane of the sce- In our case, however, the
"natural" reference plane is not the image plane but is the grund plane. In this context. "ground plane"
refers to a plane that is horizontal with respect to the vehicle or to the gravity vector. The representation
z = f(xy) is then the usual concept of an elevation map. To transform the data points into an elevation
map is useful only if one has a way to access them. The most common approach is to discretize the (x. y.)
plane into a grid. Each grid cell (xi,y) is the trace of a vertical column in space. its fieLd (Figure 10). All
the data that falls within a cell's field is stored in that cell. Ti description shown in Figure 10 does not
necessarily reflect the actual implementadon of an elevation map but is more of a framework in which we
develop the terrain representation algorithms. As we shall see later, the actual implementation depends
on the level of detail that needs to be included in the ten-ain description.

Although the elevation map is a natural concept for terrain representations, it exhibits a number of
problems due to the conversion of a regularly sampled image to a different reference plane [251. Although
we propose solutions to these problems in Section 3.5. it is importat to keep them in mind while we
investigate other terrain representations. The first problem is the sampling problem illustrted in Figure 11.
Since we perform some kind of image warping, the distribution of data points in the elevation map is
not uniform, and as a result conventional image processing algorithms cannot be applied directly to the
map. There axe two ways to get around the sampling problem: We can either use a base structure
that is not a regularly spaced grid, such as a Delaunay triangulation of the data points (331, or we can
interpolate between data points to build a dense elevation map. The frmer solution is not very practical
because of the complex algorithms required to a data points and their neighborhoods. We describe
an implementation of the laner approach in Section 3.5. A second problem with elevation maps is the
representation of the range shadows created by some objects (Figure 12). Since no information is available
within the shadowed regions of the map, we must represent them separately so that no interpolation takes
place across them and no "phantom" features are reported to the path planner. Finally, we have to convert
the noise on the original measurements into a measure of uncerainty on the z value at each grid point

71

Sensor Field

e' Measured points

,Cl

, y .Discret grid

x

Figure 10: Smaucz of an elevaion map

(X, y). This conversion is difficult due to the fact that the sensor's uncertainty is most naturaly represented
with respec to the direction of measurement (Figure 13) and therefore spreads across a whole region in
the elevation map.

Sensor

Regular sampling in image plane

Sparse sampling in map

Figure 11: The sampling problem

3.2 Terrain representations and path planners

The choice of a terrain representaion depends on the path planner used for actually driving the vehicle.
For example, the family of planners derived ftm the Lzano-Pezez's A' approach (281 uses discrete
obtmacles represented by 2-D polygons. By contra= planners that compare a vehicle model with the local
terrain [9,381 use some intermediate representation of the raw elevation map. Furthermore, the choice of
a terrain representation and a path planner in turn depend on the environment in which the vehicle has to

Visible regions

Figure 12: An example of a range shadow

Terrain

Figure 13: Representing uncertainty

73

navigate. For example. representng only a snall number of discrete upright objects may be appropriate
if it is known in advance that the terrain is mostly flat, (e.g. a road) with a few obstacles (e.g. trees)
while crosa-comtry navigation requires a mor detailed description of the elevation map. Generating the
most detailed description and then exacting the relevant information is not an acceptable solution since
it would significantly degrade the performance of the system in simple environments. Therefore, we
need several levels of terain epesentation corresponding to different resolutions at which the terrain is
described (Figure 14). At the low resolution level we describe only discrete obstacles without explicitly
describing the local shape of the terrain. At the medium level, we include a description of the terrain
through surface patches that correspond to signficant trrain features. At that level, the resolution is the
resolution of the operator used to detect these featir Finally, the description with the highest resolution
is a dense elevation map whose resolution is limited only by the sensor. In order to keep the computations
involved under control, the resolution is typically related to the size of the vehicle's parts that enter in
contact with the terrain. For example, the size of one foot is used to compute the terrain resolution in. the
case of a legged vehicle.

High resolution:
Dense elevation map.

Medium resolution:Terrain feaures

Low resolution:Obsacemap

Polygonal obstacles

Figure 14: Levels of terrain representation

3.3 Low resolution: Obstacle map
The lowest resolution terrain representation is an obstacle map which contains a small number of obstacles
represented by their tace on the ground plane. Several techniques have been proposed for obstacle
detection. The Martin-Marietta ALV [10,11,431 detects obstacles by computing the difference between

the observed range image and pre-computed image of ideal ground at several different slope angles.
Points that are far from the ideal ground planes arm grouped into regions that are rported as obstacles
to a path planner A very fast implementation of this technique is possible since it requires only image
differences and region grouping. It makes, however, very strong assumptions on the shape of the teain.
It also takes into account only the positions of the potential obstacle point, and as a result a very high
slope ridge that is not deep enough would not be detected.

Another approach proposed by Hughes Al group (81 is to detect the obstacles by thresholding the
normalized range gradient, AD/D, and by thresholding the radial slope, D0/[D. The first test detects
the discontinuities in range, while the second tes detects the portion of the terrain with high slope. This
approach has the advantage of taking a vehicle model into account when deciding whether a point is part
of an obstacle. We used the terrain map paradigm to detect obstacles for the Navlab. Each cell of the
terranm contains the set of data points that fall within its field (Figure 10). We can then estimate surface
normal and curvatures at each elevation map cell by fitting a reference surface to the corresponding set
of data points. Cells that have a high curvature or a surface normal far from the vehicle's idea of the
vertical direction am reported as part of the projection of an obstacle. Obstacle cells are then grouped
into regions corresponding to individual obstacles. The final product of the obstacle detection algorithm
is a set of 2-D polygonal approximations of the boundaries of the detected obstacles that is sent to an
A*-type path planner (Figure 15). In addition, we can roughly classify the obstacles into holes or bumps
according to the shape of the surfaces inside the polygons.

Figure 16 shows the result of applying the obstacle detection algorithm to a sequence of ERIM images.
The Figure shows the original range images (top), the range pixels projected in the elevation map (left).
and the msulting polygonal obstacle map (right). The large enclosing polygon in the obstacle map is the
limit of the visible portion of the world. The obstacle detection algorithm does not make assumptions on
the position of the ground plane in that it only assumes that the plane is roughly horizontal with respect to
the vehicle. Computing the slopes within each ceil has a smoothing eff=t that may cause real obstacles
to be undetected. Therefom, the resolution of the elevation map must be chosen so that each cell is
significantly larger than the typical expected obstacles. In the case of Figure 16. the resolution is twenty
centimeters. The size of the detectable obstacle also varies with the distance from the vehicle due to the
sampling problem (Section 3.1).

One major drawback of our obstacle detection algorithm is that the computation of the slopes and
curvatures at each cell of the elevation map is an expensive operation. Furthermore since low-resoluion
obstacle maps am most useful for fast navigation through simple environments, it is important to have a fast
implementation of the obstacle detection algorithm. A natural optimization is to parallelize the algorithm
by dividing the elevation map into blocks that are processed simultaneously. We have implemented such a
parallel version ." the algorithm on a ten-processor Warp computer [45,211. The parallel implementation
reduced the cycle time to under two seconds, thus making it possible to use the obstacle detection
algorithm for fast navigation of the Navlab. In that particular implementation, the vehicle was moving
at a continuous speed of one meter per second, taking range images, detecting obstacles, and planning a
path every four meters.

Range image

Discrete elevation map

ygonal map of obstacles

Possible vehicle

Figue 15: Building the obstacle map

3.4 Medium resolution: Polygonal terrain map

Obstacle detection is sufficient for navigation in flat teain with discrete obstacles, such as following a
mad bordemd by -eep. We need a mom. detailed d,sripdn when the terrain is uneven as in the case
of cross-coumry navigation. For that purpose, an elcvation map could be used directly (9] by a path
planner. This approach is costly because of the amumt of data to be hardled by the planner which does
not need such a high resoluion desciption to do the job in many cams (although we will investigate
some applications in which a high resohlion representation is required in Section 3.5). An alternative is
to group smooth portions of the train into regions and edges that at the basic units manipulated by
the planner. This set of features provides a compact p of the terrain thus allowing for mom
efficiem planning [38].

The features used are of two types: smooth regions, and sharp teain discontinuities. The terrain
discontinuites are other discontinuities of the elevation of the terrain, as in the case of a hole, or
disconinuities of the surface normals, as in the case of the shoulder of a road [3]. We detect both types
of disconinuines by using in edge deectr over the elevation map and the surface normals map. The
edges corespond to small regions on the terrain surface. Once we have detected the discontnuiies, we
segnent the terrain into smooth regions. TM segenation uses a region growing algonthm that first
identifies the smoothest locations in the terrain bued on the behavior of the surface normals, and then
grows regions around those locations. T1m result of the processing is a covering of the terrain by regions
corresponding either to smooth portions or to edges.

Te final representation depends on the planner that uses it. In our case, the terain representation is
embedded in the Navlab system using the path planner described in [38]. The basic geometrc object used

f. 4b 7ZAIII 76

..

Fiu~ 16 Obtcedtcino asqec fiae

77

by the system is the three-dimensional polygon. We therefore approximate the boundary of each region
by a polygon. The approximation is done in a way that ensures consistency between regions in that the
polygonal boundaries of neighboring regions share common edges and vertices. This guarantees that no
"gaps" exist in the resulting polygonal mesh. This is important from the point of view of the path planner
since such gaps would be interpreted as unknown portions of the tenain. Each region is approximated
by a planar surface that is used by the planner to determine the traversability of the regions. Since the
regions are not planar in reality, the standard deviation of the parameters of the plane is associated with
each region.

Figure 17 shows the interpolated elevation map. Figure 18 shows the polygonal boundaries of the
regions extracted from the image of Figure 17. In this implementation, the resolution of the elevation
map is twenty centimeters. Since we need a dense map in order to extract edges, we interpolated linearly
between the sparse points of the elevation map. This implementation of a medium resolution terrain
representation is integrated in the Navlab system and will be part of the standard core system for our
future mobile robot systems.

Figure 17: Range image and elevation map

3.5 High resolution: Elevation maps for rough terrain
The elevation map derived directly from the sensor is sparse and noisy, especially at greater distances
from the sensor. Many applications, however, need a dense and accurate high resolution map. One way

Figure 18: Polygonal boundaries of terrain regions

to derive such a map is to interpolate between the data points using some mathematical approximation
of the surface between data points. The models that can be used include linear, quadratic, or bicubic
surfaces [33]. Another approach is to fit a surface globally under some smoothness assumptions. This
approach includes the family of regularization algorithms [6] in which a criterion of the form:

f -hd= + A f hwe'PWWiM) (7)

is minimized, where f is a regularization function that reflects the smoothness model (e.g. thin plate).
Two problems arise with both interpolation approaches: they make apriori assumptions on the local shape
of the terrain which may not be valid (e.g. in the case of very rough terrain), and they do not take
into account the image formation process since they are generic techniques independent of the origin of
the data. In addition, the interpolation approaches depend heavily on the resolution and position of the
reference grid. For example, they cannot compute an estimate of the elevation at an (x,y) position that is
not a grid point without resampling the grid. We propose an alternative, the locus algorithm [251, that uses
a model of the sensor and provides interpolation at arbitrary resolution without making any assumptions
on the terrain shape other than the continuity of the surface.

