-

PR

AD-A210 548

CECOM CENTER
FOR
SOFTWARE ENGINEERING

SOFTWARE
METHODOLOGY)

. 7"‘5

CATALOG '&!
Second Edition :_.Z\vo B

<

il STATIMENT X
L Apprevad 1o P-ziiz rejeasey
Dismpuncy Unlimited

&2
)

RESEARCH AND DEVELOPMENT TECHNICAL REPORT
C01-091JB-0001-01

SOFTWARE
METHODOLOGY
CATALOG

Second Edition

Prepared by

Laurel Von Gerichten
Marilyn Ginsberg S
Richard Pirchner e, Accesion For]

Richard Guilfoyle NTIS CRA&I d

DTIC TAB a
Unannounced]
Justihication

R

Teledyne Brown Engineering
151 Industrial Way East
Eatontown, NJ 07724

March 1989 BY
Dostiibutinr]

P [
r‘ hesi ety Codes
Approved for public release; distribution is unlimited. P —; TR andlor

o Special

Prepared for

CECOM CENTER FOR SOFTWARE ENGINEERING

US ARMY COMMUNICATIONS-ELECTRONICS COMMAND
FORT MONMOUTH, NEW JERSEY 07703-5000

NOTICES

Qisclaimer

The citation of trade names and names of manufacturers in this report
{s not to be construed as official Government indorsement or approval
of commercial products or services referenced herein.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE
Form Approved
REPORT DOCUMENTATION PAGE OMB8 No. 0704-0188
1a. REPQRT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT
Approved for public release; distribution is
25 DECLASSIFICATION / DOWNGRADING SCHEDULE unlimited.
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
C01-091JB-0001-01
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE $YMBOL 7a. NAME OF MONITORING ORGANIZATION
Teledyne Brown Engineering (if applicable) US Army Communications-Electronics Command
(CECOM), Center for Software Engineering
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
151 Industrial Way East ATTN: AMSEL-RD-SE-AST-SE
Eatontown, NJ 07724 Fort Monmouth, NJ 07703-5000
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL J 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
' DAAB0O7-86~D-R001
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT : TASK WORK UNIT
ELEMENT NO. | NO. NO. ACCESSION NO.
612783 AQ94 01 01
11. TITLE (include Security Classification)
SOFTWARE METHODOLOGY CATALOG, SECOND EDITION (U)
12, PERSONAL AUTHOR(S)
Laurel Von Gerichten, Marilyn Ginsberg, Richard Pirchner, Richard Guilfoyle
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) J15. PAGE COUNT
Technical Report from Apr 88 to Mar 89 1989 March 445

16. SUPPLEMENTARY NOTATION
This report is a revision of Report No. C01-901JB- 0001, same title,

dated December 1988, ADB128594.

17. COSATI CODES 18. SUBJECT TERMS (Continue oR reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Software Methodology; Software Engmeermg ;
12 05 ~ Computer Programmi ng

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

" This technical report provides a consolidated reference for software methods used over the
 total spectrum of software development, The primary objective is to provide, for each
method included, a brief overview of the method and to give some insight into the underlying
assumptions, the software development activities which it supports, and other characteris-
tics associated with its use. A second objective is to provide sources for further informa-

tion. The second edition of the catalog reports on 73 software methods. ,'\ e,
20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
R uncLassiFieoruNumiTED [SAME AS RPT. [DTIC USERS Unclassified .
22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | 22¢ OFFICE SYMROL
Harold L. Tamburro (2G1) 544-2029 AMSEL -RD-SE~AST-SE
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

TABLE OF CONTENTS

CHAPTER 1: CATALOG OVERVIEW

1.1 INTRODUCTION
1.2 BASIS OF CATALOG
1.3 CONTENT OF CATALOG

...

...

...

1.4 CONCLUSIONS AND OBSERVATIONS ..ottt resesvesnesenssiessnnes

CHAPTER 2: AN OVERVIEW OF BASIC CONCEPTS

2.1 INTRODUCTION

.......................

...

2.2 SOFTWARE PROCESS ABSTRACTIONScvvmiiiiiiinininnniniseiessinisnses et st caseanses
2.3 RELATIONSHIPS BETWEEN METHODS, APPROACHES, TOOLS, AND

...

CHAPTER 3: METHODS CURRENTLY IN USE

3.1 ABDLSLCM .- Ada Based Design Language System Life Cycle Methodology ...
3.2 ADM -- Ada Development Methodc.cccvininmeicninnininienc et eiesreaesneens
3.3 AISLE -- Ada Integrated Software Lifecycle Environmentcccouviinnicrncnnnnns
3.4 BOX STRUCTURES -- The Box Structure Methodology for Information

35

36

37

3.8

39
3.10
.1
3.12
313
3.14
3.15
3.16
ER Y}
3.18
3.19
3.20
321
3.22
3.23
3.24
3.25
12k

Systems Development

...

BYRON -- Byron PDL and Document Generatorcoccvvvvenvincniannnsreisessescsseens
CORE -- Controlled Requirements EXPressionccecieiiennessiirenniernsnscsisssennes
DARTS -- Design Approach for Real-Time Systemscoovvmiiivvniniinnnicnienens

DBO -- Design by Objectives

...

DCDS -- Distributed Computing Design Systemcccoeiveveinrievencennrecninnnnnenees
DSSAD -- Data Structured Systems Analysis and Designevvveivinennnninene
E-DEV/ESA -- Essential Systems Development/Essential Systems Analysis

GYPSY -- Gypsy Methodology

...

HOOD -- Hierarchical Object Oriented Design ..o snnnenes
IBM/4LDM -- The Four Level Design Method ...
IEM -- Information Engineering Methodologyccccoeviviviniinisninnnniineeiiinnens
ISAC -- Informations Systems Work and Analysis of Changesc.cevrirnicnnns
IStar -- Integrated Project Support ENVIironmentoocomiinmninieseenssiinens
JSD -- Jackson System Developmentcoeeviniecniieinniienreniini s
MASCOT -- Modular Approach to Software Construction, Operation and Test
MBOOD -- Model-Based Object-Oriented Designcoovvvninnneniiiveiinincnnnns
MINI-ASYST —~ The MINI-ASYST Development Methodologycecceeiiciinnn
MULTU/CAM -- MULTI/CAM - SDM/STRUCTUREDcovuvrrverrrriernnrnnene

ObjectOrycoccovvvinivirnnn

QOA -- Object Oriented ANalySiSccccoverirvnrininenmnee s
OOA/ST -- Object Oriented ANAIYSISccoccvirmeiniiniiiinr e

OOD -- Object Oriented Design

fii

1-1
1-2
1-4
1-7

3-2
37
3-11

3-15
3-19
3-24
3-28
3-32
3-37
3-43
3-47
3-54
3-58
3-63
3-68
3-73
3-77
3-82
3-87
3-92
3-96
3-100
3-105
3-110
3-114
3-118

3.27 PAISLey -- Process-oniented, Applicative, Interpretable Specification Language
3.28 PAMELA 2 -- Parts Assembly Method for Embedded Large Applications
3.29 PDL/81 -- Program Design Language/81ccocovceerercmncnnncenenceensecesescesesenencacs
3.30 PRIDE -- "PRIDE" Family of Products for Information Resource Management

(TR coeeiniieceiectecteee e seeeetesese et e s eres s s anesearestossassessesesnasontessstrsssansesensasentasearesesaseanen
3.31 PROMOD -- the Project Modelscccovcevmvciniiccninnrcinisssisssssssssm e ssesasene
332 PROTOB ...t es st s ot seston seasssbsas st sue e s es b st seestsessanssessossssseneanans
3.33 PSL/PSA -- Problem Statement Language/Problem Statement Analyzer
3.34 RM -- Refinement Methodcccoviiciinccsincinieinc ettt ssencene
3.35 SADT -- Structured Analysis and Design Techniqueooeireriiriviinsiirinionnienen,
3.36 SCR -- Software Cost ReUCHONccccoeomioviuiinincivcitreniirisiirveciunnesessssss s issnrerens
3.37 SD -- Structured Designccoceeoiinriiiiiiiinrceie s s cesresessssssnserssssesaeens
3.38 SEM -- System Engineering Methodologyccooeveviiciimnninnnncnnninnsnesncsnenns
3.39 SSD -- Hatley/Pirbhai - Strategies for System Developmentccococcvvnvinnennnens
3.40 STATEMATEooiiiinietnrtseressecsesnst s sse s ssasessonssasesssnsasesis s sassecsssssasassesess
3.41 StP -- Software through PICTUIEScccciiiemiiinienicnrunrsseniennsiriene et resessssssesssenes snes
3.42 STRADIS -- Structured Analysis, Design and Implementation of Information

SYSIEIMS .eeiciiviiniricetrresintietstseemsse e bsat s e ssenastsansatensassosesssrtssbn s sresessssasestasesrbstasssnsenens
3.43 TAGS -- Technology for the Automated Generation of Systemsc.conivivcnnnne
3.44 UCRA -- User-Centered Requirements Analysisccoeveruerecserimscctesecccnsuesnnnnnas
3.45 WARD/MELLOR -- Ward/Mellor Real-Time Methodc.ooeceiennnnreconccrnnrennne

