Solvent Dynamical Effects in Electron Transfer:
Evaluation of Electronic Matrix Coupling Elements for
Metallocene Self-Exchange Reactions

by

G. E. McManis, R. M. Nielson, A. Gochev, and M. J. Weaver

Prepared for Publication
in the
Journal of the American Chemical Society

Purdue University
Department of Chemistry
West Lafayette, Indiana 47907

July 1, 1989

Reproduction in whole, or in part, is permitted for any purpose of the
United States Government.

* This document has been approved for public release and sale: its
distribution is unlimited.
REPORT DOCUMENTATION PAGE

a REPORT SECURITY CLASSIFICATION
Unclassified

b SECURITY CLASSIFICATION AUTHORITY

c DECLASSIFICATION/DOWNGRADING SCHEDULE

d PERFORMING ORGANIZATION REPORT NUMBER(S)
Technical Report No. 90

e NAME OF PERFORMING ORGANIZATION
Purdue University
Department of Chemistry

f ADDRESS (City, State, and ZIP Code)
Purdue University
Department of Chemistry
West Lafayette, Indiana 47907

g NAME OF FUNDING/SPONSORING ORGANIZATION
Office of Naval Research

h ADDRESS (City, State, and ZIP Code)
800 N. Quincy Street
Arlington, VA 22217

1 TITLE (Include Security Classification)

2 PERSONAL AUTHOR(S)
G. E. McManis, R. H. Nielson, A. Gochev, and M. J. Weaver

3a TYPE OF REPORT
Technical

3b TIME COVERED
FROM 10/1/87 TO 6/30/89

4b DATE OF REPORT (Year, Month, Day)
July 1, 1989

6b OFFICE SYMBOL (if applicable)

7b NAME OF MONITORING ORGANIZATION
Division of Sponsored Programs
Purdue Research Foundation

7b ADDRESS (City, State, and ZIP Code)
Purdue University
West Lafayette, Indiana 47907

8b OFFICE SYMBOL (if applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
Contract No. N00014-86-K-0556

10 SOURCE OF FUNDING NUMBERS

13b TIME COVERED
FROM 10/1/87 TO 6/30/89

13b ABSTRACT (Continue on reverse if necessary and identify by block number)
The functional dependence of the rate constants for self exchange, \(k_{ex} \), for a series of metallocene redox couples to solvent-induced variations in the nuclear frequency factor, \(\nu_0 \), engendered by alterations in the longitudinal solvent relaxation time, \(\tau_L \), are utilized to deduce values of the electronic matrix coupling element, \(H_{ij} \), for electron exchange. The analysis exploits the sensitivity of the \(k_{ex} \) dependence to the degree of reaction adiabaticity and hence \(H_{ij} \) for a given electron-exchange reaction. Six metallocene couples are examined: \(\text{Cp}_2\text{Co}^{2+/0} \), \(\text{Cp}_2\text{Fe}^{2+/0} \) (Cp = cyclopentadienyl) and the decamethyl derivatives \(\text{Cp}_2\text{Co}^{2+/0} \) and \(\text{Cp}_2\text{Fe}^{2+/0} \) scrutinized previously (see ref. 5a,b). Additional solvent-dependent \(k_{ex} \) values for carboxymethyl(cobaltocene-cobaltocene) \([\text{Cp}_2\text{Co}^{2+/0}, e = \text{ester}] \) and hydroxymethyl(ferrocenium-ferrocene) \([\text{HMFe}^{2+/0}] \). Kinetic data are examined in 15 solvents, including 11 "Debye" solvents for which it is anticipated that \(\nu_0 \) \(\nu_h \) may be utilized to correct \(k_{ex} \) for the solvent-dependent variations in the barrier height obtained by corresponding measurements of the optical electron-transfer energies for the related binuclear complex biferrocenyl-

14 DATE OF REPORT (Year, Month, Day)
July 1, 1989

15 PAGE COUNT
19

9 ABSTRACT (Continue on reverse if necessary and identify by block number)

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
metallocene redox couples, solvent dynamics, electronic matrix coupling element, nuclear frequency factor, longitudinal solvent relaxation time

21 ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

22b TELEPHONE (include Area Code)

22c OFFICE SYMBOL

83 APR edition may be used until exhausted. All other editions are obsolete.
19. (cont.)

Acetylene, yielding "barrier-corrected" rate constants, k_{ex}. The k_{ex}^{-1} dependencies, as well as the k_{ex} values in a given solvent, are markedly dependent on the redox couple. The log k_{ex} - log τ_L plots for the most facile couple, Cp$^{'}$Co$^+/O$, exhibit slopes approaching unity for smaller τ_L values. The less facile couples yield smaller slopes, diminishing in the same sequence that k_{ex} decreases in a given solvent: Cp$^{'}$Co$^+/O >$ Cp$^{'}$Co$^+/O >$ Cp$^{'}$Co$^+/O >$ Cp$^{'}$Fe$^+/O >$ Cp$^{'}$Fe$^+/O >$ HMFe$^+/O$. These findings are consistent with H_{12} decreasing in the same order. Comparison of such rate-solvent friction dependencies with corresponding plots calculated using a combined solvent friction-electron tunneling model yield the following approximate values of the matrix coupling element for reactant "closest approach", H_0 (kcal mol$^{-1}$): Cp$^{'}$Co$^+/O$, 1.0; Cp$^{'}$Co$^+/O$, 0.5-1.0; Cp$^{'}$Co$^+/O$, 0.5; Cp$^{'}$Fe$^+/O$, 0.2; Cp$^{'}$Fe$^+/O$, 0.1; HMFe$^+/O$, 0.075. Reasonable concordance is seen with recent theoretical estimates of H_{12} for Cp$^{'}$Co$^+/O$ and Cp$^{'}$Fe$^+/O$. The relationship between H_{12} and metallocene electronic structure is briefly discussed. The analysis also enables effective solvent relaxation times for adiabatic barrier crossing in non-Debye media, including primary alcohols, to be extracted.
Solvent Dynamical Effects in Electron Transfer:
Evaluation of Electronic Matrix Coupling Elements
for Metalloccene Self-Exchange Reactions

George E. McManis, Roger M. Nielson, Alexander Gochev,
and Michael J. Weaver*

Department of Chemistry, Purdue University
West Lafayette, Indiana 47907

Running Title: Evaluation of Electronic Coupling Matrix Elements

J. Am. Chem. Soc.
In press, March 1989
ABSTRACT

The functional dependence of the rate constants for self exchange, k_{ex}, for a series of metallocene redox couples to solvent-induced variations in the nuclear frequency factor, ν_n, engendered by alterations in the longitudinal solvent relaxation time, τ_L, are utilized to deduce values of the electronic matrix coupling element, H_{12}, for electron exchange. The analysis exploits the sensitivity of the $k_{ex} - \tau_L^{-1}$ dependence to the degree of reaction adiabaticity and hence H_{12} for a given electron-exchange reaction. Six metallocene couples are examined: $\text{Cp}_2\text{Co}^{+/0}$, $\text{Cp}_2\text{Fe}^{+/0}$ (Cp = cyclopentadienyl), and the decamethyl derivatives $\text{Cp}^{+}\text{Co}/\text{O}$ and $\text{Cp}^{+}\text{Fe}/\text{O}$ scrutinized previously (refs. 5a,b), additional solvent-dependent k_{ex} values for carboxymethyl(cobaltocenium-cobaltocene) [Cp$^{+}\text{Co}^{+/0}$, e = "ester"] and hydroxymethyl(ferrocenium-ferrocene) [HMFe$^{+/0}$]. Kinetic data are examined in 15 solvents, including 11 "Debye" solvents for which it is anticipated that $\nu_n \propto \tau_L^{-1}$. Corrections to k_{ex} for the solvent-dependent variations in the barrier height were obtained by corresponding measurements of the optical electron-transfer energies for the related binuclear complex biferrocenylacetylene, yielding "barrier-corrected" rate constants, k'_{ex}. The $k'_{ex} - \tau_L^{-1}$ dependencies, as well as the k_{ex} values in a given solvent, are markedly dependent on the redox couple. The log $k_{ex} - \log \tau_L^{-1}$ plots for the most facile couple, $\text{Cp}_2\text{Co}^{+/0}$, exhibit slopes approaching unity for smaller τ_L^{-1} values. The less facile couples yield smaller slopes, diminishing in the same sequence that k_{ex} decreases in a given solvent: $\text{Cp}_2\text{Co}^{+/0} > \text{Cp}_2\text{Fe}^{+/0} > \text{Cp}_2\text{Co}^{+/0} \geq \text{Cp}_2\text{Fe}^{+/0} > \text{Cp}_2\text{Fe}^{+/0} \geq \text{HMFe}^{+/0}$. These findings are consistent with H_{12} decreasing in the same order. Comparison of such rate-solvent friction dependencies with corresponding plots calculated using a combined solvent friction-electron tunneling model yield the following approximate values of the matrix coupling element for reactant "closest approach", H_{12}^{0} (kcal mol$^{-1}$): $\text{Cp}_2\text{Co}^{+/0}$, 1.0; $\text{Cp}_2\text{Co}^{+/0}$, 0.5-1.0; $\text{Cp}_2\text{Co}^{+/0}$, 0.5; $\text{Cp}_2\text{Fe}^{+/0}$, 0.2; $\text{Cp}_2\text{Fe}^{+/0}$, 0.1; HMFe$^{+/0}$, 0.075. Reasonable concordance is seen with recent theoretical estimates of H_{12}^{0} for $\text{Cp}_2\text{Co}^{+/0}$ and $\text{Cp}_2\text{Fe}^{+/0}$. The relationship between H_{12}^{0} and metallocene electronic structure is briefly discussed. The analysis also enables effective solvent relaxation times for adiabatic barrier crossing in non-Debye media, including primary alcohols, to be extracted.
A central fundamental question in electron transfer of widespread current interest concerns how the extent of overlap between the donor and acceptor redox orbitals, and its role in influencing reaction rates, depends upon the electronic properties and spatial configuration. The overlap is described by the electronic matrix coupling element, H_{12}, which determines the extent of resonance splitting of the barrier top.1,2 This factor exerts a crucial influence upon electron-transfer kinetics, not only by influencing the barrier shape and height but also the degree of reaction adiabaticity (i.e., the probability that electron transfer will occur once the transition state has been formed).2 Recent ab initio calculations of H_{12} for simple outer-sphere electron exchange processes illustrate the sensitivity of the coupling strength to electronic structure as well as to the spatial configuration of the reacting pair.2 While experimental estimates of H_{12} for optical electron transfer within binuclear complexes can be extracted from band intensities,1a the evaluation of the matrix coupling element for thermal outer-sphere electron transfer is considerably less straightforward. In spite of the importance of the latter quantity as alluded to frequently in the literature,1-3 its experimental evaluation has remained largely elusive.4

