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systems we are rewriting the integral transformation program from integrals over atomic
orbjtals to integrals over molecular orbitals.

II. “*Our major emphasis this past year has been to carry out in-depth detailed ab-initio
MRD-CI (multireference double excitation - configuration interaction) calculations on the
propagation step of cationic polymerization of oxetane (or an energetic substituted oxetane)
reacting with protonated oxetane (or a protonated energetic substituted oxetane). MRD-CI
calculations (based on localized orbitals) along the potential energy surfaces give been
carried out for a very large number of geometry variations. These have enabled"us to map
out the reaction coordinates of the propagation step reaction of oxetane (or an energetic
substituted oxetane) reacting with protonated oxetane (or with a protonated energetic
substituted oxetane), to identify the transition state of the propagation step and to
identify when the C4A'01A bond in the protonated ring will start to open as a function of

inter-ring distance and angle for each different pair of substituted reactants. This year
we carried out the MRD-CI calculations for the propagation step of cationic polymerization

involving BAMO and BAMOH'species: BAMO + OXETH®, BAMO + AMMOH® and OXET + BAMOH'. We are
also carrying out the MRD-CI calculations for AMMO + BAMOH* (which should be completed in
the next quarter). We have run the SCF calculations for BAMO + BAMOKY. For certain of the

intermolecular geometries of BAMO + BAMOH® there are more integrals than the available
peripheral disk space can handle with the transformation program (needed to run the
MRD-CI calculations). The results of our calculations to date suggest some
postulates concerning propensities of various substituted oxetane partners for
homggolymerization and copolymerization.

IIT%PA. 'Nitromethqgg_ﬂlcur.NOzﬂ“t“D

This past year,“we have carried out extensive further MRD-CI calculations on breaking .
the HiC - NO: bond in"nitromethane in a nitromethane crystal in the presence of voids. (R 'J,)

B. Dimethylnitramine Me:N - NO.

As a prototype for breaking >N - NO. bonds we initiated MRD-CI calculations for
breaking the Me.N - NO. bond. In the ground and several electronically excited states
Me:N - NO. is not describable properly as a single determinant and requires more reference
configurations than any other molecule we have ever investigated.

IV. We carried out both MR-CC and, for comparison, MRD-CI calculations for the dissociation

of NH: (which itself is the cation in several energetic species). The lowest 'A; state of
NH: at equilibrium dissociates adiabatically to NHt(i *A,) + H not to NH3 (X 'A;) + K. The
curve arising at the asymptote from NH,(X 'A,) + H is a repulsive A 'A; curve and does not
cross the other !'A; curve. Only the SCF (or unrestricted Hartree-Fock UHF ) lowest X

1A, curve dissociates incorrectly adiabatically to NHy(X 'A:) + W*. This is significant
because it implies UHF curves lwﬁether or not subsequently corrected by MP (Mdeller-Plesset
perturbation correlation energy corrections)] do not give correct physical results for
certain dissociations.
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CONCISE SUMMARY

I. New Program Developments on the CRAY Supercomputer
A. MR-CC (Multireference - Coupled Cluster)

We have a long standing interest in comparing the reliability of
multireference configuration interaction (MRD-CI) calculations with
multireference coupled cluster (MR-CC) calculations. With the collaboration
of Professor Uzi Kaldor, University of Tel Aviv, (a visiting scientist to
our group at the Johns Hopkins University), his state-of-the-theoretical-art
multireference coupled cluster program (for both closed shell and open shell
systems) was rewritten, adapted and vectorized for the CRAY XMP
supercomputer.

The reason for our considerable interest in this problem is described
briefly below and will be described in more detail in the body of this
report.

When making or breaking chemical honds such as in molecular
decompositions or intermolecular reactions it is necessary to use
multiconfigurational wave functions. In this ONR research on energetic
compounds we have demonstrated the necessity for such multiconfigurational
wave functions by tracing the contribution of each significant configuration
to every point on each potential surface.

When breaking a chemical bond in molecular decompositions or
intermolecular reactions, to get reliable dissociation energies, desirably
the calculation should be size extensive.

There are several approaches to try in order to have the calculations
for dissociation or intermolecular reactions be size extensive (or
approximately size extensive): MRD-CI (multireference double excitation-
interaction) calculations with a “Davidson” type correction to remove
unlinked double excitations and MR-CC (multireference-coupled cluster)
calculations.




B. MRD-CI (Multireference Double Excitation - Configuration
Interaction)

In order to be able to handle the transformations for the MRD-CI

calculations for larger systems (such as BAMO + BAMOK' or several
dimethylnitramine molecules or larger energetic molecules as in the crystal)
we are rewriting the transformation program. This program transforms
integrals over atomic orbitals to integrals over molecular orbitals (the
most computer time- and computer-memory and peripheral resource consuming
portion of the MRD-CI calculations).

C. San Diego Supercomputer Center Allocation Committee

We continue to serve on the San Diego Supercomputer Center (SDSC)
Allocation Committee. Dr. Joyce Kaufman served on the December 1987 and Dr.
Walter Koski served on the April, June and September 1988 Allocation
Committee Meetings. Of great pertinence for our entire ONR project on
energetic compounds is that SDSC has granted us two substantial allocations
of supercomputer CRAY XMP time, totalling several hundred hours for the
year.

II. MRD-CI Calculations for Cationic Polymerization of Energetic Oxetanes

Our major emphasis this past year has been to carry out in-depth
detailed ab-initio MRD-CI (multireference double excitation - configuration
interaction) calculations on the propagation step of cationic polymerization
of prototype substituted energetic oxetanes.

Cationic polymerization consists essentially of two major steps:
initiation and then propagation. There is considerable Navy interest in
energetic polymers made by cationic polymerization of oxetanes substituted
or disubstituted by exotic energetic substituents such as azido,
azidomethyl, nitrato, nitraminomethyl, nitromethyl, NFZ’ etc. as well as

fluoro and nitro groups. The initiation step (which is crucial for cationic
polymerization to take place) is governed by the propensity of the
substituted oxetane to undergo protonation. Our previous ab-intio quantum
chemical SCF calculations on the energetic oxetane monomers and
electrostatic molecular potential contour (EMPC) maps we generated from
these electronic wave functions, which predict the order of protonation and
hence initiation, were able to predict correctly the propensity of the
energetic substituted oxetane monomers to undergo polymerization even prior
to the synthesis of the monomers.

A. Ab-Initio MRD/CI Calculations for the Propagation Step
1. Discussion of Calculation Procedure and Pathways of Attack

As was suggested to us by several different experimentalists
in cationic polymerization (primarily Gerry Manser) the mechanism for the
propagation step seems to be attack of protonated oxetanes on oxetanes (or
vice versa) with concomitant ring opening of the protonated oxetane
according to the following general scheme
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We have carried out this past year and are continuing to carry out ab-
initio MRD-CI calculations on the subsequent propagation step of oxetane (or
an energetic substituted oxetane) reacting with protonated oxetane (or a
protonated energetic substituted oxetane).

MRD-CI calculations along the potential energy surfaces have been
carried out for a very large number of geometry variations for the angles
between the planes of the substituted oxetane and protonated substituted
oxetane rings (which can be different in each direction in the case of
substituted rings), the inter-ring distance (018-C4A) (where the A ring is

the protonated ring and the B ring is the non-protonated ring), the angle of
opening the C4A-0lA ring and the orientation of the H atoms on C4A'

The preferred direction of attaék appears to be the reaction of the
oxygen of the unprotonated oxetane ring (which we call OlB) with the o

carbon (which we call C4A) of the protonated substituted oxetane ring along
the C4A'01A bond direction with concommitant pulling back (inversion of the
H atoms on C4A) and opening of the C4A-0lA bond in the protonated oxetane
ring and formation of an OlB-C4A bond.

The ab-initio MRD-CI calculations on the propagation step of the
protonated oxetane ring opening in the course of interaction with oxetane
were carried out based on localized orbitals on the pertinent regions
involved in the reaction.

These MRD-CI calculations have enabled us to map out the reaction
coordinates of the propagation step reaction of oxetane (or an energetic
substituted oxetane) reacting with protonated oxetane (or with a protonated
energetic substituted oxetane), to identify the transition state of the
propagation step and to identify when the C4A-0lA bond in the protonated

ring will start to open as a function of inter-ring distance and angle for
each different pair of substituted reactants.

By comparing these results for different pairs of reacting substituted
oxetanes and protonated substituted oxetanes we have been able to gain
insight into preference toward copolymer candidates. In all cases we have
studied to date our calculated predictions agree with the order of Gerry
Manser's experimental polymerization reactivities ratios.




B. Detailed Results

This past year we carried out the MRD-CI calculations for the
propagation step of cationic polymerization involving BAMO and

'BAMOH* species: BAMO + OXETH®, BAMO + AMMOH' and OXET + BAMOH'. We are also

carrying out the MRD-CI calculations for AMMO + BAMOH* (which should be
completed in the next qua-ter).

Because there are bulky bis(azidomethyl) substituents in the 3,3-
position of the BAMOH* being attacked we explored considerably more geometry
variations than usual. There is more steric hindrance when the C4A of

BAMOH" s being attacked by the 0lB of AMMO than when the C4A of AMMOH® is

being attacked by the 01B of BAMO.

AE for the polymerization reaction has two components: AE (protonation)
+ AE (addition). AE for BAMO + AMMOH® is quite close to that of AMMO +

AMMOH* (just a very 1ittle bit lower). Our previous calculations indicated
that AMMO would have somewhat more of a tendency to protonate than would
BAMO. Thus, in a mixture of AMMO + BAMO, AMMO will initiate first. Also

AMMOH* will have somewhat more of a tendency to react with itself (AMMO)
than with BAMO. This is in accord with Gerry Manser's experimental
polymerization results.

We have run the SCF calculations for BAMD + BAMOH'. For this latter
case because of the steric hindrance we have examined a large number of
intermolecular geometries. For certain of the intermolecular geometries of

BAMO + BAMOH® there are more integrals than the available peripheral disk
space can handle with the transformation program (needed to run the
subsequent MRD-CI calculations) in its current form, We are currently
rewriting the transformation program. There is more steric hindrance when
the C4A of BAMOH® is being attacked by OXET or AMMO than when the C4A of
OXETH' or AMMOH' is being attacked by BAMO. The attack of BAMO on BAMOH' is
even more sterically hindered than any of the other cases we have examined
to date. This finding adds further evidence to our hypothesis that the
steric hindrance could be a contributing factor to Gerry Manser's
observations that bis compounds are more difficult to polymerize and
copolymerize. This effect of bulky bis 3,3-substituents on the protonated
oxetane being attacked could also be a contributing factor to Gerry Manser's
comments that certain compounds will not undergo cationic polymerization or
will undergo cationic polymerization only slowly or with difficulty.

The results of our calculations to date suggest some general postulates
concerning propensities of various substituted oxetane partners for
homopolymerization and copolymerization. - For the oxetanes A and B, the
species with the highest quantum chemically calculated proton affinity will
initiate first, (It does not appear possible to measure directly
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experimentally the proton affinities of oxetanes. Our experimental
colleague, Dr. Walter S. Koski, had already tried a number of different
experimental techniques for us on this problem, including proton transfer in
a tandem mass spectrometer.) It is desirable that the species that
initiates first have the Towest intrinsic steric hindrance [the least bulky
3,3-substituent (s) and the least number of these bulky 3,3-substituents].
The reason for this is that in the propagation step the 3,3-substituents on
the protonated oxetane (designated here as molecule A) are on C3A which is

the neighbor of C4A which is being attacked by 0lB of the neutral oxetane

(designated here as molecule B). Thus the bulkiness of the 3,3-
substituent(s) on A exert a profound influence on the steric hindrance to
the propagation step. On the other hand the 3,3-substituents on the neutral
oxetane are not neighbors to 0IB (the attacking atom of the neutral oxetane)

and thus are expected to exert considerably less steric hindrance. The
above discussion would also seem to indicate why certain compounds which
cannot undergo homopolymerization can undergo copolymerization. A very
sterically hindered 3,3-substituted oxetane may protonate and thus initiate
but is so sterically hindered that it is very difficult for another like
neutral 3,3-substituted oxetane to attack successfully the a position (C4A)

of the sterically hindered 3,3-substituted protonated oxetane.

We shall be continuing these MRD-CI calculations on the initiation and
propagation steps in cationic polymerization. The species to be
investigated and their partners will be chosen from Garry Manser's recent
results.

III. Ab-Initio MRD-CI Calculations for Breaking a Chemical Bond in a

Molecule in a Crystal or Other Solid Environment

MRD-CI (multireference double excitation-configuration interaction)
calculations are necessary to describe bond breaking processes correctly.
In the previous year, 1987, we derived, implemented and used successfully an
extension of our MRD-CI technique based on localized/local orbitals to
breaking of a chemical bond in a molecule in a crystal or other solid
environment. This development has led to an important breakthrough which
leads to crucial understanding of the initiation of detonation and the
subsequent processes leading to detonation. Our method is completely
general and applicable to any molecule in any kind of a crystal or other
solid environment, The crystal can have voids, defects, deformations,
dislocations, impurities, dopants, edges and surface boundaries, etc.

A. Nitromethane H3C - NO2

This past year, we have carried out extensive further MRD-CI
calculations on breaking the H3C - NO2 bond in nitromethane in a

nitromethane crystal in the presence of voids. To investigate th effect of
voids we carried out a number more MRD-CI calculations of the energy
necesary to break the H3C - NO2 bond in nitromethane in a nitromethane

crystal as a function of voids in the nitromethane molecules represented by
multipoles, in the nitromethane molecules treated explicitly in the SCF and
in various combinations of voids in nitromethane multipoles and in




nitromethane molecules treated explicitly in the SCF. For each case of
differer* types and combinations of voids the entire integral, SCF, MRD-CI
calculation has to be carried out again. Our results to date indicate it
still always takes more energy to break the H3C - NO2 bond when the

nitromethane molecule is in a nitromethane crystal. However the relative
energies for breaking the H3C - HOZ bond vary as function of the positions

and types and combinations of the voids.

<Impurities and dopants can be treated in a manner completely analogous to
our treatment of voids. In the cases of impurities and dopants the impurity
or the dopant molecules can be in the space treated explicitly in the SCF or
in the multipole environment.

