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ABSTRACT

Some sufficient conditions for the 2-extendability of k-c nnected k-regular (k 3)
planar graphs are given. In particular, it is proved that for k J3, a k-connected k-regular
planar graph with each cyclic cutset of sufficiently large size is 2-extendable.

I. Introduction and Terminology c"

All graphs in this paper are finite, u rected, nnecteand simple, although some <' 0 r
parallel edge situations wil! occur after ome contr tions / e made. However, any loops"
formed by these contractions will be d leted. Let a n be positive integers with n
(t - 2)/2 and let G be a graph with vertices and edges having a perfect matching.
The graph G is said to be n-extendable if every matching of size n in G lies in a perfect
matching of G. (roz) '--

A graph G is called cyclically m-edge-connected if ISI : m for each edge cutset S
of G such that there are two components in G - S each of which contains a cycle. Here
S is called a cyclic edge cutset. The size of a minimum cardinality cyclic edge cutset is
called the cyclic edge connectivity of G and is denoted by cA(G).

In [7], Plummer introduced the concept of an n-extendable graph and proved that
a graph of large minimum degree is n-extendable. In [3] and [4], Holton and Plummer
proved that some k-connected k-regular graphs (k > 3) of large cyclic edge connectivity
are n-extendable, which lends support to the assertion by Thomassen [9] that a graph of
large girth and minimum degree at least three shares many properties with a graph of
large minimum degree.
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According to Plummer [8], no planar graph is 3-extendable. It is then natural to
ask what kind of planar graphs are 2-extendable. Holton and Plummer (3] proved (see
Theorem 1 below) that a 3-connected cubic planar graph G is 2-extendable when cA(G) is
large enough.

Theorem 1. If G is a cubic 3-connected planar graph which is cyclically 4-edge-
connected and has no faces of size 4, then G is 2-extendable.

Theorem 1 has the following immediate corollary.

Corollary 1. If G is a cubic 3-connected planar graph which is cyclically 5-edge-
connected, then G is 2-extendable.

In this paper, we discuss the 2-extendability of k-connected k-regular planar graphs
for k = 4,5. All terminology and notation not defined in the paper can be found in [1] or
[2]. In particular, if G is a graph and S C V(G), G[S] denotes the subgraph of G induced
by S. If G is a plane graph, let fi denote the number of faces of size i in the planar
embedding of G and let 4) denote the total number of faces in the embedding.

2. Preliminary Results

In this section, we present several lemmas and corollaries which will play an important
role in the proofs of our main results. Note that we denote the number of odd components
of G - S by o(G - S).

Lemma 1. If a k-connected k-regular graph G of even order is not 2-extendable
(where k > 2), then there are two independent edges el and e2 which do not lie in any
perfect matching and aset S C V(G) such that {el,e 2} _ E(G[S]) and o(G-S) = ISl-2.

Furthermore, if N is the number of edges from the components of G - S to S, then
k(ISI - 2) < N < kS - 4.

Proof. Suppose that G is not 2-extendable. Then there are two edges el = ulv1 and
C2 = U2V2 which do not lie in any perfect matching. Let G' = G - {u 1 ,v 1 ,u 2 ,v 2}. By
Tutte's Theorem on perfect matchings, there is a set S' C V (G') such that o(G'-S') > IS'J.
By parity, o(G' - S') = IS'l + 2r, for some r > 1. Let S = S' U {ui,v,u 2 , v 2} and let
N be the number of edges from the components of G - S to S. By the k-regularity,
N < kISl - 4. By the k-connectedness, N > k(o(G' - S')) = k(IS' + 2r). If r > 2,
then N > k(IS' + 4) = kISI, contradicting the fact that N < kISI - 4. So r = 1 and
o(G - S) = o(G'- S') = IS'l + 2 = ISI - 2. Then we have k(ISI - 2) < N < klSj - 4. I

Lemma 2. Let G be a connected plane graph with all vertices of degree k except
for r vertices. Let the degrees of the r exceptional vertices be d,d 2 ,.. .,d,. Then the
following equation holds:

4f2 + (6 - k)f 3 = 2[(2 - r)k + Edil + Z[(k - 2)j - 2k]f,,
i=1 j>4
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where fj is the number of faces of size j.

Proof. Let G be a connected plane graph satisfying the hypotheses of the lemma.
We then have

r
vk - rk + di = 2c = >ifh.

s=1 j>_2

Then

NfiS C>:A'A 4-,
v= (2e + rk- Edi)/k and E = (Ejif)/2. DrIC TAR

Substituting into Euler's Formula for plane graphs, we get

((2 +rk -ZEd)/k) - e+q5= 2

(2- k)c + kqO = (2- r)k + E d

[(2- k)Ejfj]/2 -klf = (2-r)k + Zdi

E[(2- k)j + 2k]fi = 2[(2- r)k Zd] +-- EI

and hence

4f2 + (6 - k)f 3 = 2[(2 - r)k + Z d,] + Z[(k - 2)j - 2k]fj,
j>4

as claimed. I

3. 2-extendability of 5-connected 5-regular planar graphs

Planar graphs which are 5-connected and 5-regular have, in a sense, sufficiently large
minimum degree for 2-extendability. In the next result, we see that all such graphs are
2-extendable.

Theorem 2. Every 5-connected 5-regular planar graph G is 2-extendable.

