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INTRODUCTION

The objective of our investigation is the development of a theory of the mechanism of clectroporation.
Overall we seck to find models which allow theoretical description of measurable quantitics. This
includes the more specific objective of first providing a quantitative description of key features of
clect.ﬁc':al’ behavior, and subsequently of molecular transport.

In summary form, electroporation (i) is now beliecved to be a universal cell membrane phenomenon,
involving both the lipid bilayer and membrane macromolecules, and is therefore fundamental to mem-
brane understanding, (ii) provides a general method for introducing molecules into cells, or releasing
molecules from cells, with potentially major applications in science and technology, and yet (iii) its
mechanism is poorly understood.!- For example, no previous theory actually ibes electrical
behavior during electroporation, membrane recovery, or the amount of m: ar transport.

v
APPROACH TO A THEORETICAL MODEL " ™“™i it IUWuew Lyoys 4 ).
v Le ¢y Yol S ik o
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With this in mind, our specific goals have been: M

[
) "J\-‘
- ,

(1) Extension of an initial theory of reversible electrical breakdown to one with more solid founda-
tions, i.c. elimination of the approximate "switch on" criteria of pores, and elimination of the
assumption of the membrane containing so many pores that the membrane was "saturated” with
pores. A significant advance towards this goal has been made, and is presented in a recently
submitted paper (copy appended).

(2) Achievement of a theory which quantitatively describes the transmembrane potential, U(t), during
irreversible rupture, such that a unified theory of both REB and rupture is provided by one
model. Such a theory should yield predictions of U(t) which can be compared directly with
experiments, a basic requirement of which has not yet been achieved by other theories of electro-
poration. This has recently been accomplished, and is presented in the appended manuscript.

(3) Related achicvement of the ability to quantitatively describe incomplete REB, i.e. a discharge that
stops before the transmembrane potential reaches zero. This has also been achieved (see

appended manuscript).
89 7 13 039
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(4) Extension of our first, successful theory of the reversible electrical breakdown of electroporation
to include metastable pores associated with a "foot-in-the-door” mechanism, i.e. a molecule/pore
interaction wherein the presence of a macromolecule partially inserted within a pore prevents the
pore from shrinking and then vanishing. This approach, based on the approximation of one-
dimensional diffusion through the long lifetime pore, is a candidate mechanism for molecular
transport associated with electroporation.

(5) Further extension to include a pore-membrane macromolecule interaction in the theory. Mem-
brane channel proteins are prime candidates for such interactions, and may provide nucleation
sites for the long lifetime pores which are believed to occur.  Such metastable pores may have
significantly longer lifctimes than "ordinary" transicnt agqueous pores, and may exhibit a strong
temperature dependence of the lifetime. This candidate mechanism may also be relevant to
describing molecular transport.

(6) As partially noted above, carry out further work towards the development of an extended theory
which predicts both electrical behavior and the amount of transmembrane transport of molecules.
Hcre the involvement of membrane proteins, particularly channel forming proteins, is believed to
be important. Such a theory should include hindered diffusion as a primary mechanism, particu-
larly for long times involving persistent metastable pores. However electrokinctic mechanisms
such as electrophoresis and clectroosmosis which may also operate during the time the transmem-
brane potential is non-zero. The general goal is to predict the number of molecules which move
across a cell membrane, and also (because of the fundamentally statistical nature of the theory,
and the statistical oricntation of non-spherical cells) the distribution of transport within a ccll
population.

Throughout we have sought quantitative estimates which can be compared to the results of experiments
by oursclves and others.