B. Dimethyinitramine MeZN - NO2

As a prototype for breaking >N - NO2 bonds we inijtiated MRD-CI
calculations for breaking the MeZN - NOZ bond in dimethylnitramine.
Dimethylnitramine has C2v symmetry in the gas phase but not when the
molecule is in a crystal. Thus in the MRD-CI for breaking the MezN - NOZ

bond in dimethylnitramine in a non-symmetrical environment only a
combination of all singlet states or all triplet states can be solved.

This year we first investigated MRD-CI calculations for the isolated
dimethylnitramine molecule (but without using symmetry) for the lowest and
several electronically excited states. Each time a new configuration (not
in the reference space) is found to be significant in any of the roots it is
added to the reference configurations and the entire MRD-CI calculation is
redone. Dimethylnitramine requires more reference configurations than any
other molecule we have ever studied by MRD-CI. We have initiated MRD-CI
investigations of the dissociation of dimethylnitramine in the crystal.

IV. Ab-Initio Multireference Coupled Cluster and Multireference CI
Calculations for Protonation NH3 / Deprotonation NH4+

The Coupled Cluster Methods are more sophisticated than the many-body-
perturbation methods (including the Méeller Plesset methods to any order).
The coupled cluster method essentially corresponds to infinite order many-
body perturbation theory.

The major problem in using the coupled cluster method for breaking or
forming bonds is that a multiconfigurational wave function is necessary to
describe these processes properly. We have carried out multireference
coupled cluster (MR-CC) calculations (using the state-of-the-theoretical-art
method of Kaldor). One of our interests in the MR-CC method is that it is
size consistent and is supposed to give slightly more accurate dissociation
energies.




We carried out both MR-CC and, for comparison, MRD-CI calculations for
the dissociation of NH4+ (which itself is the cation in several energetic

species and is the prototype of R1R2R3NH+ cations in other energetic
species). We have carried out both the MR-CC and MRD-CI calculations at
each point along the (H3N - - - H)*potentia1 surface to compare the

structures of the wave functions and their energies. At each point the
geometry was optimized by MRD-CI calculations and the MR-CC calculations
were carried out at the optimized geometry. Our results to date indicate
that the agreement between the MR-CC and MRD-CI is quite close but more
testing remains to be done on this and different systems. One important
hypothesis we had made previously for protonation and deprotonation is

confirmed. The Towest 1Al state of NH4+ at equilibrium dissociates
adiabatically to NH3+(X 2Al) + H not to NH,(X 1AI) + H'. The curve arising
at the asymptote from NH3(i 1Al) + W is a repulsive A 1A1 curve and does

not cross the other 1A1 curve, Only the SCF (or unrestricted Hartree-Fock

1A1 curve dissociates incorrectly adiabatically to NH3(X lAl)

UHF ) lowest X
+ . This is significant because it implies UHF curves [whether or not
subsequently corrected by MP (Moeller-Plesset perturbation correlation
energy corrections)] do not give correct physical results for certain
dissociations. (MP corrections to any order cannot correct for this
deficiency of the single determinant SCF or UHF wave function.)

We have had a great deal of interest in our new strategy of MRD-CI
calculations based on localized/local orbitals for breaking a chemical bond
in a molecule in a crystal or other solid environment. This same strategy
is applicable for reactions in any type of environments. (Thus, this
approach is relevant to initiation and subsequent processes leading to
detonation.)

*
Dr. Kaufman presented a number of invited papers on MRD-CI
calculations for breaking the H3C - NO2 bond in nitromethane in a

nitromethane crystal (* denotes invited lecture).

*a. International Sanibel Symposium on Atomic, Molecular and
Solid State Theory, Marineland, Florida, March 1988,

*b. Working Group Meeting on Synthesis of High Energy
Density Materials, U.S. Army Armament Research,




Development and Engineering Center, Dover, New Jersey,
June 1988,

c. American Chemical Society/North American Chemical
Congress, Toronto, Canada June 1988,

*d. Gordon Conference on Chemistry of Energetic Materials,
New Hampton School, New Hampshire, June 1988,

*e, 6th International Congress of Quantum Chemistry,
Jerusalem Israel, August 1988,

Dr. Kaufman also presented an invited paper on MRD-CI calculations on
the Propagation Step in Cationic Polymerization of Energetic Substituted
Oxetanes at the ONR Energetic Materials Workshop, Great Q0ak Landing,
Maryland, September 1988. During that presentation Dr. Kaufman also
mentioned briefly our results on the H3C - NO2 decomposition in a

nitromethane crystal including preliminary results on treating voids in the
nitromethane crystal.

Dr. Kaufman also presented a paper on "Ab-Initio Multireference Coupled
Cluster and Multireference CI Calculations for Protonation of
NH3/Deprotonation of NHZ Involve Multipotential Surfaces" at the American

Chemical Society/North American Chemical Congress, Toronto, Canada, June
1988.
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I. New Program Developments on the CRAY Supercomputer
A. MR-CC (Multireference - Coupled Cluster)

We have a long standing interest in comparing the reliability of
multireference configuration interaction (MRD-CI) calculations with
multireference coupled cluster (MR-CC) calculations. With the collaboration
of Professor Uzi Kaldor, University of Tel Aviv, (a visiting scientist to
our group at the Johns Hopkins University), his state-of-the-theoretical-art
multireference coupled cluster program (for both closed shell and open shell
systems) was rewritten, adapted and vectorized for the CRAY XMP
supercomputer.

The reason for our considerable interest in this problem is described
below.

When making or breaking chemical bonds such as in molecular
decompositions or intermolecular rections it is necessary to use
multiconfigurational wave functions. In this ONR research on energetic
compounds we have demonstrated the necessity for such multiconfigurational
wave functions by tracing the contribution of each significant configuretion
to every point on each potential surface.

When breaking a chemical bond in molecular decompositions or
intermolecular reactions, to get reliable dissociation energies, desirabl)
the calculation should be size extensive. That means that the fragments
along the dissociative pathway and the asymptote should be treated with the
same degree of correlation as the undissociated molecule. At the asymptote
if single and double excitations are allowed in each of the fragments that
would correspond to allowing quadruple excitations in the undissociated
molecule.

There are several approaches to try in order to have the calculations
for dissociation or intermolecular reactions be size extensive (or
approximately size extensive). Since multiconfiguration potential energy
surfaces are necessary, MRD-CI wave functions are well suited for describing
properly the processes of moiecular dissociations and reactions.

One approach to have MRD-CI calculations essentially size consistent or
size extensive (which we often use for reactions and dissociations) is to




ref
E(full CI) = E(EXT) + (1 - I c 2) [E(EXT) - E(Ref)]
p B

E(Ref) = energy for only reference configurations
E(EXT) = energy extrapolated for all configurations

This correction has the effect of making the MRD-CI calculations essentially
size consistent or size extensive.

Another approach is to carry out coupled cluster calculations which by
their nature are size extensive.

Briefly,

Y= Q¢ ¥ = exp (T) ¢ TeT +Ty4 - -~
- + i + + ij o
T p) aiajtj +1/2% aiaja]aktk] +

i,j conn i,j,k,1,conn

CCSD (T = T1 + TZ) also includes connected energy diagrams from disconnected

triple and quadruple excitations such as Tz2 (the most important such
excitations)

Exponential form ensures size-consistency
Open shells

Define model space
vP.ovd vdinp
y2 . py?

The Coupled Cluster Methods are more sophisticated than the many-body-
perturbation methods (including the Mdeller Plesset methods to any order).
The coupled cluster method essentially corresponds to infinite order many-
body perturbation theory.

The major problem in using the coupled cluster method for breaking or
forming bonds is that a multiconfigurational wave function is necessary to
describe these processes properly.. Most coupled cluster calculations
operate on a single reference wave function. We developed and implemented a
strategy several years ago where we carried out MRD-CI calculations first to
obtain the multiconfiguration wave function at each point along a
dissociation path and then applied a coupled cluster technique to those
multiconfiguration wave functions. One had to take precautions to exclude
in the coupled cluster treatment "intruder" states where the correlation

10
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obtain the multiconfiguration wave function at each point along a
dissociation path and then applied a coupled cluster technique to those
multiconfiguration wave functions. One had to take precautions to exclude
in the coupled cluster treatment "intruder" states where the correlation
would be taken into account twice, once in the MRO-CI and once in the
coupled cluster.

Professor Kaldor's recent state-of-the-theoretical-art approach to
multireference coupled cluster takes a different approach and solves the
multireference coupled cluster problem directly. Thus, we invited Professor
Kaldor to visit with our group at the Johns Hopkins University and to
collaborate with us in comparing multireference coupled cluster with
multireference configuration interaction results.

We collaborate on this endeavor with Professor Uzi Kaldor. He has
spent several months each summer as a visiting scientist with our group.

B. MRD-CI (Multireference Double Excitation - Configuration
Interaction)

In order to be able to handle the transformations for the MRD-CI

calculations for larger systems (such as BAMO + BAMOH® or several
dimethyinitramine molecules or larger energetic molecules as in the crystal)
we are rewriting the transformation program. This program transforms
integrals over atomic orbitals to integrals over molecular orbitals (the
most computer time- and computer-memory and peripheral resource consuming
portion of the MRD-CI calculations).

11




II. MRD-CI Calculations for Cationic Polymerization of Energetic Oxetanes

Our major emphasis this past year has been to carry out in-depth
detailed ab-initio MRD-CI (multi-reference double excitation-configuration
interaction) calculations on the propagation step of cationic polymerization
of prototype substitued energetic oxetanes. Cationic polymerization
consists essentially of two major steps: initiation and then propagation.
There is considerable Navy interest in energetic polymers made by cationic
polymerization of oxetanes substituted or disubstituted by exotic energetic
substituents such as azido, azidomethyl, nitrato, nitraminomethyl,
nitromethyl, NFZ' etc. as well as fluoro and nitro groups. The initiation

step (which is crucial for cationic polymerization to take place) is
governed by the propens1ty of the substituted oxetane to undergo
protonation. Our previous ab-initio quantum chemical SCF calculations on
the energetic oxetane monomers and electrostatic molecular potential contour
(EMPC) maps we generated from these electronic wave functions which predict
the order of protonation and hence initiation, were able to predict
correctly the propensity of the energetic substituted oxetane monomers to
undergo polymerization even prior to the synthesis of the monomers.

Our previous and more recent ab-initio MRD-CI results for the
propagation step involving various energetic oxetane partners suggest some
general postulates concerning propensities of various substituted oxetane
partners for homopolymerization and copolymerization. For the oxetanes A
and B, the species with the highest quantum chemically calculated proton
affinity will initiate first. (It does not appear possible to measure
directly experimentally the proton affinities of oxetanes. Our experimental
colleague, Dr. Walter S. Koski, had already tried a number of different
experimental techniques for us on this problem, including proton transfer in
a tandem mass spectrometer.) It is desirable that the species that
initiates first have the Towest intrinsic steric hindrance [the least bulky
3,3-substituent(s) and the least number of these bulky 3,3-substituents].
The reason for this is that in the propagation step the 3,3-substituents on
the protonated oxetane (designated here as molecule A) are on C3A which is

the neighbor of C4A which is being attacked by 0lB of the neutral oxetane

(designated here as molecule B). Thus the bulkiness of the 3,3~
substituent(s) on A exert a profound influence on the steric hindrance to
the propagation step. On the other hand the 3,3-substituents on the neutral
oxetane are not neighbors to 018 (the attacking atom of the neutral oxetane)

and thus are expected to exert considerably less steric hindrance. The
above discussion would also seem to indicate why certain compounds which
cannot undergo homopolymerization can undergo copolymerization. A very
sterically hindered 3,3-substituted oxetane may protonate and thus initiate
but is so sterically hindered that it is very difficult for another 1like
neutral 3,3-substituted oxetane to attack successfully the sterically
hindered 3,3-substituted protonated oxetane.

12




A. Ab-Initio MRD/CI Calculations for the Propagation Step
1. Discussion of Calculation Procedure and Pathways of Attack

As was suggested to us by several different experimentalists
in cationic polymerization (primarily Gerry Manser) the mechanism seems to
be attack of protonated oxetanes on oxetanes (or vice versa) with
concomitant ring opening of the protonated oxetane according to the
following general scheme

\c/ R{C,Rz
R,' yd \
N - /@ ¢
4
7/ N\ ’I'

This year we continued to carry out ab-initio MRD-CI calculations on
the subsequent propagation step of oxetane (or an energetic substituted
oxetane) reacting with protonated oxetane (or a protonated energetic
substituted oxetane).

In order to understand and to be able to predict copolymerization
propensities of various energetic substituted oxetanes it is necessary to
trace the reaction pathways of the propagation step in cationic
polymerization.

These energetic oxetanes are large molecules for MRD-CI calculations
and the systems of energetic oxetanes plus protonated oxetanes are even
larger and thus beyond the size in which MRD-CI calculations can be carried
out in the cpu memory and disc storage of current CRAY XMP supercomputers.
Thus we had derived, implemented and tested a new computational strategy for
MRD-CI calculations for intermolecular reactions and for molecular
decompositions based on localized orbitals. (The strategy is described in
more detail later in this section).

MRD-CI calculations along the potential energy surfaces have been
carried out for a very large number (at least 25 separate MRD-CI calculated
points at different geometries are necessary for each set of reacting
partners) of o angles between the planes of the substituted oxetane and
protonated substituted oxetane rings (which can be different in each
direction in the case of substituted rings), the inter-ring distances
(olB'C4A) (where the A ring is the protonated ring and the B ring is the

non-protonated ring), angles § of opening the C4A'01A bond in ring A and the
orientation of the H atoms on C4A as a function of the inter-ring distance.

13




For the MRD-CI calculations on oxetanes and protonated oxetanes

DEFINITION OF & DEFINITION OF & < R Ro
G S
' P Ry yd AN ~ / d
7\ /. [ 1’\ 0 —eose - @ C\
\’0_‘: \§J’> c)’ \., R} %\ e °4x01/2
“I‘ xo/és ng Ting /&\ npn ring L

we considered the localized bonds in the C4A—01A bond, the C3A'C4A bond, the

CZA-C4A.bond, the OlA-H+ bond, the lone pairs on 0lA and the bonds
connecting hydrogens to CZA and C4A’ the OIB'C4B bond, the OIB-CZB bond, the
bonds connecting hydrogens to CZB and C4B and the inter-ring OIB-C4A bond.

This choice of localized orbitals has the great advantage since energetic
oxetanes are substituted in the 3 position, that it preserves the similarity
in the MRD-CI among all the energetic substituted oxetanes and protonated
oxetanes and provides a sound basis for comparison.