We have recently been examining in detail the solvent-dependent electron-exchange kinetics of various metallocene redox couples in homogeneous solution5 as well as electrode surfaces6 in order to explore the role of solvent relaxation dynamics on the barrier-crossing frequencies. Of primary concern have been redox couples of the form $\text{Cp}_2\text{M}^{+}/\text{Cp}_2\text{M}^{2+}$, where $\text{M} = \text{Co}$ or Fe, $\text{Cp} = \text{cyclopentadienyl}$, and $\text{Cp}' = \text{pentamethylcyclopentadienyl}$,5,6 although other metallocene couples have also been examined.6b,d During these studies, it became apparent that the rate constants for homogeneous self
exchange, k_{ex}, in a given solvent display a marked sensitivity to the metallocene electronic structure. In particular, k_{ex} values for cobaltocenium-cobaltocene couples are substantially (up to ca 10 fold) larger than for corresponding ferrocenium-ferrocene couples: up to 100 fold enhancements in k_{ex} are observed upon methylation of the Cp rings together with substituting cobalt for iron.5a,7 These rate variations, especially those resulting from metal substitution, were traced primarily to the greater extent of donor-acceptor orbital overlap for the cobalt versus iron systems anticipated from the primarily ligand- versus metal-centered character of the redox orbitals.7 These differences in orbital overlap and hence H_{12} are consistent both with optical electron-transfer measurements for bicobaltocene versus biferrocene cations8 and with recent ab initio calculations (vide infra).9

Generally speaking, the magnitude of H_{12} for a particular internuclear configuration (i.e., precursor complex geometry) can affect the rate constant for that geometry, k_{et} (s^{-1}), by influencing the electronic transmission coefficient, κ_{e1}, and additionally the free-energy barrier, ΔG^\ddag, as in the conventional expression1b

$$k_{et} = \kappa_{e1} \nu_n \exp(-\Delta G^\ddag/RT)$$ \hspace{1cm} (1)

where ν_n is the nuclear frequency factor. The last term describes the net dynamics along the nuclear reaction coordinate in the vicinity of the barrier top, which may include contributions from both collective solvent and inner-shell motion. If only a narrow range of precursor geometries contributes to the bimolecular reaction (vide infra), k_{et} can be related simply to k_{ex} by

$$k_{ex} = K_p k_{et}$$ \hspace{1cm} (2)
where K_p is the statistical probability of forming the precursor geometry.1b,10 If H_{12} is very small, the reaction will be nonadiabatic such that $\kappa_{e1} \ll 1$ and $k_{ex} \propto H_{12}^2$.1b,2 In the adiabatic regime where H_{12} is sufficiently large so that $\kappa_{e1} \approx 1$, the dependence of k_{ex} (and hence k_{ex}) upon H_{12} will be milder, arising primarily from the diminution in the barrier height. Evidence from both experimental1c,3,4a and theoretical2 sources suggests that bimolecular reactions, even involving small inorganic reactants, are often nonadiabatic in nature.

While estimates of κ_{e1} and hence H_{12} could in principle be obtained from k_{ex} measurements for a single system by using Eqs. (1) and (2), uncertainties in the required estimates of ΔG^* and K_p make this procedure of little utility. One approach is to examine the relative k_{ex} values for a series of structurally related reactions chosen so that differences in the extent of electronic coupling provide a likely major contribution to the observed rate variations.4a,7 However, due to the involved dependence of κ_{e1} upon H_{12} this procedure requires at least an estimate of k_{ex} when $\kappa_{e1} \approx 1$ (vide infra).

An attractive, yet virtually unexplored, possibility is to examine additionally the sensitivity of k_{ex} to variations in the nuclear frequency factor ν_n. This is because the dependence of k_{ex} upon ν_n will be sensitive to the degree of reaction nonadiabaticity, which in turn is influenced by the magnitude of ν_n as well as H_{12}.11,12 Thus while we expect that $k_{ex} \propto \nu_n$ under adiabatic conditions [i.e., when $\kappa_{e1} \approx 1$, Eq. (1)], increasing ν_n for a given H_{12} eventually can lead to a nonadiabatic condition whereupon k_{ex} becomes independent of ν_n, since then $\kappa_{e1} \approx \nu_n^{-1}$.11 The form of the k_{ex}-ν_n dependence should therefore be sensitive to, and therefore diagnostic of, the magnitude of H_{12}.11 While ν_n for processes featuring large inner-shell distortions will be determined at least partly by reactant vibrations that cannot be varied
readily, the dynamics of collective solvent motion can provide the dominant contribution to ν_n when the inner-shell barrier is small (say ≤ 1 kcal mol$^{-1}$). Substantial (up to 20-50 fold) variations in ν_n can readily be induced under the latter conditions by judicious alterations in the solvent medium, since in many cases $\nu_n \propto r_L^{-1}$, where r_L is the longitudinal solvent relaxation time. This enables the dependence of k_{ex} upon ν_n to be examined provided that the rates are corrected for the corresponding variations in ΔG^\ast (vide infra).

In the present paper, we exploit such a solvent-dependent analysis to obtain H_{12} estimates for a series of six ferrocene and cobaltocene self-exchange reactions. The k_{ex} values were obtained using the proton NMR line-broadening technique, with the required solvent dependence of ΔG^\ast being extracted from optical electron-transfer energies for a related binuclear system, biferrocenylacetylene cation (cf ref. 5). Some of the data used in the present analysis has been discussed previously in a related context. However, the acquisition of additional kinetic and optical barrier data along with our recent reevaluation of the solvent-dependent kinetics for ferrocenium-ferrocene self exchange enable the role of orbital overlap in electron transfer to be addressed here quantitatively for the first time. Besides the parent metallocene couples $\text{Cp}_2\text{Fe}^{+/-0}$ and $\text{Cp}_2\text{Co}^{+/-0}$, and the decamethyl derivatives $\text{Cp}_2\text{Fe}^{+/-0}$ and $\text{Cp}_2\text{Co}^{+/-0}$, we utilize new solvent-dependent rate data for the carboxymethyl(cobaltocenium-cobaltocene) and hydroxymethyl(ferrocenium-ferrocene) couples, $(\text{CpCO}_2\text{Me})_2\text{Co}^{+/-0}$ and $(\text{Cp} \cdot \text{CpCH}_2\text{OH})\text{Fe}^{+/-0}$, respectively, abbreviated here as "$\text{Cp}_2\text{Co}^{+/-0}$ (e = ester)" and "$\text{HMFe}^{+/-0}$". These latter two systems were selected initially in view of their water solubility, enabling barrier-crossing dynamics in aqueous and nonaqueous media.
to be compared.5c Together, these six reactant systems are shown to span a wide (ca tenfold) range in H_{12}, from ca 0.1 to 1.0 kcal mol$^{-1}$.

EXPERIMENTAL SECTION

Carboxymethylcobaltocenium tetrafluoroborate was synthesized by stirring the corresponding carboxylic acid derivative (Cp\textsubscript{2}Co\cdotBF\textsubscript{4}), prepared as in ref. 16, in methanol purged with anhydrous HCl for 24 hours. Addition of HBF\textsubscript{4} and evaporating some solvent precipitated the desired product, which was recrystallized from hot methanol. The reduced species, carboxymethylcobaltocene, was prepared by stirring a hexane suspension of the salt with a deficiency of cobaltocene. The solution was filtered to remove Cp\textsubscript{2}Co\cdotBF\textsubscript{4} and the filtrate evaporated to dryness under vacuum.

Hydroxymethylferrocene was synthesized from trimethylaminoferrocene (Aldrich) as described in ref. 17. The oxidized form, (Cp'CpCH\textsubscript{2}OH)Fe\cdotPF\textsubscript{6}, was prepared by shaking a hexane solution of the reduced species with an acidic aqueous solution containing a twofold excess of FeCl\textsubscript{3} until the hexane phase became colorless. After filtering, a solution of NH\textsubscript{4}PF\textsubscript{6} was added to the aqueous phase to precipitate the desired product. Biferrocenylacetylene (BFA) was prepared as described in ref. 18; the acetylferrrocene precursor was obtained by acetylation of ferrocene as outlined in ref. 19. For all complexes, identification and purity were confirmed by proton NMR and cyclic voltammetry.

The near-infrared spectra, so to obtain optical electron-transfer energies for biferrocenylacetylene cation (BFA$^+$),20-22 were measured between 800 and 2000 nm with a Cary Model 17D spectrophotometer, using 1 cm quartz cells. Typically, ca 1 mM concentrations were employed so to yield maximum absorbances of about 0.2-0.5. For most solvents, BFA$^+$ was generated from BFA
by in-situ oxidation with one equivalent of Fe(bpy)$_3$(PF$_6$)$_3$ (bpy - 2,2'-bipyridyl). In some cases (e.g. methanol), the solid BFA$^+$BF$_4^-$ salt was employed. This was isolated by oxidizing BFA in nitromethane under nitrogen with a stoichiometric quantity of AgBF$_4$ (Aldrich). After filtering, the product was isolated by adding diethyl ether.

Most details of the NMR sample preparation measurements and line-broadening data analysis are given in refs. 5a and b. Solvents were high-purity grades from Burdick and Jackson, Aldrich, or Fluka and were purified where appropriate by using standard procedures. Deuterated solvents were employed whenever feasible. However, proteated media were also used successfully by suppressing the solvent peak(s) using homonuclear irradiation at the desired resonance frequencies, with a minimum of radio-frequency power to avoid significant dielectric heating. 5a Proton NMR spectra for the HMFe$^{+}$/o and Cp$_2$Co$^{+}$/o systems were collected on Nicolet NT 200 and NT 470 instruments, respectively (operated at 200.0 and 469.5 MHz). Due to peak splitting on the Cp ring protons, the line-broadening measurements for these two couples utilized the -CH$_2$- and methyl substituent proton resonances, respectively. A complication for the former is that the methylene resonance appears as a doublet in the pure diamagnetic species (i.e. hexamethylferrocene) due to spin-spin coupling with the hydroxyl proton. This difficulty, however, was circumvented by collapsing the doublet to a single peak by saturating the -OH resonance during NMR data acquisition. In any case, essentially equivalent line widths were obtained irrespective of -OH peak saturation, presumably due to weak CH$_2$-OH coupling. A difficulty faced with Cp$_2$Co$^{+}$/o is that the contact shift for the methyl protons is relatively small even at 470 MHz field, ca 12 ppm, which combined with the relatively large k_{ex} values yields relatively
small electron-exchange line broadening. Consequently, it was advisable to correct the measured line widths for magnetic field inhomogeneity. For nonaqueous solvents, this was achieved simply by subtracting the corresponding measured linewidth for the tetramethylsilane reference signal; the correction was estimated to be 1-2 Hz in D₂O. This complication increases the uncertainties in the derived k_{ex} values for the Cp₂Co+/0 couple, but they are still probably reliable to within ± 20-30%. For the other systems, k_{ex} is typically reproducible to 10-20%.⁵ Experimental NMR parameters for the additional reactions studied here are summarized in the Supplementary Material.