SUMMARY

We have completed our initial extension of a transient aqueous pore theory of electroporation. This
improved model yields descriptions of four key aspects of complex electrical behavior:

Reversible electrical breakdown (REB) leading to complete membrane discharge
Incomplete REB (discharge halts at U > 0)

Rupture (mechanical) with its characteristic slow, sigmoidal electrical discharge
Membrane charging without dramatic behavior at small U

The extended theory quantitatively describes this complex set of behavior. This improved version
eliminates the use of sharp conduction criteria for pores, and instead uses a more realistic continuous
conduction in which an estimate of the Bom energy is used with a Boltzmann factor to describe the
reduced conductivity of a pore in a low (compared to water) diclectric constant membrane. This ver-
sion also eliminates the use of an assumption concerning the number of pores present in a membrane
at equilibrium, and instead utilizes creation and destruction rates for pores. This version further
assumes a realistic minimum pore size, based on molecular sizes. Finally, this version provides the
first unified and quantitative description of the several dramatic electroporation-related phenomena
listed above.
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We are now continuing to make progress towards combining the improved version (which describes
the very early electrical events) with a model for pore-membrane protein interactions (expected to be
relevant to the long-lived high permeability state). Although still fraught with difficulties, we antici-
pate that this approach will lead to a reasonable description of cell membrane electroporation, wherein
first dramatic electrical events occur, followed by two phases of membrane recovery (fast, complete
resealing of most pores, and slow, metastable pore-protein complexes which recover, probably through
a thermally activated process). Finally, we cxpect that mass transport through both the fast recovering
pores and slowly recovering pores will be significant, with a combination of hindered diffusion and
electrokinctic transport being significant for the fast recoverying pores, and primarily hindered diffusion
being important through the slowly recovering pore-protein complexes. Throughout, we will continue
to emphasize theoretical development which can lead to the prediction of expcrimental results, thercby
allowing direct comparisons.

COPY OF SUBMITTED MANUSCRIPT

Because of the complexity and length (47 pages) of the calculations, text and computed graphs which
show how one can quantitatively describe the electrical behavior associated with electroporation in an
artificial planar bilayer membrane, we have not attempted to summarize the calculation and its results,
as this could be misleading. Instead we have provided a complete copy of the manuscript:

Bamett, A. and J. C. Weaver "Electroporation: A Unified, Quantitative Theory of Reversible
Electrical Breakdown and Rupture” (submitted).

Figures 5 through 12 provide illustrations of the behavior of the model, and demonstrate that much of
the complex behavior observed in experiments is actually described by the model.
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ABSTRACT

We present a quantitative theory of electroporation of artificial lipid bilayer membranes. Assum-
ing that aqueous pores cause electroporation, we describe the pore population of the membrane by the
density function n(r, ), where n(r,t) dt is the number of pores with radius between r and r + dr at
time . To write a set of differential equations for the evolution of n(r,?), we assume that there is a

minimum pore size r;,, that pores of radius rp, are crcated and destroyed by thermal fluctuations,
2
and that the pore creation rate is proportional to exp(-—%). where U is the membrane voltage, we

derive a relation between pore size and pore conductance, we use the expression for the pore energy
previously derived by Pastushenko and Chizmadzhev, and we include a model of the extemal circuit.
equation numecrically. We solve the equations numerically and compare the solutions to the results of
charge pulse experiments.

In a charge-pulse experiment a membrane suffers one of four possible fates: (1) a slight increase
in electrical conductance, (2) mechanical rupture, (3) partial reversible clectrical breakdown, resulting
in incomplete discharge of the membrane, or (4) reversible electrical breakdown (REB), resulting in
complete discharge of the membrane. In agreement with experiment, our theory describes these four
fates and predicts that the fate in any particular experiment is determined by the properties of the mem-

brane and the duration and amplitude of the charging pulse.

INTRODUCTION AND BACKGROUND

Electroporation is a set of rclated phenomena, caused by the formation of aqueous pores, that are
observed in both natural and artificial bilayer membranes in response to a large applied clectric ficld.
In planar aniificial membranes these phenomena include reversible electrical brecakdown (REB) and
membrane rupture!, while in cells REB is followed by a transient high permeability state.2* Much of
the recent interest in electroporation rclates not to clectrical behavior, but rather to the significant fluxes

of molecules across cell membranes that occur during the high permeability state.8 Most applications of

Ans) £, 1080
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electroporation have involved the introduction of genetic material into cells, but the large transient
molecular fluxes have much wider applications. Although such molecular transport itself has some-
times been termed "clectroporation"”, the transient molecular flux is only one consequence of electri-
cally generated large pores; we therefore use the term “electroporation” to refer 10 all pore phenomena

associated with a large transmembrane potential difference.

