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FOREWORD

This report describes the method and computer program for calculat-

ing laminar boundary-layer properties over bodies of revolution at

large incidence in subsonic flow. With minor changes, it was also

Mr. Lee A. Kania's thesis for the Master of Science Degree in Mechanical

Engineering at North Carolina State University in 1983.

This work was performed by Dr. Fred R. DeJarnette, principal in-

vestigator, and Mr. Lee A. Kania, graduate research assistant, Mechan-

ical and Aerospace Engineering Denartment, North Carolina State Uni-

versity, Raleigh, North Carolina 27695-7910. It was supported under

Procurement Instrument Identification Number (Contract Number) F33615-81-

K-3625 with the Air Force Wright Aeronautical Laboratories, Wright-

Patterson Air Force Base, Ohio 45433-6553. The subject contract was

initiated under Air Force Flight Dynamics Laboratory Project 2307,

Task 2307N324, on 17 August 1981 and was effectively concluded in

May 1983. Mr. William H. Lane, AFWAL/FIGC, was the Air Force Project

Engineer for the study. Comments may be directed to him at (513)255-

8486, or in writing at the above address.

Copies of this report can be obtained from the National Technical

Information Service (NTIS).

This report was submitted in 1983 and revised in 1987.
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SECTION 1

INTRODUCTION

There are at present numerous methods available for calculating

boundary layers over two-dimensional and axisymmetric bodies at zero

angle of attack (Refs. 1 and 2). Methods for calculating three-

dimensional boundary layers (Refs. 3, 4 and 5) are not as numerous due

to the fact that they have only recently come under investigation.

These techniques are, at present, limited in application. Generally,

fully three-dimensional methods require considerable storage and com-

putational time on existing digital computers. To compound the problem,

the potential solution in most cases cannot be described through a

simple analytical expression.

A relatively simple, approximate method for calculating three-

dimensional boundary layer properties is the axisymmetric analog. In

this method the boundary-layer equations are written in a streamline

coordinate system and the cross flow velocity is assumed to be zero.

This reduces the three-dimensional boundary layer equations to a form

that is identical to those for axisymmetric flow, provided that (1) the

distance along an inviscid surface streamline is interpreted as dis-

tance along an "equivalent axisymmetric body," and (2) the metric co-

efficient that describes the spreading of the streamlines is interoreted

as the radius of the equivalent body. This allows any existing axisym-

metric boundary-layer program to be used to compute the approximate

three-dimensional boundary-layer properties. By considering multiple

streamline paths, an entire surface can be covered.



The major difficulties in applying the axisymmetric analogue are

the calculation of the inviscid surface streamlines and the corresponding

scale factor. References (7) and (8) provide two methods with which to

trace inviscid surface streamlines from surface pressures. These two

approaches are basically identical in that each requires the integra-

tion of a first-order differential equation to yield the streamline angle

(the angle between a streamline and body meridian).

In Reference (7) Vollmers proposes that a shooting technique be

employed to determine an initial value for the streamline angle. He

contends that a valid initial value may be obtained near the stagnation

point if the streamline angle approaches the correct limit durinq the

upstream integration from a given point on the body. For a nonspherical

nose, the streamline geometry is such that the streamline angle is either

0 or 180 degrees in the limit at the stagnation point (Ref. 9). Vollmers,

however, fails to account for the behavior of the scale factor during

the upstream integration. There is a possibility that the scale factor

may tend to zero during the integration despite the fact that the stream-

line angle may approach the proper limiting value. A scale factor of

zero implies that the streamlines cross at a particular point and this

is a physical impossibility. This condition can occur when approximate

surface pressures are used. If the inviscid surface velocity components

were known, the streamlines could be calculated more easily and there

would be no possibility of streamline crossing.

In Reference (8), DeJarnette attacks this problem by describing the

streamline geometry analytically in the stagnation region. Outside this

region, the inviscid surface streamlines are calculated from the surface

2



pressure distribution. This is the approach employed in the present

method for instances in which an analytical potential solution is not

available.

The method used to calculate the "equivalent radius" along a stream-

line follows from a method developed by DeJarnette in Reference (9) and

is included in this study. DeJarnette has previously used a two stream-

line approach to determine the scale factor, but this necessitates the

calculation of a second or auxiliary streamline. In the present method,

the scale factor is calculated along a single streamline from the solu-

tion of two first-order, auxiliary differential equations which are

functions of the surface pressure distribution and body geometry.

The present method employs Hall's (Ref. 4) and Blottner's

(Ref. 2) methods to obtain a solution to the axisymmetric boundary-layer

equations. Hall applies a Crank-Nicholson differencing technique to the

nondimensionalized equations. The body radius, which appears only in

the continuity equation, is replaced by the scale factor in accordance

with the axisymmetric analogue. Blottner employs the same differencing

technique to the axisymmetric boundary-layer equations written in

transformed variables. In this case the body radius appears only in

the definition of the transformed variables and is likewise renlaced

with the scale factor. The body radius does not appear explicitly in

the transfnrmed boundary-layer equations. The development of each of

these methods is included in this study. In the development of the

boundary-layer code, various velocity profie convergence tests and

boundary-layer edge tests are investiqated also.

3



Any axisymmetric configuration may be input to the program as long

as an analytical expression for the Pressure distribution is provided.

In the event that only experimental pressure data are available, the innut

geometry is restricted to spherically capped bodies due to the limita-

tions of the techniques used to represent the surface pressure distribu-

tion. On the spherical cap the pressure distribution is represented by

a Fourier cosine series while on the remainder of the body, a doubly

quadratic spline is used to model the experimental pressure data. The

body geometry may be expressed in either English or SI units, or in non-

dimensional form.

Results from the computer program are presented for a sphere,

ellipsoid of revolution with thickness ratio 1/4 and a sphere-ogive-

cylinder configuration as example applications of the computational

method.

4



SECTION 2

INVISCID SURFACE STREAMLINES

The axisymmetric analogue concept employed in the computer orogram

effectively reduces the three-dimensional nature of the boundary layer

to that of an axisymmetric one along an inviscid surface streamline.

This necessitates the calculation of the equivalent radius of the newly

defined axisymmetric body. The equivalent radius or scale factor is the

metric for the coordinate 0 normal to the streamline on the body surface

and is calculated along inviscid surface streamlines. The scale factor

is an indicator of the physical spacing between streamlines. A scale

factor that is increasing indicates that the streamlines are diverging

and thus the equivalent radius is increasing.

The method of DeJarnette (Ref. 8) is used to trace the inviscid

surface streamlines. In this method, the body geometry is exoressed

in terms of the unit vectors, @xl @r and @ which form an orthogonal

cylindrical coordinate system. Unit vector @x is parallel to the bodyxI
axis, unit vector @r is in the radial direction and normal to the body

axis. The third unit vector in this system, @, is in the circumferential

direction (see Figure 2.1).

A second coordinate system which is oriented to the body surface

is used to describe the surface streamlines. This system consists of

the unit vectors, @11 i n' and 0 . Unit vector 0 n is normal to the body

surface and is given by

n= sin r @x + cos r @r * (2.1)

r%



A

A

er

Figure 2.1. Body Geometry Coordinate System
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Unit vector, e1il is tangent to the body surface and lies in a meridianal

plane. This vector may be expressed as

= cos " @x + sin r Or (2.2)

The angle r is the body angle and is a function of x only for an axisym-

metric body (see Figure 2.2).

The streamline geometry is expressed in terms of unit vectors, #s'

e0 and en which also form an orthogonal coordinate system. Unit vector

@S is along a streamline and tangent to the body surface. Unit vector

6 is normal to the streamline and also tangent to the body surface.

Unit vector @n is used in common with the previous coordinate system.

Since the streamline is projected on the body surface, the component

along @n is zero and a streamline will thus lie in the tangent plane

generated by unit vectors 6s and @ K This is the identical plane gener-

ated by @11 and §@. The streamline angle 0 is defined to be the angle
between unit vectors is and 611 (see Figure 2.3). This angle is the

inclination of the streamline relative to a body meridian. ,The stream-

line unit vectors may then be written in terms of the body geometry unit

vectors as

@s = (cos e cos I @x + (cos 0 sin r) @r +(sin O) @ (2.3)

and

e8 = -(sin e cos r) @x - (sin e sin r) @r + (cos 0) @ (2.4)

7



in All

Figure 2.2. Surface Coordinate System
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~typical 11- - l-

stagnation 
point

Figure 2.3. Streamline Coordinate System
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DeJarnette (Ref. 9) then constructs the transformation operators

which relate the streamline partial derivatives to the cylindrical co-

ordinate derivatives. The operators may be written as

a (d4 ah = x ' ) ax + r - (2.5)

and

D a ( "s ) a
= (x " + S) (2.6)DSS xr a

where D/DS is a derivative along a streamline and h I -- is a derivative
h $a

normal to a streamline and on the body surface. Substituting the

expressions for the unit vectors yields

h a- = - sin 0 cos r + Cos 0 a (2.7)

and

D. cos 0 cos r + sin a (
DSr a (2.8)

Application of Equation (2.8) yields

Dx
DS " cos 0 cos r (2.9)

and

sin 0
DS - r (2.10)

10



These differential equations may be numerically integrated to give the

axial and circumferential position along a streamline when 8 is known

(the initial values for all differential equations will be discussed

later in this section). If the potential solution were known in analytic

form, the angle 0 could be determined from it. When only pressure data

are available, 0 must be calculated from a differential equation.

DeJarnette derives the differential equation for the streamline

angle e from the application of Euler's equation on the surface of the

body. In vector form Euler's equation is

DU _ . (2.11)
Dt p

The convective term may be recast in streamline coordinates as

u @s + U (2.12)

The pressure gradient in streamline coordinates may also be written

as

VP-- S + Pn (2.13)
DS S h 80 an n

Euler's equation may then be written as

U + U 2 -{-A s .1_2- @+ S n } (2.14)s DS p DS s h a an

The scalar product of 6 with this equation gives

U2 -s * = -

DS " ph ao (2.15)

11



T'- scalar product of e, with the derivative of the expression for es

yields (Ref. 9)

ds =d6 + sin r d (2.16)

Substitution of this equation into (2.15) yields

DO + sin r D1= 1 1 BP (2.17)
DS DS pU- h (1

Application of the previously defined transformation operators can be

used to write this equation as

D-- f- sine cos r -~x+ cos 0 D1 sin r sin 0 p218)
Tue1 I r 4 J r "

Equations (2.9), (2.10) and (2.18) can be numerically integrated to fully

describe the geometry of the streamlines resulting from a given pressure

distribution. If the potential solution is expressed analytically, 9

may also be expressed analytically and only Equations (2.9) and (2.10)

need be integrated.

The scale factor must be evaluated simultaneously during the stream-

line integration for use in the boundary-layer calculations. The tech-

nique employed here has not previously been used elsewhere but follows

from a technique developed by DeJarnette (Ref. 9). If the streamline

coordinate 8 is substituted into the transformation operators (2.7) and

(2.8), the result is easily shown to be

-sin 0 cos r + cos 0 a a (2.19)

hr x (2.19

and

12



o = cos e cos r ¢ r xax 

r
respectively. Note that D 0 since the coordinate 8 is constant along

a streamline. Equation (2.20) may be solved for and then substituted* axi
into Equation (2.19) to yield

1 sin e cos r -sin 8 x + cos _ (2.21)
h r cos 0 cos r a r DO x

which reduces to

1 1 36 (2.22)
h r cos0 -I x

or

h = r cos O.] . (2.23)
3OX

Note that since B =(x,¢),

This expression necessitates the additional calculation of 21 along

a streamline in order to calculate the scale factor h.

The differential equation for may be obtained as follows.

Equations (2.9) and (2.10) may be combined to give

Do . tan 0 (224)

Dx r cos r (

13



Taking of both sides of this equation yields

x) =sec2 e (225)
a~ D) -r cos F ao 2.5

since both r and r are functions of x only for an axisymmetric body.

With 8 = O(x,O),

aJ -x =~ aOX- (2.26)
To1  50 as

and

(2.27)

Dx x 8

the derivative of Equation (2.24) with respect to 4 may be written as

a(D~ a81 a!(~I = se ae
1 IDxJ aax)l r cos r Do (2.28)- x) =-20 x sr e

This in turn may be rewritten as

x) . (2.29)
S 0x Dx 1aI

x

or

D tn X = 1 ae (2.30)
Dx ox r cos' 8 cos r a¢ x

By application of the chain rule and Equation (2.9), this differential

equation may be recast as

14



l '1I _____ I

DSt r sBel. (2.31)

DS an x r cos 0 ao

The integration of this differential equation along a streamline requires

that -16 also be known.

The differential equation for may be derived as follows: sub-

stitution of the transformation operator in Equation (2.8) into the

streamline Equation (2.18) yields

cas cos08 sn0 r 1Cos 6 Cos rT+ r 3 " r 2 . (2.32)

30
Solving for T- gives

31 si sDn sin r sin 0 + -j (2.33)
3x cos e cos r tjr a r 2 ue

Taking the partial derivative with respect to * of Equation (2.32)

yields

a2e sine D20 e+ cosO fal 2
cos e cos -sin e cosr L +o "0§0ax+ r a02 ax ao r F0

si Cos e U_ ~ Cru 2e +3 si 3c
sin r s + _ cos e cos sine-r..+ p. Pae

r a ueJ 3 x 3- r 30 3

,2C o a2 C aueC
+sin cos cos 4_ ) sin e cos r-2

+0sx r r aoj - e12 Ue 3 rax

_ o. (2 .34 )

15



Bernoulli's equation enables the circumferential velocity derivative in

this expression to be written as

us  .' u- 2 (2.35)

Substitution of this equation and the two transformation operators into

Equation (2.34) gives

DS [-1 = sin e cos r Do O cos 8 ( - sin F cos e DO

tUe) Ds -+ sineOcos - cos eD L e ar Fx r ]

Substitution of Equation (2.33). into this equation .yields

DDS_ -xe sin e a I e x~ sin e[ f +x sin P sineO

i 1 cos 2 rCe 2 sin os e (2e
+ 2 h 3| r r

..J1 jiC r e i ' 2C2  cos C

T p. 3 1 3 (2.37)

Dg-~ (Ue a~l xj T ' o T

+1U.12 OS sin F cos 6 cs 1@1

... .... .. . . . . . r- j ~ m mra ; r I I I III



Note that

DCari i 2 e cos r acp_R _s Cos e cos r e + sin c
DS Cos 6 ax r 3€ cos o ax

sin O aCp
r 3 "

This may be simplified and written as

_c _ac

D sine aCQ os r p
DS cose h J = cose ax

Substitution of this expression into Equation (2.37) leaves

) f- W sin 2 q_ )012" sin 2 0 sin Pr a cos Ta,-2

DS~ F - rcos e a~j r cos e a r a4

sin r Cos 0 (30) + (ao [ cos r +
r cOr 2 U To jos ax 2

With the substitution of the transformation operator in (2.7), Equation

(2.38) may be rewritten as

rae Je[a o s r 21 F a
ne(1 o _x sine (cos r29

Co a6c (f l 2 I4 + S f3J'
C 2 4 cj

in0Cos r 'c - ro a] C2 (2.39)
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This differential equation involves first and second derivatives of the

pressure coefficient which are supplied by either the analytical solu-

tion or the spline fit if only experimental pressures are supplied.

Note, however, that - 2 does not appear and thus the spline fit in the

x-direction is simplified. Equations (2.31) and (2.39) may be integrated

to give the scale factor (Equation (2.23)) along an inviscid surface

streamline. The differential equations are singular at the stagnation

point; therefore, the geometric position where the integration of the

streamline equations begins must be some distance away from the stag-

nation point (Ref. 9). The technique used here denends on whether the

inviscid properties are obtained from experimental pressure data or

an analytical potential solution.

When experimental pressure data are used, there are generally

insufficient data near the stagnation point to adequately determine

the pressure distribution needed for the integration of the streamline

equations near the nose. A potential panel method, USSAERO, was used

to obtain additional pressure data in the nose region. It was found

that this pressure data and the experimental pressure data, at the

most forward position, were reasonably close to a spherical pressure

distribution about the stagnation point. A spherical pressure distri-

bution produces streamlines along spherical meridians from the stagna-

tion point to the sphere-afterbody interface. (See Figure 4.1 on page

35.) On the spherical cap, the streamline geometry and metric are given

in Ref. 14. Integration of the streamline differential equations begins

at the sphere-afterbody interface. For a given circumferential angle *o'

page 31 of Ref. 9 gives the initial streamline slope as
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0 = cos-1 {(cos aeff cos FI - sin aeff sin r, cos 0 )/sin } (2.40)

where the spherical angle is determined from

Cos- Cos teff sin + sin aeff cos cI Cos 0 (2.41)

The initial value of (36/30)o for Equation (2.39) is obtained by

differentiating Equation (2.40). The result is

ae sin eff sin rI sin o0 - Cos 0 cos o 0 [ o

sin 0sin (2.42)

From Ref. 14, the streamline metric on the spherical cap is given by

h = Rper sin p; and since r = Rper cos r, Equation (2.23) gives

] o sin % o  (2.43)

as the initial value for Equation (2.31) at the sphere-afterbody inter-

face.

When an analytical potential solution is known, the inviscid ve-

locity components can be used to obtain an analytical expression for

the streamline angle, 0, and its circumferential derivative, a8/ax.

