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Abstract L :

A fundamenral probiem that any scalable multiprocessor
must address i~ the ability to rolerate high latency memory
operations. This paper explores the extent to which multi-
ple hardware contexts per processor can help to mitigate the
nevative effects of high latency. In particular. we evaluate
the performnance of a directory-based cache coherent multi-
processor using memory reference traces obtained from three
parallel applications. \We explore the case where there are
a small fixed number i2-4) of hardware contexts per proces-
sor and the context switch overhead is low. In contrast to
previously proposed approaches. we also use a very simple
context-switch crirerion. namely a cache miss or a write-hit
to shared data. Our results show that the effectiveness of
multiple contexts depends on the nature of the applications.
the context switch overhead. and the inherent latency of the
machine architecture. Given reasonably low overhead hard-
ware context switches, we show that two or four contexts can
achieve suhsrantial performance gains over a single context.
For one application. the processor utilization increased by
about 637 with two contexts and by about 100% with four
contexts.

1 Introduction

As shared-memory multiprocessors are scaled (the number of
processors is increased}. there will invariably be an increase
in the latency of memory operations. \While local memory
relerences need not have higher latency. remote memory op-
orations will encounter higher latency because of the larger
physical size of the machine. if not {or any other reason. Con-
~equently. there will always be times when a processor sits
idle. waiting for ~ome remote operation to complete {2.11]. If
'nore than one context resides on each processor. and con-
text switch overhead is low. this idle time can be used by
additional contexts, Tvpically each context corresponds to a
process from one parallel program.

In this paper. we evaluate the utility of muliiple contexts
per processor for a directory-hased cache coherem multipro-
vessor (1] While the idea of using multiple hatdware con-
texts per processor is itself not new. we helieve our scheme is
simpler to implement than other proposais [4.8.11.14.21] (dis-
eussed in Section 3). In our schieme. each processor contains
a small lixed number (2-4) of hardware contexts with inde.
pendent register sets 10 enable short context switch times,
We alvo use a very simple context switch eriterion. which is
to switch contexts on a cache mins or on a write-hit to read-
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shared data or when a watchdog connter of 1000 expires.!
This simple scheme helps keep context switch overhead low.
because the decision to switch or not can be made in a single
cvcle. oL aceaiewsdtaregg A

Our multiple context scheme is evaluated using multipro-
cessor memory-teference traces obtained from three applica-
tions {13.16.20). The results indicate that multiple contexts
can achieve substantial gains in processor utilization. In some
cases processor utilization is increased by 63% with two con-

texts and by 100% with four contexts.

The rest of the paper is organized as follows. The next
section presents the architecture and simulator used in this
studv. \We also introduce the applications and the method
employed to gather the reference traces. Section 3 gives gen-
eral results for the three applications. After that we present
a number of issues concerning multiple contexts. This section
also gives the results of the simulations. Finally, we have the
related work. discussion and conclusion sections.

2 Architectural Assumptions
and Simulation Environment

In this section. we discusx the architectural assumptions that
we make and describe the simulation environment that we
used to obtain our results. \We also describe the applications
used in this study and the performance metric employed o
evaluate the multiple context scheme.

2.1 Base Architecture and Simulator

Figure 1 shows the basic architecture that we assume in this
paper. The architecture consists of several nodes linked to-

" gether by an interconnection network. Each node has a pro-

cessor, a physical cache, and its share of the global memory.
It is counected to the network through the directory (DIR)
and network interface {N.I.). The processors may have one
or more contexts. The caches are kept consistent wsing a
directory-hase cache coherence protocol as disenssed in {1}
We study the performance as a function of several parameters
snch as the number of contexts, the context switch overhead,
the latency of the network. and so on. Performance resuits
as a function of the above parameters are given in Section .