3.5.1 The locus algorithm for the optimal interpolation of terrain maps

The problem of finding the elevation z of a point (xy) is trivially equivalent to computing the intersection
of the surface observed by the sensor and the vertical line passing through (xy). The basic idea of the
locus algorithm is to convert the latter formulation into a problem in image space (Figure 19). A vertical
line is a curve in image space, the locua, whose equation as a function of k is:

D = DI(,)- - + x2 (8)

(9)

0 B(q) " = arctan xCos
Y

where 0, 9, and D are defined as in Section 2. Equation (9) was derived by inverting Equation (2), and
assuming x and y constant. Similarly, the range image can be viewed as a surface D = I(p9) in o,
D space. The problem is then to find the intersection, if it exists, between a curve parametrized by o
and a discrete surface. Since the surface is known only from a sample of data, the intersection cannot
be computed analytically. Instead, we have to search along the curve for the intersection point. The
search proceeds in two stages: We first locate the two scanlines of the range image, 01 and 1, between
which the intersection must be located, that is the two consecutive scanlines such that, Diff(61) =
D1(01) - /(01, 0t(ki)) and Diff(q2) = D1(01) - 1(02, 4t(02)) have opposite signs, where 41(0) is the image
column that is the closest to 91(ok). We then apply a binary search between 01 and 02. The search stops
when the difference between the two angles 0. and , where Diff(Okn) and Diff(,,+1) have opposite
signs, is lower than a threshold E. Since there are no pixels between ol and o z, we have to perform a
local quadratic interpolation of the image in order to compute 01(4) and Dt(O) for 01 < o < c2. The
control points for the interpolation are the four pixels that surround the intersection point (Figure 20). The
final result is a value 6 that is converted to an elevation value by applying Equation (2) to 6. 01(o), D1(o).
The resolution of the elevation is controlled by the choice of the parameter c.

The locus algorithm enables us to evaluate the elevation at any point since we do not assume the
existence of a grid. Figure 21(a-d) shows the result.of applying the locus algorithm on range images of
uneven terrain, in this case a construction site. The Figure shows the original range images and the map
displayed as an isoplot surface. The centers of the grid cells are ten centimeters apart in the (x, y) plane.

3.5.2 Generalizing the locus algorithm

We can generalize the locus algorithm from the case of a vertical line to the case of a general line in
space. This generalization allows us to build maps using any reference plane instead of being restricted
to the (x, y) plane. This is important when, for example, the sensor's (x, y) plane is not orthogonal to the
gravity vector. A line in space is defined by a point u = [u., u., 14]', and a unit vector v = (v., vy, v,]' .

Such a line is parametrized in A by the relation p = u + Av if p is a point on the line. A general line is
still a curve in image space that can be parametrized in 0 if we assume that the line is not parallel to the
(x, y) plane. The equation of the curve becomes:

t() = V(v.A(O) + u.)2 + (vA(O) + uy)2 +(y() + t4) 2

9(~) = ,A()U (TO)
= arcsin (10)D

A(O) = uy tan < - u,
v - v tan 0

We can then compute the intersection between the curve and the image surface by using the same algorithm
as before except that we have to use Equation (10) instead of Equation (9).

The representation of the line by the pair (u, v) is not optimal since it uses six parameters while only
four parameters are needed to represent a line in space. For example, this can be troublesome if we want
to compute the Jacobian of the intersection point with respect to the parameters of the line. A better

ImageElvto
plane

D- Reference

x intersection point

Locus
in image
space

' Observed terrain
in image space

D (Depth profile)

Figure 19: The locus algorithm for elevation maps

Pixel in Locus curve
range image Diff> -

-n+l

2

Intersection t Diff<0
point 0 1 0 2

0, €) interpolated from the
four comers of the pixel

Figure 20: Image interpolation around the intersection point

alternative [22] is to represent the line by its slopes in x and y and by its intersection with the plane z = 0
(See [35] for a complete survey of 3-D line representations). The equation of the line then becomes:

x = az+p (I)

y = bz + q

We can still use Equation (10) to compute the locus because we can switch between the (a, bp. q) and
(u, v) representations by using the Equations:

b , q (12)
10

Lsz vz
a = !- p - -- VZ

U2 Ur

b= ,q= -- V

In the subsequent Sections, we will denote by h(a, b,p, q) the function from [e* to R3 that maps a line in
space to the intersection point with the range image.

Figure 21: (a) The locus algorithm on range images

. 2 (T

Figure 21: (b) The locus algorithm on range images (Continued)

Figure 21" (c) The locus algorithm on range images (Continued)

Figure 21: (d) The locus algorithm on range images (Continued)

3.5.3 Evaluating the locus algorithm

We evaluate the locus algorithm by comparing its performance with the other "naive" interpolation algo-
rithms on a set of synthesized range images of simple scenes. The simplest scenes are planes at various
orientations. Furthermore, we add some range noise using the model of Section 2.3 in order to evaluate
the robusmess of the approach in the presence of noise. The performances of the algorithms are evaluated
by using the mean square error:

E = -M 1) (13)
N

where hi is the true elevation value and hi is the estimated elevation. Figure 22 plots E for the locus
algorithm and the naive interpolation as a function of the slope of the observed plane and the noise level.
This result shows that the locus algorithm is more stable with respect to surface orientation and noise
level than the other algorithm. This is due to the fact that we perform the interpolation in image space
instead of first converting the data points into the elevation map.

RVIS
error

A x, xx Locus method
2(o, oo" Elevation GNCmethod

x, o : SIN ratio 1000
xx, oo :S/N ratio 100

10

10 20 30 40 tilt angle

Figure 22: Evaluation of the locus algorithm on synthesized images

3.5.4 Representing the uncertainty

We have presented in Section 2.3 a model of the sensor noise that is a Gaussian distribution along the
direction of measumment. We need to transform this model into a model of the noise, or uncertainty,
on the elevation values returned by the locus algorithm. The difficulty hem is that the uncertainty in a
given range value spreads to many points in the elevation map, no matter how the map is oriented with
respect to the image plane (Figure 13). We cannot therefore assume that the standard deviation of an
elevation is the same as the one of the corresponding pixel in the range image. Instead, we propose to

use the nature of the locus algorithm itself to derive a meaningful value for the elevation uncertainty. To
facilitate the explanation, we consider only the case of the basic locus algorithm of Section 3.5.1 in which
we compute an elevation z from the intersection of the locus of a vertical line with a depth profile from a
range image. Figure 23 shows the principle of the uncertainty computation by considering a locus curve
that corresponds to a line in space and the depth profile from the range image in the neighborhood of the
intersection point, each point on the depth profile has an uncertainty whose density can be represented by
a Gaussian distribution as computed in Section 2.3. The problem is to define a distribution of uncertainty
along the line. The value of the uncertainty reflects how likely the given point is to be on the actual
surface given the measurements.

Let us consider an elevation h along the vertical line. This clevation corresponds to a measurement
direction 6(h) and a measured range d(h). If d(h) is the distance between the origin and the elevation h,
we assign to h the confidence [39]:

lh) a v (d (,h)) e- (14)

where a(d(h) is the variance of the measurement at the range d(h). Equation 14 does not tell anything
about the shape of the uncertainty distribution 1(h) along the h axis except that it is maximum at the
elevation h at which d(h) = d(h), that is the elevation returned by the locus algorithm. In order to
determine the shape of 1(h), we approximate 1(h) around h, by replacing the surface by its tangent plane
at h. If a is the slope of the plane, and H is the elevation of the intersection of the plane with the z axis,
we have:

a(d(h)) K H2(a2 + h2) (15)o,(a Ch)) K(a tan a + h)2

(d(h) - d'(h))2 (h - h0)2(a tan a + h)2

2a(d(h))2 K2H 4(a2 + h2)
(16)

where a is the distance between the line and the origin in the x - y plane and K is defined in Section 2.3
by a(d) :t Kd2 . By assuming that h is close to h,, that is h = h. + e with c < h., and by using the fact
that H = h, + a tan a, we have the approximations:

a(d(h)) K(a2 + h2) (17)

(d(h) - d(h))2 (h - h.) 2

2a(d(h))2 2K2H2 (a2 + hy.)
(18)

In the neighborhood of h., Equation 18 shows that (d(h) - d'(h))2/2o(d(h))2 is quadratic in h - h,
and that o'(d(h)) is constant. Therefore, 1(h) can be approximated by a Gaussian distribution of variance:

ha = K 2H 2 (a 2 + h2) - K2 H2 (19)

26

€ ~ho, N ,,,\

' Measurement
H •,

uncertainty

h ((d'(h))

.," d

Sa

a

Figure 23: Computing the uncertainty from the locus algorithm

Equation 19 provides us with a first order model of the uncertainty of h derived by the locus algorithm.
In practice. the distance D(h) = (d(h) - d(h))2/2a(df(h)) 2 is computed for several values of h close to
h., the variance ah is computed by fitting the function (h - h.)2/2 , to the values of D(h). This is a
first order model of the uncertainty in the sense that it takes into account the uncer, 'n the sensor
measurements, but it does not include the uncertainty due to the locus algorithm it 4-icular the
errors introduced by the interpolation.

3.5.5 Detecting the range shadows

As we pointed out in Section 3.1, the terrain may exhibit range shadows in the elevation map. It is
important to identify the shadow regions because the terrain may have any shape within the boundanies
of the shadows, whereas the surface would be smoothly interpolated if we applied the locus algorithm
directly in those areas. This may result in dangerous situations for the robot if a path crosses one of the
range shadows. A simple idea would be to detect empty regions in the raw elevation map, which are the
projection of images in the map without any interpolation. This approach does not work because the size
of the shadow regions may be on the order of the average distance between data points. This is especially
true for shadows that are at some distance from the sensor in which case the distribution of data points
is very sparse. It is possible to modify the standard locus algorithm so that it takes into account the
shadow areas. The basic idea is that a range shadow corresponds to a strong occluding edge in the image
(Figure 12). An (x,y) locatioi. in the map is in a shadow area if its locus intersects the image at a pixel

27

that ties on such an edge (:igur 24).

DY
I' I / ange profie

Edge pixel
m nmage

Figure 24: Detectng range shadows

We implement this algorithm by first detecting the edges in the range image by using a standard
technique, the GM algorithm (6]. We chose this algorithm because it allows us to vary the sensitivity
of the edge detector aoss the image, and because it performs some smoothing of the image as a side
effect. When we apply the locus algorithm we cam then record the fact that the locus of a given location

t the image at an edge pixel. Such map locatons am grouped into regions that are the reported
range shadows. Figure 25 shows an overhead view of an elevation map computed by the locus algorithm.
the white points are the shadow points, the gray level of the other points is proportional to their uncertainty
as computed in the previous Section.

3.5.6 An application: footfall selection for a legged vehicle

The purpose of using the locus algorithm for building terrain is to provide high resolution elevation data.
As an example of an application in which such a resolution is needed, we briefly describe in this Secuon
the problem of perception for a legged vehicle [24]. One of the main responsibilities of perception for
a legged vehicle is to provide a terrain description that enables the system to determine whether a given
foot placemem, orfootal, is safe. In addition, we consider the case of locomotion on very rugged terrain
such as the surface of Mars.