Then Equation (2.39) is not needed and Equations (2.9), (2.10), and

(2.31) can be integrated numerically to determine the streamline loca-

tion and metric. Initial conditions for the streamline location are
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determined from an axial position and circumferential angle near the

stagnation point. As discussed in Ref. 9, the initial value of

( /30)o, and hence ho , for Equation (2.31) is arbitrary. Since Equa-

tion (2.31) is used to integrate 0n( ¢/ r) o will have no effect on the

numerical integration of this differential equation. The actual

value calculated for 3 / B, however, will be relative to the initial

value (OW/ )0
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SECTION 3

BOUNDARY LAYER METHODS

The present computer program has the option of employing either

Blottner's (Ref. 2) or Hall's (Ref. 4) boundary layer method. For each

method a solution is obtained through the use of a finite-difference

technique. After application of the respective transformation, the

governing equations are then cast in second-order accurate finite-

difference form. Since the governing equations are parabolic, the

boundary layer may be calculated by "marching" downstream in a step-

by-step fashion along an inviscid surface streamline.

Blottner's method involves solving the governing equations written

in F-V similarity form. These equations are obtained by the application

of the Levy-Lees' transformation defined for incompressible flow as

C(s) - Kpp u - r2 ds (3.1)0 U.

and

u e rpn
n(s,n) = U . (3.2)

In the axisymmetric analogue, the body radius r is replaced by the scale

factor h and s is distance along the inviscid surface streamline. This

transformation creates a (F,n) computational grid from the (s,n) physi-

cal grid. The computational grid has been effectively stretched in

both the normal and tangential directions. The resulting equations are
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2aF +V+ F :0 (3.3)

and

F F 1 2F
2 F -+ V + 8(F2 -1) (3.4)

where

V = 2 [F ax + pvh/r /Kpueh2 (3.5)

F = u/ue (3.6)

and

= E du (3.7)
ue d

(see Appendix A.1) . These equations are then cast in finite difference

form using the Crank-Nicholson scheme to yield a system which is second-

order accurate in both spatial directions. The resulting system can

be conveniently written as

A2 Fi+l,j_1 + B2 Fi+1,j + C2 Vi+ ,j 1 + E2 Vi+ ,.j D2  (3.8)

where

A2 = An( + &i+/AE)

B2 = An(; + &i+I/A)

C2 = -1
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E2= 1

and

D2 = An(-k + CI+ /A)(FI,j + Fi I )

for the continuity equation and

AI Fi+11j-1 + B 1 Fil,j + C Vi+,+j = D1  (3.9)

where

AI = - ( + WV i+ ,)

BI = 1 + An2 Fi+l,j (- l+k + 2 I /Ad)

C1 - -1 0 f n Vi+;Ij)

= 4 A(F ,j+l  F F,-I + Fi+lJ+l "- +l J- )

and

D ;I (F ~+ - 2Fi~ + Fi~-) + ),AT2 l+ [ +1 i~~l 2 ij i J- 1 +25 +l,j)

+ (12 i (l + A4 , [IAl{ + - fi+ 1  ]

++ F2
2  

)m

for the momentum equation (see Appendix A.2). To provide that only

a linear system of equations needs be solved to obtain F, the nonlinear

terms in the finite difference expressions have been linearized using

the Newton-Raphson technique. This will necessitate repeated iteration
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in order to achieve a converged solution to the actual nonlinear equa-

tions. The bar indicates quantities from a previous iteration.

By virtue of the transformation in Equations (3.1) and (3.2),

Blottner's method may be applied at the stagnation point to yield a

limiting velocity profile. In addition, a similarity solution is nos-

sible since ( = 0 at that point (see Appendix A.3). The boundary

conditions consist of the edge and wall conditions. At the boundary-

layer edge the condition

F(n = ne = I

is applied at each step of the integration. The value of the normal co-

ordinate at the boundary layer edge, e, must be provided initially and

must be large enough to account for the entire boundary layer thickness.

The no-slip condition demands that

F(n = 0) = 0

at each step. The pressure gradient parameter, 8, is related to the

velocity gradient and for spherical flow, 8, becomes 1/2.

The system of equations may then be solved to yield the limit of

F at the stagnation point through use of the modified Davis algorithm

(Ref. 2). This algorithm solves a coupled system of equations. The

profile slope at the wall may be expressed by a second-order accurate

expression which in turn is used to evaluate (Cf VT-ee) .

At points away from the stagnation region it is necessary to solve

the complete, nonsimilar system of equations (Equations (3.8) and

(3.9)) which involve the transformed step size, Ahj, along a streamline.
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With a prescribed step size along a streamline, the expression for E may

be numerically integrated for subsequent use in the boundary layer equa-

tions. The calculation of the pressure gradient parameter, -, which is

defined as

- _ du

ue dE

is evaluated at the midpoint of the computational interval along the

body surface. On the nose region of a spherically capped body, this

term reduces to

2 u.. U 2 &_. du

i+ R h dper el

and on the afterbody it becomes

2 PUe DX aue8 i+ zKJ IIDs~ s
Uue  S+ 90uD

The derivative - and both De and -e are supplied by subroutines

SPHCAP and INVISD, respectively. The two total derivatives along a

streamline, L- and , are used in conjunction with the streamlineDS DS
integration (see INVISCID SURFACE STREAMLINES). The nonsimilar equa-

tions may then be solved for F using the same computational technique

as was used at the stagnation point.

Hall's method involves solving the governing equations written in

terms of dimensionless primitive variables. Hall employs the customary

transformation
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S* s/L

n*= a- ReZ
L el.

r = r/L

U*= U/U

v*= v/u

whe re

which yields

(ur) + r* v*_ 0 (3.10)s* 3n*

for the continuity equation and

u* au* + v* u_*_ 1 d(u e*)2 +au*

+ 3n* 2 ds* + u (3.11)

for the s-momentum equation (see ApDendix A.4). The desired unknown

is u* which is the dimensional velocity normalized by the freestream

velocity. These equations are then cast in second-order accurate finite-

difference form (see Appendix A.5). The resulting system may be ex-

pressed as

A2 Ui+l1i + B2 u i+11j_ + C2 vi+ ,j + E2 vi+, ,.i. = D2  (3.12)

where
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A2 =2Ashi+

8 2 =2Ashi+

C2 =1

E= -1

and

Anh
D 2 = 2Ashi- (ul3, ' . j1

for the continuity equation and

A 1 Ubl,-l + 8 1 u 1~1l + C1 I ~l~ + E1 I + j D (3.13)

where

A1  O n 2An'

B ui+1j +1

Bi =

E1  (ii -2 i u -
1EI (- +1,j+1 i+1,J-1 1,j+1 u j-1 /A

and
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u-i+1,j + ui +V (Ui+l,j+l -u i+l,j-1 )

1 2As i+ ,j 4An

U2 - 2

+ ei+l ei + uij+1 - 2uit j + u

2As 2An'

for the momentum equation (note that the stars have been omitted for

clarity). These equations have also been linearized using the Newton-

Raphson method. The system of equations which results at each station

along the body is block tridiagonal in form and may be easily and ef-

ficiently solved in the same manner as was used for Blottner's method.

The boundary conditions required for a solution to Hall's equa-

tions are that

u(s,ne) = ue

and

u(s,o) 0

for the no-slip condition.

To begin the integration of the bourdary layer, mn initial profile

must be known. The stagnation point is an ideal place to start the

integration. Hall (Ref. 4) and Geissler (Ref. 10) both utilize the

well-known three-dimensional stagnation point boundary-layer solution

of Howarth (Ref. 11). This is an unwarranted complication since at

the stagnation point

u(o,n) = 0
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at all points across the boundary layer. This may be used as the initial

velocity profile in Hall's method, and then the first station away from

the stagnation point, along an inviscid surface streamline, may be cal-

culated by the method given above.

3.1. Convergence Criteria

Since the finite-difference equations have been linearized, repeated

iteration is necessary in order to obtain a solution to the nonlinear

equations. The iterative process could be made to continue until the

solution becomes exact (within the accuracy of the computer) but this is

no doubt unwarranted. In practical applications, the iterative process

is usually allowed to continue until the solution is changing by less

than a prescribed amount between successive iterations. This is one

definition of a converged solution.

Because the skin friction is the one of the more important parameters

of interest, it appears logical that convergence should be based on it.

In practical applications, the iterative process should stop when the

skin friction changes by less than a prescribed amount between successive

iterations. This is the definition most commonly applied in two-dimensional

boundary layer cases.

The computational method developed has the option of employing

either of these definitions. The input parameter, NC, corresponds to

the method which is used to define a converged solution. The option

corresponding to NC = 0 specifies that convergence is based on [Cf ReL)e

changing by less than 0.5 percent between successive iterations.

Covergence is based on the velocity at each grid point changing by
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less than 0.1 percent between iterations when NC = 1. Table 3.1

illustrates the effect of this option on the separation point for

a sphere in incompressible flow.

Table 3.1. Effect of Convergence Criteria on Boundary-Layer Separation
for Hall's and Blottner's Methods on Sphere in Incompres-
sible Flow

Separation Steps to
Method NC Angle (Deg.) Separation

Hall 0 107.43 184

As = 0.01 1 104.83 184
An = 0.0471

Blottner 0 105.75 278

A& = 0.005 1 104.94 276
An = 0.11539

40 Points Across Boundary Layer Initially

3.2. Boundary Layer Edge Criteria

Since the velocity in the boundary layer only approaches the value

of the inviscid stream asymptotically, an effective edge must be imposed.

The velocity at the grid point which is arbitrarily said to lie at the

edge is assigned the velocity of the inviscid stream. The relationship

of the velocities at the grid points in the region near the imposed

edge may then be used to assess whether the actual boundary-layer thick-

ness has been adequately accounted for. According to the classical

definition, the boundary layer thickness is adequately reoresented if

the velocity at the point adjacent to the imposed edge is a certain

2ercentage of the velocity at the imposed edge. This percentage is
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usually in the range of 99.5 to 99.995 percent. Wang (Ref. 5) emoloys

this definition in his fully three-dimensional technique. A second test

for the boundary-layer edge could be constructed which utilizes the fric-

tion parameter, at the edge of the boundary layer as thetio paameerCf FLl

governing criterion. If this parameter is below a prescribed limit, the

imposed edge may be considered to adequately account for the boundary-

layer thickness.

Both of the tests described above are included as options in the

present computational method. The parameter NT specifies an option to

be used for the edge test. The option NT = 0 specifies that the edge

test be based on the classical definition in which the tolerance is

99.95 percent. The second test, which corresponds to NT = 1, requires

that [Cf Re) be less than 0.005 for the boundary-layer thickness to

be adequate. Table 3.2 illustrates the effect of both the edge test

and convergence test options on the separation point for a sphere in

incompressible flow. Note that the more stringent option, NT = 1, re-

sults in the addition of points at the boundary-layer edge and a more

accurate separation point. The results generated in conjunction with

the option corresponding to NT = 0 could most likely be improved if the

respective tolerance were to be decreased. It is evident from the re-

sults obtained with Hall's method that the boundary layer is undoubtedly

thickening. Since Hall makes use of primitive variables, a growing

boundary layer will require that the outer edge be adjusted occasionally.

The transformed normal coordinate used in Blottner's method has pro-

visions to account for the growth of the boundary layer. Because of

this, it is seldom necessary to manually shift the outer edge.
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Table 3.2. Effect of Edge Test and Convergence Test on Separation
for Hallt and Blottner's Methods on Sphere in Incom-
pressible Flow

Separation Steps to Points
Method NC NT Angle (Deg.) Separation Added

Hall 0 0 108.59 194 23

As = 0.01
An = 0.471055 0 1 107.43 184 31

1 0 104.89 184 18

1 1 104.83 184 30

Blottner 0 0 105.02 278 0

A& = 0.005 0 1 105.75 278 5
An = 0.11539

1 0 104.94 276 0

1 1 104.94 276 4

Initially 40 Points Across Boundary Layer
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SECTION 4

SURFACE PRESSURE DISTRIBUTION

If an analytical potential solution is not available for a particular

configuration, experimental pressure data must be applied. The accurate

surface fitting of the pressure data is critical not only to the calculation

of the boundary-layer properties but also to the calculation of the inviscid

surface streamlines. Near the nose region of a body where pressure gradients

are relatively large, experimental pressure data are generally not

available. The region of the body downstream of the nose generally

experiences more moderate pressure gradients and sufficient experimental data

are provided to model a surface pressure distribution. After investigating

several methods for surface fitting experimental pressure data, it was found

that a doubly quadratic spline would adequately model the pressure

distribution downstream of the nose.

As mentioned earlier, a potential panel method, USSAERO, was used to

calculate additional pressure data in the nose region. Attempts to use a

doubly quadratic spline to blend the pressures calculated by the USSAERO code

in the nose region with the experimental data downstream were unsucessful.

To model the pressure distribution in the nose region, an alternate approach

was employed. This method has been tested for a sphere-ogive-cylinder only.

First, the pressure data calculated by the USSAERO code were blended with the

experimental data at the most forward station and then they are plotted as a

function of the spherical angle # about the stagnation point (see Figure 5.2

on page 42). It was found that the Fourier cosine series
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9
C A + Z A cos (n,) (4.1)n=ln

represented the pressure distribution in the nose region quite satis-

factorily. In this series, the spherical angle p is given by

' = Cos' {cos aeff sin r + sin neff cos 1' cos q} (4.2)

where cieff is the angle between the body axis of symmetry and the line

which passes through the stagnation point (see Figure 4.1). Note that

= 0 corresponds to the stagnation point.

The coefficients in the Fourier series, A (n = 0.9), are obtainedn

from the solution of ten simultaneous equations generated from the

application of Equation (4.1) to ten distinct points on a curve faired

through the pressure data calculated from USSAERO. One point must

be the stagnation point itself which is determined by interpolating

data from USSAERO.

Away from the nose region, pressure gradients usually become smaller

and a doubly quadratic spline may be used to fit the experimental pres-

sure data downstream of the interface. In order to describe the doubly

quadratic spline, consider the singly quadratic spline first. An

interval

xI < x <x N

is divided into N subintervals. Each interior subinterval rage is
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Xn-i + xn xn + Xn+1 (n 2,N 1)2 - - 2

and the subintervals on the left and right boundaries range from

xI + x2Xl < X< 12

2

and

XN 1  + xN
2 <X-N'

respectively. The dependent variable at each of the points xn is de-

signated by y n (see Figure 4.2).

There exist N-i midpoints in the total interval. The midpoints,

denoted by Xn, may be computed by the above relations. Corresponding

to each of the midpoints Xn there is a yet undetermined dependent

variable Yn* Each of the Yn s is determined such that there is con-

tinuity of the function and its first derivative between adjacent sub-

intervals. The first derivative must be specified on the left and

right boundaries of the interval. This will yield a system of N-i

linear equations for Yn (n=1,N-1). This system may be expressed as

~Ixx1
(b1 + c1 Y1 + d1 Y2  2 1 + y1b1 + Y2 (c1 + d1 )

anYn-1 + (bn + Cn)Yn + dnYn+1 = Yn (an + bn) + Yn+1 (dn + cn)(n=2'N-2)

aN-1YN-2 + (bN-1 + cN-1) N-1 = 2 + YN-1 (aN-1 bN-1) + YN(cN- 1)

(4.3)
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where

bI = 2/Ax2

an = Axn+I/[xn(Axn+I + Axn)]

bn = [2 + AXn/Axrn+1]/[Axn+I + AXn]

cn = [2 + Ax n+2/Ax n+1/[AXn+2 + Axn+l]

dn = Xn+I/[Axn+2(Axn+2 + Axn+])

CN. 1 = 2/Axn

and

Axn = x n - Xn 1

This system forms a tridiagonal matrix and the unknowns may be obtained

through use of the Davis algorithm (Ref. 2).

A second-order polynomial about the point xn which may be written

as

yAx) = ,+ y it (x - xn 2 (4.4)y)=Yn + ;Y( x - Xn) + Yn 2

is applied at the single data point which lies within each subinterval.

This equation contains only two unknowns since Yn is known at the data

point xn. On a given interior subinterval, yn and y" are related to
n n n

the dependent variables Yn-1 and Yn (which have already been determined)

and can be expressed as
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~=~fl~+ ALu,x 1
- Axn~ (4.5)

I Jn

and.

ynx~ 8+A [Y xn Yn+ Y n-1 Yn] (4.6)
Yn Ax n+1 + Ax n  Ax n+1 +  Xn 46

Thus to determine the value of the dependent variable, y,and its de-

rivatives at any position on the total interval, all that need be done

is to determine in which subinterval the independent variable lies.

The corresponding coefficients in the quadratic expression (Equation

(4.4)) may be generated from Equations (4.5) and (4.6).

The extension of the one-dimensional quadratic spline to two

dimensions is a relatively simple process and is performed as follows.