Proof. Assume that G is not 2-extendable and let ei = uivi (i = 1,2) be two
independent edges in G which cannot be extended to a perfect matching. Let S and N be
as in Lemma 1 and let r = IE(GtS])I. Then N = 51SI - 2r and r > 2. Since o(G - S) >_ 2,
S is a cutset (and hence ISI > 5). Let C 1,..., Cm be the components of G - S. Let G" be
the graph obtained from G by contracting C1 ,..., C,, to single vertices (retaining multiple
edges, but discarding any loops formed). (Note that from this point on in this paper, when
we contract such a component Ci to a singleton, we will denote the resulting singleton by
C.) Then by Lemma 2, we have
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m

4fl "+ f3" = 2(10 - 5m + E di) + E(3j - 10)fj'
i=1 j>4

m

2 2(10 + Z(d, - 5)),
i=1

where di is the degree of Ci in G" and f' is the number of faces of size j in G". Since every
triangular face of G" uses an edge in G[S], f" < 2r. Let 6, = di - 5 (1 < i < m). Since
all the digons result from contraction of Ci's, f2' _ F,--1 6i. Therefore, 4 F, m 6, + 2r >
2(10 + Emn 6i) or Em, i 6,_ 10 - r. On the other hand, by Lemma 1, m > IsI- 2 and

m m m n

51S- 2r = N - d, = E( + 5) = E6 + Sm
i=1 i=l i=1

> 10 - r + 5m> 10 - r + 5(jSj- 2) = 51S-r.

This is a contradiction. I

4. 2-extendability of 4-connected 4-regular planar graphs

For 4-connected 4-regular planar graphs the problem of determining when 2-extenda-
bility holds is more difficult as the degree of the graphs is not "large enough" and the cyclic
edge connectivity is not larger than six because there is always a triangle in a connected
4-regular planar graph. If a 4-regular graph G has as a subgraph the graph shown in Figure
1, (this five-vertex graph will be called a butterfly), then G is clearly not 2-extendable.
So it makes sense to study only those 4-connected 4-regular planar graphs which do not
contain a butterfly. These we will call butterfly-free 4-connected 4-regular planar graphs.

Figure 1

Theorem 3. Let G be a butterfly-free 4-connected 4-regular planar graph. If every
cyclic edge cutset has size greater than six, except those incident with a triangle, then G
is 2-extendable.
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Proof. Assume that G is not 2-extendable and let ei = uivi (i = 1,2), N and S be
as in the proof of Theorem 2. Again contract the m components of G - S to singletons
and call the resulting graph G". Then by Lemma 2, we have

4f' + 2f ' = 2(8 - 4m + E di) + E(2j - 8)fj'
i=1 __4

m

- 16 - 8m + 2 E di + E(2j - 8)f7"
i=1 j>t4

M m

- 16 + 2 Z(d,- 4) + E(2j - 8)f"= 16 + 2 E i + 1(2j- 8)f"
i---1 j>__4 i=1 i_!4

>2(8 +
i= 1

or

2f11+ f~' : 8 +ZEb,
1=1

where b- di - 4.
Again, since f3 < 2r and f2" _ - b 5i, we have 2r + 2 E=n I > f l' + 2f' >

8 + i , or "= > 8 - 2r. Furthermore, m > ISI - 2. Therefore, 41S I - 2r = N -

2= 1 d, = E=1(bi + 4) --=l1 4 + 4m > 8 - 2r + 4m > 8 - 2r + 4(ISj - 2) = 41SI - 2r.
But then equality must hold in each inequality above. This means

(a) f" = 0 for j 5,
(b) G - S has no even components,
(c) f3' = 2r, and
(d) f2' = Erl 6i = 8 - 2r. (In particular, r < 4.)
We now treat the three possible values of N.
Case 1. N = 41S I - 4.
By parity, there are now two subcases to consider.
(1.1) There are eight edges from S to C, and exactly four edges from S to Ci, for

i = 2,..., ISI- 2.
Now C2 ,... , C$1S_ 2 are all singletons, for if not, it is easy to show that a cyclic cutset

of size four must exist and that would contradict the cyclic connectivity hypothesis of this
theorem.

Recall from above that f3' = 4. Thus each edge ei lies on exactly two different
triangles by 4-connectedness. So let w, and w2 be the two distinct vertices adjacent to
both ul and v, in G" and let w3 and w4 be the two distinct vertices adjacent to both U 2

and V2 in G". (Recall that none of these four w,'s can lie in S. Also note that we may
have {w1, w2} n {W3 , w4 } 0-.)

First assume w, 5 C1 and w2 $ C1 in G". Then if {W1 ,W 2} n {W3 , W 4 ) 5 0, there
is a butterfly in G, contradicting one of the hypotheses of this theorem. On the other
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hand, if {Wx,w2) n {Ws,W4} = 0, then the induced subgraph H, = G[{wI,w 2 ,ui,vi}] is
a component different from a triangle in G - T where T is the set of all edges from HI to
G - H 1 . However, T is a cyclic edge cutset of size six in G, contradicting an hypothesis of
the theorem. The case in which w 3 V C1 and W4 0 61 in G" is similar.

So we may assume by symmetry that w1 = C1 = w3 . Then, because fl' = 4, UxV 1 ,u 2
and V2 are the only vertices in S adjacent to vertices of C1 in G and C1 contains all the
neighbors of u1 ,vI,u 2 and v2 in G-{ul,v,U 2 ,V2}, except W2 and W4 . So {w2 , W4} is a
cutset of G separating F = G[V (Cl) u u i, Vu2,v2)] and G - F -{W 2, w 4 1, contradicting
the 4-connectedness of G.