YThe watchdog cannter is introduced to prevent ane cantext
from hngging a pavticular processar, This ensures that na convext
rus for longer than 1OU0 eveles at & e, preventing atarvatinn
and deacioeks,
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Fizure 1: Architectural model

We use a trace-driven simulator. written by Truman Joe
at Stanford. that emulates the above architecture to evaluate
the etfectiveness of multiple contexts. In the single context
per processor case. the simulator works as follows. Before
starting the simulation. we hirst divide the interleaved refer-
ence stream generared by the tracing program into separate
~treams for individual processors. Tlien. one reference stream
i~ assigned 1o each of the processors. At every simulated clock
cvcle. each active processor reads the next reference from its
a~sociated reference stream. If the reference hits in the cache’
the processor remains active and will issue another reference
from the stream on the next clock tick. However. if it misses
or a write to read-shared data occurs. it context switches.
The cache sends a request over the network to fetch the miss-
ing line and/or update the state of the other caches in the
svstem. During the period of time that the cache request is
waiting to be satisfied. the processor remains in a suspended
state and does not generate any more references.

in case of multiple contexts per processor. we have maulti-
pie memory reference streams associated with =ach processor
— one for each context. At anv given time oniv one of these
contexts is active and the memorv references come from that
stream. However. when the active context enters the sus-
pended state due 10 a cache miss or a write hit on read-shared
data. a context switch occurs. The processor stays idle for
the time required to perform the context switci. After that.
memory references are issued from the newly activated con-

text. [f more than one context is ready when the active con-

text blocks. a round-robin scheduling scheme decides which
context is to be activated next.

The simulator that we use is quite detailed in that it models
contention for the memory modules. for the bus on which
the memory modules reside. for the directory: associated with
~ach node. and for the interconnection nerwork. It is also
possible to vary the delavs associated with each of the above
medules. \We note that the interconnection network assumed
in our simulations is a crossbar switch. but it could be any
point-to-point network le.g.. grid [18). burterfly [3]. omega
“13]} depending on the number of processors we wished to
interconnect, For the default parameters that we used (shown
in Table 11, a remote read takes 27 cvcles and a remote write
takes 19 cveles with no contention. The local operations take
15 and 13 cvcles respectively, With contention these numbers
can grow to as large as 100 eveles in our simulations,

The simulator is driven by multiprocessor memory refer-
ence traces. Since the traces include 16 reference streains, we
are linited to four processors if we wish 10 explore four con-

“For writes, the lucation has to be awned in addition 1o heing
present in the cacis,

Operation Time
Memory Latency 6 cvcles
Bus Transfer 4 cycles
Switch Latency 2 cycles
Switch Transfer 4 cycles
Directory Lookup | 2 cvcles

Table 1: Default Parameters for Simulator

texts per processor. For runs with fewer than four contexts.
only some of the reference streams were used. \We model the
scaling of the machine architecture to a larger number of pro-
cessors by increasing the latency in the underlving network
(see Section 4.3). We also vary the context switch overhead
and the number of contexts per processor. Section 4 will
present the issues involved and the results obtained.

One inaccuracy in our simulator is that we assume an in-
finite cache for each processor.® Thus. we do not model the
interference in the caches when there are multiple contexts
per processor. It is not clear. though. whether the sharing
of caches is an advantage or a disadvantage. I{ the caches
are small. interference might be a serious problem. With
fairly large caches. however. the pre-fetch achieved by con-
texts working on the same shared data could actually be
beneficial.® The caches in the architecture presented here
are expected to be large as they serve as the main source of
remote code and data.