The preferred direction of attack appears to be the reaction of the
oxygen (which we call 015) of the unprotonated oxetane ring on the a carbon
(which we call C4A) of the protonated substituted oxetane ring along the
C4A-01A bond direction with concomitant pulling back (inversion of the H
atoms on C4A) and opening of the C4A-01A bond in the protonated oxetane
ring, similar to an SNZ reaction mechanism,

\ 7/
C

A

;c‘ ‘ c\’ "B ring
\,/

. C

> // \

c c n"an
\)(29/ A" ring

[
H
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The optimal angle a between the two rings is determined by SCF
calculations for R(OIB-C4A) = 2.6 - 2.9 - 3.4 bohrs and is used for all

other geometries.

Two bonds are essential. C4A-01A and OIB-C4A are essential to describe
the reaction pathway. The bond inside the protonated oxetane ring (C4A-01A)

varies from R = 2.8 to R = 4.9 bohrs which correspond to the fully closed
and fully open ring of the protonated oxetane. This bond is described by

o ]
the parameter 6 which varies from 0 (fully closed ring) to 19 (fully open
ring) and corresponds to the degree of openness of the ring.

The olB-c4A bond is changed from R(OIB-C4A) fron R = 2.1 bohrs to R =
10.0 bohrs.

The openiné (C4A—01A) of the protonated oxetane ring starts at
R(OIB—C4A) = 4.6 bohrs., Next both: OIB-C4A and C4A-0lA change

simultaneously until the complex reaches the stabilization point at
R(OIB'C4A) at 2.9 bohrs and 6 = 19° (fully open). Our investigations have

shown that this holds true for all of the oxetane plus protonated oxetane
systems we have investigated.

Positions of the proton H* and hydrogens connected to C4A atom are the
most affected by opening the ring and their positions were determined the

previous year for the prototype system OXET + FNOXH'. The positions of the
pulled back hydrogens have been used for our subsequent studies of
propagation reactions involving other protonated energetic oxetanes. The
position of the proton is investigated each time but remains essentially the
same for all systems studied.

We had previously shown that ab-initio MODPOT/VRDDO MRD-CI calculations
for oxetanes and protonated oxetanes gave energy differences and MRD-CI
coefficients very close to those from much larger basis set all-electron
MRD-CI calculations.

Ab-initio MODPOT/VRDDO MRD-CI calculations have been carried out for
each point of the potential surface of oxetanes reacting with protonated
oxetanes in the propagation step of cationic polymerization. Because of the
size of the intermolecular complex molecular orbitals selected from
localized space are used in the MRD-CI calculations. The geometries studied
include the most sensitive part of the complex in the the MRD-CI procedure.
Ten of the most important main reference configurations have been used in
MRD-CI treatment, and the same set of main reference configurations have
been kept through whole potential surface. All single and double
excitations were allowed relative to these main configurations. The
energies of each of the thousands of contributing configurations is
estimated by a perturbation procedure; a threshold is set for which
contributions wil be included explicitly in the MRD-CI; in the following
tables, this MRD-CI energy is designated CI. Then the energies of all of
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the other configurations generated but not included explicitly in the MRD-CI
are extrapolated and added back in, this energy is designated EX. Finally a
Davidson type correction (which has been shown to be a good correction) for

size extensivity is added in.

, ref
E(full CI estimate) = E(EX) + (1 - L cpz) [E(EX) - E(Ref)]
)

and the summation is over all reference species. The use of
multiconfigurational scheme is to assure avoiding of possible artifacts.

Our MRD-CI results support the suggestions of Gerry Manser as to the
mechanism of the propagation step in cationic polymerization of oxetanes.
We discussed this with Gerry the previous year and he was quite gratified
that our theoretical results were in accord with his hypothesis. We have
spoken to Gerry Manser this year also and he felt that "our work complements
each other.” He hopes that we will continue to interact with him and to
contribute in the area of polymerization mechanisms.

Our MRD-CI calculations have enabled us to map out the reaction
coordinates of the propagation step reaction of oxetane (or an energetic
substituted oxetane) reacting with protonated oxetane (or with a protonated
energetic substituted oxetane), to identify the transition state of the
propagation step and to identify when the C4A'°1A bond in the protonated

oxetane will start to open as a function of inter-ring distance and angle
for each different pair of substituted reactants.

By comparing these resuits for different pairs of reacting substituted
oxetanes and protonated substituted oxetanes we have been able to gain
insight into preference toward copolymer candidates. In all cases we have
studied to date our calculated predictions agree with the order of Gerry
Manser's experimental polymerization reactivities ratios.

For our calculations on the propagation step of (substituted) oxetane
plus (substituted) protonated oxetane we have been using the new MRD-CI
approach we previously developed, implemented and validated based on
localized orbitals in the reaction/interaction region with the remainder of
the non-participating localized occupied molecular orbitals being folded
into an effective CI Hamiltonian. We had shown by test examples that the
_MRD-CI based on localized orbitals give a potential energy surface for
molecular decomposition essentially parallel to that using the entire
valence space MRD-CI. These MRD-CI calculations for the reaction of
substituted protonated oxetanes with substituted oxetanes are a
computationally and labor intensive project. For each different inter- and
intra-molecular geometry point, first the SCF calculation must be run, then
the resulting SCF canonical delocalized molecular orbitals must be
localized. After localization a small single reference CI must be carried
out to determine the major reference configurations to include in the
subsequent MRD-CI. A great advantage in our carrying out the ab-initio MRD-
CI calculations based on the important localized orbitals in the
interaction/reaction region is the reasonable similarity of types of major

16




reference configurations for the variously energetic substituted oxetanes
anc energetic substituted protonated oxetanes.

We shall be continuing these MRD-CI calculations on the initiation and
propagation steps in cationic polymerization. The species to be

inveitigated,and their partners will be chosen from Gerry Manser's recent
results.

17




B. Detailed Results
1. Energies

a. 3,3-Bis(azidomethyl)oxetane (BAMO) + protonated oxetane
(OXETH)

Results

The stabilization point for the addition reaction BAMO + OXETH* occurs
at R(01B-C4A) = 2.9 bohrs with the protonated oxetane ring fully open (§ =
19°). The MRD-CI stabilization energy was found to be -0.038896 a.u, = -
24,41 kcal/mole. The reaction proceeds via a transition state with an
estimated activation energy of 12.55 kcal/mole. The potential energy of
surfaces and reaction potential map are presented in Figures II-1 to II-4,

Figure II-1: "MRD-CI Extrapolated Energy for BAMO Approaching Protonated
Oxetane For Fixed Angle 6 and Different Intermolecular
Distances R(01B- C4A)"

Figure II-2: “MRD-CI Extrapolated Energy for BAMO-Protonated Oxetane Complex
for Fixed Intermolecular Distances R(01B-C4A) and Different 6
Angle Values"

Figure II-3: "MRD-CI Extrapolated Potential Energy Surface for BAMO
Approaching OXETH'"

Figure 1I-4: “BAMO + 0XETH+, Extrapolated MRD-CI Energy Along the Reaction
Coordinate for BAMO + OXETH' Addition Reaction®

The detailed Tables of Results follow in tables II-1 through I1I-5:

Table II-1: "BAMO + OXETH' 6=0° (fully closed), Energies (a.u.) as a
function of R(01B-C4A)"

Table I1I-2: "BAMO + OXETH' 6=5°, Energies (a.u.) as a function of R(01B-
C4A)"

Table II-3: "BAMO + OXETH' 6=10°, Energies (a.u.) as a function of R(01B-
C4A)"

Table I1-4: "BAMO + OXETH' 6=15°, Energies (a.u.) as a function of R(01BV-
C4A)"

Table I1-5: "BAMO + OXETH' 6=-19° (fully open), Energies (a.u.) as a function
of R(01B-C4A)"

18
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Table II-1

R(01B-C4A)
(bohrs)

SCF

Cl

EXT

DAV

# SAFs
generated

X c2
gs

R(01B-C4A)
(bohrs)

SCF

Cl

EXT

DAV

# SAFs
generated

X c2
gs

X c2

6 =

2.3

-140.394796
-140,589875
-140.598322
-140.601648
37437

0.964
0.905

4.6

-140.943314
-141,124490
-141.129670
-141.131798
37437

0.970
0.905

BAMO + OXETH'

0° (fully closed)

o = -90°

ENERGIES (a.u.)

(891)

(520)

2.9

-140.750568
-140.941911 (809)
-140.948674
-140.951656

37437

0.965
0.906

10.0

-140.936448
-141.118354 (473)
-141,122238
-141,124326

33881

0.969
0.904

3.6

-140.900008

-141.085247 (652)

-141.091835

-141.094343
37437

0.967
0.905

is the contribution of all of the reference configurations

gs is the contribution of the ground state SCF wave function
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Table II-2

R(01B-C4A)
(bohrs)

SCF

CI

EXT

DAV

# SAFs
generated

L c2
gs

R(01B-C4A)
(bohrs)

SCF

CI

EXT

DAV

# SAFs
generated

X c2
gs

z c2

2.3

-140.604422
-140.792276
-140.799310
-140.801814
37437

0.968
0.906

4.6

-140.940389
-141,121032
-141,125957
-141.128440
37437

0.965
0.901

BAMO + OXETH'

50

a = -90°

ENERGIES (a.u.)

(762)

(529)

2.9
-140,858316

~141.045479 (647)

-141.053570
-141,056355
37437

0.966
0.905

10.0

-140.923863
-141.104571
-141.107477
-141.113610
37437

0.942
0.900

3.6

-140.932576

-141.115297 (593)

-141.121027
-141.123726
37437

0.965
0.904

is the contribution of all of the reference configurations

gs is the contribution of the ground state SCF wave function




Table II-3

R(01B-C4A)
(bohrs)

SCF

CI

EXT

DAV

# SAFs
generated

L c2
gs

R(01B-C4A)
(bohrs)

SCF
CI
EXT
DAV
" # SAFs
generated

L c2
gs

2.3
-140.735359

BAMO + OXETH®

6 = 10°

a = -90°

ENERGIES (a.u.)

-140.916195 (645)

-140.921611
-140,923667
37437

0.971
0.908

4.6
-140.923098

-141.096484 (472)

-141.101413
-141.10376
37437

0.965
0.904

2.9

-140.925031
-141.107971
-141.113450
-141.115757
37437

0.968
0.905

_10.0

-140.894267
-141.067411
-141.070777
-141.074795
37245

0.952
0.901

(594)

(373)

3.6

-140.947167
-141.126185 (531)
-141.132047
-141.134604

37437

0.965
0.904

z c2 is the contribution of all of the reference configurations
gs is the contribution of the ground state SCF wave function
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Table II-4

R(01B-C4A)
(bohrs)

SCF

CI

EXT

DAV

# SAFs
generated

X c2
gs

R(01B-C4A)
(bohrs)

SCF

CI

EXT

DAV

# SAFs
generated

z c2
gs

2.3

-140.813849
-140.990047
-140.994875
-140.996733
37437

0.972
0.911

4.6

-140.908114
-141.078218
-141.082423
-141.084489
37437

0.967
0.905

BAMO + OXETH'

6 = 15°

o = -90°

ENERGIES (a.u.)

(583)

(439)

2.9

-140.964301
-141.144169 (524)
-141.149155
-141.151208

37437

0.970
0.906

10.0

-140.867512

-141.034999 (337)

-141.038348

-141.040064
37437

0.970
0.904

3.6

-140.954997
-141.133012 (482)
-141.137881
-141.140190

37437

0.967
0.903

L cz is the contribution of all of the reference configurations
gs is the contribution of the ground state SCF wave function
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Table II-5

R(01B-C4A)
(bohrs)

SCF

CI

EXT

DAV

# SAFs
generated

X c2
gs

R(01B-C4A)
(bohrs)

SCF

Cl

EXT

DAV

# SAFs
generated

I c2
gs

X c2

2.3
-140,851821

BAMO + OXETH'

6 = 19°

a = -90°

ENERGIES (a.u.)

-141.025892 (547)

-141.030670
-141.032466
33881

0.973
0.913

4.6
-140,887304

-141.058652 (438)

-141,062035
-141.064146
37437

0.966
0.903

2.9

-140.976943
-141.156253
-141.161134

-141.163124

37437

0.971
0.907

10.0

~140.837856
-141.003788
-141.006121
-141.007550
37437

0.973
0.905

(507)

(302)

3.6
-140.948700

-141.128422 (476)

-141.132694
-141.134983
37437

0.967
0.901

is the contribution of all of the reference configurations

gs is the contribution of the ground state SCF wave function
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b. 3,3-Bis(azidomethyl)oxetane (BAMO) + protonated
3-azidomethyl-3-methyloxetane (AMMOH')

Results

The stabilization point for the addition of BAMO to protonated AMMO
occurs at R = 2.9 bohrs, 6 = 19° (fully open). The stabilization energy was
found to be ~0.019239 a.u. = 12.07 kcal/mole. The activation energy for the
addition reaction was found to be approximately 12.55 kcal/mole.

AE for the polymerization reaction has two components: AE (protonation)
+ AE (addition). AE for BAMOD + AMMOH™ s quite close to that of AMMO +

AMMOH* (just a very little bit lower). Our previous calculations indicated
that AMMO would have somewhat more of a tendency to protonate than would
BAMO. Thus, in a mixture of AMMO + BAMO, AMMO will initiate first. Also

AmMoH* will have somewhat more of a tendency to react with itself (AMMO)
than with BAMO. This is in accord with Gerry Manser's experimental
polymerization results.