(1.2) There are six edges from S to each of C1 and C 2 and there are exactly four edges
from S to each C, for j = 3, 4,..., S I -2.

As in Case (1.1) we may assume that each Ci is a singleton, for j = 3,4,..., S I - 2.
Contracting C1 and C 2 , we obtain graph G". By (d), (c) and (a) above, we know that
each of I and C2 is incident with two digons and there are exactly four vertices in S
adjacent to vertices of Ci for i = 1,2.

If either C1 or C 2 is not a triangle, the hypothesis concerning cyclic edge cutsets is
contradicted. Hence both C1 and C 2 are triangles.

Let X1 , X2 and z 3 be the vertices of C1. As there are two digons in G" incident with
C 1, there is a vertex u in S adjacent to two vertices of C1. Let H = G[{U,zl,z 2 ,z 3 }].
Then there is a cyclic cutset of size at most six separating H from G - V(H) and once
more we have a contradiction.

Case 2. N = 41S I - 6.
Again, relabeling the Ci's if necessary, by parity we may assume that there are exactly

six edges from S to C1 and there are exactly four edges from S to each C,, for j =
2,3,..., ISI-2. As before, we may assume that each Cj, j = 2,3,..., ISI -2, is a singleton.
Moreover, there are exactly three edges ei = uivi, i = 1,2,3 in G[S]. Recall from (d), (c)
and (a) above that fy - 2, f" = 6 and f= - 0, for all j _ 5 in G". As f " = 2, there are
exactly four vertices in S adjacent to vertices of C1. Let w 2i- 1 and w2i be the vertices
adjacent to both ui and vi for i = 1, 2, 3 in G". But then it is easy to check that C1 cannot
be simultaneously in {w 1 , w2 }, {w 3 , w 4} and {w 5 , w6}.

Without loss of generality, assume C1 is not adjacent to both ul and v1 . Let H =
G[{wIW2, uI, vI}J. Then there is a cyclic cutset of size at most six separating H from
G - V (H), again a contradiction since H is not a triangle.

Case 3. N = 41SI - 8.
There are exactly four edges from S to CT, for j = 1, 2,..., ISI - 2. Once again, as in

Case (1.1), we may assume that Cj is a singleton for j = 1,..., ISI - 2. But from (d), (c)
and (a) above, f2 = 0, f3 = 8 and f. = 0 for all j >_ 5.

Let w, and Wn2 be adjacent to both ul and v1. Let H = G[{wI, W2 , U1 , v}]. Then once
again we have a cyclic cutset of size at most six separating H from G - V (H), contradicting
an hypothesis of the theorem. I

Figure 2 gives a 2-extendable 4-connected 4-regular planar graph satisfying the hy-
potheses of Theorem 3.
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Figure 2

Indeed, an infinite family of such graphs can be constructed (of which the graph in
Figure 2 is the smallest) as follows. Let C1 2 denote the twelve-vertex configuration shown
in Figure 3(a). Take s > 2 copies of C 12 and join them in a ring-like fashion as indicated in
Figure 3(b). It is routine to show that the resulting graphs satisfy the properties claimed
above.

7



not satisfy the hypotheses of Theorem 3. Figure 4 shows one such example.

Figure 4

In the next theorem, we present an infinite family of such graphs. A graph isomorphic
to the graph in Figure 5 is called a JT (for "joined triangles".)

Figure 5

As an immediate corollary of our next theorem, we note that every 4-connected 4-
regular planar graph consisting of some vertex-disjoint JT's and some other edges joining
them is always 2-extendable.

First, however, we will have need of the following result.

Lemma 3. Suppose G is a 4-regular 4-connected butterfly-free planar graph in which
each vertex lies in a JT. Then any 2 JT's in G are either identical or vertex disjoint.
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Proof. Suppose JT 1 and JT 2 are 2 JT's in G and that JT1 5 JT 2. Let V(JTi) =
{ui, vi, xi, yi and E(JTi) = {ziui, zxvi, yiui, uivi}. Let A = V(JTI) n V(JT2).

(1) If IAI = 1, we get a butterfly and hence a contradiction.
(2) Next suppose that IAI = 2.
(2.1) First suppose that A = {x 1 , v1}. By symmetry, there are three cases to consider.
(2.1.1) Suppose x, = X2 and vi = v2 . Then we get a butterfly.
(2.1.2) If z 1 = u2 and vi = V2, then deg GVl > 5, a contradiction.
(2.1.3) So suppose zl = z2 and vl = Y2. But then again we have that deg Cv1 _ 5, a

contradiction.
(2.2) Next suppose that A = {z 1 ,y1}. By symmetry, there is only one case we have

not yet treated. Suppose z = z 2 and y, = Y2. But then we have a butterfly.
(2.3) So next we suppose that A = {ul,vil. By symmetry, there remains only one

untreated case. Suppose ul = U2 and Vl = v2 . But then deg GU4 5, a contradiction.
(3) Finally, suppose JAI 3.
(3.1) First, suppose A = xi, Ul, Vl}. But by symmetry, this can happen in essentially