RESULTS AND DISCUSSION

A summary of the k_{ex} values used in the present analysis, for six redox couples in fifteen solvents, is given in Table I. Besides the additional data gathered in the present work, this summary contains pertinent data culled from refs. 5a-c (see footnote to Table I for specific details). For convenience, the k_{ex} values in Table I all refer to a uniformly low ionic strength ($\mu = 0.01-0.02 \text{ M}$). This entailed adjusting the values for Cp₂Co+/0 and Cp₂Co+/0 given earlier in ref. 5a, since these were obtained at $\mu = 0.14$. Fortunately, this correction is small (ca 25% in k_{ex}) since k_{ex} for these metallocene couples are insensitive to variations in ionic strength, at least when "noncoordinating" anions (such as PF₆⁻, BF₄⁻) are employed.⁵b Kinetic data in dichloromethane and dichloroethane, reported in ref. 5a, are not included here. This is partly in view of our subsequent observation of deviations from second-order kinetics in these solvents, probably associated with complications from ion pairing. Large ion-pairing effects upon the reaction
energetics in such weakly polar media are also evident in optical electron-transfer data. The \(k_{ex} \) values for \(\text{Cp}_2\text{Fe}^{\,+} / \text{Cp}_2\text{Fe}^{\,0} \), taken in part from ref. 5b, differ substantially (up to ca 10 fold) from those reported by Wahl et al.\(^{36}\) which were utilized in our earlier solvent dynamical analyses.\(^ {5a,6b}\) The origins of the systematic solvent-dependent errors in these older data are discussed in ref. 5b. Experimental difficulties, such as reactant solubility and decomposition, along with solvent interferences and signal-to-noise constraints in the NMR line-broadening measurements, precluded the evaluation of \(k_{ex} \) for a number of redox couple/solvent combinations. For example, the ferrocene couples could not be examined in amide solvents due to decomposition. Nevertheless, sufficient kinetic, along with optical electron transfer (vide infra), data have now been assembled to enable a relatively detailed dynamical analysis to be undertaken.

Of the fifteen solvents in Table I, the first eleven are considered to approximate "Debye" dynamical behavior in that the dielectric loss spectra can be described in terms of a single relaxation time, \(\tau_D \).\(^{37}\) In this case, the adiabatic barrier-crossing frequency \(\nu_n \) for electron-transfer reactions having little or no inner-shell barrier is anticipated to be determined by the longitudinal relaxation time,\(^ {13,14}\) given approximately by\(^ {38,39}\)

\[
\tau_L = (\varepsilon_\infty / \varepsilon_0) \tau_D
\]

(3)

where \(\varepsilon_\infty \) and \(\varepsilon_0 \) are the "infinite-" and zero-frequency solvent dielectric constants, respectively. The \(\tau_L^{-1} \) values for each of these solvents are given in Table I (see footnotes and refs. 5a and 6c for data sources); the Debye solvents are listed in order of increasing \(\tau_L^{-1} \). Rate data obtained in three likely "non-Debye" solvents - propylene carbonate, methanol, and ethanol - are
also included in this compilation, along with τ^{-1} estimates for the major (low-frequency) relaxation, given in parentheses. (Such non-Debye behavior is characterized by at least one higher-frequency dispersion region having dissipative characteristics.) Although the connection between the dielectric loss spectra and ν_n is considerably less straightforward for non-Debye solvents, these kinetic data are nevertheless of interest to the present discussion (vide infra).

As already noted, the central thrust of the present work is to examine the sensitivity of the barrier-crossing frequency to alterations in the solvent dynamics as a means of probing the orbital-overlap factor, H_{12}. Even though only relative, rather than absolute, preexponential factors for a given reaction in a suitable series of solvents are required for this analysis, the solvent-dependent k_{ex} values still need to be corrected for differences in the barrier height, ΔG^*. The required solvent-dependent ΔG^* estimates can be obtained in two ways. The first involves employing theoretical models, most simply the dielectric continuum treatment of Marcus. We have used this approach in several previous discussions.

An alternative, and probably more reliable, procedure utilizes experimental energies for optical electron transfer, E_{op}, within symmetrical mixed-valence compounds that are structurally similar to the thermal electron-exchange reactions of interest. While suitable mixed-valence systems are not abundant, the biferrocenylacetylene cation (BFA$^+$) constitutes an almost ideal choice for the present purposes. Besides being structurally closely similar to the reactants of interest here, the juxtaposition of the Cp$_2$Fe$^+$/Cp$_2$Fe partners in the binuclear complex roughly mimics that anticipated for the precursor complex for the thermal self-exchange reactions. Most importantly,
BFA$^+$ conforms approximately to "class II" (i.e. valence-trapped) behavior, enabling solvent-dependent thermal barriers, ΔG_c^*, to be obtained simply from

$$\Delta G_c^* = E_{op}/4$$

(4)

It should be noted that ΔG_c^* obtained in this manner is a "cusp" barrier, i.e. in the absence of barrier-top roundedness induced by donor-acceptor orbital overlap ($H_{12} \rightarrow 0$). The actual barriers, ΔG^*, for the present thermal reactions will depend upon the internuclear configuration as well as the metallocene electronic structure (vide infra). However, at least the solvent dependence of ΔG^* for a given reaction, as required for the present analysis, should follow approximately the corresponding variations in ΔG_c^*.

The ΔG_c^* estimates obtained from the experimental E_{op} values for BFA$^+$ in each solvent are also listed in Table I. Values of E_{op} for six of these solvents were reported earlier; the present values agree uniformly within the experimental uncertainty (2-3%). Although substantial ion-pairing effects upon E_{op} have been observed for BFA$^+$, these effects are small or negligible at the low anion concentrations ($\leq 5 \text{ mM}$) and relatively polar media employed for the present E_{op} measurements. (A brief comparison between the ionic strength dependence of k_{ex} and E_{op} is provided in ref. 5b.) The ΔG_c^* value given for D$_2$O was estimated from E_{op} data for the biferrocene cation, as described in ref. 5c, in view of the insolubility of BFA$^+$ in this solvent. Values of E_{op} could not be obtained for five solvents of interest here (dimethylsulfoxide and the amides) due to BFA$^+$ decomposition. Estimates of ΔG_c^* are nevertheless given in parenthesis in Table I. These were obtained by taking advantage of the approximate correlation between E_{op} and $(\varepsilon_{op}^{-1} - \varepsilon_o^{-1})$, where ε_{op} is the solvent optical dielectric constant. Although there are
significant deviations from the direct proportionality between E_{op} and $(\varepsilon_{op}^{-1} - \varepsilon_{e}^{-1})$ predicted from the dielectric continuum model,22 the E_{op} values estimated in this manner are likely reliable to within at least $\pm 0.2 \text{ kcal mol}^{-1}$. (The significance of such comparisons to the issue of noncontinuum solvent effects upon ΔG^*_c will be addressed elsewhere.22) For simplicity, these ΔG^*_c values are utilized for each redox couple considered here. Slightly (up to 25% smaller) values are anticipated for the decamethyl derivatives in view of their larger size on the basis of the usual continuum treatment.41 However, given that only the solvent dependence of ΔG^*_c is important for the present purposes, and that the span of values in Table I is relatively small ($< 0.9 \text{ kcal mol}^{-1}$), such corrections exert only a small or negligible influence upon the data analysis. In any case, they are of marginal validity, especially given the uncertainties in the precise precursor geometries that contribute to k_{ex} (vide infra).

Rate-Solvent Friction Dependencies

In our previous analyses of solvent dynamical effects for metallocene self-exchange reactions,5 we obtained solvent-dependent barrier-crossing frequencies, $\kappa_e \nu_n$, by inserting the experimental rate constants into Eqs. (1) and (2) together with the corresponding ΔG^* values and a suitable estimate of K_p. The manner and extent of the solvent dynamical influence upon k_{ex} can then be ascertained by examining the dependence of these inferred $\kappa_e \nu_n$ values upon known dynamical parameters, most simply r_L^{-1}. 5

A somewhat different analysis is employed here. While this simple procedure is desirable for some purposes, as noted above the present objective hinges on examining the functional sensitivity of the net barrier-crossing
dynamics to the solvent friction, as reflected in r_L^{-1}. A complication in employing the preequilibrium treatment [Eq. (2)] for this purpose is that the effective K_p value for a given reaction will tend to vary somewhat with the friction rather than remain constant as is assumed in this analysis.11b This is because the distribution of precursor-complex geometries, most simply the range of donor-acceptor spatial separations (r), contributing significantly to the bimolecular reaction rate will inexorably alter as the barrier-crossing dynamics and hence degree of reaction adiabaticity changes.11b,12 Strictly speaking, the bimolecular rate constant, k_{ex}, even for a pair of "ideal" spherical reactants is composed of an integral of "local" unimolecular rate constants, $k_{et}(r)$, expressed as 44

$$k_{ex} = (4\pi N/10^3) \int_{r_0}^{\infty} r^2 k_{et}(r) g_{DA}(r) \, dr$$ (5)

where N is Avogadro's number, r_0 is the donor-acceptor distance corresponding to the reactant's closest approach, and $g_{DA}(r)$ is the radial pair distribution function. [For simplicity, $g_{DA}(r)$ will be taken here as unity.] The radial dependence of k_{et}, and hence k_{ex}, is determined primarily by two factors: the diminution in H_{12} (and hence of κ_{et}) and the increases in ΔG^* expected with increasing r. On the basis of Eq. (1), both of these effects lead to $k_{et}(r)$ decreasing sharply with increasing r. In addition, in the presence of solvent friction ν_s is anticipated to increase significantly both with decreasing H_{12} and increasing ΔG^*, and hence with increasing r.11,25 All three terms that comprise k_{et} in Eq. (1) are therefore dependent on the precursor-complex geometry and can therefore influence the $k_{ex} - r_L^{-1}$ dependence in a relatively complex fashion.11b

Although this situation may seem somewhat daunting, these complications
may be circumvented in the following manner. Since the ΔG^\ddagger values in Table I span the narrow range 4.55 to 5.4 kcal mol$^{-1}$, the solvent dependence of k_{ex} due to variations in the barrier height may be corrected for by

$$k'_{\text{ex}} = k_{\text{ex}} \exp[(\Delta G^\ddagger_0 - 5.0)/RT]$$

(6)

where R is the gas constant and k'_{ex} is the rate constant that would be observed in a given solvent if the cusp-limit barrier was 5.0 kcal mol$^{-1}$. Since the deviations from this average ΔG^\ddagger_0 value for the present solvents are less than 0.5 kcal mol$^{-1}$, the corrections to k_{ex} amount to only twofold or less. Although the inevitable uncertainties in ΔG^\ddagger_0, perhaps as much as 20-25\% (vide supra), in the actual ΔG^\ddagger_0 values may engender some error in the derived k'_{ex} values, at least the required relative k'_{ex} values in the various solvents should be reliable to within 50\% or less. The solvent dependence of k'_{ex} will therefore reflect chiefly variations in the preexponential factor caused by alterations in the solvent friction. The nature and extent of this dependence in turn should be sensitive to, and hence diagnostic of, the degree of reaction adiabaticity, and hence H_{12}, for the precursor-complex configurations that contribute most prominently to the observed reaction rates. This procedure is related closely to our previous analysis, involving the estimation of solvent-dependent $\kappa_\text{ex} \nu_n$ values from the measured rate constants by employing the preequilibrium treatment [Eqs. (1),(2)] and correcting for the barrier height. Such $\kappa_\text{ex} \nu_n$ estimates are instructive for some purposes. However, the spatial integration embodied in Eq. (5) necessarily considers a range of precursor geometries with spatially dependent preexponential and exponential factors (vide infra). For the present purposes, therefore, it is preferable to explore the solvent-dependent
dynamical effects in terms of \(k'_{ex} \) rather than to extract \(\nu_n \) estimates from the rate data.