A foot is modeled by a Bat disk of dimneter 30 cms. The basic criterion for footfall selection is to
select a footfall area with the maximum support area which is defined as the contact area between the foot
and the terrain as shown in Figure 26. Another consaint for footfall selection is that the amount of energy
necessary to penetrat the ground in order to achieve sufficient support area must be minimized. The

Figure 25: Shadow regions in an elevation map

Figure 26: Footfall support area

91

energy is prportionai to the depth of the foot in the ground. The support area is esumated by counting
the number of map points within the circumfenmi of the disk that are above the plane of the foot. This
is where the resolution requirent origmates because the computation of the support area makes sense
only if the mrsoelm of the map is sigificantly smaller than the diameter of the foot. Given a minimum
allowed support area, S., and the high resolution terrain map, we cM find the optimal footfall position
within a given terwain am: FRrzt, we wat to find possible flat aeas by computing surface normals for
each footfall ama in a specified footfall selection are. Footfals with a high surface normal are eliminated.
The surface normal analysis, however will not be suffmiez for optimal footfall selection. Second. the
support area is computed for the remaining positions. The optimal footfall position is the one for which
the maximum elevation. hw that realizes the minimum support area S,. is the maximum across the set
of possble footfall positions. Figure 27 shows a plot of the surface ama with respect to the elevation
frozm which J,,., can be computed.

Supprtt

Distance traveled along
D vertcal direction

Figure 27: Support area versus elevation

3.5.7 Extracting local features from an elevation map

The high resolution map enables us to exaict very local features, such as points of high surface curvature,
as opposed to the larger terrain patches of Section 3.4. The local features that we extract are based on
the magnitude of the two principal curvatures of the terrain surface. The curvaturs are computed as
in (341 by fi-st smoothing the map, and then computing the derivatives of the surface for solving the first
fundamental form. Figure 28 shows the cumvaiure images computed fAom an elevation map using the
locus algorithm. The resolution of the map is ten centimeters. Points of high curvature orespond to
edges of the terrain, such as the edges of a valley, or to sharp terrain feanues such as hills, or holes. In
any case, the high curvanr points am viewpoit-independent feamis that can be used for matching. We
extract the high curvatmre points from both images of principal curvature. We group the e==aced points
into regions. then classify each region as point feature, line, or region. according to its size, elongation,
and curvature distribution. Figure 28 shows the high curvature points exiracted from an elevation map.

The two images correspond to the two principal curvatures. Figure 29 shows the three types of local
features detected on the map of Figur 28 superimposed in black over the original elevation map. The
Figure shows that while some features correspond merely to local extrema of the surface, some such as
the edges of the deep gully are characteristic features of the scene. This type of feature extraction plays
an important role in Section 4 for combining multiple maps computed by the locus algorithm.

Figure 28: The high curvazure points of an elevation map

4 Combining multiple terrain maps
We have so far addressed the problem of building a representation of the environment from sensor data
collected at one fixed location. In the case of mobile robots, however, we have to deal with a stream of
images taken along the vehicle's path. We could ignore this fact and process data from each viewpoint as
if it were an entirely new view of the world, thus forgetting whatever information we may have extracted
at past locations. It has been observed that this approach is not appropriate for mobile robot navigation,
and that there is a need for combining the reprsentations computed from diffrent vantage points into a
coherent map. Although this has been observed first in the context of indoor mobile robots [13,151, the
reasoning behind it holds true in our case. First of all, merging represemations from successive viewpoints
will produce a map with more information and better resolution than any of the individual maps. For
example. a tall object observed by a range sensor creates an unknown area behind it, the range shadow,
where no useful information can be extracted (Section 3.1). T"he shape and position of the range shadow
changes as we move to another location; merging images from several locations will therefore reduce
the size of the shadow, thus providing a more complete description to the path planner (Figure 30).
Another reason why merging maps increases the resolution of the resulting representation concerns the
fact that the resolution of an elevation map is significantly better at close range. By merging maps, we
can increase the resolution of the pans of the elevation map that were originally measured at a distance
from the vehicle.

The second motivation for merging maps is that the position of the vehicle at any given time is
uncertain. Even when using expensive positioning systems, we have to assume that the robot's idea of
its position in the world will degrade in the course of a long mission. One way to solve this problem

Figure 29: Local features from a high resolution elevation map

94

is to compute the position with respect to features observed in the world instead of a fixed coordinate
system (37.301. That requires the identification and fusion of common features between successive
observations in order to estimate the displacement of the vehicle (Figure 31). Finally, combining maps is
a mission requirement in the case of an exploration mission in which the robot is sent into an unknown
ermitory to compile a map of the observed terrain.

Reduced range shadow
from the combination of I and 2

Range shadow fromposition I

Position 1 Position 2 Ranga~~ shadow from
position 2

Figure 30: Reducing the range shadow

Many new problems arise when combining maps: represennion of uncertainty, data structures for
combined maps, predictions from one observation to the next etc. We shall focus on the terrain matching
problem, that is the problem of finding common features or common parts between terrain maps so that
we can compute the displacement of the vehicle between the two corresponding locations and then merge
the correspnding portions of the terrain maps. We always make the reasonable assumption that a rough
estmate of the displacemr i is available since an estimate can always be computed either from dead
reckoning or from past ten-ain matchings.

4.1 The terrain matching problem: iconic vs. feature-based

In the terrain matching problem, as in any problem in which correspondences between two sets of data
must be found, we can choose one of two approaches: feature-based or iconic matching. In feature-based
matching. we fim have to ex--c two sets of fes (F) and (F;) from the two views to be matched. and

to find coresondenes between features, (F,, F7) that are globally cOaSiStCZL We can then compute the
displacemnem between the two views from the parameters of the features, and finally merge them into one
common map. Although this is the standard approach to object recognition problems [51. it has also been

Feature observed Feature observed
fromposiionfrom position 2

Position 1 Regions of Position 2

position uncertaintY

Figure 31: Matching maps for position estimation

widely used for map matching for mobile robots [13,23,30,7,1,4l- In contrast, iconic approaches work

directly on the two sets of data points, PI and pz by minimizing a cost function of the form F(T(P2), P)
where T(P2) is the set of poit from view 2 transformed by a displacement T. The cost is designed So

that its minimum corresponds to a "best" estimate of T in some sense. The minimization of F leads to an

iterative gradient-like algorithm. Although less popular, iconic tehniques have been successfully applied

to incremental depth estimation i30,29] and map matching (40,121.

The proponents of each approach have valid arguments. The feature-based approach requires a search

in the space of possible matches whici nay lead to a combinatorial explosion of the matching program.

On the other hand, iconic approaches are entirely predictable in terms of computational requirements

but are usually quite expensive since the size of the points sets P' is typically on the order of several

thousands. As for the accuracy of the resulting displacement T, the accuracy of iconic techniques can be

better than the resolution of the sensors if we iterate the minimization of F long enough, while any feature

extractio algorithm loses some of the original sensor accuracy. Furthermore, feature matching could in

theory be used even if no a-priori knowledge of T, To, is available while iconic arproaches require T0 to

be close to the actuai displacement because of the iterative nature of the minimization of F.

Keeping these tenets in mind, we propose to combine both approaches into one terrain matching

algorithm. The basic idea is to use the feature matching to compute a first estimate t given a rough initial

value To. and then to use an iconic technique to compute an accurate estimate T. This has the advantage

of retaining the level of accuracy of iconic techniques while keeping the computation time of the iconic

stage under control because the feature matching provides an estimate close enough to the true value. We

describe in detail the feature-based and iconic stages in the next three sections.

4.2 Feature-based matching
Let F' and F2 be two sets of features extracted from two images of an outdoor scene, 11 and 12. We
want to find a transformation t and a set of pairs Ck = (FIF) such that F2 2Z(F), where T(F)
denotes the transformed by T of a feature F. The features can be any of those discussed in the previous
Sections: points or lines from the local feature extractor. obstacles represented by a ground polygon, or
terrain patches represented by their surface equation and their polygonal boundaries. We first investigate
the feature'matching algorithm independently of any particular feature type so that we can then apply it
to any level of terrain representation.

For each feature F , we can first compute the set of features F2 that could correspond to F, given
an initial estimate To of the displacement. The FZ's should lie in a prediction region centered at To(F)).
The size of the prediction region depends on the confidence we have in To and in the feature extractors.
For example, the centers of the polygonal obstacles of Section 3.4 are not known accurately, while the
curvature points from Section 3.5.7. can be accurately located. The confidence on the displacement T is
represented by the maximum distance 6 between a point in image 11 and the transformed of its homologue
in image 12, JITp2 -p II, and by the maximum angle e, between a vector in image 12 and the transformed
of its homologue in image It by the rotation part of T. The prediction is then defined as the set of features
that are at a Cartesian distance lower than 6, and at an angular distance lower than E from To(FI). The
parameters used to determine if a feature belongs to a prediction region depend on the type of that feature.
For example, we use the direction of a line for the test on the angular distance, while the center of an
obstacle is used for the test on the Cartesian distance. Some features may be tested only for orieatation,
such as lines, or only for position, such as point features. The features in each prediction region are
sorted according to some feature distance d(F!, To(FZ)) that reflects how well the features are matched.
The feature distance depends also on the type of the feature: for points we use the usual distance, for
lines we use the angles between the directions, and for polygonal patches (obstacles or terrain patches)
we use a linear combination of the distance between the centers, the difference between the areas, the
angle between the surface orientations, and the number of neighboring patches. The features in image I
are also sorted according to an "importance" measure that reflects how important the features are for the
matching. Such importance measures include the length of the lines, the strength of the point features
(i.e the curvature value) . and the size of the patches. The importance measure also includes the type of
the features because some features such as obstacles are more reliably detected than others, such as point
features.

Once we have built the prediction regions, we can search for matches between the two images. The
search proceeds by matching the features F! to the features FZ that are in their prediction region starting
at the most important feature. We have to control the search in order to avoid a combinatorial explosion
by taking advantage of the fact that each time a new match is added both the displacement and the future
matches are further constrained. The displacement is constrained by combining the current estimate T
with the displacement computed from a new match (F!, F;). Even though the displacement is described
by six components, the number of components of the displacement that can be computed from one single
match depends on the type of features involved: point matches provide only three components, line
matches provide four components (two rotations and two translations), and region matches provide three
components. We therefore combine the components of T with those components of the new match that
can be computed. A given match prunes the search by constraining the future potential matches in two

97

ways: if connectivity relations between features are available, as in the case of terrain patches, then a
match (F! , F) constrains the possible matches for the neighbors of F') in that they have to be adjacent to
F2. In the case of points or patches, an additional constraint is induced by the relative placement of the
features in the scene: two matches, (F, F2) and (F1) ar compatible only if the angle between the
vectors wl = 7 and w2 = is lower than ir, provided the rotation part of T is no greater than -r
which is the case in realistic situations. This constraint means that the relative placement of the features
remains the same from image to image which is similar to the classical ordering constraint used in stereo
matching.