only two different ways.
(3.1.1) Suppose first that A = {z 2 ,U 2 ,V 2}.
(3.1.1.1) If z 1 = z 2 , U1 = U2 and vl = v 2, we get a separating triangle by planarity,

a contradiction of 4-connectedness.
(3.1.1.2) On the other hand, if z = u2 , u1 = X2 , and v, = v2 , then we get a butterfly.
(3.1.2) So suppose A = {z 2 , Y2, u 2}. But this too can happen in essentially only two

different ways.
(3.1.2.1) If z 1 = X2 , U1 = Y2 and vl = U2 , we get a butterfly.
(3.1.2.2) On the other hand, if x, = u 2, U1 = z 2 and vi = Y2, then we also get a

butterfly.
(3.2) So suppose A = {z 1 ,U 1 ,Y} -- {z 2 ,U 2 ,Y 2 }. Once again, we employ symmetry

to point out that this can happen in only two fundamentally different ways.
(3.2.1) Suppose x, = z 2, u1 = s 2 and Y, = Y2. We then get a butterfly.
(3.2.2) Finally, suppose that z = u2 , U1 = x 2 and y, = Y2. Yet again we obtain a

butterfly and the proof of the Lemma is complete. |

Now we are prepared to state and prove the final result of this paper.

Theorem 4. Let G be a butterfly-free 4-connected 4-regular planar graph. If ev-
ery vertex lies in a subgraph isomorphic to a JT and if the four endvertices of no two
independent edges separate G into two odd components, then G is 2-extendable.

Proof. Suppose G is not 2-extendable. Then there are two independent edges el =
uiv1 and e2 = u 2v 2 which do not lie in any perfect matching of G. Let S and N be as in
Lemma 1. However, this time among all such sets S, choose one of minimum cardinality.
Again, let C1,... ,CIs_ 2 be the odd components of GC- S. Let w1 ,... ,w 4 be as before as
well.

If there are exactly four edges joining one of the Ci's to S, and Ci is not a singleton,
by 4-regularity C has at least five vertices and the four edges from C, to S must be
independent. By hypothesis, every vertex in C lies in a JT which must therefore lie
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wholly within C1 . But since G contains no butterfly, each pair of these JT's must be
vertex disjoint and hence component C' is even, a contradiction. So if exactly four edges
join a C to S, that particular Ci must be a singleton.

Let G" be the graph resulting from G by contracting all non-singleton components of
G - S to single vertices. Exactly as in the proof of Theorem 3, we obtain the facts (a),
(b), (c) and (d) listed there for graph G". Also as in the proof of Theorem 3, there are
three cases to consider.

Case 1. N = 41S I - 4.
(1.1) Suppose first that there are eight edges from S to C' and so there are exactly

four edges from S to each Cj, for j = 2,..., ISI - 2. Hence each Cj, for j = 2,..., ISI - 2
must be a singleton and el and e2 are the only edges in G[S].

Contracting C1 , we obtain graph G" which has f2' = 4 by (d) and so there are exactly
four vertices in S adjacent to vertices of C 1. Let X, = {zI,z 2 ,z 3 ,z 4} be this set of four
vertices in S.

If there is a vertex v in S - {z 1 ,... ,z 4 ,uI,vI,u 2 ,v 2}, then v does not lie on any
triangle in G and hence is not in any JT in G, contrary to hypothesis. So no such v exists
and hence S = {zl,X2, z3,X 4 } U {t 1,VI,U 2 ,V 2}.

If there is an odd component C different from C1, w 1, W2, w 3 and w4 , it too cannot lie
in any JT, again contrary to hypothesis. So no such odd components exist. Hence G - S
has at most five odd components and therefore ISI < 7.

Let U = {ui, vI, U2 , v2}. Suppose there is an zi in X1 - U from which there is just one
edge to C1. Then z cannot lie in any triangle and hence in any JT, contrary to hypothesis.
If there is an z E X 1 - U from which there are three edges to C1, the fourth edge from
x, must go to some Cj, where j 6 1. But then C' = G[V(Cl) U {z,} U V(C,)] has an odd
number of vertices and thus S" = S - z is a smaller set than S, o(G - S") = IS"I - 2
and el and e2 lie in S". This contradicts the minimality of S. Thus any z in X, - U
has an even number of edges joining it to C1 (i.e., either two or four). But none can send
four edges to C1 , for then the remaining three z,'s would be a cutset in G, contradicting
4-connectedness. Thus any zi E X, - U sends ezactly two edges to C1 .

(1.1.1) Suppose ISI = 7.
Then without loss of generality we may assume that x, = ul. Suppose z is adjacent

to C1. If x, sends exactly one edge to C1 , then souie xi,i = 2,3,4 must send three edges
to C1, a contradiction. So x, sends two edges to C1 and hence the degree of zl is at least
five, a contradiction.

(1.1.2) Suppose SI = 6.
Without loss of generality, assume X, - U = {z 3 , z4) and also that w, is in C1 . So

{zl,z 2} = {u 1 ,vi}. But since z 3 and z 4 each send exactly two edges to C 1, x, and z 2
send two each also. Thus {z 3 , z 4 , w 2} is a cutset in G, a contradiction.

(1.1.3) Suppose ISI = 5.
Without loss of generality, assume X,-U = {z 4}. Then also without loss of generality,

assume x, = UI ,z 2 = v and X3 = U2.
Since v2 is not adjacent with any vertex in C1 , it must be that {W3, w4} n V(C 1 ) = 0.