Plots of \(\log k'_{ex} \) versus \(\log r_{L}^{-1} \) for five metallocene couples in eleven "Debye" solvents, extracted from the \(k_{ex} \) and \(\Delta G^*_c \) values in Table I by using Eq. (6), are given in Fig. 1. The solvent numbering scheme is as listed in Table I; the three filled symbols (circles, squares, and triangles) refer to \(\text{Cp}_2\text{Co}^+/\text{o} \), \(\text{Cp}_2\text{Co}^+/\text{o} \), and \(\text{Cp}_2\text{Co}^+/\text{o} \), respectively, whereas the two open symbols (triangles and squares) refer to \(\text{Cp}_2\text{Fe}^+/\text{o} \) and \(\text{HMFe}^+/\text{o} \), respectively. (The points for \(\text{Cp}_2\text{Fe}^+/\text{o} \) are not shown for clarity in Fig. 1 since these are uniformly close to the corresponding \(\text{Cp}_2\text{Co}^+/\text{o} \) points.) Comparably shaped \(\log k'_{ex} - \log r_{L}^{-1} \) plots, yet having somewhat larger shapes, are also obtained if the dielectric continuum estimates of \(\Delta G^*_c \) (as used in ref. 5a) are employed instead to estimate \(k'_{ex} \) from \(k_{ex} \). As noted above, however, the present experimentally derived values of \(\Delta G^*_c \) are probably more reliable than such theoretical estimates.

Inspection of Fig. 1 reveals that the degree of dependence of \(\log k'_{ex} \) upon \(\log r_{L}^{-1} \) depends markedly upon the redox couple. For the most facile \(\text{Cp}_2\text{Co}^+/\text{o} \) couple, the \(\log k'_{ex} - \log r_{L}^{-1} \) slope approaches unity, yet appears to decrease as the solvent friction decreases (i.e. for higher \(r_{L}^{-1} \) values). A similar \(\log k'_{ex} - \log r_{L}^{-1} \) dependence is obtained for \(\text{Cp}_2\text{Fe}^+/\text{o} \), although the data set is more restricted. The less facile \(\text{Cp}_2\text{Co}^+/\text{o} \) couple also displays a qualitatively similar dependence of \(\log k'_{ex} \) upon \(\log r_{L}^{-1} \); however, the slopes are noticeably smaller (Fig. 1). While the \(k'_{ex} \) value for \(\text{Cp}_2\text{Co}^+/\text{o} \) in benzonitrile (point 8) is significantly (ca twofold) larger than expected on this basis, the remaining \(\log k'_{ex} - \log r_{L}^{-1} \) correlation is satisfactory, displaying a decidedly fractional slope (ca 0.3-0.5) towards the highest \(r_{L}^{-1} \).
values. The least facile ferrocene couples \(\text{Cp}_2\text{Fe}^{+}/\text{o} \) and \(\text{HMFc}^{+}/\text{o} \) exhibit no clear dependence of \(\log k'_{\text{ex}} \) upon \(\log r_L^{-1} \), even though the absence of rate data for these reactions in amides restricts somewhat the range of solvents.

Consequently, therefore, an interesting spectrum of dynamical behavior is evident. This spans the range from apparently full "solvent dynamical control", where \(k'_{\text{ex}} \propto r_L^{-1} \), for the most facile cobaltocene reactions in relatively high friction (small \(r_L^{-1} \)) media, to largely nonadiabatic behavior ("electron-tunneling control"), reflected in the insensitivity of \(k'_{\text{ex}} \) to \(r_L^{-1} \) for the least facile ferrocene systems. As outlined below, the combination of such varying rate-friction dependencies for such a "homologous series" of reactions, together with the rate differences between the reactions in a given solvent, enable absolute estimates of \(H_{12} \) to be obtained. Uncertainties in the data analysis together with other factors limit our confidence in some quantitative details (vide infra). Nevertheless, the solid traces included in Fig. 1 represent intuitive "best fits" of the \(\log k'_{\text{ex}} - \log r_L^{-1} \) dependencies for each reaction. (Only one trace is drawn for the \(\text{Cp}_2\text{Fe}^{+}/\text{o} \) and \(\text{HMFc}^{+}/\text{o} \) couples in view of their closely similar kinetic behavior).

These results are displayed in a somewhat different form in Table II, which lists \(k'_{\text{ex}} \) values ratioed to the corresponding quantity in acetonitrile, \(k'_{\text{ex}}(\text{ACN}) \). (Acetonitrile was chosen as a "reference" solvent here in view of its rapid relaxation behavior together with the availability of reliable \(k'_{\text{ex}} \) values for all six metallocene couples.) Given alongside these \(k'_{\text{ex}}/k'_{\text{ex}}(\text{ACN}) \) values are the corresponding \(r_L^{-1}/r_L^{-1}(\text{ACN}) \) ratios, which should approximate the rate ratios only if overdamped solvent dynamical control is maintained. While the \(k'_{\text{ex}}/k'_{\text{ex}}(\text{ACN}) \) values for \(\text{Cp}_2\text{Co}^{+}/\text{o} \) and \(\text{Cp}_2\text{Co}^{+}/\text{o} \) self exchange in Debye solvents decrease uniformly in parallel with \(r_L^{-1}/r_L^{-1}(\text{ACN}) \), the rate ratios for
the other couples in a given solvent are seen to increase in the sequence
$\text{Cp}_2\text{Co}^{+/0} < \text{Cp}_2\text{Co}^{+/0} < \text{Cp}_2\text{Fe}^{+/0} < \text{Cp}_2\text{Fe}^{+/0} \leq \text{HMF}^{+/0}$, the dependence
becoming more marked as r_t^{-1}/r_L^{-1} (ACN) decreases (Table II). This finding is
consistent with a progressive decrease in the degree of solvent dynamical
control for the less facile redox couples, the dependence of k'_e upon r_t^{-1}
being almost entirely absent for $\text{Cp}_2\text{Fe}^{+/0}$ and $\text{HMF}^{+/0}$ (cf ref. 5b).

Also included in Table II are corresponding data for the three non-Debye
solvents propylene carbonate (PC), methanol, and ethanol, along with the
strongly hydrogen-bonded liquid N-methylformamide (NMF). In accordance with
previous discussions,5a,25 the k'_e values for $\text{Cp}_2\text{Co}^{+/0}$ and $\text{Cp}_2\text{Co}^{+/0}$ in these
solvents are much larger than expected from the corresponding r_L^{-1} values. By
comparing the k'_e values with corresponding values in Debye media so to
achieve the best consistency with the other $k'_e - r_t^{-1}$ data, "effective" inverse
relaxation times, r_t^{-1}, can be deduced in these non-Debye solvents (cf
ref. 40d). This procedure yields approximate r_t^{-1} values as follows: PC,
$2 \times 10^{12} \text{ s}^{-1}$; methanol, $\geq 3 \times 10^{12} \text{ s}^{-1}$; ethanol, $4 \times 10^{12} \text{ s}^{-1}$; NMF, $> 3 \times 10^{12}$
s^{-1}. These enhanced barrier-crossing frequencies are roughly consistent with
some theoretical predictions.25 They are also in harmony with some very
recent information on real-time polar solvation dynamics extracted from
subpicosecond fluorescence measurements;46a a detailed comparison between r_t^{-1}
obtained from electron-transfer and time-resolved fluorescence measurements
will be featured in a forthcoming article.46b

A related illustration of the variations in the degree of electron-
tunneling versus solvent-dynamical control as the solvent is altered is
provided in Table III, which lists ratios of k'_e values for each metallocene
versus that for $\text{Cp}_2\text{Co}^{+/0}$, $k'_e/k'_e(\text{Cp}_2\text{Co})$, in seven solvents. The advantage of
this format is that no knowledge of the solvent dependence of the free-energy barriers is required, since this should largely cancel when the rate ratios are taken. The variations in these ratios with the solvent therefore provide a monitor of the extent to which the relative barrier-crossing frequencies for the different reactions are sensitive to the solvent dynamics. To facilitate comparison, the solvents are again listed in order of decreasing r_L^{-1}, although data in PC are inserted in a position commensurate with the r_{eff}^{-1} value inferred above, 2×10^{12} s$^{-1}$. The increasing emergence of electron-tunneling control of k_{ex} as the r_L^{-1} value for a given redox couple is increased, or the redox couple is altered in the sequence $\text{Cp}_2\text{Co}^{+/0} < \text{Cp}_2\text{Co}^{+/0} < \text{Cp}_2\text{Co}^{+/0} < \text{Cp}_2\text{Fe}^{+/0} < \text{Cp}_2\text{Fe}^{+/0} < \text{HMFe}^{+/0}$, can be discerned clearly in the progressive decreases in the $k_{\text{ex}}/k_{\text{ex}}(\text{Cp}_2\text{Co})$ ratios observed under these conditions (i.e. up the columns and across the rows, respectively, in Table III).

Extraction of Electronic Coupling Matrix Elements

A relatively direct means of extracting the extent of electronic coupling for each reaction from the results in Fig. 1 involves matching them with a corresponding sequence of curves obtained using k'_{ex} values, $k'_{\text{ex}}(\text{calc})$, calculated from a theoretical model for a suitable sequence of H_{12} values. Figure 2 displays such a set of $\log k'_{\text{ex}}(\text{calc}) - \log r_L^{-1}$ curves obtained for the same solvents as in Fig. 1. A detailed presentation of the underlying theory forms the subject of ref. 11b. (See also the Appendix below.) Briefly, the $k'_{\text{ex}}(\text{calc})$ values in each solvent were calculated by utilizing Eq. (5) with the spatial integration performed from a distance of closest approach, r_{oa}, of 7.6 Å (i.e. twice the metallocene radius, 3.8 Å5). The dependence of the "local" (unimolecular) rate constant, k_{ex}, upon the reactant internuclear separation, r, required in Eq. (5), was obtained as follows. The
primary input parameters are \(r_L, H_{12}, \) and \(\Delta G^* \). While \(r_L \) can be considered to be \(r \)-independent for the present purposes, \(^{39}\) both \(H_{12} \) and \(\Delta G^* \) are sensitive to the reactant pair geometry.

