OFFICE OF NAVAL RESEARCH

Contract N00014-86-K-0043

TECHNICAL REPORT No. 106

Dwell Time and Average Local Speed in a Resonant Tunneling Structure

by

L. N. Pandey, D. Sahu and Thomas F. George

Prepared for Publication

in

Solid State Communications

Departments of Chemistry and Physics
State University of New York at Buffalo
Buffalo, New York 14260

July 1989

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
Dwell Time and Average Local Speed in a Resonant Tunneling Structure

L. N. Pandey, D. Sahu and Thomas F. George

We show that the dwell times and the average local speeds of an electron in a resonant tunneling structure depend sensitively on the matching parameter at the interfaces. We point out that there is a need to carry out microscopic calculations to find out which matching parameter is appropriate for a given structure.
We show that the dwell times and the average local speeds of an electron in a resonant tunneling structure depend sensitively on the matching parameter at the interfaces. We point out that there is a need to carry out microscopic calculations to find out which matching parameter is appropriate for a given structure.
Recently resonant tunneling diodes (RTDs) have generated considerable experimental and theoretical interest because of possible device applications. In addition, they have highlighted the need to understand the fundamental physics involved in these and other quantum confined structures. A question which has attracted much attention and controversy concerns the time scales involved in the RTDs. In this work we focus attention on the dwell time (see later for a definition) which is perhaps the least controversial and the most well-accepted quantity. We study the dwell time and its first derivative with respect to position for both symmetric and asymmetric double barrier structures. These are physical quantities and can be obtained from stationary-state solutions of Schrödinger’s equation. Since time-dependent studies of Schrödinger’s equation are computationally time consuming, our studies should provide qualitative guidelines in pursuing such studies. References 8-11 should provide the interested reader with some indications regarding the temporal aspects of resonance tunneling structures.

We consider an unbiased RTD with barrier heights V_i ($i = 1, 2$), barrier widths a_i ($i = 1, 2$) and electron effective masses in the barriers m_i^* ($i = 1, 2$) (in units of the free electron mass). The potential well has width d, and the effective mass inside the well and the contact regions are assumed to be m^*. Typically the barriers consist of $\text{Al}_{0.3}\text{Ga}_{0.7}\text{As}$ and the well consists of GaAs, so that $m_1^* = m_2^* = 0.09$ and $m^* = 0.067$. The stationary-state properties of the resonant tunneling structure in the effective mass approximation are obtained by solving the time-independent Schrödinger's equation for the envelope function $\psi(z)$ along the growth direction z:

\[\psi(z) = \begin{cases} e^{-|z|} & \text{for } z < 0 \\ \frac{1}{\sqrt{d}} & \text{for } 0 < z < d \\ e^{z} & \text{for } z > d \end{cases} \]
where $V(z)$ is the conduction band potential energy profile, E is the incident energy, m is the electron mass, and a, b are constants. The importance of writing the kinetic energy term in a form similar to the first term of Eq. (1a) was pointed out by Bastard. The constants a and b in Eq. (1) must appear in the form given in order to make the Hamiltonian Hermitian. The above form of the kinetic energy operator is due to Morrow and Brownstein and is a generalization of Bastard’s form. At the heterojunction interfaces, which we have assumed to be abrupt, the kinetic energy operator dictates the matching conditions on $\psi(z)$ and its spatial derivative. We demand that $m\psi$ and $(a+b)(d\psi/dz)$ be continuous across an interface, implying the physical result that the current density $j \propto \psi (d\psi/dz)/m = m\psi (a+b)(d\psi/dz)$ be continuous. However, in general, the charge density $\rho \propto \psi^2 \psi$ need not be continuous across an interface. For the special case of $a = 0$ and $b = -1$ we obtain, in addition, the continuity of charge density.

For a symmetric double barrier, the transmission coefficient is unity at resonance. For an asymmetric double barrier, the transmission at resonance is less than unity, being equal to $T = T_{\text{low}}/T_{\text{high}}$, where T_{low} (T_{high}) is the smaller (larger) of the transmission coefficients of the two barriers. In general, for $E < V_1$ and V_2, the extremal condition for the transmission coefficient for a RTD satisfying Eq. (1) is

$$\frac{1}{2} \xi_i \tanh \kappa_i a_i (1 - 1,2) \text{ with } \delta_i = \left[\left(\frac{m^*}{m} \right)^a \kappa_i / k - \left(\frac{m^*}{m} \right)^b \kappa / \kappa_i \right] (1 - 1,2), \text{ where } a = \ldots$$
(2m*E/M^2)^1/4 and κ_i = [2m_i^*(V_i - E)/M^2]^1/4, (i = 1, 2). For E > V_1 or V_2, the hyperbolic functions should be replaced by appropriate circular functions, and κ_i should be imaginary. If the RTD is symmetric, with V_1 = V_2 = V, a_1 = a_2 and m_1^* = m_2^* = m^*, we recover Hauge et. al's result

\[(\cot kd)_r = -\frac{1}{2}(κ_1/k - k/κ_1)\tanh κ_1a_1. \tag{3}\]

In Table 1 we show the lowest resonance energy of a symmetric (E_r) and an asymmetric (E^a_r) RTD as a function of the parameter b [Eq. (1)].