Although the 1opology of cells differs from that of planar membranes, many features of REB in
planar membranes and in ccll membranes are the same.8 The planar geometry, which permits casy
access to both sides of the membrane, and the simplicity of bilayer membranes that lack proteins com-
bine to make artificial membranes a good modcl system. The insight gained from the study of artificial
membranes will be a good foundation on which to build a theory of electroporation in biological mem-

branes. The remainder of this paper dcals exclusively with artificial bilaver membranes.

First we discuss two types of experiments used for studying electroporation of anificial planar
bilayer membranes, then we describe phenomena observed in the experiments, and finally we derive
and discuss a theory that can explain many obscrvations by providing a complete description of the
observable electrical behavior of anificial bilayver membranes, including the trans-membrane potential

U (¢) and the membrane conductance G (2).

ELECTROPORATION EXPERIMENTS: VOLTAGE CLAMP AND CHARGE PULSE

There are two major types of electroporation experiments: voltage clamp and charge pulse. Both
types of experiment use apparatus similar to that shown in Figure 1. The apparatus consists of a
vessel filled with an electrolytic solution.!-812 A planar lipid bilaver membrane spans the vessel, divid-
ing it into two comparunents. In each compartment is a planar electrode oriented parallel to the mem-
branc. When the electrodes are at diffcrent potentials, the clectric ficld is perpendicular to the mem-

brane . An cxtemal circuit applies a signal to the clectrodes and mcasurcs the response of the system.

Anril 5. 1080
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An equivalent circuit for a voltage clamp experiment is shown in Figure 2 and for a charge pulse
experiment is shown in Figure 3. We model the membrane as a capacitor C in parallel with a resistor

——1—. The membrane is in series with the resistor Rg which represents the electrolyte and the elec-

Gt

trodes (we neglect the capacitance of the electrodes, which is small). The extcmal circuit consists of a
voltage source with internal resistance Ry in series with an ammeter for a voltage clamp experiment
and of a current sourcc with intcmal resistance Ry in paralle] with a voltmeter for a charge pulse

expcriment.

In a voltage clamp experiment, a voltage waveform U;(¢), typically a scrics of step functions, is
applicd to the clectrodes and the current /,,,, the sum of the charging current to the "membrane capaci-
tor" and the lcakage current through the "membrane resistor”is measured. The quantity of interest is
the membrane conductance G (). When the applied voltage is not changing G (¢) is related to U;(r)

and to the measured current /,, (1) by the equation

(1) ~ R
G@) = U,@t) ~ 1, (Rg+R7) a0

1, +(R +R)Cd1'"
m (E T dr

Typically, the amplitude of the applied voltage is of the order of 0.2 v - 0.7 v, and the duration of the

pulse is of the order of milliseconds or longer.8

In a charge pulse experiment a current waveform /;(¢), typically a square wave, is applied to the
clectrodes and at the end of the pulse the switch is opened.! After the pulse, the membrane conduc-

tance G (r) is related to the measured voliage U,, by the equation

din U,
G@®) =_c_a___’.”_). (2)
dr

Since a membrane undergoing REB can discharge in less than a microsecond, the time scale of

charge pulse experiments is much shorter than the time scale of voltage clamp experiments.  Although

the theory we develop is applicable to the behavior of membrances on all time scales of interest, in this

paper we confine oursclves 1o the discussion of charge pulse experiments and shon time scales.

Andl 5. 1080




Page 5

MEMBRANE FATES IN CHARGE PULSE EXPERIMENTS

Benz et al! have observed that a membrane in a charge pulse (pulse length = 0.4ps) experiment

suffers one of four possible fates:

(1) Slight increase in conductivity

(2) Imeversible rupture

(3) Incomplete reversible clectrical breakdown, or
(4) Reversible clectrical breakdown.