The \(r \) dependence of the former can be taken as\(^2\)

\[
(H_{12})^2 = (H_{12}^0)^2 \exp[-\alpha (r - r_0)]
\]

(7)

where \(H_{12}^0 \) is the matrix coupling element for the "closest approach" geometry. The coefficient \(\alpha \) is taken here to be the typical value 1.25 \(\text{Å}^{-1} \).\(^{2,11b}\) The corresponding \(r \)-dependent barrier height is obtained from\(^{11b}\)

\[
\Delta G^* = \Delta G_e^* - H_{12}
\]

(8)

In addition to the increases in \(\Delta G^* \) with increasing \(r \) due to corresponding decreases in \(H_{12} \), \(\Delta G_e^* \) and hence \(\Delta G^* \) should also increase under these conditions according to\(^{11b}\)

\[
\Delta G_e^*(r) = \Delta G_e^*(r_0) [2a(a^{-1} - r^{-1})]
\]

(9)

where \(a \) is the reactant radius and \(\Delta G_e^*(r_0) \) is the cusp barrier height when \(r = r_0 \) (\(= 2a \)). This latter quantity was set equal to the \(\Delta G_e^* \) values given for each solvent in Table I. Although the radial dependence of \(\Delta G_e^* \) in Eq. (9) has its origin in the two-sphere dielectric continuum treatment,\(^{41}\) it is also approximately consistent with \(r \)-dependent \(E_{op} \) measurements for biferrocene cations\(^{20}\) and related systems.\(^{1a,f}\) Strictly speaking, Eq. (9) presumes that \(\Delta G_e^* \) arises entirely from solvent reorganization, i.e. the inner-shell (reactant vibrational distortional) barrier, \(\Delta G_{is}^* \), is small. Although our earlier estimates for \(\Delta G^*_{is} \) for these metallocene couples\(^{6b,7}\) are marred by a systematic error in the bond-distance estimates, it is likely that
\(\Delta G^{\ddagger}_{1s} = 0.5 \text{ - } 1 \text{ kcal mol}^{-1}. \) (Note that the \(E_{\text{op}} \) estimates of \(\Delta G^{\ddagger}_{c} \) necessarily contain any inner-shell contribution to the binuclear redox system.)

In essence, the calculation of \(k_{\text{et}}(r) \) and hence \(k'_{\text{ex}}(\text{calc}) \) from these parameters involves evaluating the corresponding adiabatic rate constant \(k_{\text{et}}^{a}(r) \), and the corresponding modifications to account for nonadiabatic barrier crossing. The latter was accomplished here by using Eq. (Al) in the Appendix; note that generally \(k_{\text{et}} \leq k_{\text{et}}^{a} \). These nonadiabatic effects (\(\kappa_{a1} < 1 \)) are felt increasingly for smaller \(H_{12} \) and/or larger \(r_{L}^{-1} \). The calculation of \(k_{\text{et}}^{a} \) takes into account the influences of barrier-top roundedness (i.e. non-zero \(H_{12} \)) as well as the effect of solvent friction (via \(r_{L} \)) upon the barrier-crossing frequency \(\nu_{n} \). Equation (Al) also includes the effects of solvent inertia; these yield deviations from pure "overdamped" behavior (where \(\nu_{n} \propto r_{L}^{-1} \)) anticipated in low-friction media where \(\nu_{n} \) approaches the transition-state theory (TST) limit, whereupon \(\nu_{n} \) equals the solvent inertial frequency \(\omega_{0}/2\pi \) and \(k_{\text{et}}^{a} = k_{\text{TST}}^{a} \). \(6,14,25 \) (See Appendix and ref. 11b.)

The six sets of points shown in Fig. 2, with "best fit" curves drawn through each set, correspond to the \(H_{12}^{a} \) values, from 0.05 to 1.0 kcal mol\(^{-1}\), as indicated. (The particular solvents are identified by the same numbering scheme as in Table I and Fig. 1). By and large, the calculated curves (Fig. 2) show a striking similarity to the corresponding experimental plots in Fig. 1, in that the log \(k'_{\text{ex}}(\text{calc}) \) - log \(r_{L}^{-1} \) slopes decrease for smaller \(H_{12}^{a} \) and/or larger \(r_{L}^{-1} \), reflecting increasing reaction nonadiabaticity. Indeed, it is interesting to note that even the scatter in the calculated points in Fig. 2 for solvents having the largest \(r_{L}^{-1} \) values (\(\text{D}_{2} \text{O}, \text{acetone}, \text{acetonitrile}, \) and \(\text{nitromethane} \)) is mimicked reasonably well by the experimental data in Fig. 1. (This scatter arises from the onset of an inertial limit upon \(k_{\text{ex}} \).)
which is solvent dependent, \(\omega_0 \) being largest for \(\text{D}_2\text{O} \) and smallest for acetone

We therefore have reasonable confidence in extracting approximate estimates of \(H^0_{12} \) for the various experimental systems by matching the shapes of the experimental and calculated \(\log k'_{ex} - \log \tau^{-1}_L \) curves, together with the vertical displacement between them. This procedure yields the following \(H^0_{12} \) estimates (kcal mol\(^{-1}\)): \(\text{Cp}_2\text{Co}^{+/o}, 1.0; \) \(\text{Cp}_2\text{Co}^{++/o}, 0.5-1.0; \) \(\text{Cp}_2\text{Co}^{+/o}, 0.25; \) \(\text{Cp}_2\text{Fe}^{+/o}, 0.2; \) \(\text{Cp}_2\text{Fe}^{++/o}, 0.1; \) \(\text{HMFC}^{+/o}, 0.075. \) As a pictorial illustration of these differences, Fig. 3 shows a pair of free energy-reaction coordinate profiles, calculated as in ref. 11a, appropriate for \(\Delta G^*_c = 5 \) kcal mol\(^{-1}\) with \(H_{12} = 1.0 \) (solid curve) and 0.1 kcal mol\(^{-1}\) (dashed curve).

The above \(H^0_{12} \) estimates for the cobaltocene systems, especially \(\text{Cp}_2\text{Co}^{+/o}, \) may well be significantly smaller than the actual values given the possibility that \(\Delta G^*_{1s} \) for these couples, are slightly (ca 0.5 kcal mol\(^{-1}\)) larger than for the ferrocene systems.\(^{47} \) The presence of such increased \(\Delta G^*_{1s} \) not only will decrease \(k'_{ex} \) in a given solvent, but also may diminish significantly the influence of solvent friction, i.e. depress the \(\log k'_{ex} - \log \tau^{-1}_L \) dependence.\(^{15,52} \) At least the latter complication, however, should disappear in the dynamically most rapid solvents, where \(\tau^{-1}_L \) (or \(\omega_0/2\pi \)) approaches the vibrational frequencies, ca 6 to 9 x 10\(^{12} \) s\(^{-1}\),\(^{6b} \) characterizing the symmetric \(\text{Cp-M-Cp} \) inner-shell distortions.\(^{15} \) If \(\Delta G^*_{1s} \) is indeed 0.5 kcal mol\(^{-1}\) larger for \(\text{Cp}_2\text{Co}^{+/o} \) than for \(\text{Cp}_2\text{Fe}^{+/o} \), then to correct for this difference the \(\log k'_{ex} \) values for the former couple will need to be increased by 0.35 (i.e. ca 2.5 fold in \(k'_{ex} \)) at the largest \(\log \tau^{-1}_L \) values in Fig. 1. This would yield a \(\log k'_{ex} \) difference of 1.0 rather than ca 0.65 for these couples in, say, acetonitrile and acetone. Assuming that \(H^0_{12} = 0.1 \) kcal mol\(^{-1}\) for \(\text{Cp}_2\text{Fe}^{+/o}, \) it
can be deduced from Fig. 2 that this correction yields an approximately twofold enhancement in the H_{12}^0 estimate for Cp$_2$Co$^{+\circ}$, from ca 0.25 to 0.5 kcal mol$^{-1}$.

The ca 3 fold larger k'_{ex} values for Cp$_2$Co$^{+\circ}$ relative to Cp$_2^*Co^{+\circ}$ observed in each solvent may also be attributable in part to differences in ΔG_{1s}^*. This behavior is also consistent with a smaller outer-shell (solvent reorganization) barrier for the former couple that might be anticipated from its slightly larger effective radius. Alternatively, H_{12}^0 for Cp$_2^*Co^{+\circ}$ may be even larger than 1.0 kcal mol$^{-1}$. Apart from the uncertainties in extracting the solvent-dependent k'_{ex} values themselves, the estimated τ_L values are subject to significant error. The assumption that the first eleven solvents in Table I exhibit Debye behavior is, of course, only an approximation, even though the most recent subpicosecond time-resolved fluorescence data yields major relaxation times that typically differ from τ_L by twofold or less. [The observed positive deviations of the k'_{ex} values from the anticipated log $k'_{ex} - \log \tau_L^{-1}$ plots in benzonitrile, for example (Fig. 1), may be due to the influence of a higher-frequency relaxation in this solvent.] Possible solvent-specific effects upon the approach of the reacting partners, which would be reflected in non-unit $g_{DA}(r)$ values [Eq. (5)], may also contribute significantly to the rate-solvent dependence. Generally speaking, however, consideration of these and related factors lead only to relatively minor (< 2 fold) uncertainties in the inferred H_{12}^0 estimates. The relative H_{12}^0 values, then, are deemed sufficiently reliable to warrant at least semiquantitative interpretation.

Interpretation and Implications of H_{12}^0 Values

The markedly (ca 2.5 - 5 fold) larger H_{12}^0 values estimated for Cp$_2$Co$^{+\circ}$...
and other cobaltocene couples compared with their ferrocene analogs can be accounted for in terms of the spatial differences in the "redox molecular orbitals", corresponding to the LUMO/HOMO pair\(^{53}\) for the \(\text{Cp}_2\text{M}^+/\text{Cp}_2\text{M}\) reaction partners.\(^7\) While theoretical studies indicate that the cobaltocene HOMO is delocalized over the Cp rings,\(^54\) that for ferrocene is strongly metal centered.\(^55\) Since similar considerations also apply to the LUMO for the oxidized redox forms,\(^54a,b,55\) the donor-acceptor orbital overlap should be greater for the \(\text{Cp}_2\text{Co}^{+}/^0\) versus the \(\text{Cp}_2\text{Fe}^{+}/^0\) couples.\(^7\) The relative \(\Delta H^0\) values for these reactions are in harmony with the twofold greater \(\Delta H^0\) estimates derived from optical electron transfer data for bicobaltocene versus biferrocene cations,\(^8\) although the absolute values of the latter are much larger (3.2 and 1.7 kcal mol\(^{-1}\), respectively) partly as a result of direct bond formation between the redox centers.

Very recent ab initio calculations by Newton also yield markedly (ca 3-6 fold) larger \(\Delta H^0\) values for \(\text{Cp}_2\text{Co}^{+}/^0\) than for \(\text{Cp}_2\text{Fe}^{+}/^0\) self exchange.\(^9\) These calculations also indicate that considerably stronger overlap is obtained for approach of the reacting pair along a common fivefold axis ("axial" geometry) than for a "side-by-side" configuration. For the former geometry, \(\Delta H^0 = 2.5\) and 0.4 kcal mol\(^{-1}\) for \(\text{Cp}_2\text{Co}^{+}/^0\) and \(\text{Cp}_2\text{Fe}^{+}/^0\), respectively, when the Cp rings are "in contact" (3.5 Å apart); whereas in the latter configuration, \(\Delta H^0 = 0.04\) and 0.1 kcal mol\(^{-1}\), respectively. These findings foreshadow a limitation in the present analysis; the substantial anisotropy in the calculated \(\Delta H^0\) values suggests that the assumption of spherical symmetry embodied in Eq. (5) is, strictly speaking, inadequate. Nevertheless, the present experimental \(\Delta H^0\) estimates should represent at least weighted averages of the true values for the various "close contact" encounter pair geometries, and as such are reasonably consistent with the calculated values. It would be
of interest to perform more sophisticated kinetic analyses employing such
detailed theoretical information.