The potential energy surfaces and reaction potential map are shown in
Figures II-5 to II-8

Figure II-5: “MRD-CI Extrapolated Energy for BAMO Approaching Protonated
AMMO for Fixed Angle 6 and Different Intermolecular Distances
R(01B-C4A)"

Figure II-6: “MRD-CI Extrapolated Energy for BAMO - Protonated AMMO Complex
for Fixed Intermolecular Distances R(01B-C4A) and Different §
Angle Values"

Figure II-7: “Extrapolated CI Potential Energy Surface for BAMO Approaching
Protonated AMMO"

Figure II-8: "“BAMO + AMMOH+, Extrapolated MRD-CI Energy Along the Reaction
Coordinate for BAMO - Protonated AMMO Addition Reaction"

The Detailed Tables of Results follow in Tables 1I-16 to II-20

Table 11-6: “BAMO + AMMOH' 6=0° (fully closed), Energies (a.u.) as a
function of R(01B-C4A)"

Table II-7: "BAMO + AMMOH® 6-5., Energies (a.u.) as a function of R(01B-
C4A)"

Table II-8: “BAMO + AMMOW' 6=10°, Energies (a.u.) as a function of R(01B-
C4A)"

28




T ———

Table II-9: "BAMO + AMMOH' 6=15°, Energies (a.u.) as a function of R(01B-~
C4A)"

Table II-10: "BAMO + AMMOH® 6-19° (fully open), Energies (a.u.) as a
function of R(01B-C4A)"
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Table II-6

R(01B-C4A)
(bohrs)

# SAFs
generated

X c2
gs
R(01B-C4A)
(bohrs)

# SAFs
generated
z c2

gs

I ¢l

BAMO + AMMOH'

6 = 0° (fully closed)

a = =-90°

ENERGIES (a.u.)

2.3

-181.778080
~181.972466 (889)
-181.980697
-181.983963

37437

0.964
0.906

4.6

~182.375635
-182,.556438 (516)
-182.561840
-182.562944

37437

0.970
0.906

2.9

-182.158030

-182.348512 (800)

-182.355049

-182.358040
37437

0.965
0.906

_10.0 _

-182.372309

-182.553866 (474)

-182.557712

-182.559763
37247

0.970
0.904

3.6

-182.323246

-182.507884 (649)

-182.514230

-182.516672
37437

0.968
0.906

is the contribution of all of the reference configurations

gs is the contribution of the ground state SCF wave function
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Table II-7

R(01B-C4A)
(bohrs)

SCF

CI

EXT

DAV

# SAFs
generated

T c2
gs

R{01B-C4A)
(bohrs)

SCF

CI

EXT

DAV

# SAFs
generated

T cz
gs

I c2

2.3

-181.,995448
-182,182539
-182.189510
-182,191977
37437

0.969
0.907

4.6

-182.373593
-182,554048
-182.558766
-182.561212
37437

0.966
0.902

BAMO + AMMOH'

§ =

50

a = -90°

ENERGIES (a.u.)

(742)

(529)

2.9

-182.269937
-182.455236
~182.462829
~182.466964
37272

0.957
0.908

10.0

-182.360085
~182.541947
~182.545584
-182.547964
37437

0.966
0.899

(647)

(425)

3.6

-182.357538

~182.539786 (593)

~182.545773
-182.548438
37437

0.965
0.905

is the contribution of all of the reference configurations

gs is the contribution of the ground state SCF wave function
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Table II-8

R(01B-C4A)
(bohrs)

SCF

CI

EXT

DAV

# SAFs
generated

z c2
gs

R(01B-C4A)
(bohrs)

SCF

CI

EXT

DAV

# SAFs
generated

X c2
gs

2.3
-182.132353

BAMO + AMMOH®

6 = 10°

o = -90°

ENERGIES (a.u.)

-182.312344 (645)

-182.317808
-182.319828
37437

0.971
0.909

4.6
-182.355018

-182.528253 (472)

~182.533277
-182.535635
37437

0.965
0.904

2.9

-182.339238
-182.521461
-182.527164
-182.529448
37437

0.969
0.906

10.0

-182.328791
-182,503208
-182.507124
-182.509507
37437

0.964
0.900

(594)

(373)

3.6

-182.372023
-182.550209 (531)
~182.555465
-182.557940

37437

0.966
0.905

pX c2 is the contribution of all of the reference configurations
gs is the contribution of the ground state SCF wave function
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Table 1I-9

R(01B-C4A)
(bohrs)

SCF

CI

EXT

DAV

# SAFs
generated

L c2
gs

R(01B-C4A)
(bohrs)

SCF

CI

EXT

DAV

# SAFs
generated

3 2
gs

2.3
-182.215199

BAMO + AMMOH'

6 = 15°

a = =-90°

ENERGIES (a.u.)

~182,390494 (583)

-182.395253
-182,397069
37437

0.973
0.912

4.6
-182.337244

-182.507114 (439)

~182,511268
-182.513311
37437

0.968
0.905

2.9

-182.379878
-182.559261 (524)
-182.564436
-182.566470

37437

0.970
0.907

10.0

-182.298430

-182.466346 (337)

-182.469623

-182.471384
37437

0.970
0.904

3.6
-182,378767

~-182.556345 (482)

-182.561108
-182.563393
37437

0.967
0.904

L c2 is the contribution of all of the reference configurations
gs is the contribution of the ground state SCF wave function
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Table II-10

R(01B-C4A)

(bohrs)

SCF

CI

EXT

DAV

# SAFs
generated

X c2
gs

R(01B-C4A)
(bohrs)

SCF

CI

EXT

DAV

# SAFs
generated

z c2
gs

z c2

2.3

-182,255598
-182.429338
-182.433903
-182.435693
33881

0.973
0.913

4.6

-182.313706
-182.484825
-182.488495
-182,490581
37437

0.967
0.904

BAMO + AMMOH'

6 = 19°

a = -90°

ENERGIES (a.u.)

(547)

(438)

2.9

~182.392872
~182.571889
~182.576951
~182,578923
37437

0.971
0.907

10.0

~182.265085
~182.431655
-182.434412
-182.435891
37437

0.973
0.905

(507)

(302)

3.6

-182.371160

-182.555052 (476)

-182.555326

-182.557604
37437

0.967
0.902

is the contribution of all of the reference configurations

gs is the contribution of the ground state SCF wave function
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Results

F..llllllllIllllllllllllllIIIllIIlIlIIIIlIIIlIIllIIIIIIIIIIII-I----‘*

c. Oxetane + protonated 3,3-bis(azidomethyl)-oxetane
(BAMOH)

The stabilization point R(01B-C4A) = 2.9 bohrs, § = 19° (fully open),
with the stabilization energy = -0.01389 a.u. = -8.72 kcal/mole. The

activation en
kcal/mole.

The potential
Figures II-9

Figure 1I-9:

Figure II-10:

Figure II-11:

Figure II-12:

ergy for the addition reaction is estimated to be 15.69

energy surfaces and reaction potential map are presented in
through II-12.

"MRD-CI Extrapolated Energy for Oxetane Approaching Protonated
BAMO for Fixed Angle 6 and Different Intermolecular Distances
R{01B-C4A)"

"MRD-CI Extrapolated Energy for Oxetane - Protonated BAMO
Complex for Fixed Intermolecular Distances R(01B-C4A) and
Different 6 Angle Values"

“MRD-CI Extrapolated Potential Energy Surface for Oxetane
Approaching Protonated BAMO"

"OXET + BAMOH+, Extrapolated MRD-CI Energy Along the Reaction
Coordinate for Oxetane - Protonated BAMO Addition Reaction"

The Detailed Tables of Results follow in Tables II-6 through II-10

Table II-11:

Table II-12:

Table 11-13:

Table II-14:

Table II-15:

OXET + BAMOH® 6-0° (fully closed), Energies (a.u.) as a
function of R(01B-C4A)"

"OXET + BAMOH® 6=5°, Energies (a.u.) as a function of R(01B-
C4n)"

“OXET + BAMOH' 6=10°, Energies (a.u.) as a function of R(01B-
C4A)"

"OXET + BAMOH' 6=15°, Energies (a.u.) as a function of R(01B-
C4A)"

“OXET + BAMOH' 6=19° (fully open), Energies (a.u.) as a
function of R(01B-C4A)"
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Table II-11

R(01B-C4A)
(bohrs)

SCF

Cl

EXT

DAV

# SAFs
generated

X c2
gs

R(01B-C4A)
(bohrs)

SCF
CI
EXT
DAV
# SAFs
- generated

I c2
gs

-

)X c2

6 =

2.3

© -140.191550

OXET + BAMOH®

0° (fully closed)

a = -90°

ENERGIES (a.u.)

-140.384287 (871)

-140.392535
-140.395664
37437

0.965
0.907

4.6
-140.916659

-141.097773 (528)

-141.103045
-141.105177
37437

0.970
0.906

2.9

-140.618884
-140.808761
-140.815439
-140.818488
37437

0.965
0.907

10.0

~140.931042
-141.112675
-141.116461
-141.118524
37437

0.970
0.904

(806)

(476)

3.6
~140,832071

~141.016426 (648)

-141,023154
-141.025645
37437

0.967
0.906

is the contribution of all of the reference configurations

gs is the contribution of the ground state SCF wave function
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Table II-12

R(01B-C4A)
(bohrs)

SCF

CI

EXT

DAV

# SAFs
generated

X c2
gs

R(01B-C4A)
(bohrs)

SCF

CI

EXT

DAV

# SAFs
generated

) c2
gs

z c2

2.3

-140.466769
-140.652682
-140.659569
-140.661966
37437

0.969
0.907

4.6

-140.921208
-141.101820
-141.106516
-141.108988
37437

0.965
0.902

OXET + BAMOH®

6-

50

a = -90°

ENERGIES (a.u.)

(715)

(536)

2.9

~140.771648
-140.958037
-140.965615
-140.968316
37437

0.966
0.906

10.0

-140.921030
-141.102451
~141.105836
-141.108178
37247

0.966
0.899

(644)

(433)

3.6

-140.887247
-141.069740 (587)
-141.075686
-141,078407

37437

0.965
0.905

is the contribution of all of the reference configurations

gs is the contribution of the ground state SCF wave function

45




Table II-13

R(01B~C4A)
(bohrs)

SCF

CI

EXT

DAV

# SAFs
generated

I c2
gs

R(01B~-C4A)
(bohrs)

SCF

CI

EXT

DAV

# SAFs
generated

L c2
gs

L c2

2.3

-140.643183
~-140.822479
~140.827605
~140.829590
37437

0.972
0.910

4.6

~140.908107
~141.082086
~141.086959
~141.089354
37437

0.965
0.904

OXET + BAMOH'

6 = 10°
o = ~90°

ENERGIES (a.u.)

(637)

(480)

2.9

-140.868583
-141.051090
-141.056584
-141.058849
37437

0.967
0.906

10.0

140.8916917
-141.064964
-141.068972
-141.071255
37247

0.965
0.904

(585)

(373)

3.6
-140.916703

-141.096548 (534)

-141.101970
-141.104544
37437

0.965
0.903

is the contribution of all of the reference configurations

gs is the contribution of the ground state SCF wave function




Table II-14

R(01B-C4A)
(bohrs)

SCF

CI

EXT

DAV

# SAFs
generated

$ 2
gs

R(01B-C4A)
(bohrs)

SCF
CI
EXT
DAV
" # SAFs
generated

L c2
gs

I c2

2.3
-140.751015

OXET + BAMOH®

6§ = 15°

a = ~90°

ENERGIES (a.u.)

~140.925764 (557)

~-140.930515
-140.932315
37437

0.973
0.912

4.6
-140.894065

-141.065296 (442)

-141.069377
-141.071536
37437

0.966
0.904

2.9

-140.925815
-141.105482
-141.110667
~141.112690
37437

0.970
0.907

10.0

~140.863017
-141.030657
-141.033780
-141.035483
37247

0.970
0.904

(508)

(338)

3.6

-140.932322
-141.111688 (468)
-141.117464
-141,119847

37437

0.966
0.902

is the contribution of all of the reference configurations

gs is the contribution of the ground state SCF wave function
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Table II-15

R(01B-C4A)
(bohrs)

SCF

CI

EXT

DAV

# SAFs
generated

¥ cz
gs

R(01B-C4A)
(bohrs)

SCF

CI

EXT

DAV

# SAFs
generated

X c2
gs

T ol

2.3

-140.803212
-140.976305
-140.980849
-140.982607
37437

0.974
0.914

4.6

-140.871817
-141.044608
-141.048147
-141.050375
37437

0.965
0.904

OXET + BAMOM®

6 = 19° (fully open)

o = -90°

ENERGIES (a.u.)

(540)

(424)

2.9
-140.945906

-141.125366 (502)

-141.130357
-141,132331
37437

0.971
0.907

10.0

-140.830447

-140.996542 (303)

-140,998771
-141,000177
37437

0.973
0.905

3.6
-140.928031

-141.109421 (468)

-141.113757
-141.116090
37437

0.966
0.900

is the contribution of all of the reference configurations

gs is the contribution of the ground state SCF wave function
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d. 3-Azidomethyl-3-methyloxetane (AMMO) + protonated
3,3-bis(azidomethyl)oxetane (BAMOH')

We are finishing the MRD-CI calculations for AMMO +

BAMOH'. These will be completed in the next quarter (October - December
1988). The detailed resuits will be tabulated when the entire set of
calculations is completed.

There is more steric hindrance for AMMO attacking BAMOH® than for BAMO
attacking AMMOH .

This year we did finish the specific calculations needed to calculate
AE (addition) for this system, AMMO + BAMOH*.
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e. 3,3-Bis(azidomethyl)oxetane (BAMO) + protonated
3,3-bis(azidomethyl)oxetane (BAMOH')

We have run the SCF calculations for BAMO + BAMOH'. For this latter
case because of the steric hindrance we have examined a large number of
intermolecular geometries. For certain of the intermolecular geometries of

BAMO + BAMOH' there are more integrals than the available peripheral disk
space on the CRAY XMP can handle with the transformation program (needed to
run the subsequent MRD-CI calculations) in its current form. We are
currently rewriting the transformation program. There is more steric

hindrance when the C4A of BAMOH'® is being attacked by OXET or AMMO than when
the C,, of OXETH® or AMMOH® is being attacked by BAMO. The attack of BAMO

on BAMOH® is even more sterically hindered than any of the other cases we
have examined to date. This finding adds further evidence to our hypothesis
that the steric hindrance could be a contributing factor to Gerry Manser's
observations that bis compounds are more difficult to polymerize and
copolymerize. This effect of bulky bis 3,3-substituents on the protonated
oxetane being attacked could also be a contributing factor to Gerry Manser's
comments that certain compounds will not undergo cationic polymerization or
will undergo cationic polymerization only slowly or with difficulty.
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2, Recap of Reaction Energies for Cationic Polymerization of
Energetic Oxetanes for Initiation and Reaction

Cationic polymerization has two major steps: initiation
and propagation. Initiation is governed by the propensity for protonation
of the oxetane. The three dimensional electrostatic molecular potential
contour (EMPC) maps we calculated earlier are very indicative of the
propensity of the energetic substituted oxetanes to initiate. These EMPC
maps are also indicative of the propensity of the energetic substituted
oxetanes to polymerize. For a more quantitative comparison of propensity to
initiate we calculated the MRD-CI energies of protonation [AE(protonation)]
for all the energetic substituted oxetanes we have studied.