In casc 4, thc membrane conductance increases by up to cight orders of magnitude, causing the mem-
brane to discharge completely in less than 1 ps. The membrane then recovers slowly to its original
state. In case 3, the membrane conductance increases by several orders of magnitude; the membrane
then begins 10 discharge with a characteristic time of about 1 ps, but the membrane rccovers before the
membrane discharges completely. In case 2, the membrane conductance increases sharply afier a dclay
of many microscconds and ncver recovers its original properties following discharge. In case 1. the
membrane conductance incrcases slightly during the pulse and slowly retums to its original value. The
fate of the membrane in any given experiment is determined by the propenies of the membrane and the
duration and magnitude of the applied pulse. A successful electroporation theory must predict the out-
come of any given experiment and explain the differences between the four fates in terms of a reason-
able physical model.

In the present theory we hypothesize that 2 membrane contains a population of aqueous conduct-
ing pores that are created and destroyed by thermal fluctuations. Our "standard membrane” in equili-
brium at roomn temperature and with membrane voltage U = 0 contains about scven pores. We will
show that our theory gives the following explanation for the four fates:

If a small amplitude pulsc is applied to the membrane experiment, the membrane charges with 2

characteristic RC time constant. The membrane resistance does not increase significantly, as the pore

Lnd) &, 1000
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creation rate will not change much from its value for U = 0. If the pulse amplitude and duration are
large enough to cause rupture, the electric ficld across the membrane increases the pore creation rate
and causes the resulting pores 10 increase in size. The membranc conductance increascs, but not
cnough 1o causc thc membrane to discharge rapidly. Evcntually, one or more pores become large
enough 10 bccome unstable. As the large pore grows, the membrane conductance increases and the
membrane discharges, but the unstable pore continues to grow until the membrane rupturcs. If the
pulse amplitude and duration arc large cnough to cause REB, the cnhancement of the membrane con-
ductance is sufficient to discharge the membrane before any pores become unstable; the pores then
shrink in size and their number decreases, and the membrane retumns 1o its initial state undamaged.
For partial REB, the discharge is incomplete; the membrane conductance increases sufficiently rapidly

that the membrane remains charged 10 .1 v or so.

MATHEMATICAL FORMULATION

We now present a derivation of our theory, which is an exiension and improvement of previous

i3-15 Consider a membrane in an electroporation experiment, such as shown in Figure 1. Let

work.
n(r, t)dr be number of pores in the membrane with radius between r and r + dr at time ¢t. The den-

sity function n(r, 1) obeys Smoluchowski's equation!®

on _ 2n 3 | n 2AE 3
Y [aﬁ T o [kT or H 3

where D, the diffusion constant for the pore radius, is independent of r17, & is Boltzmann's constant,

T is the absolute temperature, and AE is the pore “energy”, a function of r and U with dimcensions of
, OAE ., . . . . .
encrgy that has the propeny that -(—a—)u is the cffective force acting to incrcase the pore size.
r

Equation (3) is valid for r;, < r <rp,,. We discuss the question of the appropriate values of r .,

and rp,, in the section on boundary conditions.

saml & 1080
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Equation (3) can be derived from the assumption that j, the flux density of pores in radius space,

is given by

;= _p, |81 . _n OAE
/= D’[ar+kr ar] @

The first term in the right member of Equation (4) is the "diffusion flux density” duc 10 random
changes in the size of the pores due to thermal fluctuations. The second term is the "drift flux density”
duc 1o the action of the radial force acting to change the pore size. If pores are neither created nor des-

troyed (cxcept at the “"boundaries” r ;. and r,.,), j obeys the continuity equation

an 4 _
dt +dr 0 )

Use of Equation (4) to eliminate j in Equation (3) yiclds Equation (1).
To use Equation (3) to describe a membrane we must specify the functional dependence of AE
on U and r, apply appropriate initial and boundary conditions, and writc an additional equation which

relates U (1) to n(r.t). First we discuss the function AE.