Interpretation of the substantial observed variation in H_2^* resulting
from Cp ring substitution, unlike alteration of the metal center, is limited
by the lack of electronic structural information for these systems. At first
sight, one might expect that H_2^* would correlate roughly with empirical
electronic quantities such as the Hammett σ parameter which characterizes
substituent effects in organic chemistry,58 especially since they correlate
well with metallocene formal potentials59,60 and NMR chemical shifts.61

To this end, Table IV contains k_{ex} values in acetonitrile for the self-
exchange reactions studied here, together with some additional data for four
monosubstituted ferrocenes,57 in comparison with corresponding formal
potentials, E_f. (The entries are listed in order of increasing E_f.) As noted
above, the differences in k_{ex} in this dynamically rapid solvent should be
particularly sensitive to variations in H_2. The lack of any correlation
between k_{ex} and E_f for either the cobaltocene and ferrocene couples is clearly
evident, even though substantial variations in both these quantities are
observed. Upon reflection, however, this finding is unsurprising since the
substituent effect upon E_f arises from alterations in the energy of the redox
orbital, whereas H_2 and hence k_{ex} is responsive primarily to the spatial
properties of the HOMO/LUMO pair.62 Given the magnitude of such apparent
substituent effects upon H_2, their further detailed examination would be of
great interest.

As noted previously,7 the sensitivity of the self-exchange kinetics to
the metallocene structure contrasts with the exchange kinetics of these
systems at metal electrodes. In the latter environments, uniformly facile
kinetics are obtained that apparently exhibit a strong dependence upon the
solvent dynamics, indicative of essentially adiabatic behavior.5a,6b,7 The likelihood that this behavior persists for ferrocenium-ferrocene couples at electrodes, even in solvents such as acetonitrile,7 suggests that electrochemical exchange processes may proceed by inherently more adiabatic pathways than for related self-exchange reactions. Indeed, such a conclusion is in harmony with the prediction of recent theoretical treatments.63

Although detailed theoretical calculations of H^0_{12} have only been undertaken so far for a relatively narrow range of homogeneous-phase self-exchange reactions,2 most values are substantially below both the magnitude, $\leq 0.2 \text{ kcal mol}^{-1}$, necessary to maintain a significant degree of reaction adiabaticity in dynamically rapid solvents, such as water. At least in homogeneous solution, then, the range of outer-sphere reactions influenced importantly by solvent friction effects may well be smaller than those subject primarily to electron-tunneling control of the barrier-crossing frequency. Although the present solvent-dependent analysis is applicable only in unusually favorable circumstances, it would be of considerable interest to utilize it to explore electronic coupling factors in other types of processes, especially involving intramolecular electron transfer.

Acknowledgments

We are grateful to Dr. Marshall Newton for providing details of his matrix element calculations for metallocenes prior to publication. Helpful discussions with Dr. David Beretan, along with preprints of ref. 12, contributed significantly to the rate-friction analysis. The NMR instruments used in this work are supported by National Institutes of Health Grant RR01077 at Purdue University. This research program is supported by the Office of Naval Research.
Appendix

A key element in obtaining the calculated k_{ex}' values, $k_{ex}'(\text{calc})$, shown in Fig. 2 involves the computation of unimolecular rate constants, $k_{et}(r)$, that span the full range from entirely nonadiabatic to adiabatic behavior. For this purpose, we use the following relation, derived in ref. 11b:

$$ k_{et}(r) = \frac{\mathcal{R}_{e1} k_{TST}^{TST}}{1 - \mathcal{R}_{e1} + \left[\mathcal{R}_{e1} k_{TST}^{TST} / k_{et}^{a}(r) \right]} \quad (A1) $$

where $k_{et}^{a}(r)$ is the rate constant for adiabatic barrier crossing, and k_{TST}^{TST} is the rate constant corresponding to the TST limit (i.e. in the absence of solvent friction) given by

$$ k_{TST}^{TST} = \left(\frac{\omega_0}{2\pi} \right) \exp(-\Delta G^*/RT) \quad (A2) $$

where ω_0 is the solvent inertial frequency. The electronic transmission coefficient, \mathcal{R}_{e1}, can be related to the more familiar κ_{e1} in Eq. (1) by (see Appendix to ref. 11b)

$$ \kappa_{e1} = \frac{\mathcal{R}_{e1}}{[\kappa_{e} + \mathcal{R}_{e1}(1 - \kappa_{e})]} \quad (A3) $$

where the "adiabatic transmission coefficient" $\kappa_{e} = k_{et}^{a} / k_{TST}^{TST}$.

Apart from the additional $-\mathcal{R}_{e1}$ term in the denominator, Eq. (A1) is similar or identical to other literature relations for interpolating between the adiabatic and nonadiabatic limits (e.g. refs. 12, 13). This term allows $k_{et}(r)$ to reduce to the correct adiabatic TST limit, whereupon the preexponential factor equals $\omega_0/2\pi$. 11b

The adiabatic rate constant k_{et}^{a} was calculated using a position (q)-dependent diffusional model, whereby the diffusion coefficient, D, describing progress along the reaction coordinate in the presence of solvent friction
within the intersection region differs from that in the potential-energy wells as a result of barrier-top roundedness (i.e. $H_{12} > 0$). Specifically, k^e_{st} was approximated by

$$(k^e_{st})^{-1} = 2 \int_{0}^{q^*} dq \left[D(q) P_{eq}(q) \right]^{-1}$$

(A4)

where the integration is performed from the reactant well to the barrier top; $P_{eq}(q)$ is given by

$$P_{eq}(q) = (2\pi/\theta \omega_o^2)^{1/4} \exp[-\theta V(q)]$$

(A5)

where $\beta = (k_B T)^{-1}$ (k_B is the Boltzmann constant) and $V(q)$ describes the potential-energy surface. Appropriate expressions for $D(q)$ in terms of r_L (i.e. for Debye solvents) and for $V(q)$ are given in ref. 11b, along with other pertinent details. The effect of increasing H_{12} is to decrease k^e_{st}; typically k^e_{st} decreases by 2-3 fold as H_{12} increases from 0 to 1 kcal mol$^{-1}$, the effect depending somewhat on the extent of solvent friction. The results are numerically similar to those obtained11a by utilizing the Smoluchowski treatment of Calef and Wolynes.14 (Note that the effect of solvent friction upon k^e_{st}, as given by Eq. (A1), is contained entirely within the k^e_{st} term.)

The $\bar{\kappa}_{el}$ values were calculated by using the approximate expression11b

$$\bar{\kappa}_{el} = 4\pi^{3/2} \gamma_T/(1 + 4\pi^{3/2} \gamma_T)$$

(A6)

where

$$\gamma_T = |H_{12}|^2/4\hbar \omega_o (\Delta G^* k_B T)^{1/4}$$

(A7)

For the present purposes, it is most important to note that the derived values of $\bar{\kappa}_{el}$, and hence the form of the log $k_{ex}(\text{calc}) - \log r_L^{-1}$ curves in Fig. 2, are insensitive to the particular expression used for $\bar{\kappa}_{el}$. 11b
References and Notes

39. (a) The use of τ_L in such solvent dynamical analyses is subject to some uncertainty due to the accompanying assumption of a dielectric continuum, as well as to uncertainties in the appropriate values of ϵ_∞ to employ in Eq. (3) [see, for example, ref. 25 and the Appendix to ref. 11a]. However, the inclusion of solvent molecularity effects by using a mean spherical approximation (MSA) yields only small predicted alterations in ν_n^{39b}; (b) McManis, G. E.; Weaver, M. J., J. Chem. Phys., 1989, 90, 1720.

42. In principle, bicobaltocene analogs of BFA+ and related ferrocene-based complexes could also be examined. However, beside the synthetic difficulties involved, on the basis of a recent comparison between the bicobaltocene and biferrocene cations such species are liable to involve sufficiently strong donor-acceptor orbital overlap so to vitiate the applicability of Eq. (4).

45. A possible additional limitation to Eq. (6) is that E_{op} and hence ΔG^*_c refer to a particular precursor complex geometry, whereas in actuality k_{ex} reflects an integral of reaction sites [Eq. (5)] with varying ΔG^* [see Eqs. (8), (9)]. However, Eq. (6) is expected to be valid to a good approximation since the predominant contribution to k_{ex} should usually arise from geometries close to reactant "contact", for which at least the solvent dependence of ΔG^* should be close to that for $\Delta G^*_{c'}$.11b

47. The differences in metal-ring bond distance between the reduced and oxidized metallocene forms, Δa, given in refs. 6b and 7 were obtained largely from corresponding metal-Cp carbon bond distances, $d_{\text{M-C}}$, as listed in footnote h to Table I of ref. 6b (with literature sources), along with carbon-ring centroid distances, $d_{\text{C-RC}}$. However, these Δa values are ca 30-40% smaller than the true estimates due to a trigonometrical error. (We are grateful to Dr. Marshall Newton for bringing this point to our attention.) Employing the relevant $d_{\text{M-C}}$ values in the Pythagorean theorem along with the corresponding $d_{\text{C-RC}}$
values (1.19-1.20 Å) yields the following revised Δa values: \(\text{Cp}_2^+\text{Co}^{+/o} \), 0.065 Å; \(\text{Cp}_2^+\text{Co}^{+/o} \), −0.07 Å; \(\text{Cp}_2^+\text{Fe}^{+/o} \), −0.055 Å. (As before,\(^6\text{b},7\) we take Δa for \(\text{Cp}_2^+\text{Fe}^{+/o} \) to equal that for \(\text{Cp}_2^+\text{Fe}^{+/o} \) in lieu of adequate bond-distance data for ferrocene.) Combined with the corresponding reduced force constants, \(f_z \), for the M-Cp stretch for \(\text{Cp}_2^+\text{Co}^{+/o} \) and \(\text{Cp}_2^+\text{Fe}^{+/o} \), 4.0 \(\times 10^5 \) and 3.75 \(\times 10^5 \) dyne cm\(^{-1} \), respectively (footnote 15, ref. 7), we obtain \(\Delta G_{ia}^* \) values of about 1.4 and 0.8 kcal mol\(^{-1} \). (Note that these \(f_z \) values refer to the effective force constant for each M-Cp "bond" as the Cp-M-Cp unit undergoes symmetric distortion; these values are equal to the sum of the individual M-Cp force constant and the "interaction force constant" derived from Raman and infrared frequencies.\(^{48,49}\) The revised \(\Delta G_{ia}^* \) values are about twice the former estimates,\(^7\) but are only very approximate given the lack of more reliable bond-distance data (and the complete absence of solution-phase data) together with the simplified force-constant calculations. A somewhat smaller \(f_z \) value, 2.3 \(\times 10^5 \) dyne cm\(^{-1} \), is obtained from Raman spectra for \(\text{Cp}_2^+\text{Fe}^{+/o} \)\(^50\) (footnote 17 of ref. 7), yielding \(\Delta G_{ia}^* \approx 0.5 \) kcal mol\(^{-1} \). Although corresponding vibrational data for \(\text{Cp}_2^+\text{Co}^{+/o} \) are unavailable, a roughly similar \(\Delta G_{ia}^* \) estimate can be assumed for this couple. However, the apparently smaller effective Cp-M-Cp force constant observed upon methylation of ferrocene is perhaps questionable.\(^51\)

52. This effect arises since in the presence of a significant reactant distortional component, barrier passage can take place via vibrational relaxation from a significant distribution of solvent polarization states.\(^15\) The presence of such an additional "vibrational reaction coordinate" will thereby enhance \(\nu_n \) to an extent that increases with increasing solvent friction (i.e. as the effective frequency characterizing solvent relaxation, \(\tau_1^{-1} \), decreases). Consequently, the \(k_{ex} - \tau_1^{-1} \) slopes should be smaller in the presence of such vibrational
relaxation, to an extent that depends on its relative contribution to the effective barrier.