One-dimensional quadratic splines y(x,O k) are formed for specified values

of " For a given value of x, y(x,¢k) and a (xok) are calculated for

each k These values are then fitted by a ouadratic spline in the 0 direc-

tion. These splines can then be used to calculate y(x,*), 1X (xc)

and 1 (x,o) for a given value

The quadratic spline yields a function which is continuous and has

a continuous first derivative. The second derivative is continuous (and

constant) over each subinterval, but is not constrained to be continuous

at the junction of the subintervals. It is possible for inflection

points to occur only at these junctions. Should an inflection point be

desired at a specific location, it may be included simply by the addi-

tion of two data points such that the midpoint of this interval becomes

an endpoint of a subinterval.
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SECTION 5

STREAMLINES ON SPHERICALLY CAPPED GEOMETRIES

Experimental pressure data were obtained on a sphere-ogive-cylinder

at a = 450 from the first row of pressure taps to the base region. No

experimental pressure data were obtained on the spherical cap. To

assist in modeling the pressure distribution on the spherical cap, the

USSAERO potential code was used to calculate pressure data and these

data were interpolated to locate the stagnation point. Due to the

large pressure variation over the nose region, the doubly quadratic

spline function used to model the pressure distribution downstream of

the sphere-ogive interface was found to be unsatisfactory for the nose

region. An alternate approach described in SECTION 4 was to graph

the calculated pressure data from USSAERO on the spherical cap as a

function of the angle *, given by Equation (4.2), which is the spherical

angle measured about an axis passing through the stagnation point and

the center of the sphere (see Figure 4.1). The results are given on

Figure 5.2 and they show that the pressure distribution is reasonably

close to a spherically symmetric one. With the assumption of a

spherically symmetric pressure distribution, the streamlines on the

spherical cap will simply follow spherical meridians about the axis

through the stagnation point and the center of the sphere. The angle

between this axis and the body axis is aeff in Figure 4.1 which is

quite different from the actual angle of attack, a.

For spherical flow, the pressure distribution along one meridiarr

is indistinguishable from another and the boundary layer is truly

axisymmetric. Note, however, that the magnitude of the pressure over
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Figure 5.2. Spherical Symmetry of Nose Pressure Distribution
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this portion of a sphere is not the same as that over a sphere alone in

incompressible flow. The integration of the boundary layer equations

continues from the stagnation point along a meridian until the sphere-

afterbody interface has been reached. This stopping point is designated

by the angle p attaining a particular maximum value. This maximum value

is a function of the circumferential position on the interface and

can be calculated from Equation (4.2). Beyond the interface, the

inviscid surface streamlines must be integrated numerically.
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SECTION 6

DESCRIPTION OF COMPUTATIONAL METHOD

The method presented traces inviscid surface streamlines while

simultaneously computing the properties of the boundary layer up to

the separation point. Tracing a streamline involves the numerical

integration in a step-by-step fashion of Equations (2.9), (2.10), and

(2.18) to determine the axial position, circumferential angle, and

the streamline angle (see INVISCID SURFACE STREAMLINES). In conjunc-

tion with the differential equations for the streamlines, Equations

(2.31) and (2.37) are also integrated to give the scale factor along

the streamlines. After each integration increment along a stream-

line, the boundary-layer equations are then integrated by either

Hall's or Blotner's method to determine the local velocity Drofile

across the boundary layer (see BOUNDARY LAYER METHODS). This pro-

file is used to determine the local value of [CfreL) . The seoara-

tion point for the flow along a particular streamline is assumed to

occur when this parameter passes through zero. All calculations stop

at this point since both the streamline and boundary-layer equations

are invalid in the separated region. Several streamlines are calculated

to get a distribution around the body.

In order to begin the boundary layer integration, it is first

necessary to establish the initial boundary layer velocity profile at

the stagnation point. For Blottner's method this neccesitates solving

the similar F-V equations while for Hall's method, each point in the
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profile is identically zero. For instances in which the pressure distri-

bution is expressed analytically, the integration of the boundary layer

continues along an inviscid surface streamline in increments of As

(which has units of the input geometry). For cases in which only

experimental pressures are available, the angle p is first calculated

given a position on the sphere-afterbody interface. The integration of

the boundary layer then proceeds in a step-by-step fashion in increments

of the angle p, A, on the spherical cap until the value of

p at the interface has been reached. The boundary condition on the

fluid velocity at the edge of the boundary layer is a function of p only

and is obtained at each step during the integration from subroutine

SPHCAP. The integration of the streamlines begins at the sphere-

afterbody interface.

The boundary-layer profile convergence test is then applied after

each iteration of the solution. This computer program employs two

options with which to define a converged solution. One option requires

that the skin friction parameter, [CfReL), change by less than 0.5

percent between successive iterations in order for the solution to be

considered to have converged. The other option requires that the

velocity at each grid location change by less than 0.1 percent from

the previous iteration.

Once the solution has converged, the edge test is oerformed. This

test effectively determines whether the point at the edge of the boundary

layer spans the total thickness. There are two options regarding the

edge test. One option requires that the velocity at the grid location

just inside the imposed boundary-layer edge be at least 99.95 percent
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of the velocity at the boundary in order for the imposed thickness to be

adequate. The second option requires that the skin friction parameter,

(Cf e,,at the edge be less than or equal to 0.005. If the option

employed should fail, an additional point is added at the boundary-layer

edge of both the present and previous computational station. The

velocity at the outer grid point of the previous station is assigned

the value of the edge velocity at that station. With the addition of

the point at the edge, the calculations for the present station are re-

peated. This procedure is followed until both tests have been satisfied.

If the number of points added at the edge should eventually exceed 50,

the step size in the normal direction is doubled and every other point

within the boundary layer is discarded. At this time the step size

along the streamline is also doubled.

Three methods are available with which to integrate the inviscid

streamline differential equations. The predictor-corrector method of

Milnes (Ref. 12) features rapid execution and has been incorporated into

the computational code. This method, however, is not self-starting

and makes no check for truncation error (see SUBROUTINE MILNES). The

method of Gear is used to generate the starting values. Gear's method

(Ref. 12) is useful for instances in which a stiff system of first-order

differential equations is being integrated (see SUBROUTINE DGEAR). The

last method is the fourth-order Runge-Kutta method. This method is not

as well suited to stiff systems because the step size becomes nrohibi-

tively small in the attempt to minimize the truncation error during

integration (see FUNCTION KRUNGE).
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The boundary layer is integrated in increments of As along a

streamline. The boundary condition on the fluid velocity at the outer

edge is obtained from subroutine INVISD. If exoerimental pressures are

supplied, a second subroutine, SPHCAP, provides the necessary condi-

tions for points on the spherical cap. The integration of the boundary

layer continues up to the point at which (Cf LeJ reaches or passes

through zero.

At larger angles-of-attack, the streamlines quite frequently wrao

around the body so rapidly that it is difficult to resolve the boundary

layer at points further down the body. A technique which employs a shift

from the windward streamline may be implemented in order to accomplish

this. The integration of the boundary layer continues along the wind-

ward streamline to the input axial position, XMAX. At this point the

circumferential angle is changed from zero to one degree. From this

point on the integration continues along this newly defined streamline

to the separation point. With this technique it is possible to trace

streamlines that otherwise would have been unobtainable.

The separation point along a streamline is approximated by linear

interpolation using the last two converged solutions since the boundary-

layer orofile frequently fails to converge once in the separated region.

This entire procedure is repeated for each of the streamlines. The

total number of streamlines is an innut parameter called KBM.
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SECTION 7

RESULTS AND DISCUSSION

In order to illustrate the validity of the techniques employed in

the computer program, results are presented for a sphere, ellipsoid of

revolution at an angle of attack and a sphere-ogive-cylinder configura-

tion at an angle of attack. Each test case represents a step up in the

complexity of the analysis. The results for each geometry consist ori-

marily of a comparison between the solutions obtained by both Hall's and

Blottner's methods. Additional results generated for the ellipsoid of

revolution at two different angles of attack are compared to fully three-

dimensional boundary-layer calculations. All computations were Derformed

on the IBM 370/165 digital computer at North Carolina State University.

Computer times in this section are in CPU seconds. All cases start with

40 points across the boundary layer.

7.1. Sphere

The sphere geometry provides the opportunity to validate the com-

putational code itself. The comparisons presented in Tables 3.1, 3.2,

and 7.1 serve as verification. Results generaged on both a cylinder

and a flat plate compared quite well with the accepted values.

7.2. Ellipsoid of Revolution

The ellipsoid selected for this case had a thickness ratio of 1/4,

a total length L = 2a, and was examined at both 12' and 30° angle-of-

attack (see Figure 7.1). The potential solution (Ref. 13) was available

in the form of an analytical expression (see Appendix A.6). For this

case, only the differential equations in (2.9), (2.10) and 2 31) were
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Table 7.1. Effect of Convergence and Edge Criteria on Skin Friction
for Sphere in Incompressible Flow

Hall )wff~ Blottner

As = 0.05 An .0471 As = 0.05 An = 0.11539

NC = 0 NC = 1 NC = 0 NC = I

20. 2.578 2.579 2.710 2.573

40. 2.430 2.418 2.431 2.417

60 2.150 2.149 2.150 2.149

80 1.656 1.656 1.654 1.657

90 1.249 1.276 1.271 1.271

100 0.650 0.645 0.640 0.642

104 0.202 0.193 0.226 0.226

integrated since analytical expressions for the streamline angle, Equa-

tion (2.18), and its circumferential derivative, Equation (2.39), were

available (see Appendix A.7). For these cases, As = 0.05 and An = 0.0471

were used for Hall's method, and As = 0.05 and An = 0.115385 for Blottner's

method.

The results of both Hall's and Blottner's methods are presented for

a variety of streamlines on this configuration in Table 7.2. This

table includes results that were obtained from the streamline shifting

technique described in the section of this thesis labeled DESCRIPTION

OF COMPUTATIONAL METHOD. XMAX is the axial position at which a stream-

line shift from a circumferential position of zero to one degree was

made. The results of both methods agree quite well despite the fact

that the step size along a streamline differs between the two methods
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Figure 7.1. Ellipsoid of Revolution
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Table 7.2. Comparison of Separation Points Between Hall's and
Blottner's Methods on Ellipsoid of Revolution with
Thickness Ratio 1/4 at 300 Angle-of-Attack

Points Computer SeDaration

Method Beta XMAX/L Added Time (sec) X/L

Hall 20.0 -- 52 6 0.209 143.28

50.0 -- 55 7 0.222 142.76

0.0 0.30 53 13 1.363 104.42

0.0 0.50 49 13 1.626 95.89

0.0 0.80 48 14 1.857 82.18

Blottner 20.0 -- 3 7 0.212 143.94

50.0 -- 3 7 0.220 142.43

0.0 0.30 1 12 1.366 104.15

0.0 0.50 2 12 1.640 97.46

0.0 0.80 0 12 1.857 82.16

by a factor of 20. Hall's method generally required a greater amount

of computational time. This is most likely due to the greater number of

points that had to be added at the imposed boundary layer edge.

Tables 7.3 and 7.4 compare results generated by the axisymmetric

analogue using Hall's and Blottner's methods to the three-dimensional

boundary layer calculations of Wang (Ref. 13). In both cases the com-

parison is increasingly degraded as the leeside of the body is aoproached.

In this instance, both tables suggest that the axisymmetric analogue

yields quite good results on the windside of the body. The separated

region for this case is shown graphically in Figure 7.2. The separated

region as calculated by Wang is also included for comparison.
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Table 7.3. Comparison of Separation Points Between Hall's Method
and Three-Dimensional Boundary Layer Calculations on
Ellipsoid of Revolution with Thickness Ratio 1/4 at 300
Angle-of-Attack

Circumferential Separation, (1, (Degrees)

Axial Station (X/L) Hall's Method 3-D Results

0.209 143.28 131.25

0.222 142.76 130.00

0.328 132.56 125.50

1.363 104.42 102.50

1.626 95.89 95.00

1.857 82.18 82.50

Table 7.4. Comparison of Separation Points Between Blottner's Method
and Three-Dimensional Boundary Layer Calculations on
Ellipsoid of Revolution with Thickness Ratio 1/4 at 300
Angle-of-Attack

Circumferential Separation, c, (Degrees)

Axial Station (X/L) Blottner's Method 3-D Results

0.212 143.94 131.25

0.220 142.43 130.00

1.366 104.15 102.50

1.640 97.46 94.50

1.857 82.16 82.50
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Figure 7.3 depicts the variation of Cf ReL in the windward plane

for the axisymmetric analogue using Hall's method and Wang's fully three-

dimensional approach for an angle-of-attack of 120 (Ref. 5). The two

methods compare reasonably well.

7.3. Sphere-Ogive-Cylinder

This configuration, whose geometry is depicted in Figure 5.1, was in-

put to the program in dimensionless form. The normalizing quantity was

the cylinder radius which measured 3.8 inches. The total non-dimensional

body length was 17.5. This geometry was investigated at 450 angle-of-

attack. The experimental pressure data consisted of discrete pressure

coefficients distributed along 30 axial stations, each having 10 circum-

ferential stations. Pressure data for the region 0 - x _ 13.75 was cal-

culated by the USSAERO panel method while the pressure over the section

0.92 < x < 17.5 consisted of actual experimental pressures obtained from

the wind tunnel. Before implementing these pressures into the computa-

tional code, it was necessary to smooth and interpolate the data in the

region where the pressures overlapped. Interpolated data were used to

form additional axial stations near the nose since large pressure grad-

ients are present on the forward portion of the body. This required

the addition of four more axial stations in that region (the resulting

pressure coefficients as well as the remaining program inputs are pre-

sented in Appendix A.22).

The technique developed to represent the pressure distribution on

the spherical cap by a 10-term Fourier cosine series was found to perform

only marginally. The series provided continuity in the pressure coefficient

across the interface (when the quadratic spline was first employed) but

did not necessarily provide continuity in the related derivatives. In instances
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in which the pressure derivatives were not continuous across the inter-

face, the one-dimensional quadratic spline technique was extended from

the interface to the stagnation point to model the pressure variation

on the spherical cap (see SURFACE PRESSURE DISTRIBUTION). The resulting

pressure variation was a function of the circumferential position on

the interface. Despite this, the streamlines in this region were still

assumed to follow spherical meridians.

The doubly quadratic spline technique employed in this computer

program was found to model the pressure coefficient variation quite

satisfactorily. This technique requires that the axial derivative of

the pressure coefficient at the interface and body end for each cir-

cumferential plane be known. While the pressure coefficient across the

interface was continuous, in most cases the axial derivative was not

and, hence, was also supplied as program input (rather than calculated

in the program).

The streamline angle and its circumferential derivative were cal-

culated in this case by numerically integrating Equations (2.18) and

(2.39). These equations are functions of the inviscid edge velocity,

the pressure coefficient and its derivatives. These parameters were

provided by the spline fit. Although the calculated second derivatives

of the pressure coefficient in the circumferential direction are con-

stant in the interval in which the quadratic is used, they were found

to be accurate enough to be used in the integration of Equation (2.39).

Table 7.5 provides a comparison between the calculated separation

points using Hall's and Blottner's methods. The corresponding separa-

tion points agree very well. Note that for the cases of (i = 1450 and
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Table 7.5. Comparison of Separation Points Between Hall's and
Blottner's Methods on Sphere-Ogive-Cylinder Config-
uration at 45' Angle-of-Attack

Points Computer Separation
Method Beta Added Time (sec) X/Rc '

Hall 50 39 9 0.2158 119.15

75 0 8 0.1777 125.32

100 3 8 0.1562 121.34 --

145 5 8 .... 115.14

160 27 8 .... 119.64

Blottner 50 3 8 0.2159 119.21

75 3 8 0.1763 123.75

100 1 8 0.1564 121.66 --

145 2 8 .... 115.16

160 0 8 .... 119.25

1600, the flow separates while on the spherical cap. If the pressure

distribution had been truly axisymmetric, the angle of separation, 4,

would have been identical in each case. The computational time required

for this configuration was greater than that for the ellipsoid of

revolution though still quite reasonable.

Information relative to the step sizes and spacings is given in

Table 7.6. The step size on the spherical cap was Af = 20 in each case.
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Table 7.6. Computational Step Sizes and Spacings for Results in
Table 7.5

An Steps to
Method Beta As or An Separation

Hall 50 0.001 0.003846 !Oq

75 0.004 0.015385 50

100 0.004 0.007692 52

145 --- 0.007692

160 --- 0.003846 55

Blottner 50 0.001 0.1153846 136

75

100

145 0.1153846 59

160 0.1153846 60
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SECTION 8

CONCLUDING REMARKS

A method is developed for calculating laminar boundary layers along

inviscid surface streamlines on axisymmetric bodies at angles of attack

in incompressible flow. By application of the axisymmetric analogue

concept in the present technique, a substantial savings in computer time

over fully three-dimensional boundary layer techniques may be realized.

The boundary layer integration techniques of Hall and Blottner were

found to compare exceptionally well with each other on each of the

geometries investigated. Results generated on the windward plane of an

ellipsoid of revolution with thickness ratio 1/4 and angle of attack of

120 compared satisfactorily with results generated by a fully three-

dimensional technique. The separation points calculated by the present

technique for a variety of streamlines on the same ellipsoid of revolu-

tion at 30' angle of attack were in fair agreement to those generated

by a three-dimensional technique. The comparison was generally better

on the windside of the body.

The series expression used to model the pressure coefficient on the

spherical cap of the sphere-ogive-cylinder configuration performed only

satisfactory. The technique preserved continuity in the pressure co-

efficient across the interface (the point at which the quadratic spline

technique was implemented) but did not provide continuity of the axial

derivative. To circumvent this problem, the one-dimensional quadratic

spline was extended to the stagnation point on the spherical cap. De-

spite this, the assumption of spherical streamlines was still made with

reasonable accuracy. The doubly quadratic spline renresentation of the
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pressure coefficient on the afterbody was found to perform quite well as

long as an adequate number of pressure stations were input. Oscillations

in the pressure function were generally less frequent than might be

expected if other techniques had been used.