THE PORE "ENERGY" AE

The dynamics of the pore population is controlied by the physical forces that act to change pore
radius. These forces arc of two types: (I) forces due to thermal fluctuations that change rapidly and
randomly in time. and (1I) forces that are functions of the local electric ficld and the mechanical
configuration of the pore. A complete formulation of the problem would require knowledge of the
stress in the membrane for any given configuration. For a given membrane and pore shape. one would
solve Maxwell's equations for the clectric field, and use the Maxwell stress tensor 10 compuie the
forces of electrical origin. The cquilibrium shape of the membranc and pore could then be calculated

hy balancing the mechanical and clectrical siresses. One would then have to repeat the calculation,

4Andl &, 16RO \
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taking into account thermal fluctuations of the pressure in the bathing solution, the stress in the mem-
brane, and the electric field. This approach is prohibitively difficult. To make the problem tractable,
we follow Abidor et al'8 and assume that cach pore is cylindrical, and is therefore completely
described by one parameter, its radius.

We write AE as the sum of the mechanical contribution AE,,, the clectrical contribution AEg,

and an arbitrary constant AE,.

AE = AEy + AEp + AE ©®

A simple and physically reasonable form for AE,, is!9-20

AEy = 2myr —xlr? @)
where T is the surface tension of the membrane-water interface, and 7y is the edge energy of the pore.

To compute the electrizal contribution 1o the force, we must solve the clectrostatics problem.
This is a difficult task, and no adequate formulation of the problem has vet appeared in the literature.
The primary difficulty involves computing the relation between the current density and the electric field
in the aqueous phase near the membrane and inside the pores. We follow Pastushenko and Chizmad-
zhev?! and assume that the system can be described by Ohm's law, and that the electrical conductivity

G is consiant in each of three different regions:

C: in the bulk electrolyie
c = G, inside a2 pore (8)
0 inside the lipid
The conductivity ¢, is related 10 the concentrations C; and mobilities 1, of the ions in solution by the
formula
G, = Z (:‘-C}:'n,'C" 9)

<

4nnl 810686
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where ¢ = 1.6 x 107'° coulomb, z; is the charge of the i -th type of ion, and the sum is over all of the
differcnt types of ions in the solution. The conductivity inside the pore is given by
w5

0
c, = Z(z;e)zn;C;H;exp [TT_} (10)

where H;, the steric hindrance factor, is a function of the pore radius and of the radius r; of ion of

type i, and ¥ is the standard chemical potential of an ion of type i inside the pore. We usc the poly-

nomial approximation for H; given by Renkin, 2

o= p-flllulefl-el]] o

We approximate the standard chemical potential an ion in the pore by the Bom energy of a point

charge on the axis of an infinite cylinder!

(z-e)2 ) ‘
0 i .
= e P 12
a 4, r [ew (2

where € and €, arc the diclectric constants of the lipid and the water, respectively, and the function P

has a maximum value of 0.25.2

To find an approximate solution 10 the electrostatics problem, we start with the assumptions that
the pores are sufficiently far apart that their mutual interaction is negligible, and that the electric field
E, inside a pore is uniform and perpendicular to the plane of the membrane. The electrical force act-
ing 1o enlarge the pore can be expressed in terms of E,. The electric pressure difference Ap,,,. at the
pore cdge is

e.E} §E; .
APetee = __’_z____l_‘,_p_ (13)

e

where the first term is the electrical pressure in the pore and the sccond is the clectrical pressure in the

sl &, 1080
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adjacent lipid. The electrical contribution to the pore "energy” AEg is -1 times the work done to

expand the pore from r;, 10 r;

AEp = —IAp,,,c @@rr’hdr’) = —nh(e,~€) J'E2 r'dr’ (14)

" min

where we have used Equation (13). To usc Equation (14), one nceds to find an expression for £, in
terms of U. Since the membrane surface is not an equipotential when conducting pores are present,
we define U 10 be the potential differcnce across the membrane far from a pore. The voltage U can
be writien as the sum of two terms

