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STRATEGIES FOR ASSET DEFENSE WITH PRECURSOR
ATTACKS ON THE COMMAND AND CONTROL SYSTEM

James T. Walton and Michael Athans

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Cambridge, MA 02139

represented by the battle management computers that prioritize
ABSTR.ACT targets and allocate the various elements of the defensive arsenal

In this paper we present a progress report on our work on to incoming targets. Also vulnerable are the space and ground
thestati pern ofwte epres nt arge t ont w(WTA) based satellite tracking systems. When engaging targets, he

the static version of the Weapon to Target Assignmentcluded defense will be able to see which C3 nodes and defensive assets

problem in which vulnerable, distributed C3 nodes are included have been selected by the offense prior to having to allocate its
in the formulation. own resources. Defensive assets would be such things as

In the static defense asset problem with vulnerable C3 nodes military installations, population centers, the defense's own
the offense is allowed to attack either just the assets or first the ICBM force, etc. The defense can increase the survivability of
command and control system and then the assets. In previous its C3 system by the means noted above: hardening, replication,
work we considered only command and control nodes that were orbital selection or by defending itself.
capable of assigning any defensive weapon; now a C3 node The defense of a naval battle group against air attack
might control only a subset of weapons, with overlap in the presents another relevant scenario. Defensive assets would be
spans of control permitted. \ prblem formulation that permits an ahicraft carrier, troop or material transports, and escnrt or
such distribution of the assignment responsibility is presented, support ships. The objective of the defense would be to
as is a representative architecture. We show that such maximize the expected surviving value of these assets. Elements
duplication of C3 unambiguously improves the capability of the of centralized command and control might be performed in an
defense. Approximations for determining both the attacker's aircraft based radar platform such as an E-2C; were it destroyed
and defender's stockpile partition for the two stages of attack or out of position, however, its' functions would need to be
and defense are given, performed at the individual weapon platforms. These distributed

decision makers would then face the problem of access to fewer
and less reliable sources of track information, which would

1- INTRODUCTION effectively serve to degrade the kill probabilities for their

Our overall objective is to develop quantitative insight into weapons.

the vulnerability of distributed C3 organizations. In this work 2. THE ASSET-BASED WTA PROBLEM
we use the allocation of weapons to targets as a paradigm for the
command and control function of resource commitment. In a We consider the following basic defense asset problem. A
previous paper the basic problem was introduced, and numerical collection of separated point targets is to be defended against an
results for certain special cases were given (1]. For attack in which offensive weapons arrive simultaneously. The
completeness we will review the basic problem and motivation, defense has area interceptors, each of which is capable of

The weapon-to-target assignment (WTA) problem quite defending any asset. In addition, the defense has "last move"
simply entails optimally assigning weapons to targets so as to status, i.e. the defense can observe the intended targets of the
maximize (or minimize) one of several cost functions, and it is a offensive .weapons prior to allocating it's interceptors. The
hard problem [2]. A variant on the basic problem is to allocate offense seeks to minimize, and the defense to maximize, the
defensive interceptors against offensive forces so as to minimize expected surviving defense asset value. The result is a min-max
the damage done to defensive assets. Such a decision making problem.
process is traditionally assumed to be performed by a single, Our interest in this problem is a version in which vulnerable
global C3 node that is itself not subject to attack, with decision C3 nodes are included. The defensive weapons are controlled
outcomes being communicated to the appropriate resources. The by a set of command and control nodes that are themselves
survival of such control nodes is essential for the defense to subject to a precursor attack. Redundancy and overlap in the
perform effectively; their destruction would render defensive spans of control of the C3 nodes reduce the likelihood that
weapons unusable. The vulnerability of this process can be interceptors will be rendered useless by a successful attack on
reduced by hardening the nodes, replicating their functions, the battle management system. Both the offense and defense
altering their orbits/positions (if they are mobile), or by allowing may thoose to assign some of their resources to such a fiust
them to shoot back if attacked. We have formulated a model that phase engagement
includes redundant, vulnerable C3 nodes that will be defended if We introduce the following notation:
attacked. While considedrable work has been done on the asset- M = Number ofdefensive weapons
based WTA problem (3-14], virtually no consideration has been N Number of targets (offensive weapons)
given to system vulnerability [1,8]. K = Number of assets