The relative inexpense, coupled with reasonable accuracy makes the

present method attractive for preliminary design studies. Further com-

parisons with fully three-dimensional boundary layer calculations are

necessary in order to more thoroughly evaluate the apDlicability of the

axisymmetric analogue in subsonic flow.
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LIST OF SYMBOLS

an bn,cn ,dn  coefficients defined in Equation (4.3)

AIB 1,C1,D,E 1  coefficients for finite-difference boundary-layer
1'9 D E equations, defined in Equations (3.8), (3.9), (3.12),A2,B2 C2 'D29E2  (3.13)

ell unit vectors on body surface along body meridian
given by Equation (2.2)

A A A nunit vectors in streamline coordinate system given

es'e 6 'en by Equations (2.3), (2.4) and (2.1)
ex er e unit vectors in cylindrical coordinate system, (see

Figure 2.1)
2-r

Cf skin friction coefficient, -

D
D-s- total derivative along streamline

F ratio of local velocity to velocity at boundary-layer
edge, as defined by Equation (3.6), dimensionless

h scale factor in 6 direction, dimensionless

K arbitrary constant for Equation (3.1) and (3.2)

L body length, dimensionless

n coordinate normal to body surface and streamline

p dimensional pressure, lb/ft2 or N/M2

r body radius, dimensionless

Rc radius of cylinder in snhere-ogive-cylinder con-
figuration, dimensionless

Rper radius of spherical cap, dimensionless

p uL

Re freestream Reynold's number,

s distance along streamline, dimensionless

u local fluid velocity in boundary layer (in direction
of a streamline) ft/sec or m/sec

63



U inviscid fluid velocity, ft/sec or m/sec

v local fluid velocity normal to streamline and body
surface, ft/sec or m/sec

V parameter defined by Equation (3.5)

x,y,z body geometry coordinate axes (see Figure 2.1)

Y(1) axial position, x, dimensionless, ft or m

Y(2) circumferential angle, d, rads

Y(3) streamline angle, 0, rads

Y(4) 30x

Y(5) en -

Y(6) transformed streamline coordinate, r

cangle of attack, degrees

coordinate normal to streamline and tangent to body

pressure gradient parameter, 2, due
ue dF

F body angle, radians (see Figure 2.2)

transformed streamline coordinate as defined in
(3.1)

transformed coordinate normal to body surface
defined in (3.2)

circumferential angle (see Figure 2.1), rads

0 streamline angle (see Figure 2.3), rads

angle between stagnation line and radius vector (see
Figure 4.1), rads

p density, slug/ft' or kg/m

ii coefficient of viscosity, slug/ft-sec or kg/m-s
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Subscri pts

freestream conditions

e edge of the boundary layer

eff effective value

W at the wall

o initial value

i streamline grid index

I value at sphere-afterbody interface

j normal grid index

SP value at stagnation point

Superscripts

-- denotes a quantity from a previous iteration

* denotes a dimensionless quantity
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APPENDIX A. EQUATIONS
1. Derivation of Eluations (3.3) and (3.4)

Blottner's method involves the boundary layer equations written in

F-V similarity form. These are obtained by application of the Levy-

Lees transformation which is defined as

Se r2 ds(A.11)
(s) = KpJu. u r' ds

and

n(s,n) - /T (A.1.2)

for incompressible flow. The transformation operators may be con-

structed and expressed as

_ Ue r2 B
r u e , + -L (A.1.3)

and

ue 1
an r-p an (A..4)

where the arbitrary constant, K, has been assiqned the value

K = I/piu. (A.I.5)
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The dependent variable in Blottner's equations is defined as

F = u/ue (A.1.6)

Application of each transformation operator and the definition of F to

the continuity equation,

a(ru) + r = 0 (A.1.7)

as an

yields

u e (rueF) ,an F+ ur 2p 1 av
e r' -- -. rue + e av _0 (A..8)

e f.~ an . , /-'r- n',

Note that neither ue nor r are functions of the normal coordinate n.

Expanding this equation yields

Ude 2 'F r de an aF + e 1 av
r ru -+ UeF d4 + Fr 0+ rU - -

ue a d7 di, easan - -o

(A.1.9)

This equation may be rewritten as

u2 r 2
er F F dr F dUe an F uer-p 1 av

-- + u r+ +ru + -an 0 (A-1-10)u , a r die -as an / p u an

By application of the product rule, this equation may be written as

du u r2 v

(F F dr F d u an F e+ r .+ + -:r rue an-F
r- -d ue dr. u e  r i e as v2 T Vp u }

Ue, F ar 06
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The derivatie in the last term of this equation may be rewritten as:

a fan = a an (] nE = / /nu, fdue rp
a [s an 3n as ur d - s

+ dr Ue_ _ _ 1 .. UerY d, 1(A.1.ds /T& ,~p~u-- 2 ds

which becomes, upon making use of Equations (A.1.1) and (A.1.5),

a 3n = r 2 due  u r u r2a-q uan red. e dr e
an Lasj 3 u _d u, d$ 2u,

Substitution of this relation into Equation (A.1.11) yields

aF+ Fdr + F due _ u F + upv ,

DT r dF u %d + an r+s
eIeUer [r2T /071TW

F due F r 2E = 0 (A.1. 13)
ued - rd 2F

This equation may then be written as

2 , - + F + v = 0 (A.1.14)3Fj a

where

V = 2 F F All +  (A.1.15)
,/' ' vzp u Ur

asu~I e

Application of the transformation operators in (A.1.3) and (A.1.4)

and the definition of F to the momentum equation
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au audu 11 a 2 u+u + - (A .1. 16)
u vas an e d• .

yields

(u r2 a(U F) vu 2r- u2 r2 du
ee an aF er F e e

uer P D2
+ e Fu p F (A.1.17)

This may be expanded to give

(uerF)2  2ran aF vu e2rp e (Uer duee r + eu + F -n + ~- F o

uf + U d 5 eFsa + - U" dE

ue  a2 F
+ 2ru an (A.1.18)

This equation may then be rearranged to yield

2f. 2 due DF 2,Fu v 2Fuo, P 3F 2F due 32F

21 F? d + 21,F + u aq 4r - --F2 , +
ue d a+ 2 +Ue as an uer r an ue dr + W

(A .1.19)

or, finally,

2F F + (F2  - + F 0 (A.1.20)3 +an a

where U1 is the pressure gradient parameter and is defined as

2r, due
U d;.
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2. Derivation of Equations (3.8) and (3. _

At all points off the stagnation point, the full system of F-V

equations must be solved. The continuity equation,

S+ - + F = 0 (A.2.1)

is evaluated at the point (i + 1/2, j - 1/2) and may be expressed as

2 i+,j ac i+ ,j-1 VI2 i+;1  2 + n i+l j 'P

+ (F i+IJ + F i+lj_I + Fi, j + Fi.T )
+ 4 -. 0

Substituting second-order accurate expressions for the appropriate

quantities yields

IFi+ - F. + F - F. (Vi+'J
A 1,j 1, i+1,j-1 ij-1 n

(F i+l j + Fi+lij I + Fi.,j + F . _1)

+ 4 0

After rearranging, the continuity equation may be expressed as

A2F i+Ij.1 + B2Fi+I, j + C2 Vi + 1  + E2V i = D2  (A .2.2)
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where

A2 = Ar+('4 + i+/AF.)

B2 = An( 4 + +, .)

C2 : -1

E= 1

and

0 2 Ail(-4 + F.i + )(Fi ,j )

The momentum equation,

2F + V + (F2 - 1) - F 0 (A.2.3)

is evaluated at (i+',j). The terms of Equation (A.2.3) become, respectively,

. F+ F

2 FF 2 iI -F2aFl

V F 2F + ai (A.2.4)
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Linearizing the first three terms using the Newton-Ranhson method yields

_F i+i +_ 2 _ .2ii+ ,j (2F Fi+l,j i+l,j 1, ) '

V+ ' i+'j i+'J i + ,i

V - DFJ 1- Vi+ 2 F L , +

2 i+'ij an

F 1)+(2 F +F - 1) (A 2. 5)-- 2 i+1,j i+1,j i+1,j Ii

Substituting second-order accurate finite difference exDressions in the

second of Equations (A.2.5) and the last of Equations (A.2.4) gives,

respectively,

aFj 1 L i+1j+1 -Fil I Fi_
V nli j i+ W1j An . .. .. Jn

2 i+ ,i" 2An 2 Vi" L 2Ar j

and

2F, 1 Fi+l,j+1 - 2F i+lj + Fi+1 F 2F. .+ F i_
lFi+;,, j 2 L A-1 . At7

After substitutinq the appropriate expressions into [quation (A.2.3),

solving for the unbarred quantities and rearranqinqthe equation may be

written as
A1Fi+Ij-1 + BIF i+IJ + C1F ,i1 + + [lV i4' ,,i D 1
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where

A I = - *-(1 + Ar j+ I

B I 1 Ar' Fi+1,j 1- + 2 +2Ft1 /tK)

1 1 -

E Ar1 ( - -Ff
(F.1 F jI i j 1 +i+1,j+1 i+1,j-1~

and

D1 =- (F 1 1 - 2F. - + F.1 1  + -A A +i Lu i-,j

+ (1I F2"j)] + IAn i 1 (l+ ~ Fj 1 i 1

+ Ain (-r2 F 2? )/iv
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3. Derivation of Finite-Difference F-V Similarity

_Euations at Stagnation 
Point

At the stagnation point r. = 0 and the F-V equations reduce to

+ F : 0 (A .3.1)

for the continuity equation and

V DF + j (F - 1) - --F = 0 (A .3.2)

for the momentum equation.

The continuity equation is evaluated at (j - 1/2) and may be

exDressed as

V. (F. + F
.3 3 1 ..--+ - - i = 0
An 2

This may be rewritten as

V. = V I  (F. + F._I  (A.3.3)

The momentum equation is evaluated at (i) after first beinq

linearized using the Newton-Ranhson technique. The equation may then

be written as

V -F + F _VDF +) f F = 0
V a + V-- -D r I (2FF - 7 - 1) - =),
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where the barred quantities denote the expressions from the previous

iteration. Substituting appropriate finite difference approximations

for each of the above terms yields

Solution of this equation for the unbarred quantities yields

A1IF j_1 + B 1F j + C1IFi+l + E 1Vj  D1

where

A, = 2 + Arl Vj

B, = -(4 + 4 T^Ar 2

C, = 2 - Ai Vj

El = Ar(F--_ 1 - T-j+ 1)

adi

D An V i2A+ i + 2A)j2A2
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4. Derivation of Equations (3.10_ andj3__1)

Hall's method involves solving the boundary layer equations written

in terms of dimensionless primitive variables. The transformations used

to obtain these equations are

s* = s/L

n* = / ReL n/L

U* = U/U,

v* = /ReL~ v/u

r* =r/L

and

,,r ReL u o-L

and a star denotes a dimensionless quantity. Accordinqly, the trans-

formation operators are constructed as follows

a 1 _a

s L s*

and

Dn L an*
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Application of each transformation operator to the continuity equation,

_2(ru) + r v=0as an=

yields

u L (r*u*) + r*L L v uv 0

S s* L 5 T ,r-eL

which will simplify to

a(r*u*) + r* = 0
as* 3n*

Note that r is not a function of the normal coordinate n.

Application of each of the transformation onerators to the momentum

equation,

( U + U dei. + 2U

u s 3u du 2u

yields

u v*u? -T U 2  du * R 2u*

.Du ReL u** , e + ReL
L-- L an* L e ds* p L

eL

which may be simplified to

u* u* au* du e + 32u *

+ * u e*
an* ds* an*"
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5. Derivation of Equations (3.12) and (3.13)

The nondimensional continuity equation,

(hu) + h v

-as Tan

(the stars have been deleted for clarity) is evaluated at the point

(i + 1/2, j - 1/2) in the computational grid. The equation may then

be written as

1[khu) I 3(hu) 1 ,, hi+1 v
i + a 11,- n0

substituting second-order accurate expressions for the appropriate

terms yields

I (hu)i+,j - (hu)i~ (hu) i+1 ,_Lt -_ h_
2 As As

+ hi+! 2 An J 0

Solving for vi+j gives

v. v - An h~+ (u .+u . )- h. u +u.. .
i+ ,j =i+,j-I 2Ash i  i+L i+1,j +  i+11j-1 i I ui-j

After rearranging the continuity equation may be rewri tten as

A2Ui+l, j + B2u i -II_1 + C2 v i, j + [2 v i,.I 1  r D2

78



where

Anhi+ 1
A2 - 2Ashi+,,

Anh i+1
B2  2Ash i+

C2 = 1

E = -1

and

Anh.
D - (u. +ui2 2Ash ,+ ij i,j-1

The nondimensional momentum equation,

au au due aluu -- + v - = Ue-_ +

is evaluated at the point (i + 1/2,j). Taken term by term, this may be

written as

1

ui  u +l -u
,- 2 ,+ j ,j

au 2, u ASj u ~
As

;-2 i+1 2, - il j u i,

L
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a~~u 2Uu j2
Substituting second-order accurate expressions for the remaininq

derivatives yields

n Ii+!. 4An IUi1j1-ui1j1 ijl ij

and

- 2u. - + u.ji

Linearizing using the Newton-Raphson method yields

ass ui+1i 2As ui+1,j 1,.)

and

vVT +2 j4An i+1,j+1 i+11J-1 i ,j+1 i"-

+ v i+i-il I-i u + 1

- V i + ;iz j uu+ 
U.

4An -u1+1 i1_ ~+ -

80



After solving for the unbarred quantities, the equation may be written

as

A , i1j-1 1 i+1 ,j + C *ui+ ,.j+1 1 vi+ ,'j D1

where

4An 2AWe

B - j41J
1 As

4An 2Aii

E = (U 4-1,i4 1 - ui+i j- + u~ ij+1 -j- u~)/4An

and

D = i+ ' + viI i+1,j+1 +'-
12As i1,j4An

u -u (u2u.
+ _______ e L + (ui,'+1 - '

+ 2AS 2An'



6. Derivation of Potential Solution for Ellipsoid of Revolution

In cartesian coordinates, the velocity components in the x, y, and

z directions may be expressed as (Ref. 3)

f2u. cost 2u,., sin (x r /cos a 2 2Ux 2 - o -B O [a A-

and

II x

2u cos (I 2u sin , r sin CO 22

Uz = 2(. Ao  2 A rai t

2- 0  2 0BR -

where p2 is defined by

a2p2 : - 3 + r~L

R( 2

and

R2 = b2/a
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(see Figure 7.t. The parameters Ao and B0 are related to the eccentricity

and are defined as follows

A - 1 a 11_

and

B (1e2) en + e

where

e = (1 - (b/a) 2)

In cylindrical coordinates, the velocity components may be expressed

as

u = u cos + u sin ¢
r y

and

U4 = uz cos - Uy sin ¢

Substitution of the appropriate parameters yields

{ 2u- cos (x r 2u.. sn i 1 co s2Ur - --A ... a R 2 2 -B o 0 -laosd a

and

2u sin a sin 4)

32 - Bo
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The component of the total velocity along a body meridian, urm  may be

obtained from

u m  = V/U x2 + U r
U x r

Substitution of the appropriate velocities yields

2u cos rt 2uno sin x
um=+ - Ij ICos 'I) Vrerp

Ur = - Aoo R2 2 - Bo 0 }

The edge velocity, ue, may be obtained from

Ue = + m 2

Substitution of the appropriate expressions for the velocity components

urm and u then gives

U {2u A a R2 u+ sino a

2u,, sin a sin 4)}
+ 2 -Bo0
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7. Derivation of Analytical Expression for Streamline Angle
and Circumferential Derivative for Ellipsoid

of Revolution

The streamline angle is related to the circumferential and meridianal

velocity components and may be shown to be

U

tan 0 = uI
Um

Substitution of the appropriate velocity components (from Appendix A,

Section 6) yields

sin a sin -1I +

tan 0 =
r co , 2 - Ao
cos CO + sin a cos

{ 2 0 
1A 

0

Application of the product rule to this equation yields

sin ( cos; o - r

DO] - ly ______________

R cos (--- .A-+sinao(cos d) F- Il

COS ( +"

R cos (X 12 o + sin a cos -
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APPENDIX B. INPUT PARAMETERS AND SUBROUTINES

1. Description of Input Parameters

Required inputs to the main program consist of the following

parameters (note that all parameters describing the body geometry must

be input with the same units).

RPER radius of spherical cap (dimensionless, ft or m)

XNOSE distance from body nose to origin of body axes

(see Figure 4.1)(dimensionless, ft or m)

BL body length, L (dimensionless, ft or m)

XINT axial location of sphere-afterbody interface

(see Figure 4.1)(dimensionless, ft or m)

DST maximum step size along a streamline, As (dimensionless,
ft or m)

DPSI step size in degrees of arc on spherical cap, Ax (deqrees)

ALPD effective angle-of-attack, 'tff (deqrees)

NBS Boundary Layer Method

0 for Hall's method

1 for Blottner's method

NT Edge Test

0 for point added at edge when velocity at point next

to edge is less than 99.95% of point at edge

I for point added when (Cf/ReL)e is above 0.005
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NC Convergence Test

o for convergence based on (Cf RriReL) changing by
L to

less than 0.5% between successive iterations

I for convergence based on each point in profile

changing by less than 0.1%

MOT Method to Integrate Streamlines

1 Milne's predictor-corrector method

2 Runge-Kutta method

3 Gear's method for stiff system of differential

equations

MAXS number of stations to be computed

KP N for velocity profiles printed every Nth station

0 for no velocity profiles printed

KPH 1 for iterative profiles printed after each Nth

station

0 for no iteration profiles printed

KPO Print Out Type

0 for ordinary print out

I for additional print out

KBM number of streamlines to compute

KBMS Indicator for Streamline Shifting

0 for ordinary run in which a circumferential position

at the interface is specified
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1 for a streamline shift to be made from the windward

streamline to a circumferential position of 1 degree

at XMAX (which will be input as PHIPD)

PHIPD circumferential position at interface (degrees)

(for KBMS = 0)

XMAX axial position at which the streamline shift is to

be made (for KBMS = 1)(dimensionless, ft or m)

ISO Type of Integration to be Performed

0 for integration of both boundary layer and streamlines

1 for integration of ;treamlines only.