Table 1. Dependence of the lowest resonance energy on the parameter b of Eq. (1). E_r and E_0.5 are, respectively, the resonance energy and energy for a transmission coefficient of 0.5 for a symmetric structure with V_1 = V_2 = 200 meV, d = 100 Å, a_1 = a_2 = 50 Å, m^* = 0.067 and m_1^* = m_2^* = 0.09. E^a_r is the resonance energy for an asymmetric double barrier with V_1 = 100 meV, V_2 = 200 meV, d = a_1 = a_2 = 50 Å, m^* = 0.067 and m_1^* = m_2^* = 0.09.

<table>
<thead>
<tr>
<th>b</th>
<th>E_r(meV)</th>
<th>E_0.5(meV)</th>
<th>E^a_r(meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>24.6738</td>
<td>24.6347</td>
<td>47.9598</td>
</tr>
<tr>
<td>-1</td>
<td>28.8350</td>
<td>28.7975</td>
<td>57.3208</td>
</tr>
<tr>
<td>0</td>
<td>32.9650</td>
<td>32.9300</td>
<td>66.9193</td>
</tr>
<tr>
<td>1</td>
<td>36.8850</td>
<td>36.8567</td>
<td>76.1235</td>
</tr>
<tr>
<td>2</td>
<td>40.4560</td>
<td>40.4337</td>
<td>84.1560</td>
</tr>
</tbody>
</table>

The resonance energy clearly depends on the parameter b; we cannot, a priori, prefer one value of b over another. We study below the dependence of other physical quantities on the
parameter b. The dwell time r_D over the region 0 to z_0 of the structure is defined7,15 as the integrated probability density of the electron divided by the incident flux:

$$ r_D = \int_0^{z_0} dz |\psi(z)|^2/(|\mathbf{K}/m^*) \quad . \quad (4) $$

The associated average local speed v at a given point z in the structure is

$$ v^{-1} = \partial r_D/\partial z \quad . \quad (5) $$

We have studied the dwell times and average local speeds of an electron in a double barrier structure for energies in the neighborhood of the resonance energy E_R. Figures 1-3 show r_D and v^{-1} for two energies E_R (transmission coefficient $T = 1$) and $E_{0.5}$ ($T = 0.5$) as a function of the parameter b. These figures clearly show wide variations in the magnitudes of the above physical quantities as one changes b. The discontinuities in the velocities (as long as b is not equal to 1) at the two interfaces arise from the discontinuities of charge at the interfaces, as already mentioned. Note also that the discontinuities could be positive or negative at a given interface. The behavior of r_D and v^{-1} for an asymmetric structure are similar (Figs. 4-6); however, the discontinuities of v^{-1} are more prominent in this case.

We have thus shown that the parameter associated with matching condition at the interfaces has a profound effect on the characteristics of the system such as resonance energy, dwell time and the average local speed. It has been shown,16,17 in a different context, that for two semi-finite heterostructures, the matching conditions at the interface not only involve the effective masses but also certain other parameters which are microscopic in origin, having no macroscopic analogs. We therefore believe that the arbitrariness in the choice of the parameter b [Eq. (1)] above can
be fixed through microscopic calculations.

Acknowledgment - This work was supported in part by the Office of Naval Research and the Air Force Office of Scientific Research (AFSC), United States Air Force, under Contract F49620-86-C-0009.

References

14. Following Ref. 6, we have derived Eq. (2) from the condition \(dT/d'd' = 0 \), where \(T \) is the square of the transmission amplitude and \('d' \) is the well width. Conventionally, the resonance condition is obtained from \(dT/dE = 0 \). For a symmetric structure, the two definitions are equivalent. For an asymmetric structure, the direction along which the derivative is evaluated makes a difference; it is believed, however, that the difference between the two is exponentially small.
Figure Captions

Fig. 1. Dwell time (top panel) and inverse of the average local speed (bottom panel) as a function of position z relative to left most edge of the structure. The parameters are: $b = -2$, $V_1 = V_2 = 200$ meV, $d_x = 100$ Å, $a_1 = a_2 = 50$ Å, $m = 0.067$ and $m_1 = m_2 = 0.09$. The solid line corresponds to resonance and the dashed line to a transmission coefficient of 0.5.