Thus we may assume that C 2 = w3 and C3 = w4 . Hence {wl,w 2} _ V(C 1 ). Since
deg x3 = 4, there is exactly one edge from x3 to C1 . Hence one of x, and X2 sends three
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edges to C1 and the other sends two. But then counting edges from S to G - S, we have
that v2 must send parallel edges to one of W3 or w 4 and this contradicts the assumption
that G has no digons.

(1.1.4) Suppose ISI =4.
Assume, without loss of generality, that w4 V V(CI). But since deg w4 = 4, it is

adjacent to both x, and X2. But then we have a butterfly and a contradiction.
(1.2) Suppose there are six edges from C1 to S and six from C2 to S. Hence there are

exactly four from S to each of the Cj, for j = 3,..., ISI-2. But then each of C 3 ,..., C1sI_ 2

must be a singleton.
Contracting C1 and C2 , we obtain a graph G" in which, by (d), (c) and (a) respectively,

we have f2" = 4,f3" = 4 and = 0 for j > 5.
Hence by 4-connectedness, each of C1 and 6 2 is incident with exactly two digons in

G" and hence each of C1 and C2 is joined to exactly four vertices of S. For i = 1,2, denote
the neighbors of Ci in S by Xi = {Z4i-3,Z4i_ 2 ,X4i 1 ,Z 4 i}. (Note that XI and X 2 are
not necessarily disjoint.) Let X - X 1 U X 2 . Finally, let X' = X - U. As in Case (1.1), if
there is a vertex v in S - {X11..., xs, U, vl, u 2, v2}, it cannot lie on a triangle and we have
a contradiction. Also as in Case (1.1), tlere can be no odd component of G - S different
from C 1, C 2 , w 1, w 2 , w 3 , w 4.

Hence o(G - S) < 6 and therefore SI < 8.
If there is a vertex v in S - {ui,V1,U 2 ,V 2} from which there is at most one edge to

each of C1 and C2 , then v cannot lie in a triangle and again we have a contradiction. In
particular, then, S = X U U. If there is a vertex v in S - {u1,v 1 ,U 2 ,V2} with three edges
to C 1 or C 2-without loss of generality, say Cl-then v is adjacent to only one other CU.
So it follows that C' = G[V(CI) U {v} U V(C)] is an odd component of G - S', where
S' = S - {v}. This contradicts the minimality of S.

Also for every vertex v E S - {ui,vIPU 2,v 2}, if v is joined to C1 by four edges, then
there must be a cutset of size three, a contradiction. Similarly for C2. So for every vertex v
in S - {U 1 ,V1 ,u 2 ,v 2}, if it is joined to C1 at all, it must be by exactly two edges. Similarly
for C 2.

(1.2.1) Suppose IS = 8. (So IX' J = 4.)
By the symmetry between C1 and C2 , we need only consider the following three cases.
First, suppose that IXn X, I = 4, that is, X1 = {X 1 ,X 2 , X3 , x 4 }. But then by the

remark above, there must be eight edges from C1 to S, a contradiction.
Next, suppose that IX1 n X, I = 3; so without loss of generality, we may assume

X1 = {z 1 ,X2,X 3,xs}. Then each of X1 ,X 2 and X3 is joined to C1 by two edges and hence
{X 1 , x 2,X 3 } is a 3-cutset in G, a contradiction.

Finally, suppose IX' n X, = 2; so without loss of generality we may suppose X' =

{ X1, X2 1 X5 v X6 }.

Now each of z and x2 are joined by exactly two edges to C 1. If the fifth and sixth
edges joining CI to S are adjacent (in S or in C1 ), we can find a 3-cut for G containing
X1, X2 and this vertex of adjacency. So we have a contradiction. Hence the fifth and sixth
edges from C1 to S are independent. Thus at most two different JT's join vertices of C1
to S.

If x, is joined to C 2 , it must have exactly two edges to C 2 . Hence {xi,xs,,X6} is a
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3-cut in G, again a -ontradiction. Thus x, is not joined to C2 . By symmetry, X2 is joined
to no vertex of C2 as well (and neither of x5 and x6 is joined to any vertex of C1 ).

Now, and henceforth, let us denote by JT(v) the JT covering vertex v, for all v E
V(G).

Suppose JT(xi) = JT(X2 ). Then JT(x1 ) covers exactly two vertices in C1 and all
other JT's covering vertices of C1 lie entirely in C1 . Thus C1 is even, contradicting (b).

So, by Lemma 3, we may suppose JT(xl) and JT(x2 ) are vertex disjoint. But then
each must cover exactly three vertices in C1 and together they cover six vertices in C 1.
Thus again C1 is even and again we have a contradiction.

Note that if IX'nfXI = 1, then IX'nfX 2 1 = 3, and if IX' fXI = 0, then IX'nX2 = 4
and we repeat the above arguments on X 2 and C2 in place of X 1 and C1.

(1.2.2) Suppose ISI = 7 and Lence IX'I = 3.
First suppose that IX' n XI[ = 3. Without loss of generality, assume that X' n X 1

{Xl,X 2, X3 }. But then each of these three vertices sends two edges to C1 and hence they
form a 3-cut of G, a contradiction.

Now suppose that IXtn X 1 1 = 2. Without loss of generality, assume that IXtn Xii =
{X , X2}. Since C1 sends exactly six edges to S and since G is 4-connected, it follows that
both x3 and x4 are in U. As in Case (1.2.1), the fifth and sixth edges from C1 to S must
be independent.