U=U,+U (15)
where U, is the voltage drop across the pore itsclf and U, is the voltage drop in the bulk clectrolyie

ncar the ends of the pore. The clectric field E,, is related to U, by

U
) .-_--h—"- (16)

where h is the thickness of the membrane. The voltage drops U, and U are related o /,, the current

through the pore, by

U, = R, an
and

U, = R, (18)

where the pore resistance R, and the spreading resistance R, 24 are

h

Ry = — (19)
‘br oP
] o)
R, = 20':’ (20)
Because R, and R, act as a volage divider, the equation relating E, to U is
U R
E = =< (21
4 h Ry +R, )

4nd) € 1080
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Using Equation (21), we can now rewrite Equation (14) as

r

- 2
AEp = -f(ih_zfﬂi. J ol rdr (22)

" min

where

~1
nrop(r) ] 23)

afr) = [l+ 2ha,

a result first obtaincd by Pastushenko and Chizmadzhev.2! Note that for small valucs of r, a = 1,

while for large r both a and the clectrical force tend 1o 0 as —:—

It is convenient to define the constant AE | such that

AE(rmin) = 0 (24)

The function AE (r,U) is completcly defined by Equations (6) - (12) and (19) - (24). Figurc 4isa
plot of AE versus r for various values of U. The values of the parameters ¥, I', €;, €., b, ry, and 7;

used in the computation for Figure 4 are given in Table 1.

BOUNDARY AND INITIAL CONDITIONS

Since Equation (3) is a parabolic panial differential equation, appropriate boundary conditions

consist of two equations of the form

(25)

oo
l e 3
w'm
~ |3
—
{]

o

onc valid at r = rp,, and the other valid at r = r,, for all times, and an initial condition specifv-

ing n(r)forall r withinr_ . <r <r_, att = 0. The boundary condition

Anril 8, 108G
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(26)

-
]
(=]

with j defined by Equation (4), corresponds to the case of a perfectly reflecting "wall” in r space,

while the condition

n =20 @n

corresponds to a perfectly absorbing wall. We assume that no pores can exist for r < rg;,, where r_.
is a parameter of the model. Packing constraints require r;, 10 be somewhat larger than the size of
the hydrophilic headgroups (= 0.7 nm) that make up the surface of the pore, since the pore wall must

consist of at lcast scveral phospholipid molecules?3, For our calculations we usc 7, = 1.0 nm.

The problem of pore creation and destruction is unsolved. Theories based on trcatment of insta-
bilities in planar membranes can identify conditions for instability onset26-28, but do not show that
such an instability actually results in pore structures. The formation of depressions or dimples=? and
membrane breathing modes3, which might precede pore structure formation, has been considered.
None of this work is sufficiently advanced 10 permit one Lo compulc pore birth or dcath rates. We are
therefore forced 10 make ad hoc assumptions regarding the birth and death rate. We assume that the
number of pores changes due to the creation and destruction of pores of radius r;,, with the conse-

quence that the boundary condition at r = r;, is

j = N. =Ny atr = rpn (28)
where N, and A"d are the creation and destruction rates of pores of radius 7.
To form a pore, which can be thought of as an cxcitation of the membrane, the membrane must
go through configurations which are energetically unfavorable. We characterize this transition by intro-

ducing a potential barrier A. We expect that this potential barrier will be a function of U. Because

the clectrical energy is proponional 10 U* (for r = re, U =U,) we further assume that

4nri! & 10%0



A=?8 -aU? (29)

(30

where the atiempt rate v is a constant with dimensions of inverse time. This cxpression is valid as
long as the fraction of the membrane arca occupied by pores is small. Assuming that the probability

that a pore of radius r,, is destroyed is independent of U, we write

. 5
Ng = % R(Fmin) €XP [--é] 31)

where y is a constant with dimensions of velocity. Using Equations (4), (29), (30) and (31), the boun-

dary condition at r = r, becomes

3 L BaE| _ B |y exploBezaUt 1
b {Br YT Tor } = Xf('"‘*")e"p[kr] Ve"p[ T (52)

We now consider the boundary condition at r = rp,, and the related issue of large pores. In the
follow paragraphs we argue that the large pores, whose unlimited growth causes membrane rupture,
form a distinct sub-population that must be treated separately form the small pores, and we derive an
equation to describe them. The limiting size separating the large pores from the small pores is 7.
and the bound_ary condition that we apply at . joins together the two sub-populations.