CHAPTER 4: EMERGING METHODS

4.1 ABDP -- Actor Based Design and Prototypingccecceveeviiininiinenessnsinnensnnnns
4.2 ADARTS -- Ada based Design Approach for Real Time Systemsccccocvvevenrvinen
4.3 CAEDE -- Carleton Embedded System Design Environmentccocoevnviivnccncnne
4.4 CODE-TOP -- Concurrent System Development Using Transformations of
Predicate-transition NEtSccocoviiriniicnicnnnc i teeesaess e sssasetesssnsesensesassvense

4.5 COMIC -- Conceptual Modelling and Information Constructioncccceveemserecen.
4.6 ERAE -- Entity Relationship Attribute Eventccocoviinininnnncccnnnneciciennene
4.7 GANDALF -- Gandalf System for Structure Oriented Environment Generation
4.8 GOOD -- General Object-Oriented Software Developmentccoiviineiicennne.
4.9 HCDM -- Hierarchical CHILL Design Methodcccceiiciniinininncenenccicnniccnreennns
4.10 HPS -- Hierarchical Planning for Software Development and Evolution
A1 INNOVAR ...ttt a s st s s st s sa bt e e
4.12 MC -- Machine Chartscociecnininiiintierennisissiessis i ssinstssiessssssssessescssssssnees
4.13 MMAIM -- Martin Marietta Ada Implementation Methodccccoevevirrriiiniannne
4.14 PROSPECTRA - PROgram development by SPECification and TRAaslation
415 REMORA et scsr st sstsasrs st s s s sas s st st sn e e e susrasassbsmebbsenses
A6 TEDIUM ...ttt se e sreetse e et stess st sseos seaee st sunensbestsseesssasessenesstnessnnsasens
4.17 UOSE -- User Oriented Software ENgINEeringccccovcviveerecmecssncrosseisreninens

iv

4-2
4-6
4-8

4-11
4-15
4-18
4-21
4-24
4-27
4-31
4-33
4-36
4-39
4-42
4-46
4-49
4-52

CHAPTER 5: OTHER METHODS CURRENTLY IN USE

5.1 AUTO:G ...ttt st er s e s e st s b s s e e bbb abe s are st eseneenaneesenns
5.2 DSSD -- Data Structured Systems Developmentccocovirniivivniiecrccenicinnceens
5.3 MERISE -- the MERISE Method ..ot cenens
5.4 NIAM -- Nijssen’s Information Analysis Method ...
5.5 PRECISE ...ttt er sttt sess s b s st s s bbb asnaon st st an
5.6 SAM -- Syslog Automation Methodologyccvvivnininiiniinrnininencneseenenenneneenenns
5.7 SBP -- Specification Based Programmingcccoeeeviiiiniiccnieneencnenienieseneneceeenens
5.8 SEPP -- Software Engineering Practices and Procecntesc.cccocvvcenevcnneeenennene
5.9 SSPM -- Software Standards and Procedures Manuatc..cccecceerererceereeneeneveneecs
5.10 S-JAD -- Structured Joint Application Developmentcocoevvennsiriioenvinienens
5.11 VDM -- Vienna Development Method ... e

CHAPTER 6: SUMMARIES OF RESPONSES TO SELECTED SURVEY
QUESTIONS

6.1 DEVELOPMENT ACTIVITIES ADDRESSED BY THE METHOD
6.2 APPROACHES USED BY THE METHODccooiiiiecicitneescrceemee e eecaesennans
6.3 THE RELATIONSHIP OF METHODS TO SOFTWARE
PROCESS PARADIGMS ...ttt et sransestsas s e ssssassessesen
6.4 EXTENT OF USAGE OF THE METHODcccovveniirinntrenirnnenencssnsensessssssasessanes
6.5 APPROPRIATE APPLICATION AREAScccooiivimiieicnnestneeenescsareseeseseenns
6.6 RELATION OF THE METHOD TO PROJECT SIZEccocoemivcecmereecerecesenene
6.7 RELATIONSHIP OF METHODS TO PROGRAMMING
PRACTICES/CONCEPTSooiircticrcmscssesssstisnic sttt sesesesesessassesensncassosses
6.8 ABILITY TO ADDRESS REQUIREMENTS OF THE TARGET SYSTEM
6.9 TEXTUAL MODES OF COMMUNICATIONccooervirimminricrmeceneensrensrnsessssaseserens
6.10 ICONOGRAPHICAL MODES OF COMMUNICATIONccoccoimmneninnricrennns
6.11 TECHNIQUES FOR REQUIREMENTS CLARIFICATIONccccoovminninrrnennas
6.12 ANALYSIS AND REVIEW TECHNIQUES USED BY THE METHOD
6.13 PROJECT MANAGEMENT SUPPORT PROVIDED BY METHOD

6.16 DOCUMENTATION REQUIRED BY THE METHODccccooeiivninniiceccenene
6.17 QUALIFICATIONS NEEDED FOR USE OF THE METHODccccocvceinivinenenen.
6.18 ASSISTANCE AVAILABLE FOR TRAINING IN THE USE OF THE

METHOD

APPENDIX A: BIBLIOGRAPHYocciiimrrnertiinesnineicnenenseessessssssnisssnsessssensscns
APPENDIX B: SURVEY OF SOFTWARE METHOD DEVELOPERS

APPENDIX C: SURVEY OF EMERGING METHODS...........co.ccoomncvmrmnnrnnraiennnens

5-2

5-5

5-8
5-11
5-13
5-15
5-17
5-20
5-22
5-25
5-28

6-5
6-9

6-13
6-17
6-21
6-25

6-29
6-33
6-37
6-41
6-45
6-49
6-53
6-59
6-63
6-67
6-73

6-75
6-79

This page is intentionally left blank.

i E S G B0 50 G B BN G WS BN B NR O WE BN O o

CHAPTER1

CATALOG OVERVIEW

1.1 INTRODUCTION

Purpose

This catalog provides a consolidated reference for methods used over the total spectrum of software
development. A primary objective is to provide a brief overview of each method, and to give for each method
some insight into its underlying assumptions, the software development activities which it supports, and other
characteristics associated with its use. A second objective is to provide sources for further information,
including literature references and points of contact. One final objective is to provide a facility for contrasting
the various methods relative to selected attributes.

The software process is but one component of the larger goal of building a computer-based system.
There are few methods which address the total development process. Although some of the methods described
in the catalog deal with total system development, it is the purpose of this catalog to focus upon methods
associated with developing the system software. The catalog represents an effort to obtain the most current
information available for each method. To this end, surveys were developed, and responses were solicited from
developers. In writing the catalog the authors have elected to serve as reporters rather than evaluators.
Evaluative statements that appear in the catalog are based upon survey responses.

Intended Audience

The catalog is intended for software engineering professionals involved in either the technical or
managerial aspects of software development. In order to present each method in a way that the reader would find
informative and predictable, a fixed format for describing methods was chosen. It is assumed that the reader has
some background experience with software development projects, as well as some familiarity with methods.

The catalog offers the reader brief descriptions of different methods and their associated characteristics.
While the descriptions of methods are not of sufficient depth to function as a tutorial, they should provide
enough detail to portray the essentials of the method and of related usage characteristics. The catalog also
provides a discussion of some of the main ideas in the software development process. This discussion
establishes the basic terminology and concepts used in the catalog, and should be consulted for background
information and for an understanding of the authors’ perspective.

It is hoped that the software engineering community will find this document useful for gaining insight
into particular methods, as well as for solidifying an understanding of some of the principal ideas in the field.
For this latter purpose, a bibliography has been provided in an appendix. Thus, the catalog may serve as a
reference for ones own work, or for understanding software development methods used by others.

-1

1.2 BASIS OF CATALOG

Background

In November, 1982, in a study commissioned by the Ada Joint Program Office, Peter Freeman and
Anthony Wasserman set forth the requirements for a software development methodology. This study [Free§82],
commonly known as Methodman, related software process issues to the Ada Programming Support Environment
(APSE) and presented an evaluation of a set of methods. Included in the report were a summary of questionnaire
responses and a study plan for evaluating software design methods for use with Ada.

A follow-up study to Methodman was performed by the Institute for Defense Analyses under the
auspices of the Software Technology for Adaptable and Reliable Systems (STARS) Joint Program Office
{Conv85], [McDo085]. Volume II of the report [McDo085] has become known as Methodman II, and summarizes
the work of the STARS Methodology Coordination Team. The report addressed issues related to the total
software development process. The report also suggested an approach to classifying, evaluating, and selecting
methods.

The two studies above provided much of the initial background for the current catalog. The issues
discussed in those reports were reviewed and contrasted with reports of other related research in software
engineering. Among the latter was a report published by the Department of Industry, London, in September,
1981 [DInd81). This study correlated features of the Ada language with the system development process and
described a number of well-known methods. In addition, the study provided an informative discussion of
software process issues and analyzed the concepts of encapsulation, concurrency, and formalized approaches to
software development.