Let the one vertex of X' - (X 1 U U) be x8, since it must be a neighbor of C2 and not
a neighbor of C1. So xs is adjacent to exactly two vertices in C2, none in C1, and hence to
two of the singleton odd components C3 , C4 and C5 . Say, without loss of generality, that
x8 is adjacent to C3 and C 4.

Suppose both x, and X2 are adjacent to C 2 . Then {xi,x 2 ,xs} is a 3-cut in G, a
contradiction. So at most one of x, and X2 is adjacent to C 2 . Without loss of generality,
assume that x, is not adjacent to C 2.

First assume that X2 is not adjacent to C2 either.
Now if JT(xi) = JT(X2), then each joins C1 to X and as before, no other JT can

join C1 to S. So IV(C 1) n V(JT(x1 )) n V(JT(X2)) = 2 and again it follows that C1 is
even, a contradiction.

So we may assume that JT(x1 ) and JT(X2)) are vertex disjoint. So they jointly cover
six vertices of C1 and once more C1 is even, a contradiction.

So suppose that x, is not adjacent to C 2 , but that X2 is adjacent to C 2 . But now
X2 is adjacent to both C1 and C 2 by two edges to each. Thus G[Cl U C 2 U {X2)] is an
odd component of G - (S - x2 ) and hence G - (S - X2 ) has ISI - 3 = IS - X21- 2 odd
components, contradicting the minimality of S.

Next suppose that IX' n X I = 1. But then IX' n X 2 1 = 2 and we proceed as in the
above case for IX' n XI = 2, except we replace X1 with X2 and interchange the roles of
C1 and C2 in that argument.

Finally, if IX' n Xj = 0, it follows that IX' n X 2 1 = 3 and hence that X' n X 2 is a
3-cut, a contradiction.

(1.2.3) Suppose ISI = 6 and so IX'I = 2.
(1.2.3.1) First suppose that IX' nX 1 = 2. Let X'n X, = {xI, X 2}. As before, each of

xl and x 2 sends two edges to C 1. Suppose x, is adjacent to C 2. Then, G[C 1 U C 2 U {1X}J
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is an odd component of G - (S - xi) and this contradicts the minimality of S. So assume
that z is not adjacent to C 2 and by symmetry, that X2 is not adjacent to C 2 as well. Thus
JT(xi) has three vertices in C1 as does JT(X2). But then C1 is even, a contradiction.

(1.2.3.2) Next, suppose IX' nXI = 1. Denote X' nX, by {zx}.
Since IX' n X 21 = 1, denote X' n X 2 by {zs}. As before, xI sends exactly two edges

to C, and xs sends exactly two edges to C2.
Now {z 2 , X3 , z 4} C U. Without loss of generality, assume that there are two edges

from C1 to z 2 and one each from C1 to z 3 and X4. As before, by 4-connectedness, the two
edges to z 3 and X4 must be independent. Also we now know that zs is not adjacent to C1

and so xs is adjacent to both C3 and C4 .
By symmetry, at this point there are essentially two different ways we can have edges

el and e2 in U. First, without loss of generality, assume z 2 = ul. Then, again without
loss of generality, we need only treat two subcases.

(1.2.3.2.1) Suppose vi = X3 .
Without loss of generality, let u2 = X4. Now each of C 3 and C 4 lies on a JT. Of

course, again by Lemma 3, they are the same or vertex disjoint. Moreover, each of these
JT's must use one of el and e2.

(1.2.3.2.1.1) Suppose JT(C3 ) = JT(C4).
Then JT(C3 ) cannot use edge el since deg Gz 2 = 4, so we may assume it uses e2.

Then the fourth edge from v2 must go to C2 . Now since all edges incident with x4 , V2 and
zs are accounted for, there must be three edges from C 2 to {X, X2, X3 }. But then there is
a homeomorph of K 3 ,3 in G" with sets of principal vertices {X4 , v2 , x8} and {C 2, C 3, C4},
a contradiction.

(1.2.3.2.1.2) So suppose JT(C3 ) and JT(C4 ) are vertex disjoint. But each uses one of
el and e2. Without loss of generality, suppose JT(C3 ) uses el and JT(C4) uses e2 . Thus
ul and v, are adjacent to some common vertex yj E V(C 1 ), since deg ul = 4. Moreover,
C 4 is adjacent to U 2 and v2 . Now JT(xl) is vertex disjoint from JT(z2) = JT(C3 ), so
JT(zi) has exactly three vertices or no vertices in component C1. If it has three vertices
in C1 , then it follows that C1 is even, a contradiction.

So JT(xI) has no vertices in C, and hence either two or three vertices in C2.
(1.2.3.2.1.2.1) Suppose JT(xl) has exactly two vertices in C2 . Then the fourth vertex

of JT(xl) must be zs. But since C2 is odd, we must have JT(C4 ) containing one vertex
of C 2 ; call it Y2. But then {zl,xs,y 2} is a 3-cut in G, a contradiction.

(1.2.3.2.1.2.2) So suppose that JT(xl) has exactly three vertices in C 2. So JT(C4)
must use exactly one vertex Y2 of C2 . But then again {Xl,xSy 2} is a 3-cut in G, a
contradiction.