The next step in cationic polymerization is reaction between the
oxetane (or substituted oxetanes) and the protonated oxetane (or protonated
substituted oxetane). We have calculated the MRD-CI stabilization energy
[AE(addition)] for several series of reactants as a function of the angle
(a) between the rings, the inter-ring distance R(01B-C4A) and the angle (6)
of opening the protonated ring. The stabilization point for all of the
pairs of reactants we have studied to date is R(01B-C4A) = 2.9 bohrs and 6 =
19°. (See sketch page 14 for definition of 6 angle)

In the Table (II-16) are tabulated the MRD-CI values for AE
(protonation), AE (addition) and AE [AE (protonation) + AE (addition)] at
the stabilization point for the new systems we studied this year [BAMO +

OXETH*, BAMO + AMMOH', OXET + BAMOH', AMMO + BAMOH'] as well as for the
systems we studied previously. The additional conclustions from our results
of this year reinforce our general conclusions from last year.

The calculated for AE (protonation) indicate oxetane gives the most
energy on protonation, AMMO next, then BAMO. Thus in mixtures they will
initiate in this order.

The most favorable overall reactions involve OXETH' reacting with OXET,
AMMO and BAMO in that order. Next most favorable are OXET + AMMOH® and AMMO
+ AMMOH' (about the same) followed by BAMO + AMMOH'. The least favorable of
the overall reactions are those involving BAMOK* (we feel for the steric
hindrance reasons we stated earlier): OXET + BAMOH' and AMMO + BAMOH®.

We are continuing MRD~CI calculations for the potential surfaces of
reactions involving BAMOH® with various partners.

The results of calculations such as these enable one both to understand
and then to predict copolymerization preferences. In all cases we have

studied to date our calculated predictions agree with the order of Gerry
Manser's experimental polymerization reactivity ratios.

51




rlllIllllIlllllllllllllllllllIllllllllllllllllllllllllllIIIIIII--------‘*

TABLE II-16

CATIONIC POLYMERIZATION INITIATION AND PROPAGATION

OXETANES (OXET) + PROTONATED OXETANES (0XETH+)
AB-INITIO MODPOT/VRDDO MRD-CI

ENERGIES (a.u.)

AE(protonation) AE(addition) AE

OXET + ) -0.31601 -0.04378 -0.35979
OXETH

FNOX + . -0.31601 -0.01113 -0.32714
OXETH

OXET + . -0.27068 -0.06327 -0.33394
FNOXH

FNOX + . -0.27068 -0.03157 ~0.30225
FNOXH

AMMO + ) -0.31601 -0.04362 ~0.35963
OXETH

OXET + \ -0.31548 -0.02386 -0.33934
AMMOH

AMMO + . -0.31548 -0.02408 ~0.33956
AMMOH

OXET + \ -0.30906 -0.01390 -0.32296
BAMOH

BAMO + X -0.31601 -0.03890 ~0.35491
OXETH

BAMO + ) -0.31548 -0.01924 ~0.33472
AMMOH

AMMD + ) -0.30906 -0.01333 -0.32239
BAMOH

52




3. Population Analyses

Gerry Manser had expressed considerable interest in how the
charges (corresponding to the gross atomic populations) on the 01A (oxygen

of protonated oxetane ring), C4A (the a carbon of the protonated oxetane
ring) and 013 (oxygen of the oxetane ring) varied as a function of
substituent and reaction pathway.

In our Annual Report 1986, Table III Page 24, showed that that as
oxetane and protonated oxetane approached each other that the intra-ring TOP
of the C4A-01A in the protonated ring got smaller as the oxetane ring

approached, indicating a tendency for the protonated ring to open and the
inter-ring TOP OIB'C4A got larger indicating bond formation.

Similar trends in the TOPs were shown in last year's Annual Report 1987
in the Tables of population analyses of OXET + 0XETH+, OXET + FNOXH+, FNOX +
OXETH*, FNOX + FNOXH', AMMO + OXETH', OXET + AMMOH', AMMO + AMMOH'.

The general trends of the TOP population analysis of this year's

calculations on BAMO + OXETH®, BAMO + AMMOH' AND OXET + BAMOH' remain the
same.

j) It is apparent from the TOPs in the tables that the two rings are
repulsive when the protonated oxetane (or substituted protonated oxetane)
ring is closed.

ii) the protonated oxetane (or substituted protonated oxetane) will open
upon approach of the oxetane (or substituted oxetane) along the appropriate
reaction pathway.

i1i) The OIB-C4A interring bond becomes stronger as the protonated (A)
ring opens.

iv) Total overlap populations are a very sensitive criteria of the
incipient making and breaking of bonds. The largest inter-ring
TOP's occur when the energy is a minimum. As the protonated and
unprotonated oxetane (energetic substituted oxetane) rings approach

a'. the intra-ring TOP (C4A-01A) begins to get smaller even when
the protonated ring is still fully closed. This indicates
that the C4A-01A bond wants to lengthen.

b'. The TOP (01B-C4A) begins to be noticeable at 4.6 bohrs and
gets larger as the rings approach closer provided that the
protonated ring is open by at least 6 = 5°, The strongest
TOP(018-C4A) occurs (as anticipated) at the most stable point
energetically, R(01B-C4A) = 2.9 bohrs and 6 = 19°.
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The behavior of these TOPs of BAMO + 0XETH+, BAMO + AMMOH® and OXET +

BAMOH® in the following Tables II-17 to II-19 is indicative of the same
‘conclusion as that from the MRD-CI energy calculations.

The GAPs (gross atomic populations) show interesting behavior.

The general results in the systems investigated this year are:

1)

i)

ii1)

CZA and C4A (the a carbons in the original protonated ring) still

carry about the same excess negative charge (-0.2 e) in spite of
the fact that the entire protonated species itself carries a
formal positive charge. As the protonated ring opens and the OlB

of the unprotonated ring begins to form a bond with C4A’ there is
a slight drop in the charge on C4A during the course of the
reaction, but when the ring is finally open at the stabilization

geometry of the system the charge on C4A has gone back up again.

In the reactions of BAMO + OXETH' and BAMO + AMMOH' at the
stabilization geometry of the system the charge on CZA is higher

than in the isolated protonated ring.’

0,, in the protonated ring (OXETH', AMMON® and BAMOH' ) carries an
excess negative charge of ~0.37 (or ~0.38). 0lB in the
unprotonated ring (OXET or AMMO) carries an excess negative charge
of ~0.35 (or ~0.34). When the 01B-C4A bond forms, 0lB still
carries an excess negative charge of ~0.29 in BAMO + OXETH® (just
as in AMMO + 0XETH+) and excess negative charges of 0.29 in BAMO +

AMMOH® and ~0.28 in OXET + BAMOH®. This charge distribution is in
contrast to the picture sketched by the experimentalists in
cationic polymerization who draw a + charge on the °13 when the

reaction has taken place. The positive charge is distributed over
the H atoms in both rings A and B.

Table 1I-20 GAPs BAMO + OXETH'

Table 1I-21 GAPs BAMO + AMMOH®

Table II-22 GAPs OXET + BAMOH'
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III. Ab-Initio MRD-CI Calculations for Breaking a Chemical Bond in a Crystal
or Other Solid Environment

Breaking a >C-N02 or >N-N02 bond is the initial step leading to

detonation of explosives and also the initial step in fractoemission of
explosives. To describe properly breaking of a chemical bond in a molecule
it is necessary to to carry out ab-initio MRD-CI (multireference double
excitation - configuration interaction) calculations of the isolated
molecule. To describe properly breaking of a chemical bond in a molecule in
a crystal or other solid environment it is necessary to carry out ab-initio
MRD-CI calculations on dissociation of the molecule surrounded by other
molecules as in the crystal or solid arrangement. Even this generation of
supercomputers still does not have the space to carry out such calculations
on large nitroexplosive molecules especially since many of them (such as RDX
and HMX) have a large number of molecules in the unit cell.

Last year we derived, implemented and used successfully a new
computational strategy for dissociation of large molecules based on
localized/local orbitals. The localized molecular orbitals in the region of
the bond breaking are included explicitly in the MRD-CI. The remainder of
the occupied and virtual orbitals are folded into an “"effective" CI
Hamiltonian.

The technique is described below. The method is completely general and
can be used for bond breaking and also for subsequent reactions of the
species in the solid leading to detonation.

A. Methodology

MRD-CI calculations are absolutely necessary to describe bond
breaking processes correctly in the ground state and especially in the
excited states.

: Our technique involves solving a quantum chemical ab-initio SCF
explicitly for a system of a molecule surrounded by a number of other
molecules (the unit reference cell or larger assemblage) in the multipole
environment of yet more further out surrounding molecules. Multipoles in
the environmental region affect the one-electron term in the Hamiltonian.
This Hamiltonian is solved for the SCF for all the molecules in the space
treated explicitly quantum chemically. The resulting canonical molecular
orbitals are localized. A1l of the occupied and virtual localized orbitals
in the region of interest are included explicitly in the MRD-CI and the
remaining occupied localized orbitals are folded into an "effective" (I
Hamiltonian. The advantage is that the transformations from integrals over
atomic orbitals to integrals over molecular orbitals (the computer time-,
computer core- and external storage - consuming part of the CI calculations)
only have to be carried out for the localized molecular orbitals included
explicitly in the MRD-CI calculations.

Space is broken up into three regions:

(CCBLAIB']C)
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A Localized space treated explicitly in ab-initio MRD-CI
calculations. (This can be an entire molecule or the
Tocalized dissociation region of a large molecule.)

B+A+B' Space treated explicitly quantum chemically (ab-initio SCF)
for supermolecule B A B'

c+C Space represented by multipoles of additional molecules taken
into account by inclusion of multipole interactions (up
through quadrupoles) into one-electron part of SCF
Hamiltonian.

This method is completely general. The space treated explicitly
quantum chemically and the surrounding space can have voids, defects,
deformations, dislocations, impurities, dopants, edges and surfaces,
boundaries, etc.

To be able to carry out such MRD-CI calculations for breaking a
chemical bond in a molecule or a crystal (or other solid environment)
represents a significant breakthrough.

B. Calculations Carried Out for Nitromethane

The previous year we carried out extensive test calculations by this
new technique for the dissociation of the H3C - N02 bond in nitromethane for

various numbers of molecules treated explicitly in the SCF in the multipole
field of varying numbers of additional CH3N02 molecules as in the crystal

arrangement followed by localization and ab-initio MRD-CI calculations on
breaking the H3C - NOZ bond in a specific nitromethane molecule. Since this

technique is new we are still carrying out extensive testing to ascertain
how many molecules must be treated in each region for reliable results.

One of the pertinent questions we posed initially for decomposition of
molecules in crystals was did it take more or less energy to break the bond
when the molecule was in a crystal compared to breaking the bond of an

isolated molecule. The MRD-CI results for breaking the H3C - NO2 bond of

nitromethane in the presence of other explicit nitromethane molecules and
the multipoles of still farther distant nitromethane molecules compared to
the MRD-CI results for breaking the H3C - NO2 bond in an isolated

nitromethane molecule indicate that it takes more energy to break the
H3C - N02 bond when nitromethane is in the field of the additional

nitromethane molecules.

When we presented a paper at the Working Group Meeting on Synthesis of
High Energy Density Materials, June 1988, on our MRD-CI calculations for
breaking the bond in nitromethane in a nitromethane crystal Dr. Thomas Brill
raised the question of the effect of voids in the nitromethane crystal on
the energy necessary to break the H3C - N02 bond.
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Thus, we subsequently carried out extensive investigations of the
effects of voids (both in the nitromethane molecules treated explicitly in
the SCF and those in the environment represented by multipoles) on the

calculated H3C - NO2 bond dissociation energies.

From our previous studies last year we showed that a calculation
involving five nitromethane molecules surrounded by eight more multipolar
neighbors arranged as in a crystal is a reliable representation of the
molecule in a periodic lattice; and these results compare favorably with ab-
initio crystal-orbital calculations.

For the present study we examined the effect of voids on the system of
the Real Crystal - Extended Cluster described by five nitromethane molecules
treated explicitly in the SCF in the multipole environment of eight more
nitromethane molecules (Figure III-1).

There are four nitromethane molecules per unit cell. These four
nitromethane molecules are unique and not related by translation. We have
designated these four nitromethane molecules classes a,b,c,d. The central
unit cell is designated as (555). The unit cells along the x axis are (455)
and (655), along the y axis (545) and (565) and along the z axis are (554)
and (556). For nitromethane Real Crystal - Extended Cluster Table III-1
shows the cell/cluster designations of the nitromethane molecules included
in the calculations.

The bond dissociation energy of a molecule in a crystal, in contrast to
the bond dissociation energy in a free molecule, includes interactions with
other molecules in crystal. The energy of the cluster before the
decomposition can be written

= E I11-1

€ = Ep * Ep* Epgt Epct Ecg* Eppeo

(A,B,C correspond to spaces of cluster, where here B space =B + B'; C = C +
C') and after decomposition

- EA + EB + Epp +... II1I-2

€ BC

where EA' EA energy of molecule A before and after decomposition
EB energy of molecules B
(EB - EB + EB' + EBB' in our case)
E.. two body interactions

1

E three body interactions

ijk

The bond dissociation energy
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AE-El-ez-el-EA-EB III-3

Assuming the decomposition of the bond to infinity, EA is the energy of a
completely decomposed free molecule and EB js the energy of the cluster
without A molecule.

The value

Ep(r) = €;(r) - Eg, - 111-4

is called the reduced energy and represents the energy of reference molecule
in the field of other species in the crystal. The ER(r) can be used to

compare energy surfaces (reaction surfaces in different assumed models).

In Table III-2 are presented the E(SCF), E(CI), E(CI,EX), E(CI,DAV),
number of symmetry adapted functions used and total CSF's generated, the c2
of the ground state configuration, the I c2, EB, ER’ and the bond
dissociation energy AE {calculated from ER at equilibrium distance RCN = 3.0
bohrs, ER [based on E(CI,EX)] - Efree molecule at RCN = 10.0 bohrs from

E(CILEX)} in a.u. and in kcal/mole as a function of variously placed voids
in the nitromethanes in the multipole field. Here the AE is defined as
indicated above.