Also reviewed was a report which detailed the problems of NASA’s MSOCC [RoyD84]. The approach
taken in this study was to identify the "...many influences within the workplace that affect the productivity of
software developers...” [Free82]. The study reported on problems in software development as seen from the
developer’s viewpoint, current trends in methods and tools that might alleviate the problems, and some other
projected solutions.

Ideas emanating from various conferences and workshops have further influenced the perspective of this
catalog. The International Workshop on the Software Process and Software Environments held in March, 1985,
provided definitions and discussions that have aided in reconciling terms and concepts that have evolved in
recent times. The presentations and proceedings of the Ninth International Conference on Software Engineering
[ICSES87] held in April, 1987, provided a further update to the issues. Additionally, the emergence of a field
known as Computer Aided Software Engineering (CASE) has brought about an emphasis on the connection
between environments and methods, and has affected the way automated tools have been regarded in the catalog.

Finally, the authors have had an opportunity ‘o refine the approach to this second edition of the catalog,
based on insight gained from their creation of the first edition [Maha87]. The principal difference between the
two editions is the approach towards gathering information for the catalog.

Scope of the Catalog

In developing the scope of the catalog, there was a need to clarify the definitions of method, approach,
tool, and environment. Definitions given in the Conference Proceedings of the 1985 International Workshop on
the Software Process and Software Environments [[WSP85] were used to derive a set of working definitions that
follow. In the discussion which follows, the word scheme has been used to mean "a way of performing a set of
activities.”

1-2

Method: A definite, established, logical, or systematic plan. The steps and purposes have been
thought out beforehand in detail. A scheme is a method when it guides the user to a predictable result
given an appropriate set of starting conditions.

Approach: A way of beginning or managing an effort; a way of analyzing, planning or directing a
project; a way of conducting operations. A scheme is an approach when it suggests ways to identify
goals initially and/or suggests, at an abstract level, ways to proceed toward goals.

Tool: Anything used to do specialized work or to obtain a specific result; there is a unity of purpose.
A scheme is a tool when it is essentially automatic. The user supplies input data or changes, but the
tool produces the associated work product.

Environment: An integrated collection of tools supporting an approach. The components of an
environment are designed to reduce the effort required to carry out the software development process

whether they are used individually or in combination.

The use of the term method in this catalog needs further explanation. Both tools and approaches exist
over wide spectra. Within these spectra, making a clear distinction between a sophisticated tool and a method on
the one hand, or between a method and a prescriptive approach on the other, is difficult. Thus, the authors’ use
of the term method in this catalog has been widened to include schema that could be termed tools or approaches.

By way of examples, consider th. following. An integrated set of tools with a prescriptive user’s
manual might be offered as a software development environment. In such a case, an implied method or approach
exists by virtue of the fact that there is only one way to use the set of tools in order to arrive at a final software
product. On the other hand cousider a scheme which prescribes the order in which activities occur and how these
activities are to be managed, but is not limited to one specific way of accomplishing individual activities. This
scheme might be offered as an approach. Nevertheless, the instantiation of such a scheme implies a definite
systematic plan for developing software. Accordingly, this catalog includes those schema that have been judged
to satisfy the essence of the definition for method given above: a definite, established, logical, or systematic
plan.

The term methodology occurs often in the context of software development. It was observed that the
meaning assigned to the term varied widely throughout the software community. Furthermore, recent practice
within the software engineering field has encouraged the use of the term methodology only in reference to the
study of methods. Accordingly, the meaning of the term in this catalog is restricted to the study of methods.

Survey Efforts and Results

For a method to be included in the catalog, it was decided that information should be provided by the
developer or vendor of the method. Some important methods may have been omitted due to a lack of response
from developers who were contacted, or due to inadequate contact information with respect to other developers.

For the first edition, an initial set of candidate methods was compiled from prior methodology surveys,
conference proceedings, technical journals, bibliographies published by professional organizations, and
responses to a bulletin board notice posted on various nation-wide electronic networks. In some cases, an initial
contact letter was used to further clarify the suitability of these candidates. The candidate methods for the
second edition were identified based on the efforts of the first edition as well as on updated information. In
addition, the authors made a decision to de-emphasize inclusion: of methods which were considered to be single-
purpose and oriented towards data-processing systems. Emphasis was placed on obtaining multi-purpose
methods as well as methods oriented towards developing real-time systems.

1-3

-

The strategy for obtaining information for the first edition of the catalog differed significantly from the
strategy used for the second edition. In the first edition. the survey of method developers was designed such that
the responses from this survey could be "verified” by a method-user survey vehicle. This approach was taken in
the light of criticisms of previous studies which failed to include the perspectives of users of methods. The
questions for both the developer and user surveys for the first edition were, in the main, formulated for multiple-
choice response, in order to simplify data analysis and to provide the opportunity to contrast methods.

In the initial phases of the efforts to update the catalog, an analysis was made of the results of the first
edition and the inherent data-gathering approach. Based on this analysis. an extensive revision was made of the
questionnaire, with emphasis placed on soliciting more specific information on various method aspects.
Additionally. an extensive analysis was made of the attempt to gather data from method users. The authors
concluded that gathering meaningful data about individual methods from users requires information about the
respondents themselves, and would involve significantly more resources than were available in the project.
Accordingly, it was decided to use only developer/vendor information as a basis for the second edition of the
catalog. Two survey vehicles were developed: a survey for methods currently in use in the software engineering
community. and a survey for methods which have not yet become availible for general use.

The data gathering results for the second edition were as follows. 143 initial letters were distributed in
order to determine the appropnate type of survey to send: from responses to this initial mailing and from sources
identifying known methods, approximately 137 developer survey questionnaires were distribuied. Completed
questionnaires were received for 63 (45%) methods. This total represents the combined response for both types
of survey vehicles.

In summary. candidate methods were identified by researching software development literature and
recent conference proceedings, and by an initial contact letter sent to professionals in the field. The information
used to describe each method was obtained primarily from responses to the developer questionnaire: technical
literature provided additional information. The results of the survey also provided the basis for comparing
methods to each other.

1.3 CONTENT OF CATALOG

Determination of Descriptive Characteristics

The particular set of characteristics chosen to describe methods was determined in the following
manner. An initial set was identified based upon terms used primarily in the two Methodman studies. with some
further input from other methodology research sources. This set, based upon the considerable previous efforts of
others, provided a foundation for further analysis and refinement.

During the next step in the selection process. the authors individually scored each characteristic for
identifiability and importance. The word "identifiability” is used to mean the capability of establishing that a
given method has the given characteristic. A consensus rating was then determined. It was evident in this
process that various studies were not consistent in the meaning assigned to such characteristics. Additionally, for
some characteristics of high importance it was difficult to establish their identifiability. This difficulty was due
to one or more factors. In the first case, the characteristic may be an abstraction representing a collection of
other characteristics which themselves are more identifiable. Secondly, the characteristic may represent a
concept that has come into being before any well-defined sub-characteristics have been associated with it
[Abbo83]. Finally. the determination of whether a given method possesses a certain characteristic may require
some form of experimentation.

As a result of the above process. the characteristics selected for describing methods in this catalog were:

- Activities covered by the method,

- Extent of usage,

- Appropriate application areas,

- Ability to incorporate requirements of the target system,
- Support of communication during development,
- Client involvement,

- Support of changeability,

- Support of project management,

- Automated facilities supporting the method,

- Available training in the use of the method, and
- Acquisition factors.

Additionally, some information has been provided about characteristics associated with the resulting
software, including maintainability, portability, testability, reliability, and reusability.

It may be observed that these characteristics are similar to those derived in previous studies. Where this
analysis does differ from these previous studies is in the emphasis placed on the method itself as opposed to the
software resulting from use of the method. When characteristics that apply more to the qualities of the resulting
software than to the method are discussed, such as portability or maintainability, the focus is to describe the
intent of the method to impart these qualities rather than to evaluate the effectiveness of that intent. Thus, some
important software qualities have been de-emphasized in the catalog due to the lack of measurable criteria. What
has been provided is a framework for reporting information on a wide range of methods.

Organization of the Catalog

Chapter 1, "Catalog Overview", discusses the procedures that were followed in arriving at the content of
this catalog, as well as the organization of the information in this document.

Chapter 2, "An Overview of Basic Concepts”, provides background information on software process
concepts. Examples of software process models are given, followed by a discussion of approaches to software
development. Additionally, the relationships between methods and approaches, as well as between tools and
environments, are explored.

Chapter 3, "Methods Currently in Use", presents descriptions of methods which are used to develop
software systems, and for which a developer survey was completed.

Chapter 4, "Emerging Methods”, presents brief descriptions of additional methods for which a
developer survey was returned but which are classified as in development or exploratory.

Chapter 5, "Other Methods Currently in Use”, summarizes information on several methods which were
included in the first edition but for which more current information could not be obtained.

Chapter 6, "Summaries of Responses to Selected Survey Questions”, contains the authors' syntheses of
responses to selected developer survey questions. Additionally, summaries of these responses are presented in
tabular form.

Appendix A, "Bibliography”, i< divided into a general reference section and a method-specific section.
Individual items have been included ¢ " “12r because they were referenced in the catalog or because they provide
an additional source of information related to the software process.