(1.2.3.2.2) So suppose that v {z 3 ,x 4}. So {X 3 ,X 4} = {u 2,v 2}; without loss of
generality, suppose X3 = u 2 and X4 = v2 . Without loss of generality, we may assume that
JT(C3 ) uses edge el. But then deg x 2 = 4 implies that JT(C3 ) meets C1 . But that is
impossible, since vi is not adjacent to any vertex in C1 .

(1.2.3.3) Suppose IX' n X1 = 0. Then IX' n X 21 = 2. So we proceed as in Case
(1.2.3.1), except we interchange the roles of X 1 and X 2 and those of C1 and C2 .

(1.2.4) So suppose ISI = 5. Thus IX'I = 1.
Without loss or generality, suppose X' = {xl}. So as before, we have exactly two
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edges from xI to C1. Suppose x1 is adjacent to C 2 and hence to exactly two vertices in C2 .
Then S' = S - {x,} has the property that G - S' has two odd components (one of which
is G[V(C,) U V(C 2 ) U {xI}] and the other is C3 ). So G - S' has IS'I - 2 odd components
and {el,e 2} _ E(G[S']). Thus once again we contradict the minimality of the choice of
set S.

(1.2.5) Suppose ISI = 4. So X' = 0 and S = U. But then the endvertices of el and
e2 separate G into two odd components, a contradiction.

This completes Case 1.
Case 2. N = 41S I -6.
We may assume that there are six edges from S to C, and exactly four edges from

S to each of C2 , C 3 ,. . . CIs-2. So each of C 2,..., Cis_ 2 is a singleton. Also there are
exactly three edges ei = uivi, i = 1,2,3 in GIS]. Let U = {uI,u,U3,V1,,2,V)s}.

Upon contracting component C1 to a single vertex we obtain graph G" in which
f2' = 2, f3' = 6 and ff' = 0 for j > 5, by (d), (c) and (a) respectively.

Since f ' = 2, there are exactly four vertices of attachment for C1 in S. Again denote
them by X1 ,X 2 ,X 3 and X4. Let W1 ,. . . ,w 6 be as in the proof of Case 2 of Theorem 3.

Let v E S - U. Since v must lie on a triangle in G, v must be adjacent to at least
two vertices of C1 . If v is adjacent to three vertices in C 1, it is adjacent to precisely
one of C2 ,... ,Clsi 2. Suppose it is C,. Then, if C' = G[V(CI) U V(C,) U {v}], then if
S' = S - {v}, set S' contains edges e,e2 and e3 , graph G - S' has ISI - 3 = IS'I- 2 odd
components (one of which is C') and this contradicts the minimality of S.

If v is adjacent to four vertices in C1 , then there must be a 3-cut in G separating C,
from the rest of G and this is a contradiction of the 4-connectedness of G.

Hence, if v is any vertex in S - U which is adjacent to CI, it must send exactly two
edges to C1 .

Also, since f3' = 6, if there is any singleton odd component Ci different from wI,... W6,

it cannot lie on a JT. So it follows that o(G - S) < 7 and hence that ISI _< 9. Also since
f3" = 6, each of e1 , e2 and e3 lies on exactly two triangles. But then by 4-regularity, it
follows that these three edges are vertex disjoint and thus that ISI > 6.

(2.1) Suppose ISI = 9.
Now since every vertex of S - U lies on a triangle, it is adjacent to C, and, therefore,

by the above remark, it sends exactly two edges to component C 1. But then S - U is a
3-cut in G, a contradiction.

(2.2) Suppose ISI = 8.
Without loss of generality, assume that S - U = {z,, X2}. Since each of the singleton

odd components C2 ,... , CIs-2 must lie on a triangle in G" and each of these triangles
must contain one of the edges ei, we may assume without loss of generality that the two
triangles containing el also contain vertices C1 and C2, the two containing edge e2 contain
C 3 and C4 and the two containing edge e3 contain C5 and C 6 .

But now back in the parent graph G, vertices C 3 , C 4 , C5 and C6 lie in unique JT's
which must be spanned by C3 , C 4 and the two ends of edge e1 and by C 5, C 6 and the two
ends of edge e2 respectively. Also C2 lies in a unique triangle consisting of C2 and the
two ends of edge el. But then C2 lies in a unique JT which must use the two edges to
C1 which are not incident with vertices x, and X2. Call these two edges f, and f2. But
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Figure 6

then fJ and 12 have a common endvertex y in C1 . But then {X1,X 2 , Y) is a 3-cut in G, a
contradiction.

(2.3) Suppose ISI = 7.

Then at most two JT(Ci)'s (i > 2) send edges to C 1 , since the total number of edges
into C1 from S is six. Suppose that two JT(Ci)'s (i >_ 2) send edges into C 1 . Then G has
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a 3-cut consisting of z and two vertices in C 1.
Suppose next that exactly one JT(C) (i > 2)-say JT(C2)-has a vertex in C 1. Then

relabeling if necessary, we may assume that JT(C4 ) = JT(C5 ) uses edge e3 and then odd
component C3 lies in no JT, a contradiction.

So suppose that no JT(C) (i > 2) has vertices in C 1. Without loss of generality, we
may suppose that JT(C2) = JT(C3 ) uses edge e2 and that JT(C4) = JT(C) uses edge
e3 . Then the JT using edge el has exactly two vertices in C1 ; call them a and (t. But
then {z, a,fl} is a 3-cut in G, a contradiction.