The result of the search is a set of possible matchings, each of which is a set of pairs S = (F1. F2)k
between the two sets of features. Since we evaluated T simply by combining components in the course
of the search, we have to evaluate T for each S in order to get an accurate estimate. T is estimated by
minimizing an error function of the form:

E = d(F!~ - T(F;)) (2C)

The distance d(.) used in Equation (20) depends on the type of the features involved: For point features,
it is the usual distance between two points; for lines it is the weighted sum of the angle between the two
lines and the distance between the distance vectors of the two lines; for regions it is the weighted sum of
the distance between the unit direction vectors and the distance between the two direction vectors. All the
components of T can be estimated in general by minimizing E. We have to carefully identify, however,
the cases in which insufficient features are present in the scene to fully constrain the transformation. The
matching S that realizes the minimum E is reported as the final match between the two maps while the
corresponding displacement t is reported as the best estimate of the displacement between the two maps.
The error E(2) can then be used to represent the uncertainty in T.

This approach to feature based matching is quite general so that we can apply iL to many different
types of features, provided that we can define the distance d(.) in Equation (20), the importance measure,
and the feature measure. The approach is also fairly efficient as long as b and c do not become too large,
in which case the search space becomes itself large. We describe two implementations of the feature
matching algorithm in the next two Sections.

4.2.1 Example: Matching polygonal representations

We have implemented the feature-based matching algorithm on the polygonal descriptions of Section 3.4
and 3.3. The features are in this case:

* The polygons describing the terrain parametrized by their areas, the equation of the underlying
surface, and the center of the region

" The polygons describing the trace of the major obstacles detected (if any).

" The road edges found in the reflectance images if the road detection is reliable enough. The
reliability is measured by how much a pair of road edges deviates from the pair found in the
previous image.

Figure 32: A sequence of range and reflectance images

The obstacle polygons have a higher weight in the search itself because their detection is more reliable
than the terrain segmentation, while the terrain regions and the road edges contribute more to the final
estimate of the dispiacement since their localization is better. Once a set of matches and a displacement T
are computed, the obstacles and terrain patches that are common between the current map and a new image
are combined into new polygons, the new features are added to the map while updating the connectivity
between features.

This application of the feature matching has been integrated with the rest of the Navlab system. In
the actual system, the estimates of the displacement To are taken from the central database that keeps
track of the vehicle's position. The size of prediction region is fixed with 6 = one meter, and c = 20'.
This implementation of the feature matching has performed successfiully over the course of runs of several
hundred meters. The final product of the matching is a map that combines all the observations made
during the run, and a list of updated obstacle descriptions that are sent to a map module at regular intervals.
Since errors in determining position tend to accumulate during such long runs, we always keep the map
centered around the current vehicle position. As a result, the map representation is always accurate close
to the current vehicle position. Figure 34 shows the result of the matching on five consecutive images
separated by about one meter. The scene in this case is a road bordered by a few trees. Figure 32 shows
the original sequence of raw range and reflectance images, Figure 33 shows perspective views of the
corresponding individual maps, and Figure 34 is a rendition of the combined maps using the displacement
and matches computed from the feature matching algorithm. This last display is a view of the map rotated
by 45* about the x axis and shaded by the values from the reflectance image.

4.2.2 Example: Matching local features from high resolution maps

Matching local features from high resolution maps provides the displacement estimate for the iconic
matching of high resolution maps. The primitives used for the matching am the high curvature points and

Figure 33: Individual maps

. -

Figure 34: Perspective view of the combined map

lines described in Section 3.5.7. The initial matches are hued on the similarity of the length of the lines
and the similarity of the curvame stmgth of the points. The searh among candidate matches proceeds
as described in Section 4.2. Since we have dense elevation at our disposal in this case, we can evaluate
a candidate displacement over the entire map by summing up the squared differences between points in
one map and points in the transformed map. Figure 35 shows the result of the feature matching on a pair
of maps. The top image shows the superimposition of the contoun and features of the two maps using
the estimated displacemet (about one meter translation and 4° rotation), while the bottom image shows
the corrspondences between the point and lne features in the two maps. The lower map is transformed
by T with respect to the lower right map. Figue 36 shows the result of the feature matching in a case in
which the maps am separated by a very large displacement. The lower left display shows the area that
is common between the two maps after the displacemnt. Even though the resultng displacement is not
accurate enough to refiably merge the maps, it is close enough to the optimum to be used as the starting
point of a mnimizaion algorithm.

4.3 Iconic matching from elevation maps
The general idea of the iconic matching algorithm is to find the displacement 7 between two elevation
Map from two different range image that minimizes an error function computed over the entire combined
elevation map. The e=r funcdon E measum how well the first map and the transformed of the second
map by T do agree. The easiest formulation for E is the sum of the squared differences between the
elevation at a location in the fim map and the elevation at the same location computed frm the second
map using 7. To be consistent with the earlier formulation of the locus algorithm, the elevation at any
point of the fist map is actually the intersection of a line containing this point with the range image. We
need some additional notations to formally define E: R and r denote the rotation and translation pans of
T respectively, f,(u, v) is the function that maps a line in space described by a point and a unit vector to

vi)1

Figure 35: Matching maps using local features

Figure 36: Matching maps using local features (large rotation comnponent)

a point in by the generalized locus algorithm of Section 3.5.2 applied to image i. We have then:

Eu X V f(u, v) - g(u, v, 7)11(21

wher gu, v, 7) is the intneeion of the transformed of the line (, v) by T w th image 2 expressed in the
coordinate system of image I (Figure 37). The summation in Equition (21) is taken over all the locations
(a v) in the E map where both Af(1, v) and g(u, v, 7) am defined. The lines (u, v) in the lst map am
paallel to the z-axis. In other words:

9(U, V, 7) - T-V /2(0, V)) = ,ffh(S', V) + 1 22

where T' = (R,(') = (R-',-R-') is the inverse transformation of 7, and (u, V) = (Ru+t, Rv) is the
transormed of the line (u, v). This Equation demonstrates one of the reasons why the locus algorithm
is powerful in ader to compute f2(Ru + t, Rv) we can apply directy the locus algorithm, whereas we
would have to do some interpolation or resampling if we were using conventional grid-based techniques.
We can also at this point fully justify the formulation of the generalized locus algorithm in Section 3.5.2:
The mnsformed line (i', V1) can be anywhere in spam in the coordinate system of image 2, even though
the original line (u, v) is parallel to the z-axis, necessitating the gneralied locus algorithm to compute
fz(e', 9).

• #: "/ TTransformed line.4- Lmeuuvv

Zi map I

I X ~ oInu nloeus point Yw 2 X2

frmlcsalgorihm

Figure 37: Principle of the iconic matching algorithm

We now have to find the displacement T for which E is minimum. If v a [a, ,, , ty, t,' is the
6-vector of pameters of T, where the first thre components am the rotation angles and the last three
am the components of the translation vector, then E reaches a minimum when:

8ET= 0(23)-=0

Asming an initivi esimal To. such a minimum be fbamd by an iterve grd1= dt of
the form:

v + t_-- (L"(24)

av
*beu v' isthe estiate Of &Ia iteration L. Pru Equation (21). the derivative of E can be computed by:

GE ag25

From Eauadion =), w s the derivative of r.

(22

•w denva yes appearing- in the last two compn in Equanon (26) are the derivatives of the
Uanzfoation with tspea to its paz ers wbich c, be cmpoed anlyaically. 7be la step to
compt the ddvuhn-. of g(u, v, 2) is &efor tom comp he drivative offjz(d, ') with respec to v.
We CmWd vwit t dcxivative with rsmpect e t comto t zu of v by aplying the chain ruWe dlmecty:

M + WuA' , &-1 C

Equation (2 leads however to mstabilities in the gpdient *rhmi bmwse-. a we pointed out in
Section 3.5.. the (k, v) PminPluzi is am xign m mzunot of lines in space. We need to ase a
am ambigpmas reptsn,, in order to conetly cupuze the dedvative. According to equ aon (13). we
a 0u Sagbly the (u, Y) epn taion and ? tumbigus (a,b,,q) -mr ion. Thcfoe

by conidegA a nt n of the ua mby . I= (d,h',', ,), of a =line (a,b,p,q) in imag
1, we can tzusfim Equation 2 to

Z'-"'a((28)

Sice the dervadve WNt depends only an the dam in imna Z we canot compute it analydcaily
ad have to estimate it hum the imap data. We approhhnat the daivadves off/ with spe to a, b, p,
aid q by differmc of the type:

f J(a +A da, b,p,q) -f(ab,p,q) (29)

Appaxiaonch asi Equation. (29) work well beem the iowmbutation of the locus algoxithin and the
GNC mge inah pmducs moot vatiadmn of the Wmmedm p in.

M 1am duuiwu that we have to campme to conapim the alation of GE/Ou am the detivnves
oft wih tpea w s ch moion p-nemerwv. We s by o Ing if X = [zy,z is a poiim on
the line of - - andI - Y,.y, YY is the umrinm ofb Tta lies an a lne of paramer

he. tn w d folowing relations on Equation (13):

z= .. p, - dz'P (30)
y. =b+q, by = bs'+q'

By eliminating X and X' between Equation (30) and the relation X' = RX+ 4 we have the relation between

I and f:

p"V, ' = R.U + t. - ,(R,.U+r,) (31)
R,.

YWa 'V qIRyUt-b(Rz.U+t,)RI.V'

where R,,R,, R are the row vectors of the rtation matrix R, A = (a,b, 1]', B = fp,q, 01'. We now have f
as a function of I and T. making it easy to compute the derivatives with respect to L' fmn Equation (3 1).

In the actual implementation of the matching algorithm, the points at which the elevation is computed
in the first map are distributed on a square grid of ten centimeters resolution. The lines (u, v) are therefore
vertical and pass through the centers of the grid cells. E is normalized by the number of points since
the overlap region between the two maps is not known in advance. We first compute the fi(u, v) for
the entire grid for image I. and then apply directly the gradient descent algorithm described above. The
iterations stop either when the variation of error :IE is small enough, or when E itself is small enough.
Since the matching is computationally expensive, we compute E over an eight by eight meter window in
the first image. The last test ensures that we do not keep iterating if the error is smaller than what can be
reasonably achieved given the characteristics of the sensor. Figure 38 shows the result of combining three
high resolution elevatien maps. The displacements between maps ae computed using the iconic matching
algorithm. The maps are actually combined by replacing the elevation.f'(u, Y) by the combination:

aIJt + a'2 (32)
at +02~

where ai and o2 are the uncertainty values computed as in Section 3.5.4. Equation (32) is derived by
considering the two elevation values as Gaussian distributiom The resulting mean error in elevation is
lower than ten centmeter. We computed tie initial To by using the local feature matching of Sction 4.2.2.
This estimate is sufficient to ensure the convergence to the true value. This is important because the
gradient descent algorithm converges towards a local minimum, and it is therefore important to show
that To is close to the minimum. Fgure 39 plots the value of the L's with respect to the number of
iterations. These curves show that E converges in a smnooth fashion. The coefficient k that controls the
rate of convergrnce is very conservative in this case in order to avoid oscillations about the minimum.