Subroutine PRESS reads in the number of axial and circumferential

pressure stations as well as the-pressure data (which must be in the

form of a pressure coefficient). The pressure data is read in one com-

plete axial station at a time. The parameters relevant to this sub-

routine are also shared with the pressure fitting routine and are as

follows:

NCS number of circumferential stations

NAS number of axial stations

PHI(j) array of circumferential pressure stations

(NCS values to be input)(degrees)

X(j) array of axial pressure stations (NAS values to be

input)(dimensionless, ft or m)
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CP(i,j) pressure coefficient data

i = (1, NAS), j = (1, NCS)

The axial pressure derivatives (at the interface and body end) for each

circumferential plane are read in two at a time.

CPX(l,j) axial derivatives at interface and body end

CPX(2,j) j = (1, NCS)
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2. Subroutine BGEOM

Subroutine BGEOM computes the geometric properties relative to the

body axes used in the streamline and boundary layer calculdtions. For

an input axial position, subroutine BGEOM computes the body radius and

its derivative, and the body angle I' and its derivative (see Figure 2.2).

A call to subroutine BGEOM has the form

CALL BGEOM (X,R,DRDX,GM,DGX)

where the input argument is

X axial location, x

and the output arguments are

R body radius, r

DRDX dr/dx

GM angle r = tan-' (dr/dx)

DGX dr/dx
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3. Subroutine BLOTNR

Subroutine BLOTNR evaluates the boundary layer parameters for use

in Blottner's method. These parameters consist of 1, the transformed

coordinate along the streamline and (3 the pressure gradient term.

On the spherical nose, the expression for r, is integrated by the

Runge-Kutta method to yield i+1 and r i  (see BOUNDARY LAYER METHODS).

On the afterbody, F i+i is evaluated by the integration routine used in

the main program and then becomes an input to the subroutine.

A call to subroutine BLOTNR has the form

CALL BLOTNR (PSI,S,Y,F,DEXI,EXIH,BETA,DST)

where the input arguments are

PSI position on spherical cap in radians of arc length, £p

S distance along streamline (used only on afterbody), S

Y(j) array of dependent variables (j = 1,6)

F(j) array of first derivatives of dependent variables

(j = 1,6), F dYdS

DEXI transformed step size along streamline, At. i+I - Fi

DST step size along streamline, As

and the output arquments are

EXIH transformed coordinate at mid-noint of interval, i+,

BETA pressure gradient parameter, (-
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4. Subroutine FCN

Subroutine FCN computes the first derivative for each of the de-

pendent variables to be used in one of the streamline integration

routines.

A call to subroutine FCN has the form

CALL FCN (N,S,Y,F)

where the input arguments are

N number of differential equations

S distance along streamline (independent variable), S

Y(j) array of dependent variables 1i 1,N)

and the output argument is

dY

F(j) array of first derivatives (j 1,N), F d
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5. Subroutine COEFF

Subroutine COEFF calculates the coefficients to the appropriate

finite-difference boundary-layer equations. These coefficients are func-

tions of both the normal and tangential grid spacing, the pressure

gradient, and the velocity profile at the previous computational station

(see BOUNDARY LAYER METHODS).

A call to subroutine COEFF has the form

CALL CO[IF (JMAX,AM,BM,CM,DM,AS,CS,DS,W,WL,KB)

where the input arguments are

JMAX number of grid locations in normal direction

W(j) matrix of present iterative values of transformed

velocity components (j = 1,JMAX)(dimensionless),

u i+ ,j

WL(j) matrix of transformed velocity c iponents at last

integration station (j = 1,JMAX)(dimensionless),

*u. ui ,,j

KB indicator variable

I for calculation of coefficients of Blottner's

similarity equations at stagnation point

2 for calculation of coefficients of Blottner's non-

similar equations

3 for calculation of coefficients of Hall's equations

q3



and the output arguments are

AM(j)

BM(j)

CM(j)

DM(j) coefficients of respective boundary layer equations

AS(j)

CS

DS(j)

(all arrays are of dimension JMAX)
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6. Subroutine INVERT

Subroutine INVERT solves a block tridiagonal system of linear equa-

tions using the modified Davis algorithm. The coupled continuity and

momentum equations form such a system.

A call to subroutine INVERT has the form

CALL INVERT (JMAX,A,B,C,D,AS,CS,DS,W,KB)

where the input arguments are

JMAX number of normal grid points

A (j)

B(,i)

C(j)
0(0) coefficients to respective boundary layer equations

AS(.j) (all arrays are of dimension JMAX)

Cs

DS(j)

KB indicator variable

1 for Blottner's method at stagnation point

2 for Blottner's method at all other points

3 for Hall's method
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and the output argument is

WWj array of grid velocities (dimensionless)

(j = 1,JMAX), u~1
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7. Function KRUNGE

Function KRUNGE is a subprogram which uses the fourth-order Runge-

Kutta method to integrate a system of NDE first-order, ordinary differ-

ential equations with a variable step size. As a criterion for varying

the computing interval, the differential equations are integrated over

an interval of step size DSS first and then over the same interval with

two step sizes of DSS/2. The two solutions are then compared to give

an estimate of the error for each variable. If any error is larger than

EPS = E - 04, these answers are discarded and the comDuting interval H

is halved. If all of the error estimates are less than EPS, the answers

are allowed and the integration process continues. In addition, the

step size is either doubled or set equal to DST, whichever is the smaller,

for the next integration cycle.

The function RUNGE is used in the main program and has the form

K = KRUNGF (Y,F,S,DSS,NDE,DST,MR)

where the input arguments are

YO) array of dependent variables to be integrated,

(j = 1,NDE)

F(j) array of first derivatives of the dependent

variables, (j = I,NDF), F = dY/dS

S independent variable (distance along a streamline)

97



DSS integration step size

NDE number of differential equations

DST maximum integration steo size, AS

MR indicator variable, MR = 1 for the previous inte-

gration interval to be recomputed with a new step

size DSS determined in the main program

and the output arguments are

Y(j) array of updated dependent variables (J = 1,ND[)

F(j) array of updated derivatives (i = 1,NDE)

K indicator variable

0 implies completion of integration cycle

1 implies the integration cycle has not been

completed

2 implies the step size has been reduced to a

value below E-08
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8. Subroutine MILNES

Subroutine MILNES uses the fourth-order predictor-corrector method

of Milnes to numerically integrate a system of NDE first-order, ordinary

differential equations. Since this method is not self-starting, it

must be used in conjunction with an alternate method (such as the Runge-

Kutta or Gear method) to generate the starting values. The advantage

of a method of this type is that the computational work is keot to a

minimum between integration steps. This, however, is achieved at the

price of accuracy since the step size is held constant over the entire

interval regardless of the error introduced.

A call to subroutine MILNES has the form

CALL MILNES (Y,F,PCM,NDE,DST,S)

where the input arguments are

Y(O) array of dependent variables (j = 1,NDE)

F(j) array of first derivatives of dependent variables

(j = 1,NDE), F = d-S

PCM temporary storaqe of both the dependent variables and

their first derivatives at four previous stations

NDL number of differential equations

DST step sizP along streamline, AS
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S streamline distance (independent variable),

S

and the output arguments are

Y(j) updated array of dependent variables at next

integration step, (j = 1,NDE)

F(j) updated array of first derivatives, (j = 1,NDE)

S updated value of independent variable, S
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9. Subroutine DGEAR

Subroutine DGEAR integrates a system of first-order differential

equations using the backward differentiation formulas of Gear (Ref. 12).

This technique is particularly well suited to situations in which the

system of differential equations may be classified as stiff. In these

types of applications, other techniques would be apt to decrease the

integration step size to prohibitively small values in an attemDt to

satisfy the allowable error tolerance. Gear's method, however, has the

property of "stiff stability" which effectively removes the limitations

on the step size. The integration step size is adjusted in the routine

so as to satisfy the error tolerance specified by the user. The tech-

nique used is similar to that employed in the Runge-Kutta method de-

scribed in Function KRUNGE. The method also necessitates that (in

general) a nonlinear system of algebraic equations be solved at each

step of the integration. To solve these equations, the integration

package has the option of employing a variety of iterative schemes.

A call to subroutine DGEAR has the form

CALL DGEAR (NDE,FCN,FCNJ,S,HG,Y,SEND,TOL,METH,MITER,INDEX,IWK,WK,IER)

where the input arguments are

NOE number of differential equations to be integrated

FCN subroutine to evaluate first derivatives of

differential equations
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FCNJ subroutine to evaluate the Jacobian of the system

of differential equations -- this parameter may or

may not be specified depending on other quantities

specified in the argument

S distance along streamline, S

HG integration step size along streamline

Y(j) array of dependent variables at present station

(j = I,NDE)

SEND value of independent variable at which dependent

variables are desired , S + AS

TOL maximum error tolerance allowed between integra-

tion steps

METH Basic Integration Method

I for use of Adam's method

2 for use of Gear's method

MITER Iteration Method

0 for functional iteration, internal calculation

of the Jacobian

1 for chord method, Jacobian is supplied externally

2 for chord method, internal calculation of Jacobian

3 for chord method, diagonal approximation of

Jacobian is made internally

102



INI)[X I for first call to subroutine

0 for remaininq calls

IWK work vector of length NDE

WK work vector of length 13 x NDE

IER error parameter

33 for error test not satisfied due to too low

an error tolerance

66 for error test was satisfied only after HG

was reduced

132 error test failed after HG was decreased to

lower limit

10
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10. Subroutine PRESS

Subroutine PRESS reads in the pressure data used in the pressure

fitting technique. The input pressures must be in the form of a pres-

sure coefficient. The data read into the subroutine consist of the

following:

NCS number of circumferential pressure stations

NAS number of axial pressure stations

PHI(j) array of circumferential stations (degrees)

(j = 1,NCS)

X(i) array of axial stations (i = I,NAS)

CP(ij) pressure coefficient data (i = I,NAS, j = I,NCS)

CPX(i,j) axial pressure derivatives at body interface and

end, (i = 1,2, j = I,NCS)
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11. Subroutine SPHCAP

Subroutine SPHCAP computes the inviscid flow properties on the

spherical nose of the body to be used in the boundary layer integra-

tion. On the initial call to the subroutine, a check in continuity be-

tween the pressure and its axial derivative across the interface is first

made. If the values of the parameters should vary by more than 0.003 or 4.0, re-

spectively, the quadratic spline technique is extended to the stagnation

point. Otherwise, the series expression for the pressure coefficient

will be used. This in turn will yield the dimensionless fluid velocity

which is used in the subsequent boundary layer calculations. Additionally,

the derivative of the pressure coefficient with respect to p is calculated

for use in Blottner's boundary layer method.

A call to subroutine SPHCAP has the form

CALL SPHCAP (P,CP,UE,DCPSI)

where the input argument is

P position on nose in radians of arc length form

stagnation point, ip

and the output arguments are

CP pressure coefficient, Cp

U[ fluid velocity at edge of boundary layer

(dimensionless), ue
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DCPSI derivative of pressure coefficient with respect
acto 4), -P

an additional input to the subroutine is

COE(i) coefficients used in the series expression for CP

(i - 1,10) and is specified in a data statement

within the subroutine (see SURFACE PRESSURE DISTRI-

BUTION).
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12. Subroutine MIDPTS

Subroutine MIDPTS calculates the dependent variable at the mid-

point at each of the subintervals defined within the parabolic spline

technique (see SURFAC[ PRESSURE DISTRIBUTION). This amounts to solving

a tridiagonal system of linear algebraic equations by the LU decomposi-

tion method.

A call to subroutine MIDPTS has the form

CALL MIDPTS (AA,BB,CC,DYM,N)

where the input arguments are

AA(i)

BB(i) arrays of coefficients of tridiagonal system

CC(i) (i = 1, N - 1)

D(i)

N number of discrete data points along interval to be

spline fit

and the output argument is

YM(i) array of dependent variables at midpoints

(i = 1, N -1), Y
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13. Subroutine INVISD

Subroutine INVISD computes the properties of the inviscid flow

field at any point on the body surface after the interface. These pro-

perties consist of the pressure coefficient, the local fluid velocity

at the edge of the boundary layer, the first and second circumferential

pressure coefficient derivatives, the axial pressure coefficent deriva-

tive and the mixed derivative. These parameters result from a quadratic

spline fit to the input pressure data (see SURFACE PRFSSURE DISTRIBUTION).

The method employed is limited in application to situations in which

the number and position of the circumferential stations do not vary

between axial stations.

A call to subroutine INVISD has the form

CALL INVISD (XX,PPH,UE,DCPX,DCPPH,CPC,DCPXPD2PPH)

where the input arguments are

XX axial position, x

PPH circumferential position (radians), ,

and the output arguments are

UE fluid velocity at edge of boundary layer (dimen-

sionless), ue

1)C

DCPX axial derivative of pressure coefficient, -
)x
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DCPPH circumferential derivative of pressure coefficient,
C
..P.

CPC pressure coefficient, C
P

DCPXP mixed axial-circumferential second derivative of2C

pressure coefficient ,__]

D2PPH second circumferential derivative of pressure
D2C

coefficient,

other inputs to the subroutine consist of

NAS number of axial pressure stations

NCS number of circumferential pressure stations

X(i) array of axial pressure stations (i = 1,NAS)

PHI(j) array of circumferential pressure stations

(degrees), (j = 1, NCS)

CP(i,j) pressure coefficient data (i = 1,NAS , j = I,NCS)

CPX(i,j) axial pressure derivatives at body interface and

end (i = 1,2 j 1,NCS)
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14. Subroutine STAGN

Subroutine STAGN locates the stagnation point on a given configura-

tion. For the case of the sphere-ogive-cylinder geometry, this amounts

to calculating the Newtonian stagnation given an effective angle of

attack. For configurations having analytical pressure distributions,

the stagnation point may be calculated from analytical expressions which

must be supplied by the user (as was the case of the ellipsoid of

revol uti on).

A call to subroutine STAGN has the form

CALL STAGN (ALP,XO,XNOSE,RPER)

where the input arguments are

ALP effective angle of attack (radians), (eff

XNOSE distance from oriqin of body axes to body nose

RPER radius of spherical cap, Rpe r

and the output argument is

XO axial location of stagnation point
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15. Listing Ot Main Program

D I MESIC'I Ail (50) Bl (50) CLd(50), J)M(50)
DiliEN~S IC WS (50) , w (2,50) , WL(2,50), WO (40)

DIMiENSION I 16),F(6J ,PCMI(6,4,ij ,i.Wl(6j *iK(li0)
EXlEHEIAL ECh&,FCNJ
CC8.ICb /HALL/DSTN,DY,UE

SC08MCh /DLC%/'LA,DEXL,EXIi,BIPb

LCECUI /XH!kL/XlINT.PHIk SAL,LAL,PSIdIA1.ESILJ,RiPE
CCMCN /CPS.IA/NA D,NCS
COP.MCN /OU:PW/,C,DCPX,DLPPH,DCMXP,D2PPH,GM,DGX

C
C
C
C
C
C DESCEIETICN 05' INkUT PARAMETERS:
C
C
C FIBER SADILS LJ SPHLERICAL CAP
C XNOSE rIS2ANCE FBCM ORIGIN CF BODY AXES Tu NOSE OF BODY
C BL ICTAL LOL)Y LENGTH
C XIhT AXIAL LCCATICN CF SPIIZL8E-AFTfBClDY INTERFACE
C DST lb:EGtcATIUN STEP SIZE ALUNG SILRLINE
C DPSI STEF SIZE (,H SPHERICAL CAP (Ct.GREES Or ABC LENGTL)
C ALPD EfEEC±VE ANGLE Of ATTACK (DEGREES)
C
C NBS C FCG HALL'S DCUNDARY LAYER Ek.THLD
c I FCB BL(TTHERS MIETHIOD
C NT EDGE 2kST: 0 FOR PO~k4T AD~DED AT EDGE WHEN VELOCITY
C AT POINT
c bkXT TU ED)GE IS LESS THAN 99.95 PERCENT OF
c iJINT AT EDGE.
C I FOB POINT AuIukC &HEM LUjE SKIN FBICTlCN
c COEFFICIENT IS ABOVE O.OJ05.
C NL LCNVFbc.NCE TEST: 0 FOR CuNVEL4&SCE BASED ON CFEEX
C CHANGING BY LLSS THIN 0.5 PERCENT
C BETWEEN SUCCE5S1VE ITERATIONS*
C 1 EACU &'CINT IN PROFILE IS CHANGING BY
L LESS THAN 0.1 PERCENT.
L MOT ME1hGUJ USED 10 1ATF6.RATE STBEABIINES:
C 1 FC&I PILNEOS VRfEDICTUR COURECTUR METHOD
C2 5'Cf bLJN.E-KUTTA IIETHOD