Appendix B, "Survey of Software Method Developers", provides a copy of the questionnaire used to
compile information about methods currently in use.

Appendix C, "Survey of Emerging Methods", provides a copy of the questionnaire used to compile
information about methods not yet available for general use.

Format for Describing Methods

The information which is used to describe an individual method is based upon the responses from the
developer's survey, and on literature references. a list of which is provided at the end of each write-up. The
acronyms used in the catalog are those assigned by the developers. When a developer had no preferred acronym
for his or her method, the authors chose an acronym to serve as an identifier of the method in this catalog.

The first section of the description provides background information which includes a synopsis of the
method and a brief history including a list of other methods from which the current method evolved.

The next section presents a summary description of the method, with information on such topics as
approach, the sequence of events followed in using the method, the components of the method, and where these
components are used in the software development process.

The third section, "Technical Aspects”, reports estimates of the number of organizations using the
method and of the number of delivered systems. Opinions of the developer are reported regarding appropriate
application areas, and the appropriate size of application for which to use the method. Further information on
applicability is provided related to the method’s ability to incorporate particular characteristics of the target
system, and any relationship of the method to programming languages. Also, the modes of expression required
by the method are reported, as well as any mapping rules prescribed for transiating from one mode of expression
to another, and the way that the method assists in translation across phases of the software process. Further,
techniques for analysis and requirements clarification are discussed, as well as aspects of the method which
address changes in the requirements, maintenance, portability, and reusability of the resulting software.

The fourth section, "Project Control and Communication”, discusses the way the method addresses
project management activities, as well as the communication channels provided by the method within the
technical team, for management, and for understandability with the software client. The means by which the
method involves the software client in the development process is reported, as well as the software
documentation associated with the method. Quality assurance issues such as verification and validation
techniques. as well configuration management, are presented.

The fifth section, "Ease of Use”, provides information on technology insertion, including the
developer’s opinion of the essential concepts that must be understood and the minimum qualifications of a team
leader for successful use of the method. Also given are estimates of leamning times, and the training available for
learning the method. The facilities for incorporating automation are summarized, including an overview of
specific support tools.

The sixth section, "Acquisition Factors”, lists cost estimates, presents the required hardware and
software configuration needed to support the method, and gives contact information. If the acronym used in the
catalog to represent a method is not a standard product name, this will be noted under the contact information
section.

The final section, "References", lists books or articles which should be consuited by readers who wish
to learn more about the method. These references are also listed under "Method-Specific Literature"” in the
bibliography which appears in Appendix A.

1-6

EE EE N U W G G5 UGN UGN Un G 0N AN Sm R WR 0 W -

Comparing and Contrasting Methods

In Chapter 6, "Summaries of Responses to Selected Survey Questions”, the reader is provided with a
convenient format for contrasting methods. The authors have selected a set of questions whose format provided
a ready basis for comparison of responses. For each of the selected questions, the responses of the developers
have been summarized in tabular form. Topics which have been taken up in this chapter include development
activities addressed and approaches used by the method, extent of usage of the method, recommended size of
application with which to use the method, appropriate application areas for use of the method, and the ability of
the method to address specific constraints of the target system. Additionally, this chapter addresses modes of
communication used by the method, support provided by the method for changeability, for verification, for
project management and for documentation, assistance available for training in the method, and estimates of
times needed to learn the method. Further topics include the relationship of the method to software process
paradigms and to programming practices or concepts, and the developer’s opinion of minimum qualifications
needed for successful use of the method.

The results reported in these tables represent the responses of the developers. The authors have not
attempted to evaluate these responses in any manner, but do provide the reader with caveats for how he or she
may best interpret these responses.

1.4 CONCLUSIONS AND OBSERVATIONS

The data for the second edition of the catalog was based solely on the responses provided by developers
to survey vehicles, with reference to technical literature for supplemental information.

The definitions given in this catalog and the set of characteristics chosen to describe methods may not
meet with universal agreement. The experience of creating the catalog convinced the authors that these choices
were reasonable. Accordingly, the authors conclude that (1) the broad criteria chosen to select methods were
appropriate, and (2) useful information about methods can be communicated by using a largely descriptive
approach.

Several observations have been drawn by the authors as a result of the effort to produce this catalog.
First, methods developed more recently appear to be more prescriptive, are being tailored to specific application
areas, and/or attempt to involve the client more closely in the development process. Secondly, methods which
use formal justifications to show correctness are prominent in the European community, and are finding
increased importance in the United States. The authors have also observed that the European methods, both
current and emerging, tend to have more demanding requirements for education than methods originating in the
United States. A fourth observation is that there is a movement towards object-oriented approaches. Finally,
structured analysis is a progenitor of many current methods: that is, many methods, both those that have been
used extensively and those which have emerged recently, prescribe some form of structured analysis for concept
exploration and system specification.

1-7

This page is intentionally blank.

1-8

CHAPTER 2

AN OVERVIEW OF BASIC CONCEPTS

2.1 INTRODUCTION

Terminology and Complexity

Software engineering encompasses many concepts, from project management through system design
and software coding, to maintenance. Consequently, the terminology associated with the field is extensive and in
a state of change, making descriptive clarity somewhat difficult. The concepts associated with the software
process involve both the study of distinct ideas as well as their interrelationships. As in all fields, there is a need
to categorize concepts in order to attain some level of abstraction.

Currently, terminology in software engineering is not universally agreed upon - terms are overloaded,
unnecessarily synonymous with others, or represent concepts which have not yet stabilized. In addition, proper
terms to convey distinctions between overlapping concepts may not exist. Moreover, there are attributes of
software systems which are very difficult to understand and/or measure. Consider, for example, terms like
maintainability, reusability, portability, robustness, testability, and changeability. Casual use of such a term
could give the mistaken impression that the concept itself is well-defined.

In the sections which follow, an attempt has been made to provide the reader with a brief overview of
software process concepts pertinent to this catalog. The reader is also provided with the authors’ observations on
the similarities and differences between some of these concepts. Because of the extensive amount of software
process literature, the authors are not attempting to make an in-depth presentation. Instead, the authors’ focus is
intended to highlight the differences between concepts, guiding the reader to other sources. It is hoped that for
those readers who are new to this field, this chapter provides some clarification of terminology. For all readers,
it is the authors’ intent to establish a basis of terminology and concepts used in the catalog. The reader is
encouraged to consult the general bibliography in this catalog to gain a more thorough acquaintance with
software process research.

Definitions

In this section, definitions of key terms used in the catalog are stated. They are provided so that the
reader can get some sense of the authors’ understanding about methods and related ideas. Furthermore, the
definitions set a standard for the terms used throughout the catalog. Three important definitions stated in
Chapter | are repeated here.

Method: A definite, established, logical, or systematic plan. The steps and purposes have been
thought out beforehand in detail. A scheme is a method when it guides the user to a predictable
result given an appropriate set of starting conditions.

Approach: A way of beginning or managing an effort; a way of analyzing, planning or directing
a project; a way of conducting operations. A scheme is an approach when it suggests ways to
identify goals initially and/or suggests, at an abstract level, ways to proceed toward goals.

Environment: An integrated collection of tools supporting an approach. The components of an
environment are designed to reduce the effort required to carry out the software development
process whether they are used individually or in combination.

The following definitions were offered by the steering committee of the March 1985 International
Workshop on the Software Process and Software Environments [IWSP85].

Software Process: The collection of related activities, seen as a coherent process subject to
reasoning, involved in the production of a software system.

Software Process Model: A software process model is a purely descriptive representation of the
software process. A software process model should represent attributes of a range of particular
software processes and be sufficiently specific to allow reasoning about them.

In the sections that follow and throughout this catalog, the authors strive to use terms in a manner
consistent with the above definitions. The reader is encouraged to join with the authors in this effort to be
consistent and careful in the use of terminology associated with the software process.

2.2 SOFTWARE PROCESS ABSTRACTIONS
2.2.1 Introduction

Models and approaches are abstractions which help to conceptualize the process of software
development. A software process model offers a means of representing the components of the development
process, while a software approach offers a means of specifying how activities are to be performed in accordance
with some model.

The model concept, taken at a high level of abstraction, and applied to software development, is
exemplified by the concept known as the "software life-cycle”. This life-cycle notion captures the idea of
software existing beyond the design and programming stage of development. The life-cycle concept implies that
software exists even in the conceptual stages of problem definition, that it needs to be maintained after formal
development has been completed, and that it functions until retirement. This idea has served to expand the
boundaries of what software is by emphasizing the importance of factors outside of the development
environment, such as the software client and software support centers for maintaining systems. In spite of the
generality of this idea, however, it is the authors’ opinion that the use of the term life-cycle has often been
restricted to a single model. Accordingly, in this catalog the authors have elected to use the term "software
process" in order to convey a more broadly based concept.

Models, be they of the software development process or of the software itself, are constructed with the
model builder’s bias of what is important. This bias determines what set of concerns will receive greater
visibility. One of the more recent concerns in many of the process models is the concept of "assurance”, that is,
that the software product matches the client’s intent. A model may deal with this concept by including the role
of the software client in validating the system. Another model may incorporate this concept through a structured
formalism which ties requirements to the end-product. Assurance may also correlate to other considerations such
as the type of system to be developed, the technical orientation of people involved in the development eifort, or
the tools used in the effort. Consequently, the appropriate considerations need to be represented in the process
model.