We begin by defining r.(U) 10 be the largest valuc of r for which %;E = 0. Forr >r., AE

is a monotonically decreasing function of r. This mcans that a large pore is unstable, and can grow
until the membrane ruptures. For 7 sufficiently large, the "drift flux” 1crm in Equation (4) is much

larger than the "diffusion flux" term. and the probability that such a large porc will decrease in size is
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very small.

For the description of the small pores, it is thercfore appropriate t0 use any value of r,, that is
sufficiently large, and 1o apply the "absorbing wall” condition (Equation (27)) there. In the numerical
simulations, we set r ., = 2 7. (0). The presence of a pore of radius 2r.(0) (= 2x107% cm) docs not
mean that the membrane has alrcady ruptured, as such a pore is still very much smaller than the mem-
brane (= .1 cm); rather, it implies that the membrane is very likely to rupture soon, since the probabil-
ity of such a pore shrinking again is very small. Until the membranc docs rupture, the contribution
from the large pore or pores will dominate the membrane conductance G, and thercfore determine the

time cvolution of U.

Because our model is statistical in nature and a single large pore can dominatec G, we must con-
sider the cffect of fluctuations in the number of large pores. We have defined n(r) dr to be the
number of pores with radius between r and r + dr. To be more exact, n(r) dr is the average over an
ensemble of a large number of identical membranes of the number of pores with radius between r and
r + dr; the actual number in any particular membrane will in general differ from n(r) dr. If the
number of pores is large and the conductance of each pore is small, the pore populations of different
members of the ensemble are similar and all members are well described by the ensemble average. On
the other hand, if the number of pores is small and the conductance of each pore is large, the pore
populations of differcnt members of the ensemble are quite different, and no member of the ensembie

is well described by the ensembie average.

When one or more large pores dominate G, the growth of the large pores determines the time
dependence of G. For this reason it is imponant to consider the time evolution of the radius of a large
pore. We start by observing that Smoluchowski’s equation (Equation (3)) is a limiting case of the
solution of the problem of a biased random walk®!. Consider a panicle of mass m that obeys the gen-

eralized Langevin equation

Anel 8, 1080




Page 15
d*r’ kT dr’ dAE
= -t _ =y 33
" dr? D, at dr’ () 33)

where g (¢) is a random function that varies rapidly in time. Proper statistical treatment of Equation
(33) Icads to the Fokker-Planck equation. Our systcm corresponds to a "particle” with no inertia, so

that statistical treatment leads to the Smoluchowski equation (3). In the limit where m 1ends 10 zero

and :dAE/dr': > :g (l):. Equation (33) becomes

’ D
ar’ _ p dAE (34)

dr kT dr’

Thus we sce that "velocity” of the “"particle” is determined by the balance between the drag and the

driving force.

In the interest of clarity, we also give an altemnative derivation of Equation (34). In gencral, r’,
the expectation value of the radius of a pore in 2 membrane described by the density function n, is

defined by

"r n(re)dr
r = A——T— (35)

where N, is the number of pores in the membrane, i.e.

N, = Jn(r.t) dar (36)

We seek an equation for the cvolution of r’ with time. Consider a membrane with a single pore of

radius ry (> r.(0)) at ¢+ = (. The initial valuc of the density function is

n=98r-~r) (37N

where 8(r) is the Dirac delta function. Note that N, = 1atr = 0. We assumc thal, throughout its

evolution, both n (1) and of are zero at the limits of the range of r. To derive the desired equation,

or
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we take moments of Equation (3). We start by integrating Equation (3) over the entire range of r.