2.2 Traces and Applications

The multiprocessor traces used in our simulations were gath-
ered on a VVAX 8350. using a combined hardware/software
scheme [3]. Basically. the tracing works as follows, We
spawn as many processes as the application desires under
the control of a master process. The naster process then
single steps the application processes in a round-robin man-
ner. After each step. it records all references made by the
application processes. For each reference. the number of the
processor producing it. the address of the reference and its
tvpe (read/write/ifetch) are recorded. The traces that we use
correspond to 16-processor runs. '

The traces used were obtained from three applications: Lo-
cusRoute. MP3D and P-Thor. LocusRoute {16.17] is a stan-
dard cell global router.. \While the tasks spawned by it are
quite coarse in granularity (each may execute around 100.000
instructions), its central data structure (a globa! cost array)
is shared at a fine granularity. MP3D [13] is a 3-dimensional
particle simulator that determines the shock waves generated
by a body fiving at high speed in the upper atmosphere. It
uses distributed loops for paralielization (each loop executes
around 250 instructions) and it is a typical example of par
allel scientific code. P-Thor {20} is a parallel logic simulator
that uses the Chandy-Misra distributed simulation algorithm.
Each parallel subtask (a component evaluation) in P-Thor
takes about 300 instructions to execute. )

*We are working on an a new version of the simulator that will
remove this restriction,

{Note that in our execution madel, several procestes from the
same application are using the multiple contexts. Thus the awownt
of shared data can he significant,



2.3 Performance Measure

The main hizure of merit nsed in evaluating luuluple contexts
in this paper is processor efficiency. This is defined as the
number of cvcles spent doing useful work over the total num-
ber of cvcles. Of course. the maximum is one reference per
processor per cvcle for 1007 efficiency. The more time the

processors spend idle. waiting for remote reads and writes. *

the lower the overall processor efficiency. In our simulations.
we ran the svstem for a total of 300.000 clock cycles. and then
counted the number of memory references consumed from the
traces to zet the efficiency.

3 General Results

In this section we present some general results obtained with
the simulator. These results give an overall idea of the differ-
ences in behiavior of the three applications. Thev also show
the effect of tncreasing the switch latency on the read and
write latencies seen by the processors. The numbers are for
a d-processor svstem with one context per processor. The
tables below zive data about the run lengths and latencies
for the three applications. Run length is defined as the num-
ber of simulator cvcles hetween each cache miss.” Read and
write latencies are the number of cveies required to satisfy
the cache miss.

Results for switch latencies of 2 and 16 cvcles are presented.
A switch latency of only two cvcles is close 10 the minimum
that can be achieved with any tvpe of network. The switch
latency of 16 represents the latencies that mx"ht be expected
in a larzer multiprocessor with many more nodes.

| Run Lenzth || Read Lincy || Write Liney

Application || Ave | Med || Avg | Med || Avg | Med
MP3D T 14 25 27 14 19
P-Thor iowl 1s 24 27 17 .19
LocusRoute || 1u7¥ 15 24 27 17 1Y

Table 2: General application results with switch latency
of 2 cycles

Run Length || Read Liney ]| \Write Lincy

Applhication || Ave [ Med || Avg | Med || Avg | \led
MP3D 18 14 31 335 33

P-Thor R 48 35 31 33

LocusHoute 1060 44 34 33 37 30

Tahle 3: Gieneral application results with switch latency
of 16 cveles

Both averaze and median values are given to convey more
information concerning the distribution of the run-lengths
and latencies. Median values are more vepresentative in char-
acrerizing the tvpical run-length. In LocusRoute. for exam-

“Both here anrl in the rest of the paper. by cache misa we ace
1ually mean references that can not be satisfiedd by the cache alone
aned pead 10 aceeas the inemory. or the network, or bath, These in-
cluede regular eache misses but alse writehits to read-shared riata.
I the latter case, the network needs to bhe accessed to invalidate
that loeation from other eaches and 1o gain awnership of that cache
line, .

plew due to a few very long runs the averages are high even
though the median values are much lower. .

-MP3D has the shortest run-length and longest latencies.
There is a lot of global data traffic in MP3D aund this leads
to frequent misses. i.e. short run lengths. LocusRoute. on
the other hand has very long run-lengths. The large size
of the tasks and their relative independence allows for large
portions of code that execute out of the cache without any
misses. The latencies are close to the minimum expected for
this architecture. P-Thor is somewhere in between the other
two applications.