In Table III-3 are presented the E(SCF), E(CI), E(CI,EX), E(CI,DAV)
number of symmetry adapted functions used and total CSF's generated, the c2
of the ground state configuration, the I cz, EB, ER, and the bond

disociation energy AE in a.u. and in kcal/mole as a function of variously
placed voids in the nitromethanes in the multipole field. Here the AE is
defined as

AE = E(CI,EX; RCN = 3.0 bohrs) - E(CI,EX; RCN = 5.6 bohrs) ITI-5

In Table III-4 are presented the E(SCF), E(CI), E (CI,EX), E(CI,DAV),
number of symmetry adapted functions used and total CSF's generated, the c2
of the ground state configuration, the I cz, EB’ ER, and the bond
disociation energy AE {calculated from ER at equilibrium distance RCN = 3.0
bohrs, ER[based on E(CI,EX)] - Efree molecule at RCN = 10.0 bohrs from
E(CI,EX)} in a.u. and in kcal/mole as function of variously placed voids in
the nitromethanes treated explicitly in the SCF. Here AE is defined as

AE = E(CI,EX; RCN = 3.0 bohrs) - EB - E(CI,EX;free molecule, RCN = 10.0

bohrs) I11-6
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In Table III-5 are presented the E(SCF), E(CI), E(CI,EX), E(CI,DAV)

number of symmetry adapted functions used and total CSF's generated, the c2
of the ground state configuration, the I c2, EB, ER' and the bond
disociation energy AE as a function of variously placed voids in the
nitromethanes treated explicitly in the SCF. AE is defined as

AE = E(CI,EX; R.y = 3.0 bohrs) - E(CI,EX; RCN = 5.6 bohrs) I11-7

CN

In Table II1I-6 are presented the E(SCF), E(CI,EX), E(CI,DAV), nuiaber of
symmetry adapted functions used and total CSF's generated, the cz of the
ground state configuration, the I cz, EB, ER and the bond dissociation
energy AE {calculated from ER at the equilibrium distance RCN = 3.0 bohrs,
ER[based on E(EX,CI)] - Efree molecule at RCN = 10.0 bohrs} in a.u. and in

kcal/mole as a function of variously placed voids both in the explicit
nitromethanes treated in the SCF and in the nitromethanes treated as
multipoles in the surrounding environment,

Here AE is defined as in equation III-6.

In Table III-7 are presented the E(SCF), E(CI,EX), E(CI,DAV), number of
symmetry adapted functions used and total CSF's generated, the c2 of the
ground state configuration, the I cz, EB, ER and the bond dissociation

energy AE in a.u. and in kcal/mole as a function of variously placed voids
both in the explicit nitromethanes treated in the SCF and in the
nitromethanes treated as multipoles in the surrounding environment.

Here AE is defined as in equation III-5.

Tables III-8 and III-9 present a summary of the calculated H3C - NO2

bond dissociation energies in the full extended cluster representation of
the nitromethane crystal with variously placed voids in the nitromethane

molecules represented by multipoles and/or in the nitromethane molecules

treated explicitly in the SCF.

Examination of Tables III-8 and III-9 indicates that in the large
majority of cases where there are voids in the nitromethanes represented by
multipoles or in the nitromethanes treated explicitly in the SCF, the
calculated bond dissociation energies are somewhat smaller than in the case
of a full extended cluster representation of the nitromethane crystal (5
nitromethanes treated explicitly in the SCF in the multipole field of 8
additional nitromethane molecules where the arrangement of the molecules is
as it is in the crystal structure). There are a few cases of voids where
the calculated bond dissociation energies are a little larger than in the
case of the full extended cluster representation of the nitromethane
crystal. The effect of voids in the calculated bond dissociation energies
has a dependence on the position of the voids as well as on the numbers and
types of the voids. In all cases where there are voids in both the
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nitromethanes represented by multipoles and the nitromethanes treated
explicitly, the calculated H3C - NO2 bond dissociation energies are less

than for the case of a full extended cluster representation of the
nitromethane crystal.

To investigate more extensively the question of the effect of voids we
are in the process of extending the implementation of this method to include
hundreds of multipole molecules properly located as in the crystal
environment.

The major thrust of this present study and our previous one last year
was to ascertain the relative energies for breaking the H3C - NO2 bond under

various crystal conditions (different representations of the crystal, voids,
etc.) compared to breaking the H3C - NO2 bond in a nitromethane in an

isolated molecule. AT1 of the results in the previous year and this present
research indicate it will take more energy to break the H3C - N02 bond when

the molecule is in a nitromethane crystal. To calculate accurate absolute
bond dissociation energies for these various cases would merely require
larger basis sets, more configurations for correlation in the MRD-CI wave
functions and zero point energy corrections. However, based on our
experience with other comparison larger and smaller MRD-CI calculations, the
overall relative energies are expected to remain very similar,

Moreover, our method is completely general and the effect of
impurities, dopants, eic. in the molecules treated explicitly or in the
multipole field can be studied in the same manner as we have studied the
problem including voids. In the computers used in the present study the
limitation on available CPU size for a run was several million words. In
computers such as the CRAY II several hundred million words are available
and the newer computers are scheduled to have gigawords of memory. Our
method is well suited to take advantage of these large memories since we
will be able to handle both more molecules explicitly in the SCF and MRD-CI
and also to handle much larger molecules and molecular systems. Most of the
energetic compounds of interest are polynitrosubstituted {heterocyclics,
polyheterocyclics or polyhedranes}, often with as many as eight large
molecules per unit cell.

To understand and predict the initiation of dissociation in energetic
molecules in crystals or solids requires a knowledge of the bond
dissociation energy of the molecule in a crystal or other solid environment.
At present the only experimental bond dissociation energy data available at
best for such systems is experimental gas phase thermochemical data for
isolated molecules or theoretical calculated da‘. for isolated molecules and
this is what is being used. Our results have d.monstrated the need for
multireference calculations (MRN-CI)., We have shown conclusively that it
will take a significantly amount more energy to dissociate the bond in the
molecule when the molecule is in a crystal. We have also shown the effects
of voids in the crystal on the calculated bond dissociation energies.
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Figure III-1
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Table II1-8. Summary of H3C - ND2 Bond Dissociation Energies (kcal/mol) in

Nitromethane in Nitromethane Crystal as a Function of Voids in the 5
Nitromethane Molecules Treated Explicitly in SCF and/or in the Nitromethane
Molecules Treated as Multipoles [Based on AE using ER from RCN = 3.0 bohrs

R = 10.0 bohrs]

CN(free molecule)
Bond Dissociation Energy (kcal/mol)
no voids -57.090

Voids in Multipoles Voids in Molecules Treated Explicitly AE (Bond Dissociation
' Energy kcal/mol)

Cell Class Cell Class
455 a -55.989
655 a -54,420
456 c -57.723
556 c -54.861
546 c -58.916
446 c -58.466
545 d -58.289
655 d -55.986
554 b -54,539
555 b -54.945
555 d -57.357
645 d -56.447
556 c 554 b -54.,067
655 d 554 b -53.370
556 c 554 b !
Free Molecule | ~-49, 340
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Table III-9, Summary of H3C - N02 Bond Dissociation Energies (kcal/mol) in

Nitromethane in Nitromethane Crystal as a Function of Voids in the 5
Nitromethane Molecules Treated Explicitly in the SCF and/or in the
Nitromethane molecule streated as Multipoles [Based on AE(CI,EX;

R = 3.0 bohrs - E(CI,EX; R = 5.6 bohrs)]

Bond Dissociation Energy (kcal/mol)
no voids -67.132

Voids in Multipoles Voids in Molecules Treated Explicitly AE (Bond Dissociation
Energy kca1/m01)

Cell Class Cell Class
455 a -65,956
655 a -63.419
456 c -68.058
556 ¢ -64.812
546 c -67.047
446 c -66.550
545 d -68,277
655 d -66,480
554 b -61.540
555 b -62.120
555 d -58.521
645 d -56,362
556 c 554 b -59,729
655 d 554 b -61.333
556 c 554 b
655 d -61 300
Free Molecule -42.,310
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C. Calculations Carried Out for Dimethylnitramine

As a prototype for breaking >N --NO2 bonds we initiated MRD-CI
calculations for breaking the MezN - N02 bond in dimethyinitramine.

We first carried out the MRD-CI calculations for the MezN - NO2

dissociation of the isolated molecule from 2.40 to 7.00 bohrs from a crystal
structure geometry [B. Krebs, J. Mandt, R. E. Cobbledick and R. W. H. Small,
Acta Cryst. B35, 402-404 (1979)] stretched about the bond midpoint. The

equilibrium MEEN - NO2 bond distance was found at 3.00 bohrs. A very large

number of reference configurations was found to be necessary along the
dissociation pathway. The lowest 3 roots wer2 extracted from the MRD-CI
Hamiltonian matrix. E(CI EX) energies vs. MeZN - NO2 distances are plotted

in Figure III-2 for root 1, root 2 and root 3. It can be seen that there is
an avoided crossing of roots 2 and 3. This avoided crossing is verified by
examination of the coefficients of the various SAF's. In Tables III-10 to

III-16 are tabulated the Energies (a.u.), SAF's, Zcz and c2 of the major SAF
contributions to roots 1, 2, and 3 at N-N distances from 2.40 bohrs to 4.40
bohrs. In Tables III-17 to III-19 are tabulated the same quantities for

Root 1 at 5.60, 6.20 and 7.00 bohrs. The contributions of all SAF's with ¢

> 0.005 are listed in the tables. It can be seen from the c2 of the

contributions of the various SAF's that even at the ground state equilibrium
geometry 3.00 bohrs, Table III-13, the wave function of dimethylnitramine is

not describable as a single determinant. The c2 of the SCF wave function is
only 0.864. There are other contributions which are identified in the
Tables by the types of their excitations. Our dissociation energy of the
MezN - NO2 bond calculated as follows [E(CI,EX7.00 bohrs ~ CI,EX3.00 bohrs)

= -54.66 kcal/mole] compares closely with the estimated BAC dissociation
energy of Melius, 47.2 kcal/mole. {The BAC-MP4 method of Melius [C.F.
Melius and J.S. Binkley, "Thermochemistry of the Decomposition of Nitramines
in the Gas Phase," Twenty-first Symposium (International on Combustion) The
Combustion Institute, 1986, pp 1953-1963] calculates single determinant
unrestricted Hartree-Fock (UHF)SCF wavefunctions followed by MP4
corrections. For molecular systems which are UHF unstable (molecular
configurations which contain significant biradical character Melius adds
104.65 kcal/mole.}

2

In Table III-20, our calculated excitation energies are tabulated:
root 1+ 2, root 1+ 3, root 2 + 3.

We are now carrying out preliminary MRD-CI calculations for breaking
the MezN - NO2 bond in a dimethylnitramine crystal.

89




Fll..l.....l.ll..lllll.lI....llllll.ll.lIllIllllIIIllIIIlIIIIIIIIIIIII-----—*

Figure III-2

DIMETHYLNITRAMINE MezN-NOZ ISOLATED MOLECULE

MRD-CI ENERGIES (Extrapolated) (a.u.) vs. RN-N (bohrs)
Ab-Initio MODPOT/VRDDO

-64.75 ,
C
-64 .10 —0 B

-64.85
ey - A

C root 3
B root 2
A root 1

-64.90

-64.95

~65.9% 0o 300 400 5.00 6.00 7.00
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IV. Ab-Initio Multireference Coupled Cluster and Multireference CI
Calculations for Protonation NH3 / Deprotonation NH4+

Protonation is the initiation step in cationic polymerization.
Protonation/deprotonation reactions of organic and most inorganic
molecules are ion-molecule reactions of the type
At + 87 as
where the ionization potential of A (the H atom; 13.6 eV) is higher than
that of B. At the dissociation asymptote the separated pair A* + B will be

higher in energy than the separated pair A + B+; thus even if A + B are
both closed-shell ground state systems, a single determinant ab-initio SCF
calculation will be neither a sufficient nor a proper description of the

system. From the separated lowest energy pair H(ng) + B+(2YZ) an open-

shell singlet state and open-shell triplet state of symmetry 1,3

1

YZ will

arise. If the symmetry YZ is of the most symmetrical representation of g*

the singlet state HB* that arises from the dissociation asymptote will be
totally symmetric but the potential energy surface will not connect smoothly
to the ground state singlet totally symmetric state at an equilibrium
geometry,

However, the protonation energy of oxetane cannot be measured directly
because the protonated ring opens. Our experimental colleague, Professor
Walter S. Koski of the Johns Hopkins University, had earlier tried this
experiment for us in this double tandem mass spectrometer.

Last year we had carried out ab-initio MRD-CI calculations on this
protonation of an epoxide ring (>C \"/ C<) the 3 member correlate of the
0

4-member oxetane ring
R R2
’\c/
>c? Dc<
07 used for energetic polymers.

These results clearly showed the multideterminant character of the two
potential energy surfaces for protonation and deprotonation.

The dissociation of NH4+ is of interest in the energetic field because
the NH4+ ion occurs in energetic materials such as ammonium perchlorate.

The ionization potential of NH3 [NHB* (7 ZAI) 10.166 eV] is such that its
protonation/deprotonation will behave as described above.
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Thus to compare multireference coupled cluster (MR-CCM) results against
multireference configuration interaction (MRD-CI) calculations we chose the

system protonation NH3 / deprotonation NH4+ which is well defined

experimentally.

We have therefore carried out both multireference coupled cluster (MR-
CCM) by the method of Kaldor [1] and multireference double excitation-
configuration interaction (MRD-CI) calculations (by the method of Buenker
and Peyerimhoff) [2] for the Towest singlet states and the Towest triplet

state that arise from the separated pairs H(zsg) + NH3+(X 2Al) and H+(lsg)
+ NH3+(X Ap).

The major advantage of the coupled cluster method (CCM) is the ability
to sum numerou$ perturbation terms to infinite order, thus enabling the
inclusion of large classes of virtual excitations, while being size-
consistent.

Single-reference CCM has been used extensively in recent years, but
until this past year there had been little experience with multireference
MR-CCM especially when there were avoided crossings of ground and
electronically excited potential energy surfaces. There are still
theoretical problems to be studied such as the structure of the model space
and its effect on the linked-diagram theorem. Our previous preliminary
applications of MR-CCM gave encouraging results (agreement to 0.15eV or
better with experiment in most cases [3]). Single and double excitations
were included to all orders, and triples were calculated to lowest order.