Fig. 2. Dwell time (top panel) and inverse of the average local speed (bottom panel) as a function of position z relative to leftmost edge of the structure. The parameters are: $b = 0$, $V_1 = V_2 = 200$ meV, $d_x = 100$ Å, $a_1 = a_2 = 50$ Å, $m = 0.067$ and $m_1 = m_2 = 0.09$. The solid line corresponds to resonance and the dashed line to a transmission coefficient of 0.5.

Fig. 3. Dwell time (top panel) and inverse of the average local speed (bottom panel) as a function of position z relative to leftmost edge of the structure. The parameters are: $b = -2$, $V_1 = V_2 = 200$ meV, $d_x = 100$ Å, $a_1 = a_2 = 50$ Å, $m = 0.067$ and $m_1 = m_2 = 0.09$. The solid line corresponds to resonance and the dashed line to a transmission coefficient of 0.5.

Fig. 4. Dwell time (top panel) and inverse of the average local speed (bottom panel) as a function of position z relative to the edge of the smaller of the two asymmetric barriers. The parameters are: $b = -2$, $V_1 = 100$ meV, $V_2 = 200$ meV, $d = a_1 = a_2 = 50$ Å, $m = 0.067$ and $m_1 = m_2 = 0.09$.

Fig. 5. Dwell time (top panel) and inverse of the average local speed (bottom panel) as a function of position z relative to the edge of the smaller of the two asymmetric barriers. The parameters are: $b = 1$, $V_1 = 100$ meV, $V_2 = 200$ meV, $d = a_1 = a_2 = 50$ Å, $m = 0.067$ and $m_1 = m_2 = 0.09$.

Fig. 6. Dwell time (top panel) and inverse of the average local speed (bottom panel) as a function of position z relative to the edge of the smaller of the two asymmetric barriers.
The parameters are: $b = 2$, $V_1 = 100$ meV, $V_2 = 200$ meV, $a_1 - a_2 = 50$ Å, $m = 0.067$ and $m_1 = m_2 = 0.09$.
Fig. 2

\begin{align*}
\text{dwell time (10^{-12} s)} & \\
0 & 100 & 200 \\
0 & 10 & 20 \\
\end{align*}

\begin{align*}
\frac{1}{v} \text{ (10^{-12} s/A)} & \\
0 & 100 & 200 \\
0.00 & 0.10 & 0.20 \\
\end{align*}
Fig. 3

- Top graph:
 - x-axis: z (Å)
 - y-axis: dwell time (10^{-12} s)
 - Graphs for $b=2$

- Bottom graph:
 - x-axis: z (Å)
 - y-axis: $1/v$ (10^{-12} s/Å)
 - Graphs for $b=2$
Fig. 4

Dwell time (10^{-12} s)

![Graph showing dwell time as a function of z (Å).]

\[b = -2 \]

\[
\begin{align*}
\text{dwell time (10^{-12} s)} & \\
0 & 0.7 \\
0 & 1.4 \\
0 & 75 \\
0 & 150 \\
\end{align*}
\]

\[
\begin{align*}
\text{\(z (\text{Å}) \)} & \\
0 & 75 \\
0 & 150 \\
\end{align*}
\]

Reciprocal velocity (10^{-12} s/Å)

![Graph showing reciprocal velocity as a function of z (Å).]

\[b = -2 \]

\[
\begin{align*}
\text{1/\(v \) (10^{-12} s/Å)} & \\
0.000 & 0.015 \\
0.030 & 1.4 \\
0 & 75 \\
0 & 150 \\
\end{align*}
\]
Fig. 5

- Top graph: Dwell time (10^-12 s) vs. z (Å)
- Bottom graph: 1/v (10^-12 s/Å) vs. z (Å)
Fig. 6

- Top graph: dwell time (10^-12 s) vs. z (Å) for b = 2.
- Bottom graph: 1/v (10^-12 s/Å) vs. z (Å) for b = 2.
<table>
<thead>
<tr>
<th>Number</th>
<th>Copies</th>
<th>Address 1</th>
<th>Address 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Office of Naval Research</td>
<td>Attn: Code 1113</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200 N. Quincy Street</td>
<td>Arlington, Virginia 22217-5000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Bernard Douda</td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Naval Weapons Support Center</td>
<td>Attn: Dr. Ron Atkins</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Code 50C</td>
<td>Chemistry Division</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crane, Indiana 47522-5050</td>
<td>China Lake, California 93555</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Naval Civil Engineering Laboratory</td>
<td>Scientific Advisor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attn: Dr. R. W. Drisko, Code L52</td>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Port Hueneme, Indiana 47522-5050</td>
<td>Code RD-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defense Technical Information Center</td>
<td>U.S. Army Research Office</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attn: CRD-AA-IP</td>
<td>Attn: CRD-AA-IP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Building 5, Cameron Station</td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alexandria, Virginia 22314</td>
<td>Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DTNSRDC</td>
<td>Mr. John Boyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attn: Dr. H. Singerman</td>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Applied Chemistry Division</td>
<td>Philadelphia, Pennsylvania 19112</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annapolis, Maryland 21401</td>
<td>Naval Ocean Systems Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. William Tolles</td>
<td>Attn: Dr. S. Yamamoto</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Superintendent</td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemistry Division, Code 6100</td>
<td>San Diego, California 91232</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Naval Research Laboratory</td>
<td>Dr. David L. Nelson</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington, D.C. 20375-5000</td>
<td>Chemistry Division</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Naval Ocean Systems Center</td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attn: Dr. William Tolles</td>
<td>800 North Quincy Street</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Superintendent</td>
<td>Arlington, Virginia 22217</td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. J. E. Jensen
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. C. B. Harris
Department of Chemistry
University of California
Berkeley, California 94720