Several variations of the core iconic matching algorithm are possible. First of all, we assumed
implicitly that E is a smooth function of Y; this not rue in genera becausethe summation in Equation (21)
is taken only over the regions in which both fA and g are defted, that is the intersection of the regions of
map 1 and 2 that is neither range shadows nor outside of the field of view. Such a summation implicitly
involves the use of a non-differentiable fimction that is 1 inside the acceptable region and 0 outside. This
does not affect the algorithm significantly because the changes in v from one iteration to the next ae
small enough. A differeniable formulation for E would be of zhe form:

EME 'a M(U, V),p2(T~U, V))IfI (zs, V) _ g(as, V,T7)112 (33)
where gi(u, v) is a function that is at most 1 when the point is inside a region where fj(u, v) is defined
and vanishes as the point approaches a forbidden region, that is a range shadow or a region outside of

105

Figure 38: Combining four maps by the iconic matching algorithm

E 60.00

• 40.00on verged X

20.00

0.00 nn ,.. .=,iml in Z
M 2 40 60 80 100 120 140 160 180

-20.00 Number of iterations

-40.00

-20.00.
-90.00 - "iZ

-100.001 auseio in Y
8 0.50 -True Roanons (0, 0, 0)

i , ,___. , , ,onvered ro in Y0.00 40 60 80 100 120 140 160 18

-. Number of iteraions

-0.50

- .00roaon m X

-8.00

overged Yo i

-2.00 L

igure 39: Convergence rate of te matching algorithm

" t I I I I-2I.I0

the field of view. The summation in Eq. 33 is taken over the en map. In order to avoid a situation in
which the mizAmum is anained when the two maps do it overlap (E = 0). we must also normalze E by
the mimL of points in the overlap reion. For E to be still smooth we should therefore normalize by:

E lt (U, V)JU2(U, V) (34)

In addition to E being smooth, we also amsmed that matching the two maps entirely determines the
six psametr of T. This aimnpon may am be true in all cases. A trivial example is one in which we
match two images of a flat plane., where only the vertical Umdation cm be computed frum the marching.
The gadieat algorithm does not caverge in those degcoenct cases because the minimum T(Y) may have
arbitrarily large val within a surface in parmer space. A modification of the matching algorthm
that would emtim that the algonthm does converge to some infinite value changes Equation (21) to:

E .IVI(U, V) - g(U, V, 7)1l + A vi (35)

The effect of the weights Ai is to include the comraim that the sq's do not increase to infinity in the
nimmizanon algorithm.

5 Combining range and intensity data
In the previous Section we have concentrated on the use of 3-D vision as it relates solely to the navigation
capabilities of mobile robots. Geometric accuracy was the deciding factor in the choice of representations
and algorithms while we gave very little attention to the extraction of senantic information. A mobile
robot eeds more than just navigation capabilities, howeve siace it also must be able to extract semantic
descripioms from its senso. Fo example, we will describe a landmark recognition algorithm in Section
5. In that cawe, the system is able not only to build a pometric ataon of an object but also to
ndate it to a store model.

Extracting semantic information for landmark recognition or sne analysis may require much more
than just geometric data from a range sensor. For example. intepreting surface markings is the only way
to unambiguously recognize traffic signs. Coversely, the recognition of a complex man-made object of
uniform color is ea.iest when using geometric information. In this Section we addrss the problem of
combining 3-D data with data from other saurs. The most m g problem is the combination of
3-D data with color images since these am the two most common sesos for outdoor robots. Since the
senms have different fields of view and positions, we firt present an algorithm for transforming the
images into a cmmon frame. As o example of the use of combined nsge/color images, we descnbe a

mpse ne analysis pxam in Section 5.3.

5.1 The geometry of video cameras
The video enea is a standard color vidicon camera equipped with wide-angle lases. The color images
am 480 rows by 512 columns, and each band is coded on eigt bits. The wide-angle lens induces a
significant geometric distorion in that the relatkon between a point in space and its projection on the

image plane does not obey the laws of the standard perspective transformation. We alleviate this problem
by fis trassforming the actual image into an "ideal" image: if (R, C) is the position in the real image,
then the position (r, c) in the ideal image is given by:

r = f,(R, C), c =f(R, C) (36)

where f, and f, are third order polynomials. This correction is cheap since the right-hand side of (36)
can be put in lookup tables. The actual computation of the polynomial is described in (31] The geometry
of the ideal image obeys the laws of the perspective projection in that if P = [x. y, z]' is a point in space,
and (r, c) is its projection in the ideal image plane, then:

F =fx/Z,c =fy/z (37)

where f is the focal length. In the rest of the paper, row and column positions will always refer to the
positions in the ideal image, so that perspective geometry is always assumed.

Z(r,c)

Y Weal image
Figure 40: Geometry of the video camera

5.2 The registration problem
Range sensor and video cameras have different fields of view, orientations, and positions. In order to
be able to merge dam from both sensors, we first have to estimate their relative positions, known as the
calibration or registration problem (Figure 41). We approach the problem as a minimization problem in
which pairs of pixels am selected in the range and video images. The pairs ame selected so that each pair
is the image of a single point in spac as viewed from the two sensors. The problem is then to find the
best calibration parameters given these pairs of points and is further divided into two steps: we first use
a simple linear least-squares approach to find a rough initial estimate of the parameters, and then apply a
non-linear Minimization algorithm to compute an optimal estimate of the parameters.

camera Control point P

T Range sensor

Figure 41: Geometry of the caIbanaion Iaublem

52.4 The calibration problem as a minimization problem

Let Pi be a point in space. with coordnates P? with rwpct to the r'a insor. md coordinates' p with
respt to the video camera. "he relationship between t w ocoino is:

Pei -RP'-T 7 (38)

where R is a rotation matrix. and T is a translation vector. R is a non-izear fi tmn of zh orientation
angles of the camera: pan (a), tilt (3), and rotation (-y). Pf can be computed fwm a pixel loation in the
range image. P, is not completely known, it is related to the pixel position in the video image by the
perspective transformation:

S, Mfg (39)
4c; =fy (40)

wheref is the focal length. Substiruing (38) into (39) and (40) we get

&.,Pri -T, - fR. , + 7 = 0 (41)
RPiCi - Trci -fRP " + 7, =0 (42)

where R, Ry,. and R, are the row vectors of the rotation matrix R, and Vy =fT,. 7 =fT,.
We am now ready to reduce the calibration problem to a least-squares inimization problem. Given

n points Pi, we want to find the transformation (R, T) that minimizes the left-hand sides of equations (41)
and (42). We Et estimate. T by a linear least-square algorithm, and then compute the optimal estimate
of all the patmters.

S2 Initial estimation of camera pscition

AsAning that we have an estimate of the orientation R, we want to estimate the corresponding T. The
initial value of R can be obtained by physical measurements using inclinometers. Under these conditions,

the crierion to be minimized is:
a

C = E-[(- T, i -f, + 7')"+ (1 - TA -fFi + Y)21 (43)

where Ai - R,,Pri. Bi = ri. Ci = RZ.P,. Di - R, scj. Ej =e, and F- Rri am known and 7,, 7". '
f ame the unknowns.

Equation (43) can be put in matrix form:

C flU - AV112 - - BV1l2 (44)

whee V = , TZ, ., u = (A,..,A.]'. W = (Dt,..,D, ,, = and B

EiE -1 0 Fi
E, " The minimum for the criterion of Equation (44) is attained at the parameter vector.

E, -1 0 F, I

V a (A'A +BB)-t1(A'U + W) (45)

5.23 Optimal estimaton of the calibration parameters

Once we have computed the initial estimate of V, we have to compute a more accurate estimate of (R, T).
Since R is a function of (a, 3, 7), we can transform the criterion from equation (43) into the form:

C 1 1i - Hi(S)II (46)
ml

where 1 is tie 2-vector repmsenting the pixel position in the vieo image, Ii = (ri, c6]*, and S is the full
vector of paramzti, S = (7', V, T,J, a, , 7]'. We canot directly compute C., since the functions ;',
am non-linear instead we Lnearize C by using the first order approximation of Hi (271:

C t ll - Hi(So) - .llS12 (47)

whem i is the Jacobian . with respect to S, So is the cunrt estimate of the parameter vector, and
4S - S - So. The right-hand ide of (47) is minimized when its derivative with respect to -IS vanishes.
that is:

f 04i'aS +.,ACi = o (48)
iml

where dC = i - Hi(So). Therefore, the best paramtter vector for the Unearized criterion is:

4S= - I(ji)-r aci (49)

Equation (49) is iterated umtil them is no change in S. At each iteration. the estimate So is updated
by: So - So + 4S.

5.2.4 Implementation and performance

The implementation of the calibration procedure follows the steps described above. Pairs of corresponding
points are selected in a sequence of video and range images. We typically use twenty pairs of points
carefully selected at interesting locations in the image (e.g. comers). An initial estimate of the camera
orientation is (0, 3, 0). where 3 is physically measured using an inclinometer. The final estimate of S is
usually obtained after less than ten iterations. This calibration procedure has to be applied only once, as
long as the sensors are not displaced.

Once we have computed the calibration parameters, we can merge range and video images into a
colored-range image. Instead of having one single fusion program, we implemented this as a library of
fusion functions that can be divided in two categories:

I. Range - video: This set of functions takes a pixel or a set of pixels (r', c) in the range image
and computes the location (r, c') in the video image. This is implemented by directly applying
Equations (41) and (42).

2. Video - range: This set of functions takes a pixel or a set of pixels (r", c:) in the video image
and computes the location (r', c') in the range image. The computed location can be used in
turn to compute the location of a intensity pixel in 3-D space by directly applying Equation (3).
The algorithm for this second set of functions is more involved because a pixel in the video image
corresponds to a line in space (Figure 40) so that Equations (41) and (42) cannot be applied directly.
More precisely, a pixel (1 , c') corresponds, after transformation by (R, 7), to a curve C in the range
image. C intersects the image at locations (r', c'), where the algorithm reports the location (r'. c)
that is the minimum among all the range image pixels that li.- on C of the distance between (rl. c')
and the projection of (r', c') in the video image (using the first set of functions). The algorithm is
summarized in Figure 42.

Figure 43 shows the colored-range image of a scene of stairs and sidewalks, the image is obtained by
mapping the intensity values from the color image onto the range image. Figure 44 shows a perspective
view of the colored-range image. In this example (161, we first compute the location of each range pixel
(ei, c') in the video image, and then assign the color value to the 64 x 256 colored-range image. The final
display is obtained by rotating the range pixels, the coordinates of which are computed using Equation (3).

5.3 Application to outdoor scene analysis
An example of the use of the fusion of range and video images is outdoor scene analysis [20,26] in
which we want to identify the main components of an outdoor scene, such as trees, roads, grass, etc. The
colored-range image concept makes the scene analysis problem easier by providing data pertinent to both
geometric information (e.g. the shape of the trees) and physical information (e.g. the color of the road).

5.3.1 Feature extraction from a colored-range image

The features that we extract from a colored-range image must be related to two types of information: the
shapes and the physical properties of the observed surfaces.