53. (a) LUMO = lowest unoccupied molecular orbital; HOMO = highest occupied molecular orbital; (b) Note that consideration of molecular orbitals derived from a basis set which includes the ligand as well as the metal center can account for so-called electron "superexchange" mechanisms which utilize predominantly ligand orbital overlap.

62. A general influence of altering the overall electron density to the orbital overlap of the HOMO-LUMO pair might nevertheless be anticipated since the removal of the electron from the HOMO will cause alterations in the remaining electronic energy states. The implications of this "charge relaxation effect" upon H$_{12}$ are addressed in refs. 2c and d.

TABLE I. Summary of Rate Constants, k_{ex}, for Metallocene Self Exchange Reactions at 25°C, and Related Solvent-Dependent Data

<table>
<thead>
<tr>
<th>Solvent</th>
<th>r_{L}^{-1}</th>
<th>ΔG^{wC}</th>
<th>$\text{Cp}_2\text{Co}^+/o$</th>
<th>$\text{Cp}_2\text{Co}^+/o^f$</th>
<th>$\text{Cp}_2\text{Co}^+/o^g$</th>
<th>$\text{Cp}_2\text{Fe}^+/o^h$</th>
<th>HMFe^+/o^f</th>
<th>$10^{-7} k_{ex}$, M$^{-1}$ s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Acetonitrile</td>
<td>$4^I, J$</td>
<td>5.35</td>
<td>55</td>
<td>20</td>
<td>4.5</td>
<td>3.5</td>
<td>0.9</td>
<td>0.55</td>
</tr>
<tr>
<td>2. Propionitrile</td>
<td>$-4^J, k$</td>
<td>5.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.9</td>
</tr>
<tr>
<td>3. Acetone</td>
<td>3.5^k</td>
<td>5.4</td>
<td>28</td>
<td>12</td>
<td>2.3</td>
<td>2.2</td>
<td>0.8</td>
<td>0.72</td>
</tr>
<tr>
<td>4. D$_2$O</td>
<td>1.9^l</td>
<td>5.2</td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td>1.4</td>
</tr>
<tr>
<td>5. Nitromethane</td>
<td>4.5^m</td>
<td>5.3</td>
<td></td>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>6. DMF</td>
<td>0.77n</td>
<td>(5.0)</td>
<td>25</td>
<td></td>
<td></td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. DMSO</td>
<td>0.5o</td>
<td>(4.9)</td>
<td>23</td>
<td></td>
<td></td>
<td>3.0</td>
<td></td>
<td>0.95</td>
</tr>
<tr>
<td>8. Benzonitrile</td>
<td>0.2^p</td>
<td>4.55</td>
<td>30</td>
<td>8</td>
<td>7.5</td>
<td>6</td>
<td>2.7</td>
<td>1.8</td>
</tr>
<tr>
<td>9. Nitrobenzene</td>
<td>0.2^p</td>
<td>4.55</td>
<td></td>
<td></td>
<td>4.5</td>
<td></td>
<td></td>
<td>1.4</td>
</tr>
<tr>
<td>10. TMU</td>
<td>0.17q</td>
<td>(4.85)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.9</td>
<td>1.55</td>
</tr>
<tr>
<td>11. HMPA</td>
<td>0.11n</td>
<td>(4.95)</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.67</td>
</tr>
<tr>
<td>12. PC</td>
<td>(0.4)z</td>
<td>5.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>13. NMF</td>
<td>0.27n</td>
<td>(5.15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.5</td>
</tr>
<tr>
<td>14. Methanol</td>
<td>(0.135)s</td>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td>15. Ethanol</td>
<td>(0.033)z</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.7</td>
</tr>
</tbody>
</table>
Footnotes to Table I

a DMF = N,N-dimethylformamide, DMSO = dimethylsulfoxide, PC = propylene carbonate, NMF = N-methylformamide, TMU = tetramethylurea, HMPA = hexamethylphosphoramide.

b Inverse of longitudinal solvent relaxation time, obtained from Eq. (3) using values of r_D and ε_∞ given in literature values cited, and ε_∞ either from these sources or ref. 23. (In most cases, these values coincide with tabulations in refs. 5a and 6c. Where dielectric values not listed in refs. 5a or 6c are employed to estimate r_L, these are given following appropriate footnote to literature citation.)

c Free-energy barrier (in "cusp limit", $H_{12} = 0$) for self-exchange reactions in a given solvent, estimated from energy of intervalence band maximum, E_{ip}, in near-infrared spectra for biferrocenylacetylene cation using Eq. 4. Value for D$_2$O estimated from corresponding E_{ip} value for biferrocene cation (see ref. 5c). Values in parentheses were estimated as described in the text.

d Self-exchange rate constant of various cobalt and ion metallocene redox couples in solvent indicated, as obtained by proton NMR line broadening. Cp = cyclopentadienyl, Cp' = pentamethylcyclopentadienyl, Cp* = monocarboxymethylcyclopentadienyl, HMFc = hexamethylferrocene. All values measured at (or extrapolated to) total ionic strengths $\mu = 0.01-0.02$ M. (See ref. 5b for details of ionic-strength dependence of k_{ex}.) Reproducibility of k_{ex} values typically within ca 5-10%, except for Cp$_2$Co$^{3+/2+}$ for which reproducibility was mostly within ca 20% (see text).

e Values taken from data in ref. 5a, but increased by ca 25% so to account for decrease of μ from 0.14 to 0.02 M.

f Obtained in present study (also ref. 5c).

g As for footnote e, but k_{ex} values in propionitrile and ethanol obtained in present study.

h Obtained in present study, and from ref. 5b.

i Estimated from data in ref. 24.

j Effective r_L value, estimated by accounting for minor non-Debye characteristics of dielectric loss spectra, appearing as additional loss components at frequencies above r_D^{-1} (also see ref. 25).

k Estimated from data in ref. 26 (also see ref. 25).

l Ref. 27 m Ref. 28 n Ref. 29

o Ref. 30 ($r_D = 19$ ps, $\varepsilon_\infty = 5.1$, $\varepsilon_0 = 46.7$).

p Ref. 31 q Ref. 32 r Ref. 33 s Refs. 34, 35 t Ref. 34
TABLE II. "Barrier-Corrected" Rate Constants for Metallocene Self Exchange in Various Solvents Relative to those in Acetonitrile, $k_{ex}'/k_{ex}(ACN)$, in Comparison with Corresponding Relative Solvent Relaxation Dynamics, $r_L^{-1}/r_L(ACN)$

<table>
<thead>
<tr>
<th>Solvent</th>
<th>$r_L^{-1}/r_L(ACN)^b$</th>
<th>$k_{ex}'/k_{ex}(ACN)^c$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cp_2Co^{+}/O</td>
<td>Cp_2Co^{+}/O</td>
</tr>
<tr>
<td>Propionitrile</td>
<td>~ 1</td>
<td>0.9</td>
</tr>
<tr>
<td>Acetone</td>
<td>0.9</td>
<td>0.6</td>
</tr>
<tr>
<td>D$_2$O</td>
<td>0.5</td>
<td>1.2</td>
</tr>
<tr>
<td>Nitromethane</td>
<td>~ 1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>DMF</td>
<td>0.2</td>
<td>0.25</td>
</tr>
<tr>
<td>DMSO</td>
<td>0.12</td>
<td>0.2</td>
</tr>
<tr>
<td>Benzonitrile</td>
<td>0.05</td>
<td>0.15</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>TMU</td>
<td>0.043</td>
<td>0.11</td>
</tr>
<tr>
<td>HMPA</td>
<td>0.028</td>
<td>0.04</td>
</tr>
<tr>
<td>PC</td>
<td>(0.1)</td>
<td>0.55</td>
</tr>
<tr>
<td>NMF</td>
<td>0.07</td>
<td>1.4</td>
</tr>
<tr>
<td>Methanol</td>
<td>(0.035)</td>
<td>0.6</td>
</tr>
<tr>
<td>Ethanol</td>
<td>(0.008)</td>
<td>0.75</td>
</tr>
</tbody>
</table>

a See footnote a to Table I for explanation of abbreviations.

b Ratio of inverse longitudinal relaxation time for given solvent to that in acetonitrile. See Table I for r_L^{-1} values and data sources.

c Ratio of barrier-corrected rate constant, k_{ex}', for given metallocene redox couple in various solvents to that in acetonitrile, $k_{ex}(ACN)$. Values of k_{ex}' obtained from experimental k_{ex} and ΔG^{*}_e values (Table I) by using Eq. (6). See footnote d of Table I for explanation of metallocene abbreviations.
<table>
<thead>
<tr>
<th>Solvent</th>
<th>r_L^{-1}</th>
<th>$k_{ex}/k_{ex}(\text{Cp}_2\text{Co})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetonitrile</td>
<td>4</td>
<td>0.35 0.08 0.065 0.015 0.010</td>
</tr>
<tr>
<td>Acetone</td>
<td>3.5</td>
<td>0.43 0.08 0.08 0.03 0.025</td>
</tr>
<tr>
<td>PC</td>
<td>0.4 (0.4)</td>
<td>0.4 0.11 0.035</td>
</tr>
<tr>
<td>DMF</td>
<td>0.77</td>
<td>0.13</td>
</tr>
<tr>
<td>DMSO</td>
<td>0.5</td>
<td>0.13</td>
</tr>
<tr>
<td>Benzonitrile</td>
<td>0.2</td>
<td>0.27 0.25 0.20 0.09 0.06</td>
</tr>
<tr>
<td>HMPA</td>
<td>0.11</td>
<td>0.16</td>
</tr>
</tbody>
</table>

a See footnote a to Table I for explanation of abbreviations.

b Inverse longitudinal solvent relaxation time (as in Table I).

c Calculated from k_{ex} values in Table I.
TABLE IV. Comparison between Self-Exchange Rate Constants for Various Metallocene Redox Couples in Acetonitrile at 25°C and Corresponding Formal Potentials