Since there is so little experience with the MR-CCM, one of the
objectives of our research is to make detailed comparisons, point by point,
on the ground and electronically excited potential energy surfaces between
‘these results and those of multireference double excitation configuration
interaction (MRD-CI) results (inciuding a Davidson type correction to the
MRD-CI results to account for size consistency). These comparisons will
help to establish guidelines for the types of excitations which must be
included in MR-CCM and the range of problems handled well by it.

The protonation/deprotonation process is an excellent and stringent
test of MR-CCM since it has clearly identifiable avoided crossings.

A. Methodology - Multireference Coupled Cluster Method (MR-CCM)
1. General Discussion of Coupled Cluster Method

The exp(s) or coupled cluster method (CCM) [4-8] has
been used widely in recent years for ab-initio electronic structure
calculations in closed-shell, non-degenerate systems, with highly
satisfactory results [9]. Physically it amounts to the inclusion of certain
types of excitations to all orders. From a perturbation theory point of
view, infinite-order summation of large classes of linked perturbation
diagrams is accomplished. CCM has proved competitive with the widely-used
configuration-interaction (CI) method, and it has the advantage of being
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size consistent [9]. The CCSD approximation [10], in which single and
double excitations are included to all orders, is usually employed; a few
caiculations approximating the effect of triple excitations have appeared
recently [11,12].

Closed-shell CCM is applicable only when the system of interest can be
approximately described by a single Slater determinant. Even the very
accurate calculations require multireference theories, as has been shown in
recent years by developments in CI methodology. Most molecular states
cannot be treated properly (or not at all) by a single-reference method.
Shavitt, who has made seminal contributions to both CI and CCM theory, has
predicted recently that [13] MR-CCM would ultimately prove the single most
promising approach to molecular structure calculations.

A variety of multireference or open-shell coupled-cluster methods
(0SCCM) have been described in the Titerature [14-17], but only few
applications to real systems are available. The method of Lindgren differs
from most others by employing the time-ordered formalism, which considerably
reduces the number of diagrams needed. Lindgren's formalism has recently
been adapted by Kaldor [1] to the direct calculation of atomic and molecular
transition energies, including electron affinities [la,lb,1f], ionization
potentials [1c] and excitation energies [le]. These preliminary results
were encouraging (agreement of 0.15eV or better with experiment in most
cases). In our laboratory at the Johns Hopkins University we had also
derived another alternative approach to MR-CCM where single and double
excitations were included [18].

2. Specific Methodology
The Hamiltonian, H, of a system is separated in the
conventional way into Ho’ with known eigenfunctions, and a perturbation V,

H - H0 +V Iv-1
Ho|a> - E°|a> Iv-2

A d-dimensional model space P is defined by the projection operator P, and Q
is its complement:

P=} |« ,0=1-P Iv-3
aeP

There will usually be d eigenfunctions of H with major components in the
model space,

Hy? - E%C 1V-4
P!’a-‘l'z a=1,2, ..., d . IV-5

where Wz are linear combinations of |a> aeP. the wave operator f transforms
ihe model functions ini. exact ones
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-V  ael,2, ...,d IV-6

The key equation in Lindgren's derivation-[17] is the generalized Bloch
equation

[Q,H]P = WP - QPWP Iv-7
where W is the effective interaction

W=VQ 1v-8
Alternatively, one may rewrite (7) as

[x,H,JP = QWP - PWP V-9

where the correlation operator y is defined by
Q=1-y Iv-10

The energies of interest are obtained by diagonalizing the effective
Hamiltonian in the model space

a a,a _
Heffwo = E Wo Iv-11
where
Heff = PHRP = P(HO+H)P Iv-12

The correlation operator y includes single, double, etc., excitations and
may be written as

X=C +C, +...=1 {afa.}t +1/2 % {a ata.a,} t 1] Iv-13
1 2 i i iK1 i1k k1

t;, tl{ s «+.y are excitation amplitudes, and the curly brackets denote

normal order with respect to a reference (core) determinant. A1l terms,
connected and disconnected, are included in (13). The operator used in CCM
is the excitation operator T, related to Q by

Q= {exp(T)} =1+ T+ 1/2{T% + ... Iv-14
T is obtained by summing the rhs of (13) over connected terms only.

Perturbative and non-perturbative schemes for calculating the
excitation operator and correlation energies may be derived from either of
the following two equations, which include connected terms only [14]
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or

[T,H] = W Iv-16

op,conn = X¥g1)conn

wop conn describes all connected diagrams which have some open (non-valence
? .

lines, corresponding to P+Q transitions. wc1 diagram, with no external non-

valence lines, describe P+P transitions. The latter also appear in the
effective Hamiltonian, which may be written as

Heff = PHOP + Hc] Iv-17

The second term in equation (15) or (16) gives rise to the so-called folded
diagrams.

The T operator for an open-shell system may be partitioned according to
the number of valence orbitals excited,

1-10 471, 72, . IV-18

Haque and Mukherjee [19] have shown that partial decoupling of the equations

is then possible, as the equation for T(") involves only T(m) elements with
msn. This decoupling is helpful in reducing the computational effort, and
has been used by Kaldor [la-le]. The Heff or ”C] diagrams may be separated

into core and valence parts

core val _
eff = Merr * Merr Iv-19

H
where the first term on the rhs consists of diagrams without any external
lines. The eigenvalues of HZ?} will then give directly the transition
energies from the core, with correlation effects included for both core and
valence electrons. The physical significance of these energies depends of
course on the model space. Thus electron affinities may be calculated by
constructing a model space with valence particles only [la,lb], ionization
potentials are given using valence holes [1c], and both types are included
for the purpose of getting excitations from a closed-shell system [1d,le].

The open-shell multireference coupled cluster (MR-CCM) package, written
by Kaldor for the Tel Aviv University CYBER 180/990, was adapted by him at
the Johns Hopkins University to the SDSC SCS-40 and the CRAY XMP-48 and
vectorized. The integral, SCF and transformation routines already in use at
the Johns Hopkins University for MRD-CI calculations (including the
desirable computational options for ab-initio calculations on large
molecules) [20-26] we had developed over the years at the Johns Hopkins
University were also meshed into the open-shell MR-CCM package.

Multireference CSD calculations, including excited and ionized states

would represent a major increase in the potential usefulness of the method.
It should be noted that commonly used packages such as GAUSSIAN 82 [27a], 86

106

_—




[27b] etc. are limited to single reference many body perturbation theory
(MBPT) Mdeller Plesset {MP(2) - second order, MP(3) third order, MP(4) -
fourth order.}

3. Computational Details of the (H3N -— H)+ MR-CCM Calculations

These open-shell MR-CCM programs contain routines for
calculating the diagrams for closed shell, or for systems obtained from a
closed shell, by ionizing electron(s) and for systems with electron(s)
outside a closed shell.

Thus the MR-CCM calculations on (H3N ---H)+ where an open-shell system

was required [R(H3N -—- H)+ 2 4.0 bohrs] were carried out using a closed-

shell NH4+3 core,

The MR-CCM scheme as implemented by us requires a closed-shell
reference configuration, from which the states of interest can be obtained
by adding and/or subtracting electrons. The selection of the reference
states depends mainly on the orbital energy spectrum and on the states under
investigation. The energies of the highest occupied (3a1) and lowest

unoccupied (4a1) orbitals, calculated in both the NHZ and NHi+ jons, are

given in Table IV-1 as functions of R(H3N ——— H)+. The angle 8 minimizing

the MRD-CI energy for each R is also given. The gap between the two
orbitals closes with increasing R, so that quasidegeneracy effects must be
considered for R > 4 bohr. The quasidegeneracy may not be evident from the
orbital energies alone. However, a simple inspection of the lowest-energy
determinant at different separations will show that the closed-shell system

is lowest around Req)’ whereas 3a14a1 is lowest at large R (NHS + H is lower

than NH3 + H+). A recent study on excited states of atomic Be has shown

that degeneracies and "intruder states" may be caused by two-electron
interactions, even if not predicted by orbital energies. In the present
case, the expected curve crossing is manifested by convergence difficulties
of the single-reference CCM at R > 4 bohr. The potential surface is

therefore obtained by carrying out single-reference CCM for NH; below R = 4

bohr, and MR-CCM, with the (331)2 and 3a14a1 determinants in the model
space, for larger distances. The latter calculation is done using the core
(NH3+) orbitals. This approach is valid only if the transition between the

two regions is smooth. As similar transitions will occur in many potential
surfaces, this point is crucial to the applicability of the method. MRD-CI

calculations were also carried out with both NHZ and NHi+ orbitals to

provide additional checks on the results.

107




The basis set was a Dunning 955P ———> 553P plus a polarization function
on the N and a 4% + 3% plus a p polarization function on the H.

The potential energy surfaces for (H3N -—- H)+ dissociation were run in
C3 symmetry to allow for possible geometrical distortions. The symmetries
of both the HOMO (highest occupied molecular orbital - orbital 3) and the
LUMO (Towest unoccupied molecular orbital - orbital 4) in NH4+ are of the
totally symmetric irreducible representation.

At each different (H3N - H)+ distance the geometry of the system was
optimized by MRD-CI calculations at the lowest singlet state of (H3N ---
H)+. For expediency, the subsequent MR~CCM and MRD-CI calculations for the
lowest and second singlet state and for the triplet state were then carried
out at these optimized geometries.

B. Results and Discussion

We made a very detailed and intensive study of the protonation of
NH3 and deprotonation of NH;. This was a stringent test for the open-shell
multireference coupled cluster method for the following reason.

The lowest energy state of the separated fragments from NHZ at the
dissociation asymptote is not H‘(lsg) + NH3(1A1) but rather H(ng) +

NH3+(2A1). The single determinant SCF for the lowest singlet state of NHZ

at equilibrium does not dissociate properly to the asymptote. Thus, MR-CCM
calculations are necessary but it is complicated by the fact that the ground
and excited singlet state are of the same symmetry. We ran open-shell MR-
CCM calculations for the ground and first excited singlet state for the
lowest triplet state of NHz.
As a check on the accuracy of the MR-CCM calculations and as a guide to

the type of excitations involved, we also ran MRD-CI calculations for this
same system point-by-point for comparison,

We first ran the MRD-CI calculations for the ground and excited singlet

states of (H3N -— H)+ and for the triplet state. At the MRD-CI level we

optimized the geometry of the lowest singlet state at each point on the
potential surface. The subsequent MRD-CI and all of the MR-CCM calculations
were carried out using these optimized geometries for both the lowest and
first excited singlet state and for the triplet state.
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The integrals, SCF and transformation were run first. Preliminary MRD-
CI calculations were run for the ground and excited singlet state to
identify the important configurations. Then the MRD-CI calculations were
"carried out as described in sections B.2 and c.3.

Then the MR-CCM calculations for the two lowest singlet states were run
at this geometry using the identical integrals, SCF and transformed
integrals. Similar MRD-CI and MR~CCM calculation were also run for the
triplet state.

Figure IV-1 shows the MR-CCM and MRD-CI energies for the ground and
first excited states and for the lowest triplet state. It may be seen that
the MR-CCM did give the two correct singlet curves which dissociate properly
at the asymptote. Futhermore the MR-0CCM energies and the MRD-CI energies
(including the Davidson type correction) are very clsoe both for the two
singlet and triplet states.

The energies of the ground 1A1 state of the NHZ molecule as a function

of R(H3N---H)+ distance are shown in Table IV-2. Figure IV-1 presents the

potential energy surface for the three states calculated. The avoided
crossing is not apparent at first glance, as the interaction between the two

diabatic curves corresponding to the (3a1)2 and 3a1,4a1 configurations is

very strong and leads to an unusually large separation between the curves.
The crossing may be confirmed by looking at the CI or CCM excitation
coefficients (see below), by observing the change in the character of the
lowest state as explained in the previous section, or by comparing the
correlated potential curves to the SCF curve. The latter is rather poor, as
shown by the correlation energy increase from 0.21 hartree near equilibrium

to 0.35 hartree at large (H3N -—- H)+ separation. The SCF determinant

corresponds at large separation to the second 1A1 state, which has indeed a

correlation energy of 0.20 hartree (Table IV-3) in this region. The SCF
potential surface therefore approximates a diabatic, rather than an
adiabatic, surface. When moved down by ~0.2 hartree, the SCF potential
overlaps the ground state at small R and the excited state at large R.

At present, the open-shell MR-CCM requires that a closed shell core be
used and all excitable electrons be put into a model space. Both MRD-CI and
MR-CCM calculations were carried out at every point from an (H3N -—— H)+

reference. Additionally as mentioned in the previous section, the open-
shell MR-CCM program used required the model space to have electrons outside
a closed shell. Thus in the regiors where open shell calculations were

necessary, MR-CCM calculations were also run using reference (H3N —— H)+3

allowing electrons to-occupy empty orbitals 3 and 4. The MRD-CI
calculations allow all single and double excitations from the filled

orbitals of (H3N - H)+ itself and all single and double excitations from
multireference configurations arising from this. For comparison with the
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MR-CCM results for open-shell systems the MRD-CI calculations were also run
at these points for a core of (H3N -—- H)+3 calculations with the last two
electrons allowed to occupy empty orbitals 3 and 4 and higher (all single

and double excitations relative to reference configurations with a c2 of
0.005 or higher).

In Table IV-4a are tabulated the CCM excitation amplitudes and mixing
coefficients forlA1 states. In Table IV-4b are tabulated the MR-CCM mixing

coefficients using NHi+ orbitals. In Table IV-5a are tabulated the MRD-CI

coefficients for 1A1 states using NHZ orbitals as a reference; in Table IV-
5b are tabulated the coefficients using NHZ3 orbitals as a reference.

C. Conclusion
The MR-CCM and MRD-CI energies and wave functions are very close
for the lowest and second singlet states and for the triplet for the entire
potential surface of (H3N -— H)+. Moreover, the MRD-CI results (including
the Davidson correction) are close to the MR-CC results over the entire
calculated potential surface of H3N -—- H)+.

Both the MR-CC and the MRD-CI results confirm that the lowest singlet
state of NHZ at equilibrium follows a diabatic singlet totally symmetric
irreducible representation potential energy surface to the separated species
H + NH3; however the adiabatic Towest singlet curve changes dominant

configuration from 33 to a mixture of 34 + 44 at R (HN - H)* 2 4.0 bohrs.