* C 3 ?Ci. 6&Ak'S METHOD (STIFF SYSTtM)
C MAXS NU~bEai Of SiITlIONS TO b& CONEUILD
C KPto tCRi kuLLFILL!; PhiIhTED LVER't NIH STATIGN
C KFH C FCB NO INTERATIIN PROFILES i3INTED
C 1 FOB kiEriA1ICN PRCFILES PRINTED
C KPO 0 FCB OhrJINAhY PIeN: OU:
C 1 FCB ALDLIICNAL PihINT UUT
C K831 NUiiiEI CF SIBiREAILS TO TRACL
L KBMiS C F~b ui;D1aAPY RUN
C 1 FCE, A;IEAHLINE allleT FHOM FUIuJ TU PHI21.0 AT XMAX
C P11I PD (1LCUi1ELLE&dTIAL A-VcLZ AT INZEhFACE (Aa~SSaO) (DEGBEES)
C XnAX PLSI14LN Ch WIAID~hkHD SIREAMLIhmi WHERE STBEAMLINE

LSaIIFT tbJMt 6IN06AiL eLAkhL IS d1ADh (KrdtS-1

ill



C
C ISO 1 FCB INTEGRA:ION GE STREAM1LINES CIULY
C C FOB ADL~ITIGNAL NTEG.RATIGN1 UP; bkaUNDARY LAYERi
C
C
C
C STIREAPM~E 161EGB&TICN:
C
C S =SISLABLIME LIST[ANCE (IMOLFEZNDENT VARIABLE)
C TO1) %XIlL FCSITLO
C !(2) LILCUM11hiWNTIAL POSUTIUN
C Y(3) S'[SEAR'LINiE MiJLE
C Y(4) 1; (-.ETA)/ DIPHI)
C Y (5) LCG 0;i.L ~&/D (bETA))
C Y(b) hXI (FCE ILOTHERIS bETHOD OlNLY)
C
C
C
C

DGlt=PI/ 180.
C
C

B A C (1,2) SPkiIOSE,, I NT T, DS ID, ALP D
2 FCflNAI (4(lX,F10.5) ,/,3(1XF10. 5))

14 F06dIAI (11 1lK,IJ))
JflAX=4C
ETAE=4.5
tEDGI=C.15
CALL IRESS
tiDE=54!&ES
IF (SO. EQ. 1) WO TO 36

W ( 1,JMAA) = 1. G

WL (,) I 0 0PX =1
mL Id, 1)O=.QC

CkhtlL=1. 0

C
C

C
C GUESS IZii.IAL kUUILE

DO 10 J=2, JMAX
w (1,J) -V1. 0
mL(1,J)x ..
.S (J) :1.0

w (x,J) z#i (2,J- 1) -0. 5$DLTA'( (1 ,J) +W (1,J- 1))
10 CC&NUItCi

C
c
C

Xbz 1
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30 CLNIINLE

CALL .LbVEIVL IJLA,AtN,bN,Cft,DNi,AS,CS,ioS,Ia,Kb)
1090 FODl&I (, 10 (21,F8. 6))

DO 34 J=2, JIIAX
* ~~IF IAL'S ((US(J) - (1 ,J))/W(1 ,J) ).GE.O.cJO1) KD01

WL (I J) =W (1,J)
34 6S (J) a k 1,J)

* IFdIX".kc. 1) uC, 1:0 30
32 FP (!.*I (1,2l)-0.5*W (1,3) )/DEtA

.EREXFCza LfEA
IF 11L. E L.1) Gtj TO 36
IF((AeS(Cb.-CkL)/EL/CEXL).GT.O.UO5) KB1l
Cf bEL: =CF Bf
If (K8. EC. 1) GC '10 30

CFBEXkr-2. *S-.fT (2. ) *FEJE
IFILEfiEXE.Ll.U.002) GO To 36
ETAE=ElAE4Ct~lA
GO TC 4Jb

36 oiRITEt3,51
5 FCBM Al(// ,20 A IN PUT PARA&NETERS: /

wSI'IE (2,3) EE,INQSE.BL,X1Ni,0ST,Ci SID,ALPD,NAXS,Z4T,NC,SOT,
*N3S,(P,KPli,iAC, NCS,NkS

3 kO~iA(/,23x.'PLkB = 4,bX,F8.5,5X,'X(hOSE) = '5X,F8.5,/,231,
*IBC0'j LENGTB = ',lX,F8.5,5i,'XINMZEEACE) = ,F8.5,/231,
*1051 ',LA,E.5,5X,lDELTA P'SI = ,3X,18.5,/,23X,
$Ab. A~ITACiK aXF.,S'C SlITICUS z 1,18,/,23X,
O'FLGE IkSl ',.X,12,3X,ICCNV. IEXT wt,2X,12,3X,IIlB6. SETH

.,1XI~,,2J,'BL.METHIOD = ',lA,12,3X,'NG. PHOPILES 4,12,31,
*'L2L[D. kBCfiLLE. P.3/24,AkC O. x ,21,I2,3X#
*/,23X,'NO. AXIAL PhESSURE STATIONS = ,13,/,23X,
*ONC. (.I1LUikEbkNTIAL PSESSURE STATILNS 1,3,/
I F(h 2 .E%,. 0.L.KBl. E.1. Oh.S.EQ.1) GO TO 45
DC 45 jz1,JflAX
*O (..j a I,J)

45 CC. II hU E
a E 'AtzEI.TA

CAL=LLS (AlfJ

CALL ZIA;(A,,X,XNSE,P~k%)
* LH(AL.Nf.Q.Uj CLL UGEUi (4,Y0,DRCX,,;dU,DGX)

LGL=LLS (GMC)

7 Fo:A /~~~2u ULI. AU =',Fd.5,/,23X,'STAG. POIiT, T0 =I,

nfillit3,'J) iRA,Ill?~
9 fc~h3A ,'/, CX,'S"A6NA71ON frCJlJT cFbFl a ',F9.6,21,

I 'CCNV t uh .~ 1:4 1 , 13,lx 1 ,IIT hHlIto N; ,/)
k?3 1 = AC LS5 ( (6 fLm z-X I h XM4j: L) /h fEfi) - ALP
I F (fIFlC . G 1. Li) i*S IC= C G
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DE ES a;C F ' E a
CALL BGLCNEXlaNr,kl,DP.I,GMI,DUl)

uEaIE(2,33) DUh,PS.LODDESID
33 kORMV(/,1O,DiYS/fiPER U',F1#4-b,/,1OX,*PSI(EPS) =,F7.3,/,1OX,

*'DESI x ',E5*2,/)

C

8 B'EAL; 06) EHIED
FG Fbt AT IF10. 5)
lf(KEFS.E .O) t.aO TO 12
Xa1AI=EIPD

12 cc6II1hul
Jfla140
IE(REfS.EQ.1.Ui.3IS.EQ.O) GO TO 13
DC 13 J=1,JMAX
WL (1,J) WC (J)

13 CM~'i1tLE
LKzO

OR IE= 0
CkLzCfELXC
S~bEzE*ESIC

PHlF=FH1PD*)Gh
D E NS = (1. 11 kM (GRI) *'2) *S IN jP.FI P) $ 2STrt4 (ALP) *2

++ (I. + Ah (G 111) *CGS (PlilP) *T AN (&LM) * *2
BET A-ACCS I (CCS (PH IP) +T AN (GaX),$TAN (ALP) ) /SiT (D ENS .4
aE A L= ELT A/D4BR
PSI?.1A=&CCS (C&L*!5G+SAL*CGI*COS (PHIPJ)
PSIML=ES1NAXIDGB
D;Sl=LESIL*Cc~a

II (kSI.GE.FSLMAX) ESI=PS13kl
NiFSz (P51NAX-PS1O)/Di'SI
ofi'1k13.51) kflIPD,BETlt,PSIND

51 ECE1141 (/, ICX, IPHI(INTEiAf.;E) ,F6. 2,,1OX, BETA F.3/
a OFS.4,//)

LALL ,,EbCAFj0.0,CP,UE,DCPl)
II (15C. ij.0) GO TO 53
flbEEa'*SIN (ESAZAX)
dL=H
Sufi EbOESIMIAX
GO TO 42

53 ccNTlyul

35 E(Bfl1(//,1UX~fSPIERICXL, CAP RlESULTS: /
inDITE (3,52)

~ GO :0 39
CALL S:ziC&EIES,CP,UECC.PSlj
DC u~J J.=2,JMIX

' (2,J)20. 0
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4(1,J) =UE
60 cchilhUE

39 (-ALL SFHCAP (LSI,CP,UE,DCPSI)
'41 ~i~fiEB*SIN &kS1)

Nb E N El 41

40 PSlE=ESI/DG[A
WBIE f(-,37j ESID,CP,UX',CBEX,,!.iTLa,CERkXE

37 FOBNI(/,2X,(,(3X,F12-. 5) , 1 X,12,3X,F12.5)
It (AL. EQ. 1) GU TO '42
LF(kNiE.L1.N8E5) GO To 3d
3=BEB1*FSIlAX
FS1=F1lMAX
KL 1
GO !.C 39

FSIP5sI4DkS1
GO TC 39

C
c
C
C
C
C
C
C
C
C
C

4i2 LK1l
HG=0.C0001
-TGL-C.C00O1

1NCLX 1

imR E (-- 2 0

*IU' 1 15X,'UE/dJNl,10X,*DPDS*,12X,'CFBEL')

1042 FU iAI(6X,ICI14X,DCP/LJX1OX,DC/DPiiil,8X,6 ZCPXU",11X,

AbX,'tj1I.E1A)/TjPHi'l,3X,L~uDPU1l/D2ETA)')
1050 FN I,,(XE2S,1!4633~1.)

C i3EGlN IC lbACE SIlaAMLINE OVER DOLI, AETER EACH I1TEG&7IOV STEP
C CUMPl~Uk 'mE ECUNLARtY LAYER USING EITHER kLCTTNERS 08 HALLS AlTbOD
C

C IAIiMAI VALUJES A: 14TEIFACE
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LDETA=EETAS
C

Y 11) =X1 NT
SESInSZN (ESiIMAX)
CFSI=CC5~(ESII8AX)
Y (2) =EBIP
Y (3) =ACCS I (LAL*CGI-SAL*st;d*COS (Y (2) j)/SESL)
.If I! (2) .LE.0.0) Y (3) =0.0
CES1LE= ISAL*CGI*SIX CT(2) )/5PSL)
IF (Y(2) .LE. 0. 0) GO TO '43
Y (4) (SAL*SGI*SIN (112) )-COS (1(3)) *Ck-SI*DPSLDP)/

A (-S PEI*S1MI(Y (3) ))
43 1I Y(1) .Lf. 0. 0) Y 4 Sf -A SI1)?SLCS SA*G/ S 2

Y (5) A LLG (6 k 0SPSI/ (RI* C~S (Y (3))
1F(NES.EQ.0) GO TO 4(4
CALL ICN(NDE,5,yoF)

44 K=O
LP 1l
JJ=3
USSUDS1
KLZO
1F(ISC.EG.l) GO TO 130
iE(iO-T.ME.l) GU TO 550
DO 307 Jul, hL
PCfl (J.M, 1) 2 (W)

307 PCH(J,4,2)0.O
C
C
C
550 3Elic=jcST

.LE(KEMS.EC.0) GO TO 560
IF(Y(l).L7.As1X) GO TO 5b0
Y(f2) =rG
Y (3) -Y (44) *CGfi
INLEI 1
IIG=C. CCOO1

XMAX=EL
560 CCblh(EE

N~k=HNiE+ I
GC TOC(--C5,3 IC,J15) MUT

305 IF(JJ.c.E.1) Go TO 315
309 CALL MILMES(!,F,Ci,UDE,jJST,S)

GC IC 555
308 Do 580 J1 9,NLE

580 PCs (, JJ,2) -k(J)
JJ=JJ- 1
GC IC 555

C
C
C
C

310 K=KiUGE (1,k,5,SS.aNDELbST,NMf)

CALL. fCb(NELL.5 1 1,F)
LFJ.E .I)%;( TO 310

1F(S.GE.SkIJLmUd.KL.L.Q.ljJ O 10 ll
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GO 10 210
311 IE(NL.E 1.1) GU TO 312

DSEDES*(SENhL-SP) / (S-SP)
KL 1
GO 1c 310

312 KL:0
GO TO 555

C
315 CALL CGlAiI(NLE.,ECN,ECNJ,S.I1G,!.SE&ID,TOL,METH,?1ITER,INDkXII(,

*6K(,iib)
CALL kCb(N~k,S,Y,F)
IF(diU2.EQ.1) Uu TO 308

C
C
C
C
555 H.=*CCS (Y (3)3 ) EXP (Y (5))

IF (ISO. EQ. 1) %;U TO 1.30
C
600 LP1l

IF (NE.NE. 0) lkzfOD (EHPKP)
C
C

IPNL3S.E(Q.0) GO TO 85
300 1115B=0

LAIL ELCTNn 4lPSL,S.YF,DLEhL,EXIHi,BIPUi,DST)
C WIiTE f.,5CCU) Y (6j ,kXIfiDtX1,1PU
5000 FOlU*A1(/,4lX,'EXI =*,E1l4.b,/,4X,IEXIH v,E14.6,/,4X,DEXI l

361 ITEk=O
360 CALL CCFJ1AX,ki,8N,C5.,DM,AS.CS,DS,W,WL.KB)

CALL INVEB'I(JMAXANDN.Cf,D5,AS,CS,DS,M,K3)
lFlLE.l .C.ANC.KPH.E.1) wRI'IL(3,1090) (U(1,J), J=1,JIIAX)

IF1ITPS.Gf.40) GiO TO 135
iE(14C.EQ.C) GC TO 34~0

DO -150 Jz , jbAx

350 JS(JJ=h(I,J)
IE(3.E.2)GL TO 360

3'40 E(.(1z-.b(,f/DA

IF(NC.f . 1) GO TO 370

IFIIA2S(CPlikL-CiX)/CfINE1L).GT.U.OO5) KB=2
CfArEXL=LF6EX
IF(K.EC.;) UL TO 360

370 FP=1.il,~h-)05wlJA-)l5WIJIX)DT
CL' liEz~LC F 1 I* F E/ F P

Ak(NI. EC.C) tu 'Lu 375
IFjCF1EXE.Ga.U.0UO5) G0 TC 380
GO 1(; 118

375 Go TO 380
GC !c 118

3830 JHAX=JPkXi1
lFlJL1Al.re7. W) GOL TO 3b2
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LI lif JAXL)=% (I ,JMAX-1)
DC 39C J=2JdAX

.390 iv(1,J) =iL I ,J)
LII EEAE4Ez.IA
WRiITE (3, 1C30)

C. LE-%0
GO I0 361

3b2 JlI&X=26
DO 3t3 j1l,25

363 ~L (1 J) =W 1(1 JX)

ETAE=llAE4DLTA
DE7AztfTA*2.
DPSI=CESI*2. 0

CPS=DF1*2. C
WRIIE (--, 119) JN AX , DETA
DO 364 J2,JBAX

36L4 w(l,J)2idL(1,J)
KB=2
GO IC 361

C
C
C
C
C
C
C
C
C
c
C
C
C
C
C
C APPLY HALL'S IbAkSFOBATLON
C D(X)-C(X/L), D(Y)=D(S~fiT(CRE)*Y/L), U=U/VIM, UE=UE/VLN

85 AKDs3
D)Slb (S-Si) /JL

ihsSL4 (S-SL) /2. 0

dLfi=(kH8L)/2.
1lF(wL(1.JNAX).l.O.) GO TO b8
DC E8 J=2, JflAX

88 CCbTIcl
86 Ilfb=tC
91 CALL CCIFF (J lXA3,,CDflASCS C!, WL,KLU)

CALL INVEST (JMAX,A.D,C3,DflAS,CS,S,..KB)

ITE~z11ER+ 1
1ITE.G1.40) GO TO 135

IF (SC. E,. 0) G(., To 196
DO ldA J=2, JIIAX
lF IAIES I (WS (J) -w (1,J) ) /W ( IJ)) GE. 0. UU1) KL3ZJ

182 kS (J) 2hkI IJ)
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ik(1(2.E(Q.3) GO TO 97
196 FV= (2. 4h (1-O 5*w (1,3)) JDY

cFbEX=2.*1L
IF (hL. IQ. 1) GC TO 198
IFI(ABSICEIIAL-LFREX)/CP'aEXL).GT.O.UO5) KB=3
CFblkXL=CFbEX
IFf8.(.3 GO TO 97

198 K0=3
4 GO IC 115

150 JMAX=JPAX*1
lf (Jl.&X.LE.5O) Go TO 151

DO 116 Jz1, z5
JX=2*J -1

116 w~,)W(,1
imL (1,2t)=wL ( 1,50)
YECGE='iFDC*E+rY
DY=LY*2. 0
iDSIEEtSI*2. 0
CSI=0!1*2. 0
DFB=DFI*2.O
iRI'IE(3,119) JIIAX, DY

119 FC lAlg/,3X,'NOiHNAL GRID POINTS HEEUCID TOI,I4,lX,/,
*31,*C(NCRMAL) =IF14.6,/)
GC 10 121

1030 FCfiiMA(5X,k1NT ADDED AT EDGEI,/)
Yf CC=YEDG fV Y
wL (1,JEX) =wL(1 ,JMAX-1)
UEii L I(1, JfAX)
iF (UEL. LE.O. ) UEL=1.O

121 DC 113 J=1,JMkX
113 iv(l,J)=WLjl,J)*UE/UEL

G(; IC E6

LfLEAExCF5iEX*kPE/FP
IF (hT .E~m 1) GO TO 117
IE I ( 1,JMhX-)Ibi 1,JMlA1)).LT.U. 9995) Go To 150
GO TC 118