As the switch latency increases. the read and write laten-
cies grow as well. Reads are affected more because they
require a two-way transaction and so the higher latency is
incurred twice. Run lengths should be unaffected by the in-
creased latency. but in fact we do see a slight decrease in
run lengths as the switch latency increases. This is proba-
bly due to a cold-start effect of the caches. Run-lengths near
the beginning of the reference streams are shorter on average.
hecause more cache misses are incurred.

4 JIssues and Results.

\We wish to explore several questions concerning the perfor-
mance of multiple contexts:

¢ How many contexts are required to achieve good pro-
cessor utilization?

¢ How does the context switch overhead affect the per-
formance?

¢ What is the effect of increasing the switch latency?
¢ \When to switch contexts? ,
¢ How much does the performance vary with application?

This section explores all of these issues and presents results.
We show graphs of processor efficiency. In each graph. we are
plotting the number of active cvcles over the total number of
cyvcles against the switch latenc of the architecture. \We show
efficiencies for one. two and four contexts. Different context
switch overheads are presented on different graphs. Figures
2-4 show results for MP3D. Figures 5-7 give results for P-
Thor and Figures 8-10 show results for LocusRoute.

4.1 Number of Contexts

Depending on the single context processor efficiency. it may
or may not be worthwhile to use two. four or more contexts.
Note that the single-processor efficiency is basically a funes
tion of the cache miss rate and the read and write latency for
the architecture. For LocusRoute (Figures 8-10) the proces
sor efficiency is already very high (about 90%) with a single
context and little performance can be gained by adding more
contexts. As a matter of fact. if the context switch overhead
is high. four contexts do worse than one (Figure 10}, \MP3D
on the other hand (Figure 2). has single context performance
near 50% and achieves substantial gains with more contexts

(efficiency is 772 with 2, 94% with ).

Ax expected, the praphs show diminishing marginal retueas
as the number of contexts it increased (see Figure 3 for exs
ample). In every case going (rom one to two contexts Nields a
greater henefit than roing from two to four contexts, A small
unmber of contexis is alvo preferable hecause it allows xam pler
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hardware. With a larger number of contexts. a penalty in the
cvcle time of the processor or an increase in context switch -
~verhead may be inevitable. Also. a large number of contexts
1 rquires a large number of processes, Many applications may
1;0t be able to support such a large number of processes.

4.2 Context Switch Overhead

The context switch overhead depends on the number of con-
texts kept in hardware. the amount of state kept for each
context. and the amount of hardware dedicated to context
switching. \We explore context switch overheads of 1. 4 and
16 cvcles. A single cvcle overhead can be achieved by keep-
ing multiple copies of the pipeline registers and being able
10 swap in the whole state in a single cvele.® If the pipeline
has 1o be drained and filled. a 4-cycle overhead is reasonable.
Both of these options require multiple register banks. one for
each context. If we want to Joad and store the registers to
~ome fast local memory. we have to allow at least 16 cycles.
[t is clear that the hardware is more complex if we require the
context switch to be faster. Of course. bevond some overhead
value. multiple contexts do not help any more. since a long
latency operation will complete before the context switch is
achieved.

As expected, the results show that the effect of increasing
the context switch overhead reduces the benefit'achieved by
having multiple contexts. Note that the single context graph
line is identical for various context switch overheads (see Fig-
ures 2-4 for example). since there is no context switching in
that case. When the context switch overhead is 16, none of
the programs are gaining much processor efficiency with in-
creased contexts. MP3D achieves a 12 increase in efficiency
with 4 contexts (Figure 4), P-Thor gains only 3% (Figure 7)
and LocusRoute actually looses 12% (Figure 10). For mul-
tiple contexts to be useful. the context switch overhead will
have to be kept low. preferably on the order of a few cycles.

4.3 Latency

The amount of latency incurred in remote operations is im-
portant for the eflectiveness of processors with multiple con-
texts. \With very low latencies. context switch overhead may
be too large to allow multiple contexts to achieve any per-
formance gain. As the latency increases. the single context
processors do increasingly poorly because more and more pro-
cessor time is spent idle. This is where multiple contexts can
help. As seen in Figures 5-7. the relative value of multiple
contexts increases as the latency increases. In other words.
a processor with multiple contexts will suffer less efficiency
degradation due to high latencies than a single context pro-
cessot.