11L2

Backprojection of
Projection of the Mie a range pixel from (C)
in range image in color image space

(RT) istance

(R,T)

cou'r image (rc,cc)

_______Line from
inverse perspective

Figure.42: Geometry of the "video - range" transformation"

Figure 43: Colored-range image of stairs

Figure 44: Perspective view of registered range and color images

113

The geometric featres am used to describe the shape of the objects in the scene. We propose to use
two types of features: regions that correspond to smooth patches of surface, and edges that correspond
either to tmstions between reions or to transitions between objects (occluding edges). Furthermore,
we must be able to describe the features in a compact way. One common approach is to describe the
regions a quadric patches, and the edges as sets of tr-dimensional line segments. More sophisticated
descriptions am possible [51, such as bicubic patches or curvature descriptors. We use simpler descriptors
since the range data is relatively low resoluion, and we do not have the type of accurate geometric model
that is suited for using higher order geometric descriptors. The descriptors anached to each geometric
feature are:

9 The parameters describing the shape of the surface patches. That is the parameters of the quadric
surface that approximate each surface patch.

The shape parameters of the surface patches such as center, area, and elongations.

* T7e 3-D polygonal description of the edges.

* T1e 3-D edge types: convex. concave, or occluding.

The 2a patches are emacted by finting a quadric of eqaton XAX + BIX + C a 0 to the observed
surfaces, where X is the Cartesian coordinate vector computed from a pixel in the range image. The
fining error,

E(A,B, C)= (X', X, + B 'X + C) 2 (50)
Z~ejiWA

is used to connol the grwing of regions over the observed surfaces. The parameters A, B, C are computed
by mil-mizing E(A,B, C) as in [141.

The features related to physical properties am regons of homogeneous color in the video image. that
is regions within which the color values vary smoothly. The choice of these features is motivated by the
fact that an homogeneous region is presumably par of a single scene component. although the converse
is not true as in the case of the shadows cat by an object on an homogeneous patch on the ground. The
color homogeneity crierion we use is the distance (X- mYZ-I(X- mn) wheren m is the average mean
value on the region, Z is the covariance matrix of the color distribution over the region, and X is the
color value of the ciwen pixel in (red, green, blue) space. This is a standard approach to color image
segmentation and pattern recognition. The descriptive parameters that are retained for each region are:

The color statistics (in, Z).

Thepolygonal representaon of the region boneLr.

a Shape parameters such as ceter or moments.

The range and color featums may overlap or disagree. For example, the shadow cast by an object on
a fiat patch of ground would divide one surfce patch into two color regions. It is therefore necessary
to have a cross-referencing mechanism between the two groups of features. This mechanism provides
a two-way direct access to the geometric features that intersect color features. Extracting the relations

I

between geometric and physical features is straightforward since all the features are registered in the
colored-range image.

An additional piece of knowledge that is important for scene interpretation is the spatial relarions:-s
between features. For example. the fact that a vertical object is connected to a large flat plane throu . a
concave edge may add evidence to the hypothesis that this object is a tre. As in this example. we use
three types of relational data:

* The list of features connected to each geometric or color feature.

" The type of connection between two features (convex/concave/occluding) extracted from the range
data.

SThe length and strength of the connection. This last item is added to avoid situations in which two
very close regions become accidentally connected along a small edge.

5.3.2 Scene interpretation from the colored-range image

InMrprMg a scene requires the recognition of the main components of the scene such as uees or roads.
Since we an deaing with natural scenes, we cmm use the type of geometric matching that is used in
the cntext of industrial parts recogmtion (5]. For exampl, we cmmi assume that a given object has
specific quadric parameters. Instead, we have o rely on "fuzier" evidence such as the verticality of
some objects or the flamess of others. We therefore implemented the object models as sets of properties
that translate into constraints on the surfaces, edges. and regions found in the image. For example,-the
description encodes four such properties:

" P1: The color of the trunk lies within a specific range m constraint on the statistics (in, Z) of a
color reion.

SP2. Tm shape of the trunk is roughly cyclindrical m constraint on the distribution of the principal
values of tie matrix A of the quadric approximation.

" P3: The trunk is connected to a fiat region by a concave edge w constraint on the neighbors of

the surface, and the type of the connecting edge.

" P4: The ae has two prallel vertical occluding edges =* constraint on the 3-D edges description.

Other objects such as roads or grass areas have similar descriptions. The properties Pj of the nowr
object models M, are evaluated on all the feanu Fk extracted from the colored-range image. The result
of the evaluation is a score St for each pair (Pi, FO). We cannot rely on individual scores since some
may not be satisfied because of other objects, or because of segmentation problems. In the tree trunk
example, one of the lateral occluding edges may itself be occluded by some other object, in which case

the score for P4 would be low while the score for the other properties would still be high. In order to
circumvem this problem, we first sort the possible interpretations Mj for a given featr Fk according to
all the scores (Sq)i. In doing this, we ensure that all the properties comnibM to the final interpretation
and that no interpretations ae discarded at this stage while identifying the most plausible interpretations.

115,

We have so far extracted plausible interpretations only for individual scene features Fk. The final
sua in the scene w pretanoa is to find the intepratons (M.., F,) that ame globally consistent. For
example. property P3 for the ve implies a cstrint on a neighboring region, namely that this has to be
a flat npund region. Formally. a set of consistency consaints C. is associated with each pair of objects
(M, M.). The C.m constraints are propagated through the individual interpretations (Mi,, Fk) by using
the connectvity information s=red in the colored-range fear-e description. The propagation is simple
cmidering the small number of features rnmaining at this stage.

The final result is a consistent set of iniipmtaions of the scene features, and a grouping of the
features into sets that correspond to the sam objeat. TMe r sult is a by-product of the consistency
checkand the use of connectivity dama Figure 45 shows the color and range images of a scene which
contains a mad. a couple of trees, and a garbage can. Figure 46 shows a display of the corresponding
colored-range image in which the white pixels we the poins in the range image that have been mapped
into the video image. This set of points is actually apars because of the difference in resolutions between
the two sensors, and some imepoation wu performed to produce the dense regions of Figure 46.

Only a portion of the image is tegwried due to the difference in field of view between the two
sensors (60P for the ema versu 3(r in the vertical diretia for the ngp sensor). Figure 47 shows
a port= of the uae i which the edge pints fmm the rmg image w projected on the color image.
The edges are interpreted a the aide edges of the oee md the conection between the ground and the
tree. Figure 48 shows the final scene mpretatio. The white dots am the main edges found in the range
image. The power of the colond-range image approach is demonstrated by the way the mad is extrc=ed.
The mad in this image is separated into many pieces by strong shadows. Even though the shadows do not
satisfy the color constraim on mad region. they do perform well on the shape criterion (flatness), and on
the consistency criteria (both with the other road regions, and with the trees). The shadows are therefore
interpreted as road regions and merge with the other regions into one mad rion. This type of reasoning
is in general difficth to apply when only video data is used une. one uses stonger models of the objects
such as an explicit model of a shadowed mad mgion. Using the colored-range image also makes the
constenc propagation a much easier task than in partly color-band scme intepreation programs [32).

6 Conclusion
We have described utcniques for building and manipulating 3-D terrain reprsentations from range images.
We have demonstrated these techniques on real images of outdoor scene. Some of them (Sections 3.3. 3.4,
and 4.2) were integraed in a large mobile robot system that was successfully tested in the field. We expecz
that the module that mampulat and creates them tierrain repsentations will become part of the standard
core system of our outdoor mobie mbots. just as a local path planner or a low-level vehicle controller
ae standard modules of a mobile robot system independent of its application. This work will begin by
cmbining the polygonl tmain rn tatni of Section 3.4 with the path planner of [381 in order to
gaorte the basic capabilities for am off-mad vehide.

Many iues sill remain to be invesipted. Vim of alL we must a uniform way of representing
nd combining the umcenainties in the terrain maps. Currently, the uncertainty models depend heavily on

the type of sensor used and on the level at which the terrain is represented. Furthermore. the displacements

11 : X

Figure 45: Color and range images of an outdoor scene

1.17.

Fig=~ 46: A view of the cozresponding colored-range image

igure 47: Edge feamrs from the colored-range image

1 18

Figure 48: FuWa scene inrerpremrzon

between terram maps am Inown only up to a certain level of uncertaimy. This level of uncertainty must
be evaluated and updated through the matching of maps, whether iconic or feaxum-based. Regarding
the obination of the 3-D repteazzazons with representations from other sensors, we need to define

Salgorithm for snor registraw that is gneral enough for application to a variety of situations. The
algorithms pmsened in Section 5 am sO very dependent an the sensoa that we used. and on the intended
applicaion. Registration stheinme such as (17] would enable us to have a more uniform approach to the
problem. An added effect of using such a remgistraon algorithm is that we could explicitly represent errors
caused by the combination of the sesns, which we did not do in Section 5. Another issue concerns
our presentation of the three levels of terrain representation, the matching algorithms, and the sensor
combination algorithms as separate problems. We should define a common perccpal architecture to
integre these algorithms in a common repesentadion that can be part of the core system of a mobile
robot. Finally, we have tackled the temn representation problems mainly from a geometrical point of
view. Except in Secion 5, we did not attmapt to exnuact semantic interpretations from the represenatons.
A natural extension of this work is to use the 3-D terrain representations to identify known objects in the
scene. Anotr application along these lines is to use the m maps to identify objects of interest, such
a terrain regions for smpling tasks for a pLantary explonr (241. Although we have performed some
preliminary expeinem in that uespect [19,2]. extating semantic infomnation from terrain representations
remains a major research ama for outdoor mobile tobos.

References
(1] Nt. Asada. Building a 3-D World Model for a Mobile Robot from Sensory Data. In Proc. IEEE

Robotics and Automation, Philadelphia. 1988.

(21 J. Bares and W. Whittaker. Configuration of an Autonomous Robot for Mars Exploration. In Proc.
World Conference on Robotics, 1988.

[3] A. Bergman and C. K. Cowan. Noise-Tolerant Range Analysis for Autonomous Navigation. In
IEEE Conf. on Robotcs and Auomaton, San Francisco, 1986.

[4] P. Besl. Range Imaging Sensors. Technical Report GMR-6090, General Motors Research Lab,
Warren. MI. March 1988.

[5] P. 1. Besl and R. C. lain. Three-dimensional Object Recognition. ACM Comp. Surveys, 17(1). march

1985.

[6] A. Blake and A. Zisserman. Visual Reconstruction. MIT Press. Cambridge. MA, 1987.

(71 R. Brooks. Aspects of Mobile Robot Visual Map Making. In Second International Robotics Research
Symposium. Mi press, 1985.

[8] M. 1. Daily, 1. 0. Harris. and K. Reiser. Detecting Obstacles in Range Imagery. In Image Under-
standing Workshop, Los Angeles, 1987.

[9] W2. Daily, [G. Harris, and K. Reiser. An Operational Perception System for Cross-Country Navi-
gation. In Proc. Image Understanding Workshop, Cambridge, 1988.

[10] R. T. Dunlay and D. G. Morg~ehalet Obstacle Detection and Avoidance from Range Data. In
Proc. SPIE Mobile Robots Con4erence. Cambridge. MA, 1986.

(11] T. Dunlay. Obstacle Avoidance Perception Processing for the Autonomous Land Vehicle. In Proc.
IEEE Robotics and Automaion, Philadelphia. 1988.