2-2

Approaches to software development also cover a range of abstraction. An example of a high level
approach might be a corporation’s strategy for managing a project, including the choice of environments and
methods to be used for software development. At a lower level, the software decomposition strategy proposed
by a method may also be called an approach. Such a decomposition strategy is, in turn, based upon a model of
the target system as seen from a technical viewpoint. The model itself is biased by the parts of the system given
a high priority by the model maker. Thus, some models assign data a primary position while other models
choose to focus on the tasks the system must perform.

An opinion exists among some experts that there are benefits to having different views of the target
system. These experts advocate a strategy of using different models simultaneously to produce multiple views.
On the other hand, the same goal may be attained by linking one distinct model to another, creating a hybrid.
For example, some models that are data oriented have been modified to incorporate control constructs.

At times, it is difficult to partition software process abstractions in a manner that distinguishes an
approach from the underlying model. The attempt to conceptualize certain process models requires some
elaboration of the approach to be followed. The model represents "what" is to happen in the software
development process; an approach specifies "how" this is to be accomplished. It is not always easy to separate
the two. Examples of this are the rapid prototyping model, and the spiral model. On the other hand, approaches
are proposed for which no related process model has been explicitly elaborated.

In summary, abstraction is required in order to reason about the software process. On the other hand,
the establishment of clearly defined concepts has proven difficult to achieve.

2.2.2 Software Process Models

An interesting insight into the concept of models and their relevance to software engineering is quoted
by M. Lehman from a reprinted article which originally appeared in "The Encyclopedia of Ignorance":

In general, as knowledge and understanding of an artificial, man changeable, system increases,
we attempt individually and collectively to modify the behavior of that system.... The resultant
configuration is and must be treated as a different system which requires a new model to
represent it. Thus artificial systems and their models appear to be essentially transitory,
’continuously evolving’. [Lehm85]

In the following paragraphs, the models presented exhibit various ways of viewing the software
development process; these viewpoints, in tumn, contribute to the formulation of other models. For a relevant
collection of articles on this topic, see "New Paradigms for Software Development" [Agre86].

The Waterfall Model

The Waterfall model is one that many view as the classic description of the software process. This
model was first introduced by W. Royce [Royc70]. This model divides the process into the following phases:
system requirements, software requirements, analysis, program design, coding, testing and operations. Each
phase is conceived in terms of inputs, processes, and outputs. In this model, it was intended that the software
process proceed through the above sequence of steps with iterative interaction between phases confined to
successive steps. Experience showed, however, the need for more interaction between non-successive steps.
Variations of the model which allow for such interaction have been proposed.

Though there has been much criticism of the model, R. Pressman states:

... the classic life cycle paradigm has a definite and important place in software engineering
work. It provides a template into which methods for analysis, design, coding, testing, and
maintenance can be placed.... While it does have weaknesses, it is significantly better than
haphazard approach to software development. [Pres87]

The Spiral Model

The Spiral concept has evolved at TRW under the leadership of B. Boehm. The model involves
multiple iterations through cycles with the intent of analyzing the results of prior phases and determining risk
estimates for future phases. At each phase, alternatives are evaluated with respect to the objectives and
constraints, forming the basis for the next cycle of the spiral. Each cycle is completed with a review involving
relevant parties.

Boehm states:

The model reflects the underlying concept that each cycle involves a progression that addresses
the same sequence of steps, for each portion of the product and for each of its levels of
elaboration, from an overall concept-of-operation document down to the coding of each
individual program. [Boch88]

The Prototyping Model

The Prototyping model advocates the early development of components representing the eventual
system. Often these components represent the user interface to the system. A skeletal implementation of this
interface is developed with the intent of providing an opportunity for feedback from the software client before
the final system is specified and designed.

In an overview of prototyping, W. Agresti states:

A software prototype is an executable object for which the users and developers have different
expectations than they have for the corresponding delivered software product.

"The expectations for prototypes often include less functionality or poorer performance than the
delivered product will provide. [Agre86]

While the clarification of the user interface is one goal, prototyping may also be employed as a concept
within the context of another model. In this case, the second model of the software process may regard

prototyping as but one component of the process, to be used to clarify the behavior of the system at an early
point in development.

Incremental Model

In the Incremental model, an initial subset of the system is fully developed. Then in successive steps,
more elaborate versions are built upon the previous ones. The architectural design of the total system is
envisioned in the first step, but the system is implemented by these successive elaborations. The software is
developed in increments which represent degrees of functional capability.

The advantages of incremental development over either a pure top-down approach or prototyping are:

The increments of functional capability are much more helpful and easy to test than the
intermediate level products in level-by-level top-down development. The use of the successive

increments provides a way to incorporate user experience into a refined product in a much less
expensive way than the total redevelopment involved in the build-it-twice approach. [Boeh81]

Operational Model

Behaviors particular to the problem domain are modeled and simulated in the beginning stages of the
operational model, in order to explore with the software client the way and order in which events happen. This
exploration is made possible with the construction of an operational specification of the system. The concemn at
the specification level with how the system behaves is in contrast to models whose specifications define the
system in terms of a black box mapping inputs to outputs.

While the behavior of the problem domain is emulated in the specification, the software structures that
will eventually be used in the actual system to produce this behavior are determined later in the development
process.

P. Zave describes the operational approach as follows:

During the specification phase, computer specialists formulate a system to solve the problem and
specify this system in terms of implementation-independent structures that generate the behavior
of the specified system.... This description may make an operational specification sound like a
design, but it is not. First of all the structures provided by an operational specification language
are independent of specific resource configurations or resource allocation strategies ... while
designs actually refer to specific runtime environments. [Zave84)

Transformational Model

The Transformational model starts with a program specification and ends with a program, not unlike the
Waterfall model. The difference is that in the former, progress between the two points is made through an
automated series of transformations.

Definitions of terms associated with this model are given by H. Partsch and R. Steinbrueggen:

"Transformation rules’ are partial mappings from one program scheme to another such that an
element of the domain and its image under the mapping constitute a correct transformation....
"Transformational programming’ is a software process of program construction by successive
applications of transformation rules. Usually this process starts with a (formal) 'specification’,
that is, a formal statement of a problem or its solution, and ends with an executable program.
[Part83]

According to Agresti [Agre86], the benefits associated with this model include:

- Reduction of the labor intensity of software production through the automated
transformation;

- Assistance in preserving correctness through the application of formal transformations;

- Replacement of final product testing by verification of the program specifications;

- The ability to produce the desired transformations through a combination of small units of
specialized programming knowledge.

2-5

Fourth Generation Techniques

Recently, approaches to software development have emerged which make extensive use of fourth
generation tools. These tools allow specification at a high level with code automatically generated based upon
some formalized specification. The approach involves specification in a notation which captures functionality,
or in a language which is close to a natural language. The goal is to produce the software from a high-level
specification.

The approach utilizes an environment which supports some combination of capabilities such as the
following: nonprocedural database query languages, spreadsheet functions, report generators, screen
definition/interaction capabilities, automated code generation, and high-level graphics facilities.

The major steps in the fourth generation techniques involve ucfinition of the requirements, choice of a
design strategy, implementation using fourth generation languages. and production of the final system. Several
iterations occur through these steps to allow the developer and client to clarify the precise requirements for the
system.

In summarizing the current state of this approach, Pressman states:

With very few exceptions the current application domain for 4GT is limited to business systems
applications, specifically, information analysis and reporting keyed to large data bases....

"Preliminary data collected from companies using 4GT seem to indicate that time required to
produce software is greatly reduced for small and intermediate applications and that the amount
of design and analysis for small applications is also reduced.

"However, the use of 4GT for large software development efforts demands as much or more time

for analysis, design, and testing (software engineering activities) thereby negating the substantial
time saving achievable through the elimination of coding. [Pres87]

2.2.3 Software Approaches

In the following sections, the authors describe some basic schema by which software is conceived. An
examination of different methods shows that these schema, or variations thereof, occur frequently.

Structured Approaches

Structured approaches have been proposed for both analysis and design. In the analysis phase,
hierarchical and functional relationship between objects and activities are identified. At each level in the
decomposition, components of the system are characterized in terms of the parent component, input, output,
control, activity, and mechanism supporting the component.

Classic structured analysis was introduced by T. DeMarco, based upon the use of data flow diagrams
[DeMa78]. Data flow diagrams model the process in terms of data flows and transformations; they form a
network showing data entering as input, proceeding through a transformation process, perhaps in conjunction
with other data, and becoming output. Additionally, data flow diagrams provide a distinct representation of the
external entities involved in the system. For example, the people or job functions may be represented directly,
such as “"customer” or "billing department".

L. Peters summarizes structured analysis as follows:

2-6

Requirements definition and logical design are linked or integrated into a single phase called
structured analysis ... user participation is also employed to ensure that the results of analysis do
reflect the customer’s needs based on the present situation (current physical modet), its abstract
equivalent (current logical model), and the new system or solution model (new logical model).
[Pete81]

Structured design proposes to map the flow of data from its problem domain into its software structure.
The steps of structured design involve characterization of the data flow through graphical representation,
identification of the various transform elements, assembling these elements in an hierarchical program structure,
and refinement and optimization.