<table>
<thead>
<tr>
<th>Redox Couple</th>
<th>E_f^b</th>
<th>k_{ex}^c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cp$_2$Co$^{+/0}$</td>
<td>-1.92</td>
<td>5.5×10^8</td>
</tr>
<tr>
<td>Cp2Co${12}^{+/0}$</td>
<td>-1.30</td>
<td>4.5×10^7</td>
</tr>
<tr>
<td>Cp2Co${12}^{+/0}$</td>
<td>-0.79</td>
<td>2.0×10^8</td>
</tr>
<tr>
<td>Cp2Fe${12}^{+/0}$</td>
<td>-0.50</td>
<td>3.5×10^7</td>
</tr>
<tr>
<td>(Cp·CpCH2OH)Fe${12}^{+/0}$</td>
<td>-0.01</td>
<td>5.5×10^8</td>
</tr>
<tr>
<td>Cp2Fe${12}^{+/0}$</td>
<td>0</td>
<td>9×10^6</td>
</tr>
<tr>
<td>(Cp·CpI)Fe$_{12}^{+/0}$</td>
<td>0.15</td>
<td>9.2×10^6</td>
</tr>
<tr>
<td>(Cp·CpCOCH3)Fe${12}^{+/0}$</td>
<td>0.24</td>
<td>8.0×10^6</td>
</tr>
<tr>
<td>(Cp·CpCN)Fe$_{12}^{+/0}$</td>
<td>0.36</td>
<td>5.7×10^8</td>
</tr>
</tbody>
</table>

a Nomenclature partly as in Tables I-III. [Note that hydroxymethyl(ferrocenium-ferrocene) is abbreviated as (Cp·Cp.CH$_2$OH)Fe$_{12}^{+/0}$ rather than HMFc$_{12}^{+/0}$ for consistency with other monosubstituted ferrocenes listed here.]

b Formal potential (volts) versus ferrocenium-ferrocene in same solvent (acetonitrile) evaluated at gold or mercury electrodes in 0.1 M tetrabutylammonium hexafluorophosphate by using cyclic voltammetry.

c Rate constant for metallocene self-exchange in acetonitrile, for ionic strength $\mu = 0.02$ M, taken from Table I and ref. 57. Values reproducible generally to $\pm 10-20\%$.
Figure Captions

Fig. 1

Logarithmic plots of "barrier-corrected" rate constants, \(k'_{\text{ex}} \), versus inverse of longitudinal relaxation time, \(r_L^{-1} \), for five metallocene redox couples in eleven solvents. \(k'_{\text{ex}} \) values were extracted from experimental \(k_{\text{ex}} \) and \(\Delta G^* \) values given in Table I by using Eq. (6). See Table I for solvent numbering scheme. Key to redox couples: \(\text{Cp}_2\text{Co}^{+}/\text{o} \), filled circles; \(\text{Cp}_2\text{Co}^{+}/\text{o} \), filled squares; \(\text{Cp}_2\text{Co}^{+}/\text{o} \), filled triangles; \(\text{Cp}_2\text{Fe}^{+}/\text{o} \), open triangles; \(\text{HMFc}^{+}/\text{o} \), open squares. Solid traces through each set of solvent-dependent \(\log k'_{\text{ex}} \) values are suggested "best fit" curves (see text).

Fig. 2

Logarithmic plots of calculated "barrier-corrected" rate constants, \(k'_{\text{ex}}(\text{calc}) \), versus inverse of longitudinal relaxation time, \(r_L^{-1} \), in same eleven solvents as for Fig. 1, for the sequence of six electronic matrix coupling elements at reactant "contact", \(H_0^{12} \), as indicated. Values of \(k'_{\text{ex}}(\text{calc}) \) obtained from corresponding calculated values, \(k_{\text{ex}}(\text{calc}) \), in each solvent by using Eq. (6) in the same manner as the experimental quantities. Values of \(k_{\text{ex}}(\text{calc}) \) obtained by using spatial integration procedure [Eq. (5)] with \(r_o \) taken as 7.6 Å, and \(g_{DA}(r) = 1 \). Required values of \(k_{st}(r) \) obtained from Eq. (A1) with constituent quantities calculated as follows: \(k^{\text{TST}} \) from Eq. (A2) using "solvent inertial" frequencies, \(\omega_o \), calculated as described in ref. 25 (see footnotes to Fig. 4 and Table II of ref. 25 for numerical values); \(k^s_{st}(r) \) from Eqs. (9)-(16) of ref. 11b; \(\bar{\kappa}_{s1} \) from Eqs. (20), (20a) of ref. 11b. The \(r \)-dependent \(\Delta G^* \) values required for \(k^{\text{TST}} \) and
$k_{e_1}(r)$ were obtained from Eqs. (8) and (9) with $\Delta G_e^+(r_o)$ as given in Table I and $a = 3.8 \text{ Å}$. The r-dependent H_{12} values also required in Eq. (8), as well as for calculating \tilde{E}_{e_1}, were obtained from Eq. (7) with $\alpha = 1.25 \text{ Å}^{-1}$. The double integrals required using this overall procedure (both spatially and along the reaction coordinate) were evaluated using a standard two dimensional quadrature technique, executed on the Purdue University Cyber 205 supercomputer using double precision (128 bit).

Fig. 3

Schematic free energy - reaction coordinate profiles for electron-exchange reactions having different electronic matrix coupling elements, H_{12}. Curves calculated by using Eqs. (4) and (5) of ref. 11a. For a 5 kcal mol$^{-1}$ cusp barrier, the solid and dashed traces shown correspond to H_{12} values of 1.0 and 0.1 kcal mol$^{-1}$, respectively.
FIG 1
Fig 3

Energy

Reaction Coordinate

$2H_{12}$
SUPPLEMENTARY MATERIAL

1H NMR Parameters and Related Data for Metallocene Self Exchange

<table>
<thead>
<tr>
<th>Solventa</th>
<th>[Cp₂M⁺]c</th>
<th>[Cp₂M]d</th>
<th>(\omega_{DP}^e)</th>
<th>(\omega_{P}^f)</th>
<th>(\delta_{DP}^g)</th>
<th>(\delta_{P}^h)</th>
<th>(\delta_{P}^i)</th>
<th>(10^{-7}k_{ex}^j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetonitrileb</td>
<td>1.4</td>
<td>36.6</td>
<td>63</td>
<td>287</td>
<td>3.41</td>
<td>4.30</td>
<td>-20.18</td>
<td>0.54</td>
</tr>
<tr>
<td>Propionitrile</td>
<td>13.5</td>
<td>34.6</td>
<td>232</td>
<td>319</td>
<td>-2.78</td>
<td>4.27</td>
<td>-20.85</td>
<td>0.94</td>
</tr>
<tr>
<td>Acetoneb</td>
<td>1.1</td>
<td>33.8</td>
<td>45.7</td>
<td>317</td>
<td>3.59</td>
<td>4.33</td>
<td>-20.27</td>
<td>0.72</td>
</tr>
<tr>
<td>D₂O</td>
<td>4.5</td>
<td>5.4</td>
<td>751</td>
<td>394</td>
<td>-7.29</td>
<td>4.33</td>
<td>-21.33</td>
<td>1.45</td>
</tr>
<tr>
<td>Nitromethane</td>
<td>11.35</td>
<td>31.2</td>
<td>179</td>
<td>260</td>
<td>-2.34</td>
<td>4.47</td>
<td>-21.04</td>
<td>1.4</td>
</tr>
<tr>
<td>Benzonitrile</td>
<td>5.1</td>
<td>33.7</td>
<td>102</td>
<td>403</td>
<td>1.39</td>
<td>4.54</td>
<td>-20.05</td>
<td>1.8</td>
</tr>
<tr>
<td>Nitrobenzeneb</td>
<td>0.95</td>
<td>26.1</td>
<td>44.3</td>
<td>450</td>
<td>3.68</td>
<td>4.54</td>
<td>-20.47</td>
<td>1.4</td>
</tr>
<tr>
<td>Methanolb</td>
<td>7.5</td>
<td>27.4</td>
<td>177</td>
<td>360</td>
<td>-1.30</td>
<td>4.35</td>
<td>-21.21</td>
<td>1.7</td>
</tr>
</tbody>
</table>

HMFC⁺/⁻ Self Exchange at 200.0 MHz and 25°C

<table>
<thead>
<tr>
<th>Solventa</th>
<th>[Cp₂M⁺]c</th>
<th>[Cp₂M]d</th>
<th>(\omega_{DP}^e)</th>
<th>(\omega_{P}^f)</th>
<th>(\delta_{DP}^g)</th>
<th>(\delta_{P}^h)</th>
<th>(\delta_{P}^i)</th>
<th>(10^{-7}k_{ex}^j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetonitrileb</td>
<td>23.9</td>
<td>14.2</td>
<td>27</td>
<td>38</td>
<td>8.30</td>
<td>3.91</td>
<td>15.81</td>
<td>19</td>
</tr>
<tr>
<td>Acetoneb</td>
<td>22.6</td>
<td>10.6</td>
<td>31</td>
<td>32</td>
<td>7.49</td>
<td>3.83</td>
<td>15.23</td>
<td>12</td>
</tr>
<tr>
<td>D₂O</td>
<td>23.1</td>
<td>0.5</td>
<td>3.5</td>
<td>45</td>
<td>4.17</td>
<td>3.88</td>
<td>16.80</td>
<td>~30</td>
</tr>
<tr>
<td>Nitromethane</td>
<td>17.3</td>
<td>12.4</td>
<td>32</td>
<td>44</td>
<td>8.89</td>
<td>3.93</td>
<td>15.80</td>
<td>24</td>
</tr>
<tr>
<td>Benzonitrile</td>
<td>18.3</td>
<td>2.1</td>
<td>24</td>
<td>40</td>
<td>5.15</td>
<td>3.95</td>
<td>15.71</td>
<td>9</td>
</tr>
<tr>
<td>Nitrobenzeneb</td>
<td>32</td>
<td>0.75</td>
<td>2.6</td>
<td>51</td>
<td>4.28</td>
<td>4.01</td>
<td>15.76</td>
<td>~4.5</td>
</tr>
<tr>
<td>TMU</td>
<td>19.6</td>
<td>10.0</td>
<td>79</td>
<td>63</td>
<td>7.83</td>
<td>3.95</td>
<td>15.47</td>
<td>4.9</td>
</tr>
<tr>
<td>PC</td>
<td>17.2</td>
<td>15.8</td>
<td>33</td>
<td>60</td>
<td>9.64</td>
<td>3.93</td>
<td>15.84</td>
<td>14</td>
</tr>
<tr>
<td>Methanolb</td>
<td>27.1</td>
<td>11.5</td>
<td>37</td>
<td>54</td>
<td>7.78</td>
<td>3.96</td>
<td>16.82</td>
<td>12</td>
</tr>
</tbody>
</table>

[See next page for footnotes]
Footnotes

a TMU = tetramethylurea, PC = propylene carbonate.
b Deuterated solvent used.
c Concentration of oxidized form of redox couple.
d Concentration of reduced form of redox couple.
e Linewidth (at half height) for diamagnetic-paramagnetic mixture.
f Linewidth for pure paramagnetic species (linewidth for pure diamagnetic species taken, or measured to be, 1 Hz in most cases).
g Chemical shift (ppm vs. TMS) for diamagnetic-paramagnetic mixture.
h Chemical shift for pure diamagnetic species.
i Chemical shift for pure paramagnetic species.
j Rate constant for self exchange, obtained from listed NMR parameters as outlined in refs. 5a and b.
k HMFc = hydroxymethylferrocene; NMR parameters listed refer to methylene proton resonances (see Experimental Section).
l Cp*Co = carboxymethylcobaltocene; NMR parameters listed refer to methyl proton resonances (see Experimental Section).