(2.4) Suppose ISI = 6.
Since the JT(Ci), i > 2, must be vertex disjoint, at most one of them uses two of

C2, C3 and C 4.
First suppose exactly one JT(Ci) uses two of C 2, C3 and C 4 . Relabeling, if necessary,

we may assume that JT(C3 ) = JT(C4) and that JT(C3 ) uses edge e3. Then JT(C 2) uses
edge e2 say, and one vertex Yl of C 1.

Now consider JT(ul) and JT(vl).
First suppose that JT(ui) = JT(vl). Also suppose first that JT(ui) uses edge ei.

Then {ui,vl,yl} is a 3-cut in G. So suppose that JT(ul) does not use edge el. Then
JT(ul) uses exactly two vertices in C1 and again {ul,vi,y} is a 3-cut in G.

So suppose that JT(ul) and JT(v1 ) are vertex disjoint. Then neither uses edge el
and so together they use six distinct vertices in C 1. But then again {ul,v 1 , yl} is a 3-cut
in G.

So suppose that no JT(Ci), (i > 2), uses two of the vertices C 2, C 3 and C 4 . Then
JT(C2), JT(C3) and JT(C4 ) are vertex disjoint and each uses a different vertex of C 1, say
Gi uses yi, for i = 2,3,4. But then either {Y2,Y3, Y4} is a 3-cut in G, which is impossible,
or IV(CI )I = 3. But if C1 has only three vertices, no vertex in C1 can be covered by a JT,
a contradiction.

Case 3. N = 41S I - 8.
Note that there are exactly four edges from each of C1,... ,C1 s5 _2 to S and G[S]

contains four edges ei = uivi for i = 1,... , 4. So all of C 1 ,... , CS(- 2 are singletons.
Note that by (c) and (a) respectively, we have f3 = 8 and fj = 0, j 5. Hence each

ei lies in exactly two triangles in G.
(3.1) Suppose two of the ei's share a vertex; without loss of generality suppose e1 = ab

and e2 = bc.
(3.1.1) Suppose also that a is adjacent to c, say ac = e3 . So el lies on triangle abca

and one other triangle which uses one of the Ci's-say C 1. If c is adjacent to C 1, then
acCla must be a separating triangle in G, a contradiction. So we may assume that c is
not adjacent to C 1. So let the second triangle using e2 be abC2a, where C 2 # C 1 . But
then {a, b, c, C 1, C 2 } must span a butterfly, contrary to hypothesis.

So, by symmetry, no three of the ei's can form a triangle.
(3.1.2) So assume that a is not adjacent to c. Let the two triangles using edge el be

abCla and abC2 a. Since G contains no butterfly, we have that c is adjacent to neither
C1 nor C 2 . But then since deg cb = 4 and N(b) = {a,c, C1,C 2}, edge e2 cannot lie on a
triangle in G, a contradiction.

(3.2) So we may assume that no two ei's share a vertex; that is, {e 1,e 2,e 3 ,e 4 ) are
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vertex disjoint. Since every vertex of G must lie on a triangle, if follows that every vertex
of S must be an end vertex of one of the ei's. Thus ISI = 8 and hence o(G - S) = 6.

Now all triangles-and hence all JT's-in G each must use exactly one of the ei's and
hence two of the singleton odd components CI,..., Ce. But this is clearly impossible and
the proof of the theorem is complete. I

5. Concluding Remarks

Let us close by offering a few remarks as to the sharpness of the results in this paper.
Remark 1. According to [5], there are non-2-extendable k-connected k-regular

graphs, for k = 3,4,5, with cyclic edge connectivity arbitrarily large. So in this sense,
planarity is necessary in the hypotheses of Theorems 1, 2 and 3. Figure 7 shows a non-
planar graph in which el and e2 cannot be extended to a perfect matching, which shows
that Theorem 4 also requires planarity in the hypothesis.

Remark 2. Figure 8 shows a cyclically 6-edge-connected butterfly-free non-2-extendable
4-connected 4-regular planar graph in which each cyclic edge cutset has size greater than
six, except the edges incident with a triangle and the edges incident with a JT. Hence
this graph shows the sharpness of Theorem 3 with respect to the cyclic edge connectivity
assumption in the hypothesis.

Remark 3. Figure 8 also shows the sharpness of Theorem 4 with respect to the
JT covering assumption, as every vertex in the graph lies in a JT, with the exception of
exactly two.

Remark 4. Figure 9 shows how to build a cyclically 4-edge-connected non-2-extend-
able planar graph which consists of disjoint triangles and some other edges. Substituting
the graph in Figure 9(b) for each of C1 and C2 in Figure 9(a) by identifying edges as
shown, we get a non-2-extendable 4-connected 4-regular planar graph in which edges el
and e2 do not lie in any perfect matching. So in the hypothesis of Theorem 4 we cannot
change the demand that G be vertex partitionable into JT's to say instead that G be
vertex partitionable into triangles.

Remark 5. Figure 6 shows a butterfly-free 4-connected 4-regular planar graph in
which every vertex lies in a subgraph isomorphic to a JT. However, the four endvertices of
edges el and e2 separate G into two odd components and hence el and e2 lie in no perfect
matching in G. This graph shows, in particular, that the last hypothesis in Theorem 4 is
not derivable from the others.

The authors wish to thank the referee for his thorough reading of this paper and for
his suggestions which, in particular, considerably shortened the original proof of Theorem
4.
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