Dr. J. H. Weaver
Department of Chemical Engineering and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. F. Kutzler
Department of Chemistry
Box 5055
Tennessee Technological University
 Cookeville, Tennessee 38501

Dr. A. Reisman
Microelectronics Center of North Carolina
Research Triangle Park, North Carolina 27709

Dr. D. Dilella
Chemistry Department
George Washington University
Washington D.C. 20052

Dr. M. Grunze
Laboratory for Surface Science and Technology
University of Maine
Orono, Maine 04469

Dr. R. Reeves
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. J. Butler
Naval Research Laboratory
Code 6115
Washington D.C. 20375-5000

Dr. Steven M. George
Stanford University
Department of Chemistry
Stanford, CA 94305

Dr. L. Interante
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Mark Johnson
Yale University
Department of Chemistry
New Haven, CT 06511-8118

Dr. K. J. Klaubunde
Department of Chemistry
Kansas State University
Manhattan, Kansas 66506

Dr. W. Knauer
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. G. A. Somorjai
Department of Chemistry
University of California
Berkeley, California 94720

Dr. J. Murday
Naval Research Laboratory
Code 6170
Washington, D.C. 20375-5000

Dr. J. B. Hudson
Materials Division
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Theodore E. Madey
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. M. G. Lagally
Department of Metallurgical
and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. R. P. Van Duyne
Chemistry Department
Northwestern University
Evanston, Illinois 60637

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. D. E. Harrison
Department of Physics
Naval Postgraduate School
Monterey, California 93940

Dr. R. L. Park
Director, Center of Materials
Research
University of Maryland
College Park, Maryland 20742

Dr. W. T. Peria
Electrical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Dr. Keith H. Johnson
Department of Metallurgy and
Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. A. Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. S. L. Bernasek
Department of Chemistry
Princeton University
Princeton, New Jersey 08544

Dr. W. Kohn
Department of Physics
University of California, San Diego
La Jolla, California 92037
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. F. Carter
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Richard Colton
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Dan Pierce
National Bureau of Standards
Optical Physics Division
Washington, D.C. 20234

Dr. R. Stanley Williams
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. R. P. Messmer
Materials Characterization Lab.
General Electric Company
Schenectady, New York 22217

Dr. Robert Gomer
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Ronald Lee
R301
Naval Surface Weapons Center
White Oak
Silver Spring, Maryland 20910

Dr. Paul Schoen
Code 6190
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. John T. Yates
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Dr. Richard Greene
Code 5230
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. L. Kesmodel
Department of Physics
Indiana University
Bloomington, Indiana 47403

Dr. K. C. Janda
University of Pittsburgh
Chemistry Building
Pittsburgh, PA 15260

Dr. E. A. Irene
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton 509 SNH
UNITED KINGDOM

Dr. H. Tachikawa
Chemistry Department
Jackson State University
Jackson, Mississippi 39217

Dr. John W. Wilkins
Cornell University
Laboratory of Atomic and
Solid State Physics
Ithaca, New York 14853
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. R. G. Wallis
Department of Physics
University of California
Irvine, California 92664

Dr. J. T. Keiser
Department of Chemistry
University of Richmond
Richmond, Virginia 23173

Dr. D. Ramaker
Chemistry Department
George Washington University
Washington, D.C. 20052

Dr. R. W. Plummer
Department of Physics
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. J. C. Hemminger
Chemistry Department
University of California
Irvine, California 92717

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 41106

Dr. T. F. George
Chemistry Department
University of Rochester
Rochester, New York 14627

Dr. N. Winograd
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. G. Rubloff
IBM
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. A. Steckl
Department of Electrical and Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. P. Hansma
Department of Physics
University of California
Santa Barbara, California 93106

Dr. Roald Hoffmann
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. W. Goddard
Department of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125

Dr. A. Steckl
Department of Chemistry
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. P. Hansma
Department of Physics
University of California
Santa Barbara, California 93106

Dr. G. H. Morrison
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. J. Baldeschwieler
Department of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125