A key component of structured design involved the evaluation of the modular structure of the design
relative to the concepts of coupling and cohesion. W. Stevens, G. Myers, and L. Constantine stated:

Coupling is the measure of the strength of association established by a connection from one
module to another. Strong coupling complicates a system since a module is harder to understand,
change, or correct by itself if it is highly interrelated with other modules. Complexity can be
reduced by designing modules with the weakest possible coupling between modules. [Stev74]

The related concept of cohesion is a measure of the single-purposeness of a module. Modules with a
high degree of cohesiveness not only are understandable but are excellent candidates for reuse.

In assessing the wide popularity of structured design, L. Peters states:

Structured design has gained wide popularity for two primary reasons. One is that it allows the
software designer to express his perception of the design problem in terms he can identify with:
data flows and transformations. The notation with which he expresses these flows is simple,
easy to use, and understandable by management, customer, and implementor.

“The other primary reason for this method’s popularity is that it provides the designer with a
means of evaluating his (and others’) design, serving as a sort of benchmark against which to
measure his success or progress. In this regard, the method is unique. In fact, if this method
consisted of nothing more than the design evaluation concepts of coupling and cohesion,
structured design would still be a significant contribution to the software field. [Pete§1]

Object-Oriented Approach

The Object-Oriented approach to the software process is one in which models of entities are constructed
as self-contained components. The system is defined by the interactions and behavior of these components. An
important aspect of the design process patterns the behavior of the model so that it is "visible" only where there
are interactions expected with other entities. Thus, the behavior that is self-contained is undetectable by these
other entities.

In this approach, the concept of type is extended to class in which a model inherits or extends the
characteristics of other models. Further, program entities may refer to objects of more than one class, a
characteristic known as polymorphism.

A system’s behavior is patterned upon the behavior of objects manipulated by the system, not the

"function” of the system. The point is to address what it is that the system acts upon, rather than what the system
does.

2-7

G. Booch says that:

... object-oriented development requires certain facilities of the implementation language. In
particular, we must have some mechanism to build new classes of objects (and ideally, a typing
mechanism that serves to enforce our abstractions). It is also the case that object-oriented
development is only a partial-lifecycle method and so must be coupled with compatible
requirements and specification methods. [Booc86]

Entity-Relationship Approach

This approach uses the Entity-Relationship (ER) model [Chen76] to categorize the information from the
real-world problem domain. It recognizes that the database, as well as the code, needs to be considered at both a
logical and physical level. Such information is conveyed by defining the entities in the domain, the
interrelationships of those entities, and the attributes possessed by those entities. Ultimately, these concepts must
be mapped into a schema which is implementable on a database management system.

In the early stages of development of systems which involve an underlying database structure, the ER
model is often used as a means of conceptualizing information at a high level. In [Davi83], a perspective is

given on the origins and use of the ER approach, as well as some reasons for its increased popularity since 1975.

Event-Oriented Approach

This approach is characterized by the concept of stimulus- response, where events are the stimuli to the
system, and responses are comprised of actions taken by the system and the resuitant outputs. Event-orientation
builds the system based upon the types of events the system is likely to encounter.

Stepwise Refinement

In a seminal paper published in 1971, N. Wirth proposed the concept of stepwise refinement, a top-
down design strategy. The process starts at a high level of abstraction, and incorporates details through a
sequence of elaborations. This method of program decomposition parallels the process of partitioning and
refinement that is frequently used in the analysis of requirements.

Wirth summarizes the refinement steps as follows:

In each step, one or several instructions of the given program are decomposed into more detailed
instructions. This successive decomposition or refinement of specifications terminates when all
instructions are expressed in terms of an underlying computer or programming language, and
must therefore be guided by the facilities available on that computer or language. The result of
the execution of a program is expressed in terms of data, and it may be necessary to introduce
further data for communication between the obtained subtasks or instructions. As tasks are
refined, so the data may have to be refined, decomposed, or structured, and it is natural to 'refine
program and data specifications in parallel’. [Wirt71]

During the refinement process, a notation which is natural to the problem should be used as long as
possible. Ultimately, the implementation language will determine the direction in which the notation must
evolve.

Wirth further states that each refinement step involves incorporating design decisions, such as
efficiency, clarity, and regularity of structure. Various aspects of design alternatives must be weighed. At times

2-8

is is necessary to revoke early decisions, and to retumn to an earlier step. If done carefully, stepwise refinement
provides a modularity which facilitates later change.

2.2.4 Associated Principles and Practices

Frequently used practices supporting development that do not constitute methods or approaches are
described below. They are not methods or approaches because they do not specify how to develop the system;
rather, they merely provide guidance about how to structure the software.

Information Hiding

The concept of information hiding was introduced by D. Parnas. It proposed a way of decomposing a
system to allow for changeability, comprehensibility, and the possibility for parallel development of system
components. This is accomplished by hiding internal design considerations from other modules, and by
avoidance of shared data and the modification of data "owned by" other modules. Furthermore, the knowledge
of how data is implemented is hidden within the module to which the data belongs.

Parnas states that when information hiding is used, "modules no longer correspond to steps in the

processing.... Every module in [such a] decomposition is characterized by its knowledge of a design decision
which it hides from all others.” [Pam72]

Structured Programming

In 1969, E. Dijkstra’s article, "Structured Programming" [Dijk69] drew the attention of the software
community to the concept of structured programming. The goal of structured programming is to achieve
program verification in a formal manner.

Initial focus was on the limited set of control structures proposed for coding. These structures feature a
single- entry/single-exit characteristic that facilitate an understanding of the control-flow of a software program.
Though not appearing in this initial article, concepts associated with stepwise refinement and top-down design

were also being incorporated by Dijkstra into the concept of structured programming. These concepts were
elaborated in (Dijk72].

In looking back at the beginnings of structured programming, H. Mills states:

... Dijkstra’s first article on structured programming did not mention syntax, typography,
readability, stepwise refinement, or top-down development. Instead, his main argument for
structured programming was to shorten the mathematical proofs of correctness of programs!
That may seem a strange argument when almost no one then (and few now) bothered to prove
their programs correct anyway. But it was an inspired piece of prophecy that is still unfolding.
[Mill86]

29

2.3 RELATIONSHIPS BETWEEN METHODS, APPROACHES, TOOLS, AND ENVIRONMENTS

2.3.1. Introduction

The following sections discuss the problems in distinguishing the concepts of method, approach, tool,
and environment. Observations are made on the similarities and differences between these concepts.

2.3.2 The Relationship of Method to Tools

Many of the methods surveyed in this catalog are embodied in an automated tool. In some cases, the
method may be extracted from the tool without losing the essence of the method. In other cases, the tool and the
method are so closely coupled that the method cannot stand alone.

The way in which a method develops influences its relationship to a tool. Methods which evolved
without incorporating software tools may now receive support from a number of different tool vendors. Other
developers treat antomated support as a necessary component of their method, in which case the method and tool
are likely to be synonymous.

Tools may also extend the scope of a method by addressing concepts beyond those originally
considered by the method. In this case, it is difficult to distinguish whether the method has been redefined to
encompass these additional concems, or continues as but one part of a more elaborate scheme. In such a case, it
can be difficult to determine whether the method incorporated the tool, or the tool subsumed the method.

This difficulty becomes even more complicated as a method which can exist independently
disassociates itself from the tool in which it was first "incarnated”. On one hand, the method developer may
propose new aspects for the method that are not supported by the tool. On the other hand, the toolmaker may
have his own ideas about the way development should be done, diverging from the developer’s original ideas. A
relationship still exists, but the ease with which the components of this relationship may be distinguished varies
considerably.

All of the above reveals why it is difficult to clearly distinguish methods and tools. Though there are
schema which are clearly tools, and other schema which are clearly methods, there is a broad spectrum over
which these two types of schema merge.

2.3.3 The Relationship of Approaches to Environments

The correspondence between an approach and an environment parallels the correspondence between a
method and a tool, but at a higher level of abstraction.

An approach may be likened to a framework in which specific methods can be incorporated. The
approach is a general strategy for accomplishing goals; the particular methods incorporated in an approach
specify the detailed steps for meeting these goals.

Tools are also specific resources for accomplishing particular tasks; tools are the entities which
constitute an environment, which itseif becomes a framework for the toolset.

An approach is necessary for addressing factors outside the scope of a particular method; the idea of

coverage correlates more with approach than with method. Similarly, considerations associated with
environments must consider broader issues that those addressed by an individual tool within the environment.

2-10

These considerations are necessary to provide a truly integrated environment which will support the total
development process.

Both approaches and environments may be linked to particular methods and tools; they may also
represent generic frameworks that can accommodate a variety of methods and tools. Some approaches make
assumptions about the nature of the development environment, while existing environments imply a strategy
which constitutes an approach. Because of this overlap in approaches and environments, it is often difficult to
clearly distinguish one from the other. This difficulty with taxonomy parallels the problem of distinguishing
methods and tools.