One reason for varving switch latency in our evaluation of
multiple contexts is 10 explore different types of architectures.
A grid network. for example, is expected to have a much
larger latency than a crossbar switch. At the same time the
higher latencies can correspond to larger multiprocessors. As
more processors are added to a parallel machine. the latencies
increase due to deeper networks or nore complex switches,
Larger latencies present a greater opportunity for multiple
contexts, because the single context efficiency is lower, At
the same time we note that it is still possible 10 achieve very
high elficiencies with just a fow contexts, For example. with

tAlternatively multiplexors enild be used 10 awiteh bedween
wmultiple pipaline state copies,



a switch lateney of 16 cveles. lavencies are on the order of 30
and 31) cveles for reads and writes respectively (see Section
3). .\ network large enoush to have this high a latency counld
well support several hundred processors. Yet processor effi-
ciencies ~tav hizh for this latency (60% for MP3D. 9% for
P-Thor and v44 for LocusRoute). The point is that even as
multiprocessors grow and latencies increase. processors with
Just a few contexts achieve very good utilization.

4.4 When to Switch Contexts

[deally. one would like to switch contexts whenever the con-
rext switch overhiead is less than che latency of the operation
being performed. Of course external operations mayv take
lonzer or <horter depending on the congestion in the machine,
aud there i~ no easy way 10 predict how loug a siven operation
wil! take. We thus choose the casiest context switch criterion:
switch on any operation that requires a main memory access.
cither in rhe same cluster or remotely. =witching only on
remote operations reqguires extra nardware. but is a feasible
alrernative if context switch overhead is relatively ligh. If a
context switch takes 16 cvcles. and local operations also take
on the order of 16 cvcles 1o complete. it does not make sense
10 tnitiate a context switch on everv jocal operation.

Two of the applications had frequent memory accesses. but
LocusRoute processes had long streaks cf execrting out of
the cache. {n order to prevent one context from hogging a
particular processor we introduce a watchdog counter that
pre-empts the current context after 1000 cvcles. This ensures
that no context run~ for longer than 1Uul c¥cles at a time,
thus allowing ail contexts on a-particular processor to make
progress.

4.5 Applications

The three applications exhibited very different behavior. Lo-
cusRoute and P-Thor have relatively little global traffic,
whereas MP3D has a lot. While 1.8% <f LocusRoute instruc-
tions cause references to shared data. tiiis number is close to
127 for MP3D. This explains why the run-lengths presented
in Section 3 are so different for the three applications. At the
<ame time LocusRoute has very good caching behavior and
very little interference between processes. Thus LocusRoute
achieves very hizh efficiencies (around 90%). even with sin-
zle context processors (see Figures £-10). Very little can be
zained by adding extra contexts.

P-Thor achieves 30-T0'4 utilization with single contexts
{see Figures 3-73. This can” be boosted effectively by adding
more contexts. Not onlv is eficiency increased as more con-
texts are added. hitt the processors also become more immune
1o the effect of hizh latency operations. This is seen hy the
spreading of the curves as the latency increases.

MP3D lhias a large amount of global traffic. \When the
switch latency increases. the switch becomes the bottleneck
and it linits the gains achieved by muitiple contexts. While
sotne performance gain is achieved. the relative benefit of
muitiple enntexts is greater for lower latencies. Note liow the
different context lines converge as the switch latency increases
in Fizures 2 and 3.