These results are significant for dissociation of energetic compounds
which contain R1R2R3NH+ species. These results also have profound

implications for protonation and deprotonation of biomolecules, both
endogenous and exogenous. Previous theoretical quantum chemical studies of
protonation and deprotonation of biomolecules seem to have been based on
single determinant closed shell SCF calculations, sometimes supplemented by
MP2 (or MP3 or MP4) corrections MP correlation correction to any order

cannot correct for the deficiency of a single determinant wave function. MP
corrections can only take into account correlation corrections to the
particular wave function used.

A study of the deprotonation of NHZ was carried out using the MR-CCM
and MRD-CI methods. The reaction path goes through an avoided crossing of
two potential surfaces, with the closed~shell Nﬂz dissociating into the
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open-shell H(ZS) + NH;(ZAI) rather than the higher-energy closed-shell

system H + NH3(1A1). The avoided crossing occurs near a (H3N -—— H)+

separation of 4 bohr, and is accompanied by a change of the geometry of the
NH3 group from pyramidal to planar. The different methods used gave very

similar energies, up to a few mhartree. This is probably the magnitude of
the remaining error relative to the exact (full CI) energies in the Hilbert
space spanned by the basis used. The MRD-CI errors are due to including the
contribution of large numbers of configurations approximately, by
extrapolation, and estimating the effect of higher than double excitations
by the Davidson correction. The CCM errors come from ignoring the connected
triple and higher excitations (i.e. those not described as products of
single and double excitations).

The work reported above served as a test for the MR-CCM method. In
particular, two questions were posed: how close does the method come to
giving the full CI energy, and can it be used for potential surfaces which
include an avoided crossing and necessitate a change of the model (P) space.
The results are highly encouraging on both counts. The MR-CCM energies are
only a few mhartree away from the MRD-CI, a difference similar to that given
by MRD-CI calculations with different choices of molecular orbitals
constructed from the same basis; and the avoided crossing with concomitant
change of reference determinants did not cause any problems. The method
seems therefore of great potential value.
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Table IV-1

NH and NI-I‘::+ orbital energies (hartree).

NH}; NH3*
R(bohr)3 4 3a, da, 3a, da,
1.000 109.4 -1.03096 -0.08750
1.500 109.4 -1.01667 -0.08638
1.750 1094 -1.01018 -0.08727
1.943 109.4 -1.00600 -0.08951 -1.44422 -0.72439
2.500 107.0 -0.89257 -0.13026 -1.31293 -0.83312
3.000 104.0 -0.81502 -0.19759 -1.21317 -0.88475
4.000 100.0 -0.70845 -0.30028 -1.06937 -0.90037
5.000 92.0 -0.64304 -0.35773 -0.98767 -0.86779
7.000 91.0 -0.57178 -0.40548 -0.91986 -0.77806
9.000 90.0 -0.53536 -0.41883 -0.88667 -0.71857
11.000 90.0 -0.51437 -0.42278 -0.86604 -0.67948

"R(H3N --- H)*. R(NH) in the NH3 group is kept at 1.943 bohr.

b'l'he angle between NH in the NHj group and the C3 axis. All the

below are for these angles.
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Table IV-2

NHZ X3A, ground state energies (hartree) as a function of R(H3N --- H)*.

NH orbs NH}* orbs
R(bohr) SCF MRD-CI CCM MRD-CI MR-CCM
1.000 -55.87003 -56.08092 -56.07795
1.500 -56.49116 -56.70277 -56.69971
1.750 -56.54932.. -56.76284 -56.75946
1.943 -56.55670 -56.77058 -56.76815 -56.77614
2.500 -56.51006 -56.73165 ~56.72794
3.000 -56.44988 -56.68011 ~-56.67546
4.000 -56.35185 -56.60863 ~-56.59887 -56.61039 -56.60263
5.000 -56.28961 -56.57932 ~-56.56307 -56.57940 -56.57424
7.000 -56.23844 -56.56954 --- -56.56862 -56.56585
9.000 -56.22349 -56.56960 --= -56.56836 -56.56604
11.000 -56.21908 -56.56960 --- -56.56818 -56.56620
.
'
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Table IV-3

NH} excited state energies (hartree) as a function of R(H3N --- H)*.

1A, A,
R(bohr) MRD-CI®#  MRD-CI®  MR-CCMb MRD-CI#  MR-CCMP
1.000  -55.46380 -55.51202
1.500  -56.09771 -56.14469
1.750  -56.16444 -56.21064
1.943  -56.18084  -56.18173 -56.22369
2.500  -56.25877
3.000 -56.31005
4.000 -56.39159  -56.39925  -56.40282 -56.54613  -56.54461
5000 -56.43570  -56.44096  -56.43175 -56.56336  -56.56159
7.000 -56.43800  -56.44279  -56.43405 -56.56702  -56.56548
9.000 -56.41651  -56.42207  -56.42826 -56.56635  -56.56603
11.000 -56.41651  -56.41972  -56.42601 -56.56664  -56.56620
3 NHJ orbitals.
bNHJ* orbitals.

t
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Table IV-4

CCM excitation amplitudes and mixing coefficients for 1A, states.?

A. CCM excitation amplitudes, NH orbitals.

R(bohr) sg sgg
1.000 0.000 0.010
1.500 0.000 0.011
1.750 0.000 0.011
1.943 0.000 0.011
2.500 0.000 0.065
3.000 0.019 0.141
4.000 0.098 0.311
5.000 0.256 0.511

B. MR-CCM mixing coefficients, NH3* orbitals.
R(bobr) C,(33)  C,34) C,44)  C,(33) C,(34)  C,49)

4.000 0.932 0.174 0.321 0.380 0.858 0.358
5.000 2.673 0.672 0.320 0.785 0.595 0.167
7.000 0.131 0.984 0.122 0.994 0.109 0.015
9.000 0.014 1.000 .- 1.000 0.016 --
11.000 0.002 1.000 -- 1.000 0.001 --

m———
——

8The 3a, and 4a, orbitals are denoted by 3 and 4, respectively, and the subscript

gives the molecular state. Thus, sg is the excitation amplitude from 3a, to 4a,, and

C,(44) is the coefficient of the (4a,)? determinant in the second A, state function.
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Table IV-5

MRD-CI coefficients for 1A, states.2

——
o —

R(bohr)  C,(33) C,(34) C,(44) C,(33) C,(34) C,(44)

A. NHj orbitals

1.000 0.952 0.000 0.000 0.000 0.924 0.000
1.500 0.950 0.000 0.000 0.000 0.922 0.000
1.750 0.948 0.000 0.000 0.000 0.920 0.000
1.943 0.947 0.000 0.000 0.000 0.919 0.000
2.500 0.938 0.000 0.000 0.000 0.888 0.000
3.000 0.920 0.001 0.000 0.005 0.842 0.000
4.000 0.823 0.023 0.092 0.080 0.667 0.182
5.000 0.630 0.110 0.194 0.267 0.526 0.141
7.000 0.345 0.334 0.249 0.564 0.329 0.047
9.000 0.260 0.430 0.237 0.656 0.260 0.026
11.000 0.260 0.430 0.237 10.656 0.260 0.026

B. NH}* orbitals

1.943 0.823 0.000 0.000 0.000 0.729 0.000
4.000 0.732 0.061 0.000 0.088 0.615 0.118
5.000 0.378 0.449 0.071 0.439 0.345 0.022
7.000 0.014 0.891 0.000 0.780 0.014 0.000
9.000 0.000 0.908 0.000 0.791 0.000 0.000
11.000 0.000 0.909 0.000 0.790 0.000 0.000

e —— e — %
8 For notation see footnote to Table IV.
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V. Lectures Presented and Publications on This ONR Research

Presentations given and/or scheduled and papers published and/or
submitted during the fiscal year.

A. Presentations Given Dr. Joyce J. Kaufman

1. Already Presented (* denotes invited lecture)

a.

At National and International Meetings

*(1).

*(2).

*(3).

*(4).

*(5).

"Ab-Initio MRD-CI Calculations for Breaking a
Chemical Bond in a Molecule in a Crystal or Other
Solid Environment 1. H3C - NO2 Decomposition in

Nitromethane", American Chemical Society/North
American Chemical Congress, Division of Physical
Chemistry, Toronto, Canada, June 1988,

"Ab-Initio Multireference Coupled Cluster and
Multireference CI Calculations for Protonation of

NH3/Deprotonation of NHZ Involve Multipotential

Surfaces" American Chemical Society/North American
Chemical Congress, Division of Physical Chemistry,
Toronto, Canada, June 1988.

"Ab-Initio MRD-CI Calculations for Breaking a
Chemical Bond in a Molecule in a Crystal or Other
Solid Environment 1I. H3C - NO2 Decomposition in

Nitromethane", Working Group Meeting on Synthesis
of High Energy Density Materials, U.S. Army
Armament Research, Development and Engineering
Center, Dover, New Jersey, June 1988. (An invited
lecture)

"Ab-Initio MRD-CI Calculations for Breaking a
Chemical Bond in a Molecule or Other Solid
Environment®, Gordon Conference on Chemistry of
Energetic Materials, New Hampton School, New
Hampshire, June 1988. (An invited lecture; the
organizers of that Gordon Conference paid Dr.
Kaufman's registration fee and living expenses.)

!
"Ab-Initio MRD-CI Calculations for Breaking a
Chemical Bond in a Molecule in a Crystal or Other
Solid Environment I. H3C - NO2 Decomposition in

Nitromethane,"” 6th International Congress of
Quantum Chemistry, Jerusalem, Israel, August 1988,




- -

b. At DOD Meetings and Workshops

*(1). “Ab-Initio MRD-CI calculations on the Propagation
Step in Cationic Polymerization of Energetic
Substituted Oxetanes,” ONR Energetic Materials
Workshop, Great Oak Landing, Maryland, September
1988,

In that paper Dr. Kaufman also mentioned briefly our results on the
H3c - NO2 decomposition in a nitromethane crystal including preliminary

results on treating voids in the nitromethane crystal.

2. To be presented
*a. Ab-initio MRD-CI Calculations for Breaking a Chemical
Bond in a Molecule in a Crystal or Other Solid
Environment. III. MeZN - NO2 Decompositionof

Diemthylinitramine in a Large Crystalline Environment,"
Sanibel International Symposium on Atomic, Molecular and
Solid State Physics, St. Augustine, Florida, March 1988.

B. Publications
1. Already Published

a. "Ab-Initio MRD-CI Calculations for Breaking a Chemical
Bond in a Molecule in a Crystal or Other Solid
Environment 1I. H3C-N02 Decomposition in Nitromethane",

S. Roszak, P. C. Hariharan, P. B. Keegstra, and Joyce J.
Kaufman, Int. J. Quantum Chem, $22, 619-635 (1988).

b. “"Ab-Initio Calculations on Large Molecules and Solids By
Desirable Computational Procedures," an invited special
lecture presented at the VIII International Conference
on Computers in Chemistry Research and Education,
Beijing, China, June 1987, Analytica Chimica Acta 210,
209-212 (1988).

c. "Ab-Initio MRD-CI Calculations for the Propagation Step
in the Cationic Polymerization of Oxetanes Based on
Localized Orbitals,” Joyce J. Kaufman, P. C. Hariharan
and P. B, Keegstra. Int. J. Quantum Chem., S21, 623-643
(1987)

d. “"Comparison of Ab~Initio MODPOT and Ab-Initio Energy
Partitioned Potential Functions for Nitromethane Dimer
Against Large Basis Set Calculations," W. A. Sokalski,
P. C. Hariharan and Joyce J. Kaufman. Int. J. Quantum
Chem., S21 645-660 (1987).

e. "“Ab-Initio MRD-CI Calculations on Protonated Cyclic

Ethers. I. Protonation Pathways Involve Multipotential
Surfaces (Protonation of Oxetane) II. Differences from
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SCF in Dominant Configurations Upon Opening Non-
Protonated Oxirane Rings (epoxides)," Joyce J. Kaufman,
P. C. Hariharan, S. Roszak and P. B. Keegstra, Int. J.
Quantum Chem., QBS14 37-46 (1987).

2.  Accepted for publication and in press

a-

"Ab-Initio MRD-CI Calculations for Breaking a Chemical
Bond in a Molecule in a Crystal or Other Solid
Environment. 1II. H3C - NO2 Decomposition of

Nitromethane in a Nitromethane Crystal with Voids,"

S. Roszak, P. B. Keegstra, D. 0'Neal, P. C. Hariharan,
and Joyce J. Kaufman, an invited paper presented at the
6th International Congress of Quantum Chemistry,
Jerusalem, Israel, August 1988. In press, Int. J.
Quantum Chem., Congress Issue.

“Ab-Initio Multireference Coupled Cluster (MR-CCM) and
Ab-Initio Multireference Configuration Interaction (MRD-
CI) Calculations for Protonation NH3 / Deprotonation
NH4+Invo1ve Multipotential Surfaces," U. Kaldor,

S. Roszak, P. C. Hariharan .and Joyce J. Kaufman. In
press, J. Chem. Phys.
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VI. Project Personnel
Joyce J. Kaufman, Ph.D.

Principal Investigator

P. C. Hariharan, Ph.D.
Research Scientist
Overall responsibility for implementing new program developments
and conversion to Cray computers. Quantum chemical calculations on
energetic polymers, breaking a chemical bonde in a molecule in a crystal,
MRD-CI calculations, GAMESS and POLY-CRYST calculations
Uzi Kaldor: Ph.D.

Visiting Scientist (Permanent position, Professor and Dean,
University of Tel Aviv, Israel).

(at no salary cost to this ONR contract)
Rewriting, vectorizing and adapting the multireference

coupled cluster method (MR-CCM) for the SCS-40 and the CRAY-XMP.
Calculating MR-CCM potential energy surfaces for protonation NH3 /

deprotonation NH4.
Douglas W. 0'Neal, Ph.D. (February 1988-October 1988)
Postdoctoral

. Assistance with carrying out MRD-CI calculations on energetic
polymers and breaking the H3C - NO2 bond in nitromethane in a nitromethane

crystal with voids.

Douglas A. Chapman, Ph.D. (August 1988 - present)
Postdoctoral

Carrying out MRD-CI calculations on energetic polymers and MRD-
CI calculations on breaking the MezN - NO2 bond in dimethylnitramine in an

isolated molecule and in a dimethylnitramine crystal.
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