[121 A. Elfes. Sonar-Based Real-Worid Mapping and Navigatiom Journal of Robotics and Automation.
VoL 3, 1987.

[13] O.D. Faugeras. N. Ayache, and B. Faverjon. Building Visual Maps by Combining Noisy Stereo
Measurements. In Proc. IEEE Conf. on Robotics and Automaton, 1986.

(14] O.D. Faugeras and M. HeberL The Representation. Recognition. and Locating of 3-D Objects.
International Journal of Robotics Research, 5(3), 1986.

[15] G. Giralt. R. Chatila. and M. Vaisset. An Integrated Navigation and Motion Control System for
Autonomous Multisensory Mobile Robots. In Proc. 1st International Symposium Robotics Research.
Cambridge, 1984.

(16] Y. Goto, K. Matsuzaki, 1. Kweon. and T. Obatake. CMU Sidewalk Navigation System: a Blackboard-
Based Outdoor Navigation System Using Sensor Fusion with Colored-Range Images. In Proc. First
Joiut Computer Conference, Dallas. 1986.

(17] K. Gremban. C.E. Thorpe, andT. Kanade. Geometric Calibration Using Systems of Linear Equations.
In Proc. IEEE Robotics and Automation Conf., Philadelphia. 1988.

[18] S.Y. Harmon. A Report on the NATO Workshop on Mobile Robot Implementation. In Proc. IEEE
Robotics and Automaton. Philadelphia. 1988.

(19] M. Hebert and T. Kanade. 3-D Vision for Outdoor Navigation by an Autonomous Vehicle. In Proc.
Image Understanding Workshop, Cambridge, 1988.

[20] M. Hebeut and T. Kanade. First Results on Outdoor Scene Analysis. In Proc. IEEE Robotics and
Automation, San Francisco, 1985.

(21] T. Kanade and J.A. Webb. End of Year Report for Parallel Vision Algorithm Design and Implemen-
tation. Tecbnical Report CMU-RI-TR-87-15, The Roboics Institute, Carnegie-Mellon University,
1987.

[22] K.G. Kendall and P.A.P. Moran. Geometrmcal Probabilities. Hafher Publishers. New York. 1963.

(23] D. Kiegman, E. Triendl. and T.O. Binford. A Mobile Robot: Sensing, Planning and Locomotion.
In Proc. IEEE Conf. on Robotics and Automation, 1987:

(24] L Kweon. Modeling Rugged 3-D Terrain from Multiple Range Images for Use by Mobile Robots.
1988. PhD thesis proposal.

(251 L Kwem . Hebert. and T. Kwade. Pwereption for Rough Terrain Navigation. In Proc. SPIE
Mobile Robots. Cambridge, MA. 1988.

(26] L Kweon. I Hebert. and T. Kanade. Sensor Fusion of Range and Reflectance Data for Outdoor
Scene Analysis. In Proc. Space Operations Autmaton and Robotics, Cleveland. 1988.

(27] D.G. Lowe. Solving for the Parameters of Object Models from Image Descriptions. In ARPA Image
Understanding Workshop, 1980.

[28] T. Lozano-Perez An Algorithm for Planning Collision Free Paths among Polyhedral Obstacles.
Communmcations of de ACM. October 1979.

(29] B.D. Lucas. Generalize Image Matching by the Method of Differences. Technical Report CMU-
CS-8S-160, Carnegie-Mellon University, 1985.

[30] L Manhies and S.-A Shafet Error Modeling in Stero Navigation. Journal of Robotics and
Automatwion, Vol. 3, 1987.

(31) H.P. Moravec. Obstacle Avoidance and Navigation in te Real World by a Seeing Robot Rover.
Technical Report CMU-RI-TR-3. Carnegie-Mellon University, 1980.

[32] Y. Ohm. Knowledge-based Interpretaton of Outdoor Natural Color Scenes. Pirtman Publishing.
Inc.. 1984.

[33] DJ. Orser and M. Roche. The Extraction of Topographic Features in Support of Autonomous
Underwater Vehicle Navigation. In Proc. F$h Internatiwnal Symposium on Unmanned Untethered
Submersible. University of New Hampshire, 1987.

[341 1. Ponce and M. Brady. Toward a Surface Primal Sketch. In IEE Internatonal Conference on

Robotics and Automation, St Louis, 1985.

[351 K.S. Roberts. A New Representation for a Line. In Proc. Computer Vision and Patter RecogninIon.
Ann Arbor, MI. 1988.

[36) S. Shafer and W. Whirtaker. June 1987 Annual Report: Development of an Integrated Mobile
Robot Sysern at Carnegie Mellon. Technical Report CMU-RI-TR-88-10, The Robotics Institute.
Carnegie-Mellon University, 1988.

(371 R.C. Smith and P. Chieseman. On the Represenation and Estimation of Spatial Uncertainty. Inter-
natonal Journal of Robotics Reeatch, 1986.

(381 T. Senz. The NAVLAB System for Mobile Robot Navigation. PhD thesis, Carnegie-mellon Univer-
sity, Fall 1988.

[39] R. Szeliski. Bayesan Modeling of Uncerrainty in Low-Level Vsion. PhD thesis, Car-:gie-mellon
University, Computer Science Departement. July 1988.

(401 R. Szeliski. Estimating Motion from Sparse Range Data without Correspondance. In Internationai

Conf. on Computer Vison, Tarpon Springs, Florida, December 1988.

[41] C.E. Thorpe. The CMU Rover and dze FIDO Vision and Navigation System. PhD thesis, Carnegie-
mellon University, 1984.

(42] C..! Thorpe, M. Hebet. T. Kanade. and S.A. Shafer. Vision and Navigation for the Carnegie-Mellon
Navlab. PAMI, 10(3), 1988.

[43) M.A. Turk, D.O. Morgenthaler, K.D. Gremban, and M. Marra. VITS- A Vision System for Au-
tonomous Land Vehicle Navigation. PAMI, 10(3), may 1988.

[44] R. Wats. F. Pont. and D. Zuk. Characterizaon of the ERIMIALV Sensor - Range and Reflectance.
Technical Report. Environmental Research Institute of Michigan. Ann Arbor, MI. 1987.

[451 J.A. Webb and T. Kanade. Vision on a Systolic Array Machine. In L. UhAr, editor, Evaluation of
multicomputers for image procesing, Academic Press. 1986.

[461 D. Zuk. F. Pont. R. Franklin, and V. Larrowe. A System for Autonomous Land Navigation. Technical
Report IR-85-540, Environmental Research Institute of Michigan, Ann Arbor MI. 1985.

Chapter VI

Future Directions

Charles Thorpe and Takeo Kanade

Future Directions

Charles Thorpe and Takeo Kanade

1. Introduction
Our long-term research goal is the development of reliable, capable, outdoor navigation. The research

described here will build the perception components, while separate efforts provide planning, architecture,
and vehies. We have been working on outdoor robots for four years under DARPA funding on our
'Road Following- contract We now have both initial research results, which provide the basis for
perception modules, and a clearer understanding of the important remaining research questions.

Artficial Intelligence meets the real world in mobile robots. In outdoor mobile robots, the difficulties
increase as the level of abstraction decreases. It is relatively easy to plan elaborate missions, using
techniques borrowed from the rest of Artificial Intelligence and assuming vehicle capabilities. Several
impressive mission planners already exist. It is not much more difficult to plan mutes, and to decide what
roads the vehicle should follow and what landmarks it must see. This level requires geometric reasoning,
but only in a well-behaved symbolic world and with well-behaved symbolic vehicles. The true complexity
of mbot navigation only surfaces at the lowest level, where the sensors and actuators of a real physical
vehicle must interact with dirt, grass, and asphalt The heart of robot navigation lies in describing the
physical world in the local area of the vehicle, and in using that description to plan and predict interactions
between world and vehicle. We will perform research on perception to describe the vehicle's
surroundings, using a representation which we call the Local Environment Model (LEM).

The Local Environment Model is central to both cross country navigation and road following. It will
store terrain elevation; attributes such as roughness or slope; labels such as obstacle, road, tree, or dirt:
and uncertainties in the resolution or labels. The LEM may be specialized for a particular application.
Our principal focus in this contract will be for cross country mobility, for which the LEM represents the
local terrain map. It is built by 3-0 sensing and terrain typing experts, and refined and extended by
merging data acquired from different views as the vehicle moves. The local terrain map is used for
planning vehicle trajectories that avoid rough or steep terrain, and will be the foundation for building larger
area maps. Our second research area will be for mad tracking, for which the LEM will represent the local
road model. The local road model will be built and extended in the same way as the local terrain model,
but will take advantage of the constraints in mad shape and appearance. The various components of the
LEM are shown in Figure 1.

The issues involved in local environment modeling are to a large extent distinct from other research.
Aerial photo interpretation, for example, works from a much different viewpoint. Perhaps more
importantly, a distant viewpoint averages a lot of information into each pixel; a pixel of forest looks much
different than a pixel of tree trunk, leaf, or seed pod. Vision for factory automation is also largely
irrelevant to the problems of outdoor vehicles. Industal vision is concerned with accurate measurement
and inspection of man made objects, often using precise CAD models and controlled illumination. This is
much different from modeling a pile of dirt or the curves and potholes of a deteriorating asphalt road.
Only by directly working on the specific problems of outdoor navigation, and by building and testng
systems with a real outdoor mobile robot, will we be able to build reliable navigation systems.

Obsmcles Ten-ain regions

Figurel 1:Th oclEniwue a

This report first oresents three scenarios for cross country navigation and oad 'OI!owir'; Arg: .3 :'

:Mose scenarios srnows that Qerceotron, escec:aily of ocal :errain arc oacs, s :-e -'cs: - -:
important issue. A detailed discussion of local perception outlines the specific topics that need research.
We discuss the Core System, to be built by our sister Integration contract, and show how perception
results will be integrated into a system.

2. Perception for Navigation

2.1. Navigation Scenarios
The most difficult challenge for outdoor autonomous mobile robots is the perception necessary for

mapping and navigating local terrain. Other perception challenges include global mapping, object and
landmark recognition, and tracking other moving vehicles. Beyond perception, it is certainly 'moortar: :
have competent planning and system architectures. But the single component that currently impedes .,s
from having truly capable autonomous vehicles is local perception.

To illustrate the demand for research on perception, we present three navigation scenarios that will use
capabilities that we are building for our robot vehicles. The first two are cross-country: scenario I going
from point A to point B; and scenario 2 mapping a given area. The third scenario is driving on roads and
highways. We use the scenarios to demonstrate the perception demands for cross country navigation
and road following, and especially for building a Local Environment Model. In the next section, we
describe research to build the required perception capabilities.

2.1.1. Scenario 1: Cross-Country Traverse

Missions: carry supplies cross country, or move to a given vantage point for overwatch.

Spin-offs and synergles: Pipe and cable line inspection, Mars Rover traverse.

Components:
* Plan cross-country route, possibly replan it route is blocked

SDrive along route

*Watch for other vehices

* Look for landmarks

2.1.2. Scenario 2: Cross-country Mapping
Missions: area reconnaissance, for mapping, mine sweeping, check for NBC contamination.