5 Related: Work

The idea of multiple hardware contexts per processor in itself
is not new. In this section we discuss how our approach differs
from earlier proposals and present some advantages and dis-
advantages. \We begin with the Alto personal computer from
Xerox [21] which provided multiple hardware microcode-level
contexts. allowing the CPU to be shared between the instruc-
tion set interpreter and the 1/O devices. The contexts were
statically assigned to devices and were not available to gen-
eral user processes. The atm of the multiple contexts was to
make the power of the processor readilv available for time
critical 1/O processing. a task that is (requently delegated to
separate processors in more recent designs. Unlike our moti-
vatinn. the issue was not to hide memory latency from a very
fast processor.

The HEP multiprocessor from Denelcor [19] also provided
multiple hardware contexts per processor. Unlike the Alto.
the contexts were available to arbitrary user processes. The
processes shared a large set of registers and on each cycle an
instruction from a different process was executed. A mini-
mum of & active processes (those processes that are not wait-
ing for a memory reference to complete) were needed to keep
the execution pipeline full. The HEP machine tolerated mem-
ory latency well. but its main drawback was that a single
process could get at most 1/8 of the pipelined processor. In
order to keep the pipeline full. a large number of processes
were needed. This is in stark contrast to modern pipelined
processors [6,14] where a single process almost fully utilizes
the pipelined processor. Now the HEP scheme would not be
a problem if all applications could be split into an arbitrarily
large number of processes. However. this is often not possible
in practice as there may not be enough intrinsic parallelism
in the application 7). or because doing so greatly increases
the amount of overhead.

More recently. lannucci [11] has proposed using multi-
ple contexts for his hybrid data-flow/von Neumann machine.
Each processor consists of a hardware queue of enabled con-
tinuations. The continuations are very small in size (contain-
ing just the program counter and the frame base-register}.
and the hardware can switch between them in a single cvcle.
However. to make this single cvcle switch possible. processor
registers are not saved on a context switch. Consequently.
the software is structured so that it does not rely on reg-
isters being valid between potential context switch points.
The switch points are synchronizing references. where a read
to a location tagged empty results in that continuation being
suspended. In our view. the disadvantages of [annucci’s ap-
proach are the following. First. processes can not make full
use of the register sets. given that the run-lengths (the num-
ber of instructions executed hetween switch points} are verv
small {11] and registers are not preserved in between. \We
believe that extensive use of registers is ahsolutely critical to
the performance of modern processors [6]. Second. a proces.
sor that supports a large number of continuations {contexts)
in hardware. keeps track of which onex are enabled and uses
a complex criterion for deciding which continnation to issue
the next instruction from [12] is very complicated. \We he
lieve such a processor will have a significantly more complex
pipeline and much larger area than a simple RISC proces
sor, Consequently, the cyvcle time of such a machine wonid be
slower than that of modern RISC processors. Thus the by
brid machine has to make up the large factor that it loses aver
conventional microprocessors, hefore it hecomes competitive,
On the other hand, the scheme that \Wwe propase daes not love



anvthing over modern RISC processors. In fact. it is possible
10 take multiple commercially available RISC processor chips
te.s..Motorola 35000 processor and cache chips) and connect
them ~o a~ to simulate multiple contexts.

We now consider the MASA architecture proposed by Bert
Halstead i%]. In this architecture each processor has a fixed
number of hardware task frames. Each task frame is capable
of storing a camplete process context and cousists of a set
of auxiliary reaisters (like the program connter) and a set of
seneral purpose rezisters. Since the number of processes may
exceed the number of task frames. the process contexts are
allowed to overflow into memory.” On each cvele. a context
in the enabled or ready state may issue an instruction. How-
ever. OncCe a Process issues an instruction. it can not issue
another instruction until the previous instruction has com-
pleted. Thus. in its curreut form. a process on MASA can
eet oulv 1/4 (inverse of pipeline depth) of the pipelined pro-
cessor’s performance. \» discussed above for HEP. this is a
major drawback. Halstead and group recognize it [%] and are
exploring wavs to remove this restriction.