2.3.4. The Relationship of Methods to Approaches and Environments

Methods and tools may be seen as embedded components in a system characterized by an approach and
an environment. Tools and environments comprise syntactic suppont for development. Methods and approaches
support development from a semantic standpoint. Ideal support for the development process consists of a blend
of these four components. This idea appears in the following statement from [Free82]:

... one cannot choose a tool, a management practice, or any other element of the total
environment without considering that element in its relation to the other parts of the
development system.

2.3.5 Summary

The sections above are intended to alert the reader to the multifaceted and complex issues which are
associated with the concepts of method, approach, tool, and environment. In particular, it may be possible in the
abstract to make precise distinctions among such concepts; however, in practice, such clear delineations cannot
always be made. Because precise distinctions are difficult to make, for this catalog, the authors have assigned a
wide interpretation to the term "method”.

2.4 COMPARISON CRITERIA FOR METHODS

2.4.1 Establishing a Basis for Comparison

The information contained in this catalog is intended to provide a basis upon which the software
engineering community can compare methods. The task of comparing methods can be addressed by examining
the software produced using the method, by examining the impact of the method on the development process, or
by examining features of the method itself. Unfortunately, a comparison of methods based upon an examination
of either the resultant software, or the process of development, represents a formidable challenge.

Ideally, it would be desirable to show that use of a particular method results in more reliable software,
or in more well-structured and maintainable software. Similarly, being able to demonstrate that use of a
particular method results in greater productivity during the software process, or in better control of the process
would be valuable. Attempting to confirm such cause and effect relationships requires that one demonstrate that
the desired effect results primarily from use of the method, and not from the other factors associated with
software development. Such factors include the composition of the development team, the environment provided
for development, the organizational structure used to manage the project, the nature of the problem domain, and

even the time-frame associated with development. Isolating the respective impact of each of these factors is an
unresolved problem.

There is evidence to suggest that it is both possible and practical to create a basis by which methods can
be compared by providing descriptive data about methods themselves. Furthermore, the comparison can be
facilitated through use of an appropriate representation of the data. Such a basis is provided in this catalog
through the use a uniform format in the description of individual methods, and by providing tables where
specific features of methods are represented.

The underlying premise for this catalog is that an absolute comparison, or ranking, of methods is neither
possible nor desirable. In a report on the assessment of methods, W. Wood and associates at the Software
Engineering Institute made a similar assertion, stating:

There is no such thing as an overall 'best’ method for developing all software, only the method
that will work best to help develop a system with particular characteristics and will blend with an
vrganization's software development practices. [Wood88]

Thus, what is required is information by which a judgment can be made as to the suitability of the
method to the problem domain, to the needs of the development team, to the available development environment,
and to the organization's management practices.

As part of the task of creating this catalog, the authors developed a list of high-level comparison criteria
associated with methods. The set of descriptive characteristics detailed in Section 1.3 are indicators of these
high-level criteria. In the section following, each of these criteria is discussed briefly, and, for those methods
listed in Chapter 3, the reader is directed to those places in the catalog where method-specific information
associated with the criteria can be found.

2.4.2 Discussion of the Criteria

Coverage and Prescriptiveness

Two key criteria by which methods can be compared are coverage and prescriptiveness. By coverage is
meant the set of activities of the software development process addressed by the method. By prescriptiveness is
meant the level of detail which is supplied by the method insofar as providing direction on how to accomplish
the various activities. Also associated with these criteria is the type of process model for which the method is
suited, since the model influences which activities are addressed and to what degree of detail.

Information associated with these criteria is primarily found in the Description sections for the methods
found in Chapter 3. Additional information is provided in Sections 6.1 and 6.3. Also, the legend in several of the
tables of Chapter 6 is designed to specify the level of guidance provided by the method for the particular activity.

Robustness

By the criterion of robustness is meant the variety of problem domains for which the method is
applicable. In other words, is the method geared toward a specific type of problem, or can the method be used
for different types of applications? Associated with this criterion is the type of application and the size of
application for which the method is intended. Additional related descriptive characteristics include the extent of
use of the method, and how suitable the method is to the programming language in which the software system is
to be developed.

2-12

The individual method summaries in Chapter 3 contain information associated with robustness under
the sections entitled Applicability and Usage. Additionally, the Target Constraints sections contain information
regarding the ability of a method to address specific features of the target system, such as timing or spatial
constraints, fault tolerance, and security of access. The presence or absence of capabilities such as these may
well dictate which problem domains the method can address. The reader is also referred to Tables 4, 5, 6 and 8
in Chapter 6.

Expressiveness

The criterion of expressiveness refers to the facilities provided by the method to represent the evolving
system. Related to this criterion are the modes of representation used by the method along with the support
provided by the method for communication among members of the development team, with the client, and with
management.

Information associated with expressiveness has been provided in the sections of Chapter 3 entitied
Modes of Expression, and Communication Channels. Summaries of survey responses for the modes of
representation used by methods are provided in Sections 6.9 and 6.10.

Analyzability and Stability

Important criteria by which to compare methods include those features which assist the developers in
designing complex systems, and those features which assist the development team in contending with the
inevitable changes which will occur during the development of a large system. In particular, it is expected that
there will be changes in requirements and changes in design decisions. Analyzability is that criterion which
addresses the support provided for the activities of analysis and design. Stability involves the capability to
continue to employ the method in spite of changed requirements or design modifications.

Achieving a clear comparison of methods based on these criteria requires the actual experience of using
a method. Nevertheless, some level of comparison can be achieved by examining what aspects have been
provided in the method to address these criteria, and such information has been provided in this catalog. These
aspects are described in the section of Chapter 3 entitled Techniques for Analysis and Requirements
Clarification. Additional information is provided in Tables 2, 11, 12, and 14.

Correctness and Effectiveness

The criterion of correctness involves the reliability of the software product produced using the method
and the conformity of the product to the client’s requirements. The effectiveness criterion involves the total
quality of the resuitant product. In addition to reliability, effectiveness is associated with how well the product
software system is structured and the quality of the documentation for the system. In essence, an effective
method will produce reliable and maintainable code.

Achieving a comparison of methods based on these criteria requires that one examine the product
system. The difficulties of establishing a clear cause and effect relationship for such criteria was discussed
above. It is possible, however, to list for methods those descriptive characteristics which assist in developing a
quality system. It is this latter type of information which is provided in this catalog.

With regard to the criteria of correctness and effectiveness, the reader should consult in Chapter 3 the
sections on Quality Assurance, and on Other Technical Aspects. With respect to effectiveness, additional
appropriate information can be found in the sections associated with documentation and with recording
decisions. In Chapter 6, Tables 7, 12, 15, and 16 contain related information.

2-13

Manageability

The criterion of manageability refers to the support provided by the method relative to planning,
controlling, and monitoring the software development process. Assistance for the various aspects of project
management provides a basis upon which to judge this criterion. Of related concem are those features of the
method which assist in the preparation of required documentation for the system.

Information associated with this criterion is presented in the sections of Chapter 3 entitled Project
Management, and Documentation Formats. Summaries of responses to questions related to this criterion are
presented in Sections 6.13 and 6.16.

Productivity

The criterion of productivity refers to those aspects of a method which facilitate the process of
developing software. Establishing that use of a particular method results in software being produced in less time
or with less effort would, without doubt, be of great value. The difficulty of establishing control on the other
factors of the process so as to claim a cause and effect relationship was discussed above, and may well be an
impossible task. Accordingly, for this catalog, information is provided on those features of a method which are
intended to facilitate the development process.

Foremost among features associated with productivity are the automated facilities available for use with
the method. It is recognized that most of the other features of methods may also assist in reducing the effort
needed to develop software. For example, this effort can be lessened by the availability of modes of
represeatation which ease the analysis task, or by features which assist in the early detection of inconsistencies.
For information appropriate to this criterion, the reader is referred to the Automated Facilities Sections of
Chapter 3. The tables found in Sections 6.9, 6.10, 6.13, 6.14, 6.15, and 6.16 also contain information about
automated support.

Ease of Adoption

The criterion of ease of adoption addresses those aspects associated with the introduction of a method
into a development organization. Descriptive characteristics related to this criterion include the available
training, the hardware/software configuration needed to support the method, and the cost of acquisition.
Additionally, it is important to know what type of education and experience is required of the development team
in order to gain proficiency in the use of the method.

Information associated with this criterion is provided in Chapter 3 in the Technology Insertion sections

and the Acquisition Factors sections. In addition, Tables 17, 18, and 19 contain information related to this
criterion.

2.4.3 The Catalog as a Resource

In concluding this section, the authors reiterate how the information provided in this catalog should be
viewed. The information focuses on descriptive characteristics of features directly associated with methods. The
information is based on responses from method developers obtained through the use of a questionnaire, and on
method-related literature. The information is reported in a format intended to provide the reader with a basis
upon which to compare methods.

2-14

Thus, by using the list of comparison criteria as a guideline, and the descriptive method-specific
information about characteristics as a resource base, the reader is in a position to judge how well a particular
method meets his or her current needs.