Spin-offs and synergies: Hazardous waste site survey, geological exploration, Mars Rover area
survey.

Components:

" Plan vehicle route to cover an area

" Drive along path

" Merge sensor viewframes into a map strip along one pass

* Merge mao strios from adjacent oasses

* Monitor plan and replan to ensure coverage

a Add any recognized objects to the map

2.1.3. Scenario 3: Road Traverse
Missllone: Supply and logistics away from the front (where roads are still accessible and safe),

reconnaissance.

Spin-offs and synergies: Haulage on dedicated roads -such as strip mines, slow-speed aoplications
including mail delivery and garbage collection, eventual use on highways for driver's assistant and robot
chauffeur.

Components:
e Plan route on road network

o Drive along road

o See and model other moving vehicles

* Watch for landmarks and intersections

These are all fairly simple scenarios, but well beyond the capabilities ot any existing vehicle. The
stumbling block is not planning, nor is it computing. Supercomputers help improve vehicle speed, but
except in isolated cases do not make the underlying perception problem easier. Route and task planning
already exist which could easily plan any of these missions. The single most important remaining
limitation is in perception. In particular, the most crucial open problem is in describing the area arouno
the vehicle-building the Local Environment Model-and using that model for dnving the next few meters.

2.2. The Local Environment Model
*Driving along the planned path' seems like a relatively easy task for experienced human drivers. We

build and use mental maps and models of the area around us with no conscious effort. But as is often the
case in Artificial Intelligence, the tasks that appear easiest to us require the most difficult low-level skills.
Local environment modeling involves seeing 3-0 shapes, making judgments about terrain, piecng
together the shape ot an object seen from different sides, comparing expectations with perceptions. Each
of these mapping and modeling activities requires common sense, adaptations to varying lighting
conditions and viewing directions, updating internal models based on experience, 3-D reasoning, anC
modeling interactions between the vehicle and the world. These capabilities are the research domains of
image understanding and of robotics, and all come together in outdoor mobile robots.

Driving along the planned path uses a representation of the world near a robot that we call the Local
Environment Model (LEM). The LEM provides a focal point for perception and planning. It describes the
immediate vicinity of the robot in terms of terrain shape and type, and includes symbolic labels such as
"mudo, *mad lane boundary, or *rough terrain". It is built by 3-0 sensing and color vision, with
contnibutions from specialized experts for particular situations, such as terrain typing, road tracking, or
high-resolution mapping. The LEM is updated as the vehicle moves and looks at the terrain from new
directions. Finally, the local trajectory planner will use the LEM for choosing the vehicle path.

Building and using the LEM is central to our research. The orocess is similar, for botl cross-cur',
ana road tracKing runs, altmougn tre ncivicuai mocuies that outia :re LEM -ave ,'ere':
available.

Cross-country Driving: In cross-country driving, the LEM is a 3-0 local terrain map. Specific steos in
building and using the LEM are:

a aim sensors and collect data

* build a 3-0 map from one frame of data

i merge the single frame map with the local map to fill in gaps, extend coverage, and increase
resolution

* classify the terrain into known types, using color data and high-resolution 3-D data, with the
data from different sensors carefully calibrated and registered

* fuse the 3-0 map and the terrain type map, possibly produced from different viewpoints

* plan a vehicle trajectory across the local terrain using mission and vehicle constraints plus
the local map, and issue steering commands

This loop must execute at high speed, perhaps once per meter of vehicle motion. Local terrain
mapping must smoothly interface with other perceptual processes such as landmark recognition.

Roa Following Driving: Driving a vehide along a road requires a similar complex processing loop.
The LEM for road following is a local road model. It is less dependent on 3-0 terrain information and
relies more on continuity constraints of road shape and appearance. At each step, the road tracking
program will examine the current road model, will invoke feature trackers to track parts of the road, and
will examine the responses at the trackers to update the LEM. If the vehicle is following a road map, it will
also have to look for landmarks and track its global position. Specific steps include:

o decide which features on the road to track. e.g. stripes, shoulders, guard rails, etc.

* aim sensors to see desired features, taing into account local road shape and vehicle motion

- select best algorithm for monitoring each feature, given current lighting conditions and
environment surrounding feature

* Track individual features

e combine individual feature measurements to update the location, shape, and appearance of
the road model

* decide if any feature trackers have failed, and try to discover cause of failure to select a
different algorithm or feature for the next step

e watch for signs, landmarks, and other cars

* watch for intersections

* match current local map with global map to update vehicle position
This loop must execute at high speed, and must be reliable on roads with puddles and patches and dirt
and changing lighting and other conditions that occasionally fool even competent human drivers.

In both on and off road cases, building the LEM from raw perceptual data is the most crucial part of
robot navigation. It is here that we will concentrate the bulk of our research.

2.3. Research Needs
Our research plan is to build the individual components needed to Ouild the Locai Environmenz Mcct:

(model and map the local terrain and track roads), and to recognize landmarks. Our sister contract.
Integration, will supply the planning and the important system building tools to construct complete mobile
robot systems.

For cross-country travel, building the LEM will require research on terrain mapping. Our research will
concentrate on 3-0 mapping, on terrain typing, and on the supporting technologies to combine maps from
different viewpoints and from different sensors. Research projects will include:

" Local 3-0 Mapping: Our current system can process single frames of range data to
produce 3-0 maps. We need to add information from vehicle attitude sensors (inclinometers
or INS), add explict :representations for unseen areas and for uncertainty, and build a task-
independent interface to the LEM.

" HIgh-frsolutlon 3-0 Sensing: Terrain typing and motion planning on very rough terrain
need more accurate 3-0 maps than are currently available. We need to descnibe textures
and shapes at the limits of accuracy of the sensed data. This will require an explicit model of
data acquisition, and of the dimensions and directions of errors in the data.

" Map Matching and Merging: A single frame of range data only covers a limited area on the
ground. The limited resolution of our ERIM scanner allows us to build accurate terrain maps
for only 5 to 10 meters in front of the vehicle. Perception must match maps from multiple
scans to increase coverage and resolution and to fill in unseen areas in the LEM. Matching
can also take place on a large scale, to build area maps.

" Terrain Typing: We will segment the terrain into regions and label each region in the LEM
according to soil and vegetation type. The appearance of soils and vegetation depends on
local lighting, as well as time of day, moisture content, and so forth. Terrain typing will have
to use adaptive color image processing, and should also look at 3-0 slopes and texture and
at active reflectance data.

" COr and Range Fusion: Color and range data is often complementary, providing different
cues about the location or identity of an objet It is therefore important to collect the data in
a common representation. But combining data is diffilcult Color and range sensors may be
mounted in different locations on the vehicle, have different fields of view, and be activated at
different times. The difficulties include calibration between sensors, and building low level
functions that can combine pixels with range points plus high level functions that will match
color blobs with range surfaces.

Building the LEM for road-following scenarios can take advantage of a road model. Most roads have
strong structure, with painted lines and stripes, and with smooth changes in curvature and direction. The
additional research for road tracking involves describing and updating the road model:

* Modeling Roads: The road model will explictly represent as much as we can about the
appearance, shape, and surroundings of the road. This wil enable us to coordinate the
activi ties of separate road tracking modules. It will also help in analyzing failures, by
generating and checking hypotheses such as lighting change, local feature disappearance,
or an unexpected intersection.

Once a vehicle can reliably move within a local area, either cross country or down a road, it will need to
identify objects. Known objects already on a map can be used as landmarks. Objects that are not on a
map may also be important to recognize, either to be mapped themselves or to change vehicle behavior.
Object recognition will start out as a separate research project, and will be integrated into cross country
and road following scenarios as it matures.

- Objet RecognItion: We need to start with evaluation of new range and color segmentation

:3 1

methods, inc!uding t rose deve!ooea for !errain r!yirg. Additional tooCS wil "c'.u4e .s "17

one sensor to cue another. Specific oolec:s to oe recognized rc:uce ver.c:es arc :,a-.
signs.

During succeeding years, we will expand our work to dynamic scene analysis.
Dynamic Scene Analysis: This topic incudes both tracking moving objects, and stereo
vision that takes advantage of moving cameras. Lack of robust algorithms currently prevents
general tracking of moving objects. In three years we will be ready to adapt some of our
object recognition and low level segmentation algorithms for tracking moving objects. We will
also have significantly more computing power available with the iWarp, the successor the the
CMU Warp supercomputer. While the iWarp will not make algorithms robust, it may provide
enough power to make it practical to track moving objects in real time.

Direct 3-0 sensing is limited in range, confined to surfaces with adequate diffuse reflectance,
and may be susceptible to detection. Passive sensing, such as stereo vision, may be
preferable for some applications. As part of the basic Image Understanding project at CMU.
we are developing a new technique that uses both stereo and camera motion. After further
development, this method will be ready for use and testing in an outdoor setting.

2.4. Core System
Perception research for mobile robots needs a system context. We are building the systems descibed

in the Scenarios of section 2.1: cross-country traverse, cross-country mapping, and road traverse.
Modules developed under this *contract will be combined with architectures, planners, and the Navlab
mobile robot built by our sister contract, Navlab Integration.

There is a generic set of capabilities needed by all our systems: local terrain mapping, trajectory
planning, vehicle control, and a software framework. We will first build a Core System that provides these
capabilities, then add other perception and planning modules to the Core to build our systems.

The Core System will handle robot navigation in the local environment. It will integrate perception with
local planning and control to provide a complete, functional, autonomous system. The Core System will
build a Local Environment Model and use the LEM for trajectory planning. Constraints in the LEM will be
specified in a source-independent manner, so the trajectory planner can stay within a lane on a road with
the same algorithms that it uses to avoid rough patches of ground. By itself, the Core System will be able
to wander in a general direction, avoiding rough terrain and obstacles. More importantly, it will provide a
debugged and tested lower level for more sophisticated systems.

The Core System will consist of the following self-contained, complete system:
" Sensing: based on local 3-0 mapping and terrain typing, initially using the 3-0 scanner and

expanding to include color vision as it matures.

" Planning: the local pilot/planner under development now will be used to plan paths through
this terrain considering stability constraints, robot kinematics, and motion uncertainty. It will
be responsible for heading toward a given goal point and instructing the sensors when to
take data.

* Control: a simple open-loop trajectory control scheme will be used.

• Software: possibly our CODGER blackboard or some other system that provides for
synchronization and data transfer in a multi-processing environment, coordinate frame
transformations, and vehicle trajectory interpolation.

The Core System will. have hooks to allow !1, e !ollowing extensions wittout reauirr cr3anes , -q
oasic system:

1. Additional sensors: color vision for road following, possibly sonar sensors.

2. Map Navigation: sequencing goal points for the planner, planning for landmark recognition.

3. Map BuildingiRevision: constructing or modifying a map database off-line or real-time
without modifying the local map.

4. Human Intervention: manual override or assist

5. Debugging aids: simulators for sensing modules and vehicle, graphic displays

The combination of perception, from this contract, and system building, from the Integration contract,
will form a powerful Core System. Adding higher level guidance and landmark recognition will produce a
cross-country traversal system. The Core System plus planning for complete coverage and map-ullcing
perception will give us a mapping system. And road network traversal will use tie Core System 'or
following roads and avoiding obstacles.