The left member of the resulting equation is —d% the time derivative of the number of pores. When

we integrate by pans, we see that the right member is zero. The resulting equation is easily

integrated, yielding

N, =1 (38)

Next we multiply Equation (3) by r and integrate over r. The left member of Equation (3) is now just

-%’t—. the time derivative of the expectation value of 7. Integrating the right member by pans, the first

term vanishes and the second tcrm becomes

Byf, 2 [, 2], 2 [, 28 :
kT g or [n or }dr T T " or dr (39

Since it is the diffusion term that causes n(r.r) to sprcad, and the diffusion term is small compared 10

the drift ierm for r = R (), We cxpect n (o remain sharply peaked during its subsequent evolution. In

this case, the t1crm 9AE can be removed from the integral with the understanding that it is to be

or

’

evaluated at r = r’. The remaining integral is equal to unity, and the resulting equation is clearly
equivalent to Equation (34).

We now solve Equation (34). Substitution of Equation (6) for AE into Equation (34) and use of
Equations (7) - (24) vields an equation that depends upon U, and therefore is coupled to the equation
that describes the electrical circuit. But for sufficiently large pores AEg, which contains the U -
dependence, is small compared to AE,, (compare Equation (7) to Equations (22) and (23)), and can be
neglected. The resulting equation is independent of U and can be solved analytically. Scting AE

equal 10 AE,, and using Equation (7) transforms Equation (34) into

& 2D oy 40
dr T =T <0)
4nril &, 1080
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Equation (40) is separable, and its solution is

P e+ (ry = 1 (0) exp(z-) @1)
d
where the characteristic time 1, is
kT

T = 42
4 = D, “2)

and r is the initial value of r’.

Note that Equation (41), which describes the evolution of large pores, is deterministic. To com-
bine the statistical description of the small pores with the deterministic description of large pores, we
necd a criterion for the time of formation of large pores. The probability that a pore becomes large
during the intcrval between ¢ and ¢ + dt is J(7 .02 )41, Where j is defined by Equation (4). Since
n = 0atr = rg,. only the first term in Equation (4) contributes. Since large pores cannot be des-
troyed (unless the membrane ruptures) and the probability of an additional large pore forming does not
depend upon how many large pores already exist, the formation of large pores is a Poisson process.

The probability P (N, t) that N, large pores cxist at time ¢ is given by the Poisson distribution

A’
(T -
PN;t) = e“T,‘!— (43)

where the parameter u is

on(r, 1) ,
5 ]r s dr 49

.
h = Jj(rmaxof') a’ = -DPJ

The probability that the membrane has no large pores at time ¢ is simply
P(0,t) = exp(—}) 45)
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The dominant influence of a small numbers of large pores on the rupturc process has an impor-
tant consequence; thermodynamic fluctuations cause the lifetime of a membrane undergoing rupture to
vary from experiment to experiment, even if the experimental sctups are identical. This is due to the
fact that the crcation of the large porc that causes rupture is a random process. The straightforward
way to compute ¢;, the creation time of the i-th large pore, is to use a random number gencrator, For
the purposes of this paper, it is more convenient 1o use a complciely deterministic modcl. We therefore
require £; 10 equal that value of ¢ for which p equals i; that is, the first large pore is created at ¢,
when p = 1, the second at £, when g = 2, etc, where p is defined by Equation (44). This is a reason-
able scheme, since the Poisson distribution P (N;, t) (Equation (43)) has the property that f is the

cxpectation value of N, the number of large pores.

Once a large pore forms, its radius as a function of time is given by Equation (41). We thercfore

define the density function n” as

no=n+Y08r-r@-t) (46)

where n obeys Equation (3) for rp, < 7 < rpq,, and equals zero for r > r,.. and ¢; is the creation
time of the i-th large pore.

This division of n into two picces has one drawback; if the conductance of a single pore of
radius r,, is a sizable fraction of the conductance of the membrane, there will be a noticeable discon-
tinuity in G (¢) at ¢ = r;. The only way 10 avoid this discontinuity and still correctly model the effect of