2-15

This page is intentionally blank.
2-16

S GE W Gk S bR O &n B

CHAPTER 3

METHODS CURRENTLY IN USE

This chapter contains descriptions of methods currently in use. Among these are methods which are
available commercially, methods which are company proprietary and available to the Government, and methods
which are company proprietary and unavailable to the Government. In some instances, methods which are part
of a company’s resources are not being marketed but are available to the development community. Finally,
certain methods may be in the public domain.

For the methods in this chapter, developer’s questionnaires were distributed and responses received.
Information presented is derived largely from these questionnaires and from technical references supplied by the
developer. A sincere attempt has been made to include in this chapter all methods for which a developer survey

was returned. In addition, extensive efforts were made to obtain survey responses from developers of other
known methods.

Each of the methods described in this chapter is presented again in the tables in Chapter 6. In some
sections of the method writeups, references have been made to the corresponding tables. This has been done
primarily to avoid presentation of information in the writeup that was intended for presentation in tabular format.
The reader is encouraged to use the tables to gain additional information about a particular method.

In reading the following descriptions, the reader should keep in mind that each description is a temporal

"snapshot"” of the method as of the publication date of this catalog. Many of these methods are undergoing
change and their representations can be expected to differ in the future from what is presented here.

3-1

ABDLSLCM

3.1 ABDLSLCM -- Ada Based Design Language System Life Cycle Methodology

3.1.1 BACKGROUND

Synopsis

ABDLSLCM is based upon certain characteristics (e.g., modularity, data expression, scope) of the Ada
language. These characteristics are combined with the use of a Program Design Language (PDL) and extended
to the earlier life cycle activities of requirements and design specification. The Ada Based Design Language
(DL) statements are intended to formalize the ambiguous English language of the requirements or design

documents.

History

ABDLSLCM was developed by Robert Weissensee and was first used for the development of a
deliverable system in 1986.

The Program Design Language (PDL) component of ABDLSLCM originated with S. Caine and E.
Gordon. Methods whose graphical diagramming techniques are compatible with the method include Structured
Analysis/Structured Design and the Hatley/Pirbhai method.

3.1.2 DESCRIPTION

ABDLSLCM, Ada Based Design Language System Life Cycle Methodology, is based on a design
language approach which specifically addresses the activities of requirements definition, system specification,
and system design. The statements of this language are designed to be used for tracing requirements, generating
documentation, and facilitating communication among people involved in the project. The language statements
are structured in a format that can be utilized by tools for generating documentation to assist in the above
functions. Associated with the method is a structured data base which can distribute current technical data to

dispersed development teams.

Specific directions are available for tailoring the method to DOD-STD-2167A. Documentation levels
of the method correspond to required Data Item Descriptions (DIDs) in the standard. A number of activities are
iteratively performed at each documentation level over the course of the development process. These activities

include:

- creation or updating of a program or project data base;

- annotation and definition of data;

- assignment of traceability information;

- decomposition of requirements or functions to separate paragraphs or subfunctions:
- development of context diagrams or functional hierarchy charts;

- analysis of risks;

- analysis of quantitative measures;

- performance of walkthroughs and formal reviews;

- baselining and generation of the document for that level.

3-2

2 S D & & s

ABDLSLCM

3.1.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The developer stated that the method is well-suited for use on applications involving embedded systems
or process control, time critical or real-time processing, systems programming, data processing, and large scale
simulation or modeling. Examples of systems developed using the method are a commercial real-time
petrochemical tank leakage detection system, a computer-aided design language tool set, and a program
management data base reporting system.

Between 5 to 20 delivered systems were estimated as having been developed using the method, in as
many organizations. The method is intended for use on projects of all sizes; it has been used on small and
medium-sized projects. The implementation languages most frequently used in conjunction with this method are
Ada and Machine_Code_80386.

Target Constraints

ABDLSLCM addresses a number of target system requirements. When there is a requirement for
timing constraints, quantitative timing estimates are made and later refined at various design stages, and
compared to actual compiler and/or assembler code timing analyzer numbers at the coding and Computer
Software Unit (CSU) stages. Spatial requirements are addressed in the method by estimating processor, memory
and secondary storage, adding design language statements for data elements, verifying actual data usage refining
the estimates, and comparing actual compiler or assembler code usage numbers.

Several of the method’s design statements correspond to Ada language features found in Chapter 13 of
ANSI/MIL-STD-1815A. These are MACHINE_CODE and utilization of Ada’s representation clauses for
addressing special features of the target hardware architecture, and OTHER_LANGUAGE, corresponding to
Pragma INTERFACE, for addressing special features of the target operating system.

The method addresses concurrency issues by making estimates of concurrency requirements during
system design. Tasks, task type structuring constructs, and assembler concurrency processes are used throughout
the design and summarized in separate document sections at each level of decomposition. Fault tolerance issues
are handled by specifying the exception processing that should occur at a particular level. Missing exception
processing can be flagged by automated analyzer tools.

Modes of Expression (Tables 9,10)

The method requires several modes of textual representation: specified documentation templates,
narrative overviews of modules, program design language, and formal specification language. Required
iconographical modes are data-flow diagrams and hierarchy charts. The method encourages transaction timing
diagrams. Automated support is provided by the method for all of the above modes.

The primary mode of expression in ABDLSLCM is an Ada based design language which maps directly
into a number of iconographical diagrams in the following ways:

- design language program unit identifiers are the same identifiers used in the hierarchy diagrams:

- design language unit identifiers and their formal parameters including mode are the same
identifiers and directional flow indicators that are used in the Data Flow Diagrams (DFDs});

- the hierarchy diagram identifiers are the same identifiers used in the DFD bubbles;

33

ABDLSLCM

- the flowcharts can be generated from the program unit body section design language processing
statements;

- the Transaction Timing Diagrams and Performance Models utilize the same data as the DFDs and
selected timing records to help generate the diagrams or models.

By using an Ada based design language throughout the development process, the developer states that
problems associated with phase or activity level transformations are eliminated.

Technigues for Analysis and Requirements Clarification (Tables 11,12)

ABDLSLCM requires incremental or evoluationary development to clarify system requirements.
Design reviews, code walk-throughs and design language analysis are also required techniques.

Other Technical Aspects

The method provides a means for tracking requirements throughout the development project. Each
requirement is uniquely identified, made into a design language statement, categorized, and recorded in the
functional/capabilities design language section that satisfies the requirement. Using the right tools, the developer
stated that a software developer could thus determine the scope and magnitude of the requirement change as well
as exert less effort to incorporate changes in requirements.

3.1.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

ABDLSLCM provides guidelines for many project management activities, and provides automated
support for some of these, including support for quantitative metrics.

Communication Channels

Within the development team the method uses a combination of Ada based design language for textual
representation and graphical diagrams to facilitate communication within the team. The diagrams are consistent
with the design language and can be automatically generated from the text with the proper tools, which tools can
also generate associated interface documents, e.g., Interface Requirement Specification, Interface Design
Document.

Between the technical development team and management, the method uses the same representations as
above. Associated with each of the method’s structuring mechanisms, or Logical/Program Units, is a Preface
section which can contain a number of information items which may be of interest to management, e.g.,
traceability, accountability, security, origin, resources. These information items may be requested by
management throughout the various development activities. In conjunction with Airspace Technology’s
Program Management Forecasting, Tracking, and Reporting System tool, a variety of reports, graphs, and slides
can be produced for use by management.

Communication between the client and the development organization is based on the textual and
graphical modes listed above, at a level which can be comprehended by both Ada trained and non-Ada trained
personnel. Moreover, requirements are recorded in the functional/capabilities sections that satisfy the

ABDLSLCM

requirements, which provides visibility to the client. A third aspect of communication with the client is the
feasibility of doing rapid prototyping of selected system components, due to the production of compilable or
assembly code as a by-product of the method’s requirements and design phases. Finally, the method encourages
close involvement of the client with the development organization throughout the life cycle, in terms of walk-
throughs and informal as well as formal reviews.

Quality Assurance (Tables 12,14,15)

Prescriptive checking of interfaces are specifically addressed and provided with automated support by
the method. The method provides guidelines for testing activities and automated support for test planning, test
generation based on system requirements, and unit/integration testing.

Text files are analyzed for consistency and omissions within a given activity level. Consistency across
a level is ensured by generation of associated documents, e.g., interface documents. Between activity levels,
requirements are linked to logical/program unit section structures.

The method provides tailorable document formats for recording design decisions, problem logs, and

change logs. It also provides a framework for configuration management activities, with automated support.

Documentation Formats (Table 16)

All documents required by the method are tailorable within the method, and most such documents are
automatically generated based on data produced from other steps in the method.

3.1.5 EASE OF USE

Technology Insertion

The developer estimated that minimum qualifications for a development team leader’s successful use of
the method would be a bachelor’s degree, three to five years of development experience, working knowledge of
two programming languages, and experience working on two different software systems. Successful use of the
method by an experienced developer requires that the developer understand the concepts of functional
decomposition, modularity, and partitioning as well as concurrency and exception processing as they occur at all
decomposition levels. In addition, the developer should be able to use an Ada based design language as a formal
requirements specification language, and know how to distinguis