117 Iie(CfBIiXE.GE.O.U005) GO TO 150
118 CC&TINCE

Do 120 J=1,JiAX

liO CCNIINUE

lF(CkI5EA.G'I.U.0) GO TO 130
137 iS=-CkL/CEU- + SL

If(LuA.EKO) GC TO 138
* X")=XL4LXDSL* (SS-:iL)

PS= (kL4CPCSL* (.SS-SL) )/DGit
GO T0 124

138 psI5=!!1NFA~lDGR
ubIlk(3, 1081) PSIS

1081 FORAI(1l0X,'** FLOW SEP&&ATES F~OR Ta.LS STREAMLINE AT PSI -1,F7.3

GO Ii) 1440

1080 Ft.HdAT(1OX,l** FLC~d SEPAIA.Es Fuh TlaIS STEEAMLINE AT X01F.
Nk,'A,$El =',E7.3,/)

GC rc 140
130 It(pF6 0) &XLE (J,1090) (w (1,J) J1,JAAi)
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IF4LI(.E .. ) GG TO 131
Y2C-Y (2)/CGh
Y3L=Y (3)/CGB
DPTSLccX*F (1)+DCr.PH*F (2)

IE(KIC.EQ.1) WRITEi(3,1052) CiP,DCPX,.VCEPHDCPXE,D2PP1,B,ITEE,
A C~fiEXE 1 (4) 1 (5)

131 DCfPCS (CFBIA-CFL) / S-SL)
CEL=CliEX

SL=S 1

PL=Y(2)
£DXCSL=F (1)
DPDSIE (2)
IF(NlUE.GE.LNAXS) GO To 140
11 Y (1) .G1. BL) GO TO 140

I1(I~!(~Q)GO TU 40
Go To !50

135 WRhlE(3,136)
136 FOBMAI(/,3X,lLAST PROFILE FAILED TO C(ZdVEhGE AFTEB'.

GO !C 137
142 WEIII(3,1i3j
143 FOE14A'T(/,1OX,lSTREA3 LlNE TERMINATED - STEP SIZE REDlUCED TC 9,

140 iRITE(2,141) NHP
141 FClifA(/,3X,lSTRELALINE TERMINATING AFThBl,14,lX,*STATIONS',/)

IF(KE:S.LE.KBK) GO TO 8
SIC"
ENE

C
C
C
C

16. Listing of Subroutine BGEUK

SUECUTINI 2Gk(XX,E,DfiX,JfDGX)
C
C THIS SdbbiCU:Ikt COMPUTES THE GE03ETRIC PROPERTIES
C FGfl A .iEaEE-C~iVE-CILINVEh L.0NFk6URATION
C
C I IS AXIAL FCSIlI.ON
C B IS BCCX EACI(JS
C GEOdETRY PCI S&IIERE-OGIVE-CYLINDER

IF(XX.LE.C.1442) GO TO 10
if(XA.GE.5.19615) GU TO 0

GC TC 30
10 lB=Sil(0.C6C8l1*be-(XX-O.1bbl438)**4j

DY~lz(C. 1661M.3$-AA)/R
Di5U)Xx- (".*LinX**2) /R
GC IC 3C

20 R-1.
DRL4zO.
D2BDA2=O. C

30 UnzA1J(DREX)
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DG I L2flCX/ ( 1.i DUDX*02)
B El UhbN
ENE

c

C SIJEbULIINk L;EON (ZeIBDRDXGM.DGXTRAT)

C GEOlhEY ICR AN ELLIPSIOD OF REVULUTION WITH THICKNESS
C RA2IO IbAl
C

DMiDX 11.0-X) *TRAT**2/B
LGHiATAN (DBDX)
D2RDX2=-TBA1*e2/k* (1.04 (1.-X) *rsDX/ut)
DGX=CajDX2/ (1.O4DhDX**2)

ENE

17. Listing of Subroutine BLOTHB

SUI3LOUTIVE DLCTNB (iSI DS,Y,F,DEXI,EXIHj,HETA,DST)
DIMENSION V 16) .16) ,T (i) ,P(4)
CCMMCN /HALL/DSTN,DY,UE
COIINCh /OaTPI/BCP,DCPXDCPPH,DCPXPD2PHGNDGX
COMRCN /SCALE/L,IILhH

11 (PSI.LE.PS10) KL=0
GO 10 (10,20,30), KL
T(1)=0.0

fiQE~iEfh**2*hE
EXIL=0. 0

10 T('4)=UF*u*42*HpEH
P (d) =P~l
DESI=ISI-E (1)
DO 11 J=1,2

CALL SFHCAPIP(JI) .CPB,ULB,DCP)
IF(JK.bt.3) GO TO 11
UCISI=LCP
U13=UE E

11 TJ)9BUb!l(jK)*
Y(6)=EXIL4CS*(T(1)4.T(3),T(4))/

6 . 0
EXII=EXILJCP51* (1(1)44. *T(2) 41( J) )/12.0
DEXI=V (6)-EXiL
BETA=- 1I H*LCPSJ, (T (3) *UE3**2)
EXIL=V (6)
P( 1) =P14)
T 11) =1 (4I)
UEL=Ul

1P(PSI.GE.PI) KL=2
kEIUDN

30 XH=I4CXLODSI/2.IDDXL. (DST/2.) **2/2.0
Ig=XLJEXL'DSl/'4.JODIL*(DST/4.) '2/2.0
PH1 1[ICEL*DSI/2.4DDPL*(DST/2.) *2/2.0
PC=PL4CELSDSI/4.+DDPL* (DST/'4.) 0'2/2.0
CALL I&VISD(IGPQ.UEQDDPX,DPPPDPZPDPP2)
CALL lhVISC(XH.,PU,UEIID&XDPP,PDPXPDPP2)
HH (III I) /2.0

121



EllHzkI +ES * (UL*fll,*2+4~. *UE(d~*H(Q**2+UEH fl) H**2) /%z.0
DXLS=EXL+LSI*DDXL/2. 0
DLICS=L L+ES2*UDieL,2. 0
BETA=-EXIHi' (EPI *DIES+ DPP *PDS) /((UMuifif) **'e*UEH)
DLXI=Y 16) -EXIL
EXIL=Y(6)
UfL=UE

20 XL=Y(l)
EL=Y (2)
UXL= (1)
DPL=F (2)
JDXL-SIN (71 (3) ) *CUS (GM) st (3) -COS (Y (3) ) SIN (G3i) *DGX*F (1)
DEL=CCS (Y (3) '*F (3) /k(-DL(DX*F ( 1) *SIN (1 (3) ) R**2
UEL=UE
KL=3

ENE

18. Listing of Suabroutine FCN

SUEbUUIINE fCNiJ(N~,S,Y.E'D)
SE2URN
E.NE

C
C
C
C
C
C
C
C
C
C
C
C
C

COIIACN /hALL/rS'IN,OY,UE
CCtflCK /OUTE/,CE,DCPX, DCPPi, DCPXPD2iPH,GM,DGI

CALL BGEC~Ii(1),,DCX,G3,DGX)
CALL INVIS5t't(l),Y(2),U..UCPX,CPiiL,.CPXP,U2PPi)
CG =CCS (GM)
SGt=S1N(GP.)

I1H=iAN (y 13) )
F 1)C76#CGN4

F 0.) =0. 5* (SHCI*CXCHDPH/)/L*-T*G41
F (4) =-y (4) * (y (4)+SG ) / (R*4_GM)

++.E (Ei'LiDLPXP-CTi*DiPFrH/R)/UE**.e
+4U.!#(.GM'CCEX*Y (4)/(CTEI*UE#*2)
+-h0. 5'rCEPn* (H* iCP-zsDFa/)/(UIL**2*UE**2)

F (5) zY (4) / (a*CTH)
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REIM

C
C
C
C
C
C
C
C
C
C
C

19. Li.t 4.ng ot Subroutine COEYF

SUEB0UIINk C~ikF (JMl~aX,iti,Ci,DgI,AS,CS,DS,4,WL,KB)
CCMMCN /HALL/r;STN,DY,UE
CCPMICtt /B[C2,'r~LA,flEXI ,EXIH,BlPJ
CCMM1Ch /SCALE/HL,IILH,H
Dl~hhS-LCN h(2,.IIAX), WL(2,JNAX)
DIllfhSlCb Adi(JiIAX) ,D1t (jfIX) ,CH (JNX) ,DN (JMAX)
D.IENS1CN AS (JIIAX) ,DS(JMAX)
IF(KI~.2) GO TO w0

BEIA=C. 5
C SIMlAb SCLUTIL COEFFICIENTS

J1 1JIAI- 1
DC 20 J=2, 4ai1
Mi (J)=(.5 (1 .0+O.5*DETA*h (2,3))
D8 (J)=1.0 (vktTA**2) *BETA*I.(1,J)
C M (J) = 1. 0-Ai (J)

D(J) =C. 5* (Dii&4**2) * (BET&* (1. 0+JW (1,J) **2) tW (2,J) *0. 5*
* (W (1I , Jf 1) - W ( 1,J -1) ) /DETA)

DS (J)=C.0
20 CCbIIILE

C5=0. 5*1ElA
D S (JM A 1) =C. 0

60 C(LN'IINUE
Jm IJP AX- 1
Du t3 J=2,Jdil
AM (Jj=C.5iC.,l5*DZI&*W(2,J)

- 2fl M(3)=1.0*F,4..A**2*W 1,J) * (EIPli+2.*EXIH/DEXI)

DO M (J) C. 5 ( 14 ) - 2.d *1J k) L (.3-WL)) ,i
++DE5LEXI/DzkIH*iwl,J)**2-WL(1,J)**2+)

.ks (3) = C. 2 5 . rAk (bm ( 1 , J 1)WId , 1J-1) tW L (1, Jt+) - WL (1,3J-1))
D.) (J) =CEIA* &-0.25+LXIH/DEX.) * (IL (1,3) tWL(1.j-1))

b5 CLNTINUE

Ds (J3 AX) 2 CII A(0 .25+ E X I h/:DI) * (4 L( 1 ,J MAX) + 6L (I, J M&X- 1))
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C
C
C
C
C
C
C
C
C
C
c
C
C CCEFFICIE&IS F(, HALL'S METHOD

80 CCNTINUE
W (1,JI A I) =UL
J 11JFAX- 1
DO 90 J=2,JAIi
AM(J)=C.S/Cl**2 + O.25*hu(2,j)/iLy
BSN(J)=1.O0flY**2 + h(1,J)IDSTN
CM(J)-C.5/CY**2 - W(2,J) *0.25/DY
DLI(J)=0.5,LX**2*tWL(1,J+1)-2.0*WL(1,J)+WL(1.J-1))

++(b (1,J)**2fWL( 1,.J)**21*0. 5/DSTN
++ t 1I,JM&kX) **2-WL (1,JMAI) **2)/ (2. 0*DSIN)

LS (JJ =EY*EL/ t2.*DSIN*iL4) * (iL (1,J)+kL (1,J-1))
AS (J)C.25CYO (W ,J4)-ki(1J-1)+dL (1,J+1) -WL(1,J-1))

90 CCh1INUE
CS=C~ff/(2.*DSTfi*HUL)
DSLJ5AX)L!Y*HL/(2.*DSTN*HLJ*(IsLt1,JdAld+WL(1.JM&X-1))
IUIIN

CN
C
C
C
C
C
C
C
C
C
C
C

20. Listingt ot Subroutine IN'JrAT

DIMENS I CH A (JtilLX) , B (JlA A) ,C (JM AX) ,i (JMAXj
ULM ENL ICN AS (JIIAX), us (JMAX)

DilA INE 1C,4 I (5C) , EL (5,0) , (5U)
CC~C /HALL/CX,DY,UE
Jmi=JmD X-i
£ (JiIAX) =0.0
G (J.4Axj 3.0
EL (J.AX)=Uh

124



Do xC JI(~1. Jfl2
J=.j5 X -JK
DEb=i I J) -s- tji *k. 6%i 1) tCS3 ii. (J) *ui JJl) -AS (J))

G (J) G ( (J) *6 j j4 1) -AS (J3)~ )DEN
LL (J)=L (J) +(C(J) *G(J+1) -Ab(J) )*DS (j)+C (J)*EL (J+1) )DEN

23 CLNIIUE
DO 10~ j=2,JjA~x

w(2 ,J) =w(2,J-1) -CS* (W (1,J) +W J,1)) +DS (J)
10 CCNIltdE

i: N L
C
C
C
C
C
C
C
C
C

21. Listing of Function KRULNGE

)1lkbSICN F1i1 (12) ,SAVEY(12) ,Y 1(12),12(12) ,YKP (12) ,VKP (12) ,'1(N)
*F (N)

GU iW I!,5,it5, 85) , d
5 IF (ICCF.GI.0) Go -10 25

IF (AR~. j 1) GO TC 20 5
if (~u~r(H) .U. kls (11NAX)) limI2AX
DO 15 J=1vh

S A VE (J) = Y (J)
Pill (J) =f (J)

35 Y (J) =EAVEY (J)JO. 5*H*f (J)
~x.0. !*If
KRUZNGE=1

'45 DG 55 J=I,N
Pill (J) =Fill (J.) j2. DsP (J3)

a55 Y(JJ=SAVE1(J)4O.5)*liF(J)
iE1Uih

65 DC 75 J=1,N

7!3 Y (...J .'AVEY (d)la*F (J)
AXX4O.5 *H

85 DU 95 J1I,N
95 Y (-J) SAVEY.W) (PhI (J) fFjJeI* H/fb.0

It IMF.* EQ. 1) GOU Ic 165
IF (LCCE-l) 10 , 125, 145

105 DCJ 115 J=IzN
Y2 (J)=VL(J)
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115 Y (.) Y(E (.2)
X=YO
Hii/2.
M= I
LCCE= 1
GO IC 25

125 DC 135 J=1,N
135 YI(J)=YiJ)

LCCEP2
M1=0

14~5 DC 1'15 J=1,N
A. (ALE (Y (J) j.LT. 5. E-046) kio To 155

ER ( (J) -Y2 (J) )/Y (M2
~.F (AES (ES)-EPS) 155,155, 175

155 CCbu'I!NUE
165 H=2.*H

LCCE=O
KRUI4GEmO

175 DC 165 J1I,N
Y (2) =YKE (3)
F (,;)=N F(J~()

185 Y2(.j)=Y(J)
X=10
Hfi/2.
1F (ALZ (1j)L. 1 .!-10) GO TO 191)
LCCi 1
'4 1
GO ac 25

195 KBU GE=2

LU;CE=0

205 DO i15 J=1,a

GO Ic 25
EbiE

C

22. Listingy of subroutitLe MlLULX

!)Ui~CU1IN E ?MILMLS (V,F,PLA,N0E, Dz,S)

5 DC 10 Ju1, NEI

10 C'&IINLE
CALL kh.(NCk.,S, Y.F)
C -;a Jul, NEI
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30 ~LhIINCE
CALL iCh (NCr.,S, ,F)
DC 50 J=1, NEEk
DO 6,C JJ=1,j
JKZS-Jj
JK2=Ji- 1
DL 7G Jl=1,2

t 70 U i(J,JK,JL)=kt11(J,JK2,J.)
60 C~i'1NLE

&VLN (J, 1 , 1) =Y (J3)

ENE
C
C
C

23. Li...tiny of Subroutine PRESS

3UEFC(2IJNf PhLLS
CUMM~Ch /PC&IA/PIIL (40) .X(4U) ,CI? (40,4U) ,CPx (2,40)
LCrMLN /CESIA,'NAS,NCS

C
C
C NAS = NUMEER (k AAA. PhESSWk; STATIONS
C MC SUMELE~ Ck LiRiCUMLEkHENTJ.AL PLEiSSUiiE STATIONS

Dub=AC!(-1.)/1l u.

iEAL(1,5) bCS,NAS
5 FOrd A1412,1A,I2)

OC 10 J=1,NL.S

PHI (J3) =Pil (J3) SDGR

10 cohiihti
C

20 cC:LW11uf

DG 3U J=1,NAS
JiLAD (1, 35) ILE (J, K) K=1 NC!)