This work is motivated by military defense problems, a wk = Value of asset k
couple of examples of which are the mid-course phase of a T = Number of C3 nodes
strategic defense and the defense of a naval battle group. In the
former example the decision making capability would be Xtt = Probability that a target kills C3 node t
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rkk = Probability that a target kills asset k kill probabilities and uniform attack were computed using anPn Probability that weapon jills target i enumerative marginal return algorithm, and then plots were
= Pmade of the resultant strategies. Some conclusions were drawn

mT = Set of weapons used to defend C3 nodes from the computational work, such as that greater numbers and
Mr = Number of weapons in mT  more effective defensive weapons discourage attack of the C3

MK = M.MT= Number of weapons left to defend assets nodes, as well as that whether or not the offense attacks C3

nodes depends on problem parameters. Because of
nt, = Number of targets aimed at C3 node r, Z.ntl=NT combinatorial explosion in the number of feasible strategies,

Number of targets aimed at asset k; k iNg however, such computations can only be made for small scale
nkk = K examples with such simplifying assumptions.
xi, = 1 if weapon j is assigned to target i, 0 otherwise For the special case described above, approximate formulas

that reflect how strategies change with kill probabilities and
This yields the following basic defense asset problem: stockpile size have been developed. The objective is to try to

calculate the offensive and defensive reaction sets, i.e. the set of
K M responses (strategies) for opposing moves. Even

min max Wk Il - xkf(l-P)J] (1) approximations for this scenario are difficult to develop,
AK X k-1 i-1 j.1 however, since VD is neither concave nor convex in defensiveweapon assignments. Consider the continuous variable version

subject to (stockpile constraints): of the probability of survival for an asset, (l-itk(l1p)k) nk,

A : = N (2) where nke Z, is the number of attackers and xk->O is the number
tX =of defenders per attacker at asset k. The second derivative ofe Xe =M (3) this quantity is:

nk[ l-tk(l -p)Xk]nk-2[tk( .p)xk][ln(I _p)12[nkxnk(l -p)xk-l.
x.ie {0,1) V ij and nkke Z, (4) This is convex if the final term is positive, concave if it is

A isnegative; the change occurs at xk=-ln(nkxltk)/ln(l-p). Between

Kis the offensive strategy vector consisting of the nkk'S; X is a values of xk that am integral multiples of nk, this probability is
defensive strategy matrix consisting of the x..'s. e is a column strictly convex.
-vector of ones of conformable dimension. tr denotes transpose. Because the objective function is not concave, a greedy

.algorithm cannot be optimal for the defender. This is an

3. THE ASSET-BASED WTA PROBLEM WITH algorithm that calls for the defender to assign his next weapon,
REDU1NDANTC 3  or clump of weapons, to thet target that provides him with the

greatest incremental contribution to expected surviving asset
We first considered 11] a generalization of the basic problem value. This approach does perform well in general for the basic

(1)-(4) in which defensive weapons are controlled by T C3  defense asset problem, and is optimal for some cases. We can
use it to derive an approximation for the size of a preferential

nodes, any surviving one of which can assign any defensive defense in a weapons-poor or target-rich environment: a
weapon. This represents replication of C3 functions in "global" randomly selected subset of assets the heavy defense of which
C3 nodes. The offense can then either attack only the assets, or yields greater surviving value than if all assets were more lightly
first attack the C3 nodes and then the assets. The defense, in defended.
turn, has a choice on how to split its weapons in defending the M
C3 nodes and assets - after the offense has revealed its strategy. Number of Defended M
In a weapons-poor (or target-rich) environment, preferential Assets (N KD/Ke d (8)
defense can be employed for both the C3 nodes and assets.

This results in a new objective function: expected asset
surviving value

ue U = V + (I - )VD  (5) where Y= - ln(lN-K/K)

where 4, the probability that all C3 nodes are destroyed, is given The partition of the defensive stockpile between asset and C3

by defense when each C3 node is capable of assigning any weapon
T nt M is given byk=HttI- rJI7tJ I-,N (6) (-)4NM_
t1 i-1 j-t M K .lp _ - (9)

and VU, the expecting surviving asset value if the assets are -xin(l-p)
undefended, is

K rkk subject to: M +MK - M (10)
Y wkrl(l-xk,)(7
k-1 i-1 The defense defends only one randomly selected C3 node with

VD is the surviving defended asset value, which remains the MT weapons. Not knowing which one will be defended, the
sa as in the basic problem. The defense seeks to maximize U offense must attack them all evenly. The principal assumption
and the offense seeks to minimize it, sub' t to their respective needed for this result is that undefended assets/nodes are almost
stockpile constraints. In [1], optimal o ensive and defensive surely destroyed, allowing us to neglect those terms. (9)-(10)allocions for the special case of identically valued assets, equal then produced using a Lagrange multiplier technique.-- - t This approach is extendable to the offensive partition. For a



.3

uniform attack (within stages), the offensive partition between fD.
C3 and asset attacks is given by Each combination of surviving C3 nodes will induce a set of

NK "available" weapons for asset defense. These resulting sets of
-(p+pxln(--weapons need be neither unique nor mutually exclusive, and for

T {Mrln(l-p)x[ NK NK + most C3 architectures won't be. The function g: Q-+9 will beN( used to represent the mapping from C3 survival modes to sets of
indices of available or "active" weapons (E is the index set of

/K- 1 the defensive weapons). Each possible combination of
ln(l-(NK/K.) + ((NK/K).I) I - (11) surviving C3 nodes produces a set of weapons that can be

assigned to targets in the asset defense stage, and g specifies
subject to: NT + NK *N (12) what that set is. Thusg is a point-to-set map from 0 to . g

Solution of (9)-(12) gives local optima for NT & NK and MT & captures the character of different organizational architectures - a
MK in the case of equal valued assets, uniform kill probabilities, control node of limited scope would "map" back only to those
global command and control and preferential defense. These weapons that it can assign.
provide good agreement with the numerical results obtained in Surviving asset value, for a given to, is:(1].

K nkk
4. THE ASSET-BASED WTA PROBLEM WITH VW = Wkr ( 1 - nkl"j7(l - pii)'4J (14)

ISTRIBIJTED C3  
k-1 i-I f S)

We now generalize the asset-based WTA problem with jeMr

vulnerable C3 further, to include command and control nodes Thus at asset k the defense can employ interceptors controlled
that may not be capable of assigning all weapons. Thus we by surviving C3 nodes (je g(co)) that were not used for BMIC 3

speak of the "distribution" of control. A particular weapon defense & mr).
could be controlled by many (but not necessarily all) C3 nodes. d efes o m n polmi
A node with a limited span of control might correspond to a Th resulting optimization problem is:
reserve capability for the allocation of a particular weapon cluster
or type. A manned fire unit will almost certainly have the min max Y V (15)
capability to make weapon assignments for terminal ,r,, 2x
engagements in defense of itself. subject to:
4.1 Problem Formulation - A (6

A~e +Axe =N (16)
Additional notation is needed. Let ( be the set of all T-fold ezrXe = M (17)

combinations of C3 nodes that survive the precursor attack. fQ is
of cardinality 2T, and each element is a T dimensional binary xiie (0,1 } V ij and ntCnkke Z. (18)
column vector denoted by co. If co, = 1, then C3 node t where AT is the strategy vector codsisting of the nt1's.
survived; if co, = 0, then it did not. If T = 3, for example, then Constraints (16)-(17) are the "shot conservation" constraints.
2 consists of the following: It is instructive to see the form that the objective functiontakes for a specific command and control architecture that[ ol ol[01 li~o[ 1 [11[iidoesn't consist exclusively of global decision makers. Consider0 0 1 0 1 0 1 the case where there is a single global C3 node, and T-1

0J' l'0 ' 0 l 11 '0 j1 additional nodes that each control an equal number of defensiveweapons. The T- I sets of weapons are mutually exclusive and

The probability that a particular co is realized will be denoted by collectively exhaustive. There will then be 2T different failure
modes for the C3 nodes, 2T-1 of which contain the global node.

and is given by: The objective function will take this form:

"' {I~bhi -Irt7L~ - p.)~Surviving Value=2TV- + (Trl)Vb (19)

where

11(I -71I -1-JXt J(l - P1 i] 1 (13) Vo~b= ,,wkl(l -zkkf(l Pi) (20)
Yo= M-Mr (21)

The first product term taken over t computes the probability of b
the specified C3 nodes surviving, the second the probability of Yb= _ - Mr) (22)
their complement being destroyed. , = 1, and hence k.)I

represents a probability density function over the sample space



nt L 4J
G M M I

= 71(I - nGH(1 - Pij) ) (23) 1 1 ttfl0 - pi)}

i=1 
i - j.]

nt M 2(25)

j-t i=The final quantity in (3.16).is t for the optimal P2 offensive

nt M xij } T-b- strategy against the defensive strategy X1 (given this partition of

1 -I[1- r 1ij) } x N1 into NTr and NQI). That splitting NT I as equally as possible
nto M between C3 nodes is optimal for the offense (if faced with XI)

•(1- E I - ItGH(l - Pij) } (24) follows from
i=l j=l (- arb/2(, - ab2l)  

a arb/21I)(I - aLb/2J+ )
G indexes the global C3 node; xt, is taken to be the same for the
non-global C3 nodes and thus the corresponding nt1's are the for 0}Sa<l and be Z+. Neither V, nor Vd will have changed,
same by symmetry. b is the number of them that survive the t 2

first stage attack. Yb reflects that some of the weapons for which thus the expected surviving value has increased, since 0
viable command and control exists in the second stage will have 0 1tVu + 41 1Vd > 40'Vu 

+ 
4t2Vd

•

been fired in defense of the C3 system in the first stage.
It can readily be shown that this distributed formulation We now show that there exists no NT**NTI, NQ* NQ' that

reduces to the problem previously considered for the case of can result in a value of z* that is less than or equal to z1.
redundant, centralized command and control (equations (5)-(7) *
plus stockpile constraints). Distribution yields an inherently NT*<NT contradicts the optimality of [N', XI] for p1 since a
more complex system, however. If the defensive stockpile is
split equally, with each half controlled by two nodes, we do not lower to could have been obtained in P1 by reallocating
get a separable problem: system performance depends on the offensive weapons from C3 nodes to assets. Now consider
performance of both weapon sets. NT*>NT. The defensive strategy employed in response is as

4.2 D6 follows: the partition of defensive weapons between C3 and
assets remains the same, and only the least attacked C3 node is

Is the presence of additional decision makers of benefit? As defended. The offense will then split its C3 attack as evenly as
has been noted, the distribution or replication of C3 functions is possible between the control nodes. An attack level as high as
considered desirable, although there is little quantification of the NT*=2NT t (i.e. attacking one of the C3 nodes in a fashion
advantages. In the case of the weapon-target assignment
function we have the following theorem. identical to the optimal solution to P) will still not achieve an

Ta* as high as t1, yet will reduce both Vu and Vd, producing
Theorem 4.1: The defense will always perform better with z*<zl. Although further shifts of offensive weapons to the C3

swo orrore global C3 nodes than with one. attack might produce an 4o*>4 l , this will again contradict the

Proof. Let z', A1 and X1 be the optimal game and decision optimality of [N1 , X t ] for P1 , since an k0" greater than 401
variable values for the vulnerable defense asset problem withone lobl C nod, wichwe wll allprobem (A could have been obtained with 2Nri fewer offensive weaponsone global C3  node, which we will call problem P . (A alo te to heC atck
represents the concatenation of AT and AK). Similarly, z*, A* allocated to the C3 attack. //
and X* are the optimal values for problem P2, reflecting the Similarly, we have the following two theorems for
same problem with two or more C3 nodes (we will assume there distributed command and control architectures:
to be two without loss of generality). We must show that there Theorem 3.2: A global CJ node with a distributed alternative
exist defensive strategies for p 2 such that for all possible command and control capability is better for the defense than is
offensive allocations, z*>z results. a single, global CJ node.

The probability, to, that both C3 nodes fail in P1, given Theorem 3.3: Distributed command and control is less

NT t, is: vulnerable than a single, global C capability.

The proof of these propositions follows that of proposition 3.1.

i.1 j-1
M The preferential defense of differently valued assets is ti

complex problem in its own right; incorporating C3 nodes in the
> [- EIlEI (1 - pij)x ]  preferential defense paradigm yields yet greater complexity.

i-1 j-1 This is due in part to the coupling between offensive and
r~l M defensive strategies, which implies that a min-max problem must
f'lIl tbe formulated and solved.

1 11I- - t1(I - pij)] }x" Optimal strategies, such as a decision by the offense on
= j. whether to ignore or attack the C3 system, and at what level,



depend on the numerical values of problem parameters (stockpile [ 12] Pearsall, E. S., "A Lagrange Multiplier Method for Certain
size, kill probabilities). For special cases it is possible to obtain Constrained Min-Max Problems," Operations Research,
approximations to the truly optimal solution. These provide Vol. 24, pp. 70-91, 1976.
analytical insights as well as initial starting conditions for more
elaborate computational algorithms. [13] Miercort, F. A. and Soland, R. M., "Optimal Allocation of
This is an ongoing research progress report. Analytical and Missilis Against Area and Point Defenses," Operations
algorithmic solutions for more complex problem formulations Research, Vol. 19, pp. 605-617, 197 1.are, as yet, not availabe. [14] Soland, R. M., "Optimal Defensive Missile Allocation: A

Discrete Min-Max Problem," Operations Research, Vol 21,
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