We now discuss a more subtle but fundamental difference
between the [annucci and Halstead schemes and our scheme.
In our scheme. the <ole purpose of the multiple hardware
contexts is to mitizate the nezative effects of memory latency.
The number of hardware contexts needed for a particular ma-
chine is fixed and depends mainly on the expected cache hit
ratio and the memory latency for that architécture.:In the
lannucci and Halstead schemes. the context meéchanism is in-
stead made to serve two purposes at the same time. It is
used to mask memory latency as in our scheme. but it is also
used as a hardware task queue, Thus when a paralle] subtask
is created. it manifests itself as a new context that is then
managed and scheduled by the hardware. Since the number
of parallel subtasks can be arbitrarily large. mechanisms are
needed and provided to handle overflow of contexts. Also. the
number of contexts that are needed is large. In our scheme,
the issue of subtask management is completely separated and
is handled in software. This permits great flexibility. includ-
ing the possibility to schedule tasks in 2 manner similar to
the lannucci and Halstead proposals. if a particular apph-
cation so warrants.” Thus instead of using full/empty bits
and hardware queuing in I-structure memory [10]. we may
simulate full/empty bits in software and switch to a different
subtask if a piece of data is not ready. It is not obvious which
scheme works better. \We will be able to tell only when such
machines actually get built.

6 Discussion

This section contains the discussion of several topics that re-
late to the evaluation of multiple contexts as presented in this
paper.

Oue yuestion tlna.t we must ask is. what are the real ad-
vantazes of having multiple contexts? Since processors are
cheap. why not simply have a larger number of processors
in the multiprocessor? The fallacy in this argument is that.
while €'PU chips le.z.. MCG68030 chips) are relatively cheap. a
fast processor is not — a fast processor nowadays lias a large
atnount of cachie built out of expensive and fast SRAMs: in
addition. there are expensive functional units such as floating

“Such overlow and anderow operations are quite expensive,
and care must be taken to minimize them.

*\We would normally expect there 1o Le some sort of a dis
tribitedd task quene 1o hille the seheduling of subtasks.

L) . .
.

point ALUs. Furthermore. each new processor needs an extra
port to the network. or to the bus that it is placed on. The
extra port increases the depth of the network. or the loading
on the bus, thus increasing the latency. Several contexts per
processor can share these expensive resources. thus making
more efficient use of them.

Another question that arises is how the multiple contexts
should be implemented. The multiple contexts do not neces-
sarily have to be implemented on a single chip. In the case
where the size of each processing node is small, on the order
of a few chips [9]. we need to have several contexts on a sin-
gle chip using duplicated register sets. However. having to
design a special processor for a given architecture makes that
architecture less practical. So for larger processing nodes. for
example where each processor occupies a whole board. it may
be quite feasible to use separate processor chips for the differ-
ent contexts. \While simplifving the hardware design effort.
this approach duplicates not just the register set but all of
the data path and control as well.?

There are some software issues to be resolved. In partic-
ular. how do you choose which processes to put on a single
processor? Since the progress of contexts on any one proces-
sor is mutually exclusive, the correct placement of processes
on processors may be important. If a given program sec-
tion requires several contexts to be active in order to make
progress. it is best to place these on separate processors.

7 Conclusions

In scalable multiprocessor architectures. processors with a
small fixed number of contexts can achieve substantially
greater efficiencies than single context processors. In some
cases efficiencies increased 63% with two contexts and 100%
with four contexts. Best improvements are found in archi-
tectures with high latency operations and low context switch
overheads. Such high latency operations are to be expected
in large-scale multiprocessors. Low context switch overheads
can be achieved by having a small fixed number of contexts
in hardware and by using a simple switch criterion: the cache
miss.

One important difference between our context switch
scheme and those proposed in [8.11,19] is that in our scheme
the context switch mechanism is separated from the sub-
task management mechanism. This makes for simpler and
faster hardware and allows greater flexibility and application-
dependent performance tuning.

\We are currently working on more detailed simulations. in-
cluding the effects of finite caches and cache contention when
a miss is satisfied from memory. We are also looking fur
ther into the issues and details of implementing our multiple
context scheme.
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