30 CCNiNUE
C
C
C CIA 1,J) AND LE.- (2,J) ArE TIIL AXILAL DEa.±VATIVk.S CF THE PRESSURE
C CkEkkIC:IEh A: !Hr. INTEhiFACL ANiC 1:(DY LND. EACH CIRCUAFEBENUIAL
C 2LAi H12 AVE A SCil AS LNPUI To TnaE jUADRATIC SLPINk ROUTINE.
C

IjC 40 J 1,14LS
7kAC (1, 16J LkX 1,J) ,LPX (,,Jj

lbt FiP. §- (E IC .5, 1A , 10. 5)
40 LLN'lI NU E

it h 'I U 10%~
ENE

C
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C
C

24. Listizlj ot Subroutine SPHCA'

SUniiU:lNE SEiCAP(P,CP,UE,DCPSI)
DIMENSICN COE(10)
DA'IA CCE/0.666823, 1. 130572, -0. 134J60, 0.131321, -U.009964,
*0.0114146, U.0184835, -0.00.3913, 0.0145.31, -0.627853/
CC('mCt /1 521C/XINT,PUIP,SAL,CAL,PM,kSIO,BPER
IfF.lc.0.C) m1=0
GC -TC (i1C,200I .ii
LAIL INVIEI XIN-,PHlP,UL,0CPX2,DP;LEki2,LP2,VCP'XP,D2PPH)
CALL EGECI1NT,R, DR,G1, CGX)
DES IIrX= (S AL*S114 (GMl) *C(PH I~WP) -CAL*C(US (Gfl) *DG;X/iIN (PM)
cCEDsI=G. C
CE=0.0
Do 10 J=1,9
CP=CECCE (J) *COS (J*Pil)

10 rcEES1=rCErs±-J*coE(J)*sIN(J*PM)
CP=LE4CCE (10)
DCEX=CCEDSI* EkSIDX
48iTEcJ,2C) CPL,DCPX,DCPX2

20 FCbalAm.(/,'1,lLUhrlNULTY UF PRESSURE AND DERIVATIVE ACROSS',
A' 1NUE~kACE: ',/,2(5X,F12'.5),/,2(5xFl2.5),/)

IFIALS4CP-CE.2).GT.0.003.OiADS(DCPX-DCPX2).GI.4.0J M1l

30 F~ibMA(41,1***** ,ADHATIC SPLINE EXTEN~DED TO IULLUUE',

It' bCEE BEGIUN S*'/

PHIEM,12. 0

CFE=LCFX2/rFSIDA

YP1=6.C* (Y-1.0) /PM**2
YPI8. C* (!-LE2+LPP*Pi/2. 0) /i"I'*2
REIM~

210 IF(E.GI.Pi) GC Iu 220
CEz1 *CJ'iPl1*F**2/2. 0
DCkSI=i1*E
GO Ic 230

220 CE=LE24CPI* (E-PN4) *'P2* (P-PM) **2/2. 0
D~frSI=CkP4!E2' (P-FM)

2.30 UE=5QB7 (1 .0-LP)
liE:U N

200 CF-0.C
OCESIC0.0
Du 250 j=1,9
LC;SiCLCPSI-J*CjE (J) *SIJd(J*P)

250 CP=LP4CCE (J) *COS (J*P)
Ci-LE4CCE 410)

ii I U RN

L4
C
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C
C
C
C

25. Listiny oj subroutine hIC&'TS

S SUa5(UNf d!V1PS(AA,BB,CC,D,Y ,4)
DIPkhNS1Lk (40) ,D('40) , &(140)) ,Dl(40) ,CC (40) ,D (40) ,YH (40)
IN 1=N-1
b~iktJ-2

DC 5 N(2,hII1
ALhAAA (X)* . (K-l)4138(K)

5 U(Kq=IL(K)-iA(K)*U(K-)/ALPlfA

DO 10 K1l,bB2
JK=&l4 1-K

10 Y'l J5K) =(JK) *vM~(Jx1) +a (3K)
ItElUfiN
INL

C
C
C
C
C
C
C
C
C
C
C
C
C
C
c

26. Listiiaq ot Subroutin~e INVA.SD

SiU'bLU11NE liiVSr(1Z,PPuI,UL,DCPXI)CLPH,CPC,DCPXP,D2PPH)

LCNCN /Cl~l/NASHCj
DIMEASICN DkL1X(40),ELP(4U),DP(4),CPJ(40,40),CP2(40,40)
LImtNSlCN A (40) s (40) ,C(L40) UL(40) YA~(40) ,CPT (2,40)

A ~~lFrEhSICN ALl (40) ,BETA(40) ,GAM('40).DEL(40)
i)AlA EeJ/
IF(l1.bE.0) GC Ta 100

C
LO 10 J=2,Nft'

10 LELX (J) =A JJ) -A (J- 1)

NAhi=NsAS-..
A (1) C. C
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Li1) =2./DELIL 4.si(2.+U)ELX 4) /LIELX (2))/(DELX (3) +DEL X(2))
C (1) =CELX (2) /Mik (3)/ (D.LX (2) +DELX (4))j
DO iQ =2,NAS52
A(N)=CEIN*)/DELX(N)/(DtLX(N1)+DEL(4))

+4 (2.4fLELA IN42)/Dk;LX (1+1) )/ (DELX (H+4j +DELX (4+1))
C (N4) CELX (Nt 1)/LihLX (1+2)/ tDELX (N441) tDbLX (1+2))

20 CGSi1IhUE
& (NAI!1).DE1I(NhS)/DELX (4&l)/ (VLX (biS)DELX (At1))
13 (NAN 1)=(2.jDEL (idAll) /ak;LX (NAS.)) (yELX (NAS) +DELX (ZdAMhJ

++2./DE L X (H AS)
C (tNAMI1)0.0

C
DC 30 h- ,MLS
D(1)=CE(1,H)*2./,DELX(2)+CE(2,N)*((2.+DELX(3)/CELX(2))(ELX(3I

++DELX (2) )4CLLX(2) /DELX(3) /(DELI (2)+DELX (3)) + CPX(,N)/2.0
DO 32 J2,dAfl2
D(J)=CE(J,N)*CI(J)+(2.4+DLLX(J)/ELX(J+))/(DELX(J)oiLzX(J1)))

++CE (.11,4) * C (1) +(2.+DELI (J+2) /DELX (J1+)) /(DELX (J+2)+D)ELX (.3+)))
32 CChlINUE

D(bANl)=CE(NAft1,)*(DL(AS)/ELX(AM1l)/(DELX(NAS)+DELX(NA51))
+-*(2.sDEnIN§AIr1)DkLX(NASnar(E.LX(?Anh,+CELXNAS)))
++CE(toAs.N)* e./DkELX(NAS) - CFX(2,N)/2.0
CALL t!DP'1(A,B,C,D,YM,NAS)
DO J34 J=2,NAA1
ll=DhLl (J41)+LLX(J)

CE 1 (J, W) ~.t~(DELI (J) *-.2-DELX (Jjl) *TJ)
CP~e(J,bt)md./11* (T2+TJ)

3i4 CC6~1bUE

CF1 (1A,N)=EX (,14)
CP2 (1A, )f3. *(M() CP 1,) -CiX (, ) *iX(2)/2. )/DEL (2.) **

ADELXI 141) **2
30 CChINtUE

C
C

DC 35 j1l,Nknl
35 DELXJ) =(I Jj1) +X (J) )/2.

C
Dc 40 js=2Mcs

40 DELF (J) Pil(J)-PHi (J- 1)
C

ALE(1) '0.0
BElA (l)-./tLP (2)
GiM ( 1) - (2.+CELL' (3) /DELP (2) /,(DELP (3) 4-DhLP (2))
DEL (1i) = LELL (2) /DLLY (3) / (DELP (2) +DELP~ (3))
A (1)-ALE (1)
B 4 1) =EEIA 11) fGAM 11)
C (1) =EEL (1)
Do '45 JZ2,NLM2
ALE (J) -EELP .IJ1,,DELP (J)/,LP(Ji1) iDrP (J))
ZjETA (J1) = (2.iChL' (J)/DELP iJ+l) )/ (DLP~ (J) IJeL (Jt1))
..AJ (J~) - (2. 4LLP (J44)/DELP (JtI 1) / (DELP (J342) +DtLP (.341))
DFL(J)=LEELr-(J41)/DEL'(Jt2)/(DLLP(J+l)+LLLD(J+2))
A (J) :ALE (.)

C (J)=CEL (3)
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'45 cc -ia4u
ALE (N1 ) =E.L NCS)/DELi NCH )/(DE Le(NCS)+DLLP NC*I1))
I3EINCZI1)=(,.+DkL&' (NCf 1j/DkLP (NCS)j/ (DELPa(NMI) +DELP (NCS))
Gk1P.(CF.1)=2./DELP (NCS)
LJEL (hC? 1) sC. 0
.4 (KM11)=ALFINCH 1)

C (W41l) =DEL (bC?! 1)
S C

C
DO 50 J=1*?bAI1

50 D)E (j) =(Fi (J41I) -tPHi (J) )/ . 0
M = 1

C
C
C
C
C

100 Do 10~5 J=1,&Al
IF(XX.Li.EELX(J)) GO TO 110

105 Lckh1Itl,
110 l1(XXZG.CfL~jAMi)) J=NAS

DEX=XX-1 (J)
DC 11! K=1,NLS
CF1(,)=CPJ,X)+C1(J,K)*DX+CP2(J,K*DEX**2,2.

115 CP(,K)CE1(J,K)+CE2(J,K)DEX
C
C SPLINE F11 DCIII CP AND VjCP)/DfX)
C

DO 140 L1,hCfl
IF(PFiI.LE.LE(L)) GU TO 140

1.30 CNT1NUE
140 IF(Hl;E.G1.CP(bCHl)) LcNCS

C
DO fie NZ1"

Dc 12! MK2.NiC?!
125 D (K) =CEI (14,KJ* (ALE (K) fU1TA (K) ) +CET (N, Kt1) 0 (GA? (X) +DEL K))

b (NCMI) CP1 (N.NCL11) *(1LP (MCF1) +BETA (NCH1) )+CPT (,NCS) *GAIl(NCII1)
LALL ?!1CPISJA,d,C,,YM,NCS)
1i (L. . 1) GC TO 12b
I1(L.EC.NCS) GU TO l 7
1 =CkLk (L41) fLELP (L)
T2m!I3(L)-CP:(NL))/DELP (LII)

L 13= (VP IL-1)-CET (NIL) ) /DELP~ (L)
kJ=2./T1* (CLLEtL) OT2-DELP (L+1) *TJ)
1K8.1,11* (12413)

Sk GL 1C 128
126 TJC..C

Te%=8. 0 (yI (1) -cpr IN, L) ) /i#kLP (2) * 42
GjO 1L 1&d

1U7 TJzC.L
Tj(=8. * (YH(NLM 1) CP(N, L) j/DELP(NLS) **2

128 r CIN112 1'g .41J* *C-1S22
122 rcu To 123Ij

DCkilH=C.0

GC ic 120
123 DCp[H=TJ:K*LdI
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GO TC 110
1214 DCFXE=Ij41K*EpHl
120 CCbIIldJE

LCEX=LF1(2,1)

BLIUBid
ENE

C
C
C

SU~hkIlUINE LZVISD(X.PHI,LPUE,UEX,OEP)
C
C ECITk4TIAL SOIO'11C FCi ELLIESOID Cf BEVOLUTION

CCflCN /SIAui/O,YO,SAL,CAL,TtiAT,SC,LI3ESEE,CGO,AO, BO,VGRAO
DATA M/O/
IF(M!.kC.1) GO~ TO 10
71=2.O*CAI/ (2.0-40)
T2z!.C*SALi (2.0-iO)

10 CALL EGECM(X,l,CBDX,GI.DGX,TBiAT)
APS(1 (-1.0) **24 (f/TfiAT*$2) **2
75= (2 *B/2EAI**2+T2* (X-1. U)*CCS (PhI))
UE=SbT (T!** ./ASiQ+(2*SIN (PHI))**2)
CP=1.0-aZ**2
UEI(*!(T1*CD/TRA**2t2*C(S(PHI))/APSvJ-T5**2*((X-1.0) f
A H*DDX/TuAIe*2/TaA1**2J/&PSC**2)/Ur.

UEFA=(T5*T2*1Z-1.0)*SIN LkkI))/APSQ+T**2*SIN(PHI)*COS(PHI))/UE

L)USCX= IT1*CRfl/TR&T**2+T2)/S~knX (APS.,)
YVdADELSCX*CGO/T2*YO
,%I= 1

ENE

27. Lis~ting ot Subroutine STAGN

S UBi C V IN E STAGN (ALP,XO, XNOSI, 0PE 9)
C TIS SU8bCUTINE COMPUTES THlE 1ikWTUNIAN STAGNATION POINT FCR
C A GIVEN EIECIIVL ANGLE OF ATTACK

XC=XNC~l+6PEB* (1. 0-COS (ALP))

ENE£
SUEfiCLIINE S'lAGN(ALP,X0.xuj,THATAC,iJO)

C
C TIS 5001INHE LOCATES 1UE STAGa4ATIGN FCINT CN
C AN ELLIESZCD Cl fiVULUTION
C

ES(B1 (.0OLfaAT**2)

EQB=ESC*E
AC2.0*(.-SQ)*O.5*ALGil(.+E)/(1.L))E)/E.B

E- (2. C-AU) *IAN (ALP) / (2.0-0~)
Y 0 z P* 15A !* * 2 /ij T ( 1. 0+ (r,*i,'%AT) *2)
XL=1. O-SQ5 (1.0- (YO/.RAT) **2)

kNEt
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28. Listing ol Input Data ior 5phere-
Cyive-Cylidcr Configuration

0.060811 0.10532b 17.50 .1442
O.COlu 2.0 b5.0
000 000 OC1 003 3GO 000 COO 000 002 000 000
10 34
0.0
11.25
33.75
52.25
7E.75
101.i5
1i 3. 75
146.25
168.75
180.00
0.1442
0.15690
0.16
0.17
0.18
0.20
0.21630
0.26620
0.32870
0. 409b4
0.50
0.bO
0,70
0.80
0.90
1.00
1.100
1.20
1.50
1.75
2.0
2.5
3.0
3.5
4.0
4.5
4.61
5.66
6.97
8.29
9.61
12.24
14.87
17.5
0.95-20OCO0 C.8rsUL(,U0 0.16400000 -0.4890000 -1.3840000
-1.dbH -1. ec -1.850 -1..UJd -1.598
0,9716 C.bP9o 0.2320 -0.7503 -1.5789
-1.d~j47 -t1. oqj -1. 11043 -0.bt965 -04b465

C.9703 0.b9g3 C,24C8 -U.7800 -1.610
-1.9010 -1.CJo -1.09 -0. bj5 -0.,6J9
0.9ou5 C c.,sS -j 0.2575 -0.8450 -1.6620
-1. 1L, -1.o04 -1.012 -0.612 -0. u14
0.965 C.,JOt) 0.b.61 -0.6540 -1.664
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-1.917 -1.!80 -0.9b5 -U.b53 -0.595
0.9701 C.9CJO 0.2403 -0.b330 -1.6310
-1.891 -1.!440 -0.904 -0.619 -0. 5t0
0,9770 C.9047 0.2193 -0.8100 -1.6163
-1*6743 -1. 5214 -0.8717 -0.5950 -0.5380
0.9890 C,9040 0.2242 -0.7777 -1.5840
-1.8328 -1.4710 -0. 8134 -0.5300 -0, 4b50
0.9862 C.9027 0.2347 -0.7498 -1.5430
-1.76b2 -1.4304 -0.784 -0.4700 -0.4300
0.9811 C.8995 0.2460 -0.71b9 -1.4910
-1.730J -1.3819 -0.7492 -0.4200 -0.3820
0.975 C.894 0.256 -0.68 -1.432
-1.7 -1..32 -0.725 -0. 382 -0.345
0.967 C.888 0.2b2 -0.656 -1.398
-1.666 -1.282 -0.694 -0.354 -0.317
0.958 C.882 0.267 -0.b39 -1.374
-1.636 -1.235 -0.67 -0.335 -0.300
0.95 C.874 0.269 -0.626 -1.355
-1.608 -1.190 -0.636 -0.j21 -0.284
0,942 C.867 0.271 -0,615 -1.34
-1.583 -1. 147 -0,608 -0. J14 -0.277
O.935 C.859 0.272 -0.606 -1.326
-1.555 -1.105 -0.580 -0.309 -0.274
0.92b C.851 0.271 -0.597 -1.315
-1.536 -1.C68 -0.552 -0.305 -0.72
0.918 C.842 0.270 -0.592 -1.306
-1.516 - 1. C4:) -0.525 -U.JO0 -0. 2b9
0.894 C.81. 0.259 -0.580 -1.287
-1.407 -C.S50 -0,450 -U.d86 -0.264
0.872 0.794 0.243 -0.575 -1.276
-1.435 -0. 691 -0.391 -0. 274 -0. 258
0.849 C.770 0.223 -0.572 -1.4.172
-1,412 -0.E34 -0.337 -0.262 -0. 254
0.798 C.720 0,178 -0.574 -1.264
-1. 4d4 -0. 7A1 -0.253 -0. 245 -0.245
0.741 C.666 0.129 -0.582 -1.264
-1.347 -0.624 -0.194 -0.205 -0.224
0,684 C.613 0.080 -0.595 -1.277
-1.2i4 -U.54: -0. 154 -0. 178 -0. 177
0.627 C.5f3 0.033 -0.610 -1.290
-1. 199 -0.477 -0. 162 -0. 156 -0. 148
0.583 C.518 -0.011 -0.627 -1.299
-1.105 -0.41t; -0.;'15 -0.147 -0.137
0.5570 C.510u -0.0196 -0.6305 -1.3070
-1.083 -0. 39b4 -0.23 -0. 150 -0. 140
0,5441 C,4730 -0.0528 -0.6705 -1.3163
-0.ddO -0.39 -0.425 -0.4477 -0.450
0.5380 C.4t39 -0.0790 -0.7184 -1.2856
-0.7187 -0. 4622 -0.7553 -0. 845E -0.85
0.531 0.4!2b -0.100o -0.7546 -1.1897
-0.609 -0.5472 -0. 8586 -1.0870 -1.117
0.525 C.4465 -0.1148 -0.7658 -1.2440
-0.84 -0.635 -0.d58 -1. 1896 -1.240
3.5144 C.4-328 -0.1205 -0.7538 -1.4508
-1.067 -0.64oJ -0.6351 -0. JO2 -0.750
0.5080 C.,..2b -0.0746 -0.6380 -1.0941
-0.!4 -0.32 -0..1 -0.493b -0.509
0.5012 C,43.4 -0.0131 -0,5J21 -0.8233
-0. '.15 -C. i20 -0. 440 -0.394 -0.402
-1.480 -C.01225
4,60 C.CC74
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3.40 C.C2370
-16.67 *C. 0480
-15.0 C.C8O0J
-2.20 C.C1683
15.0 .D3
32.2~5 -C.00'IdJ
47.5 C.C130
53.25 C.Cle33
56. 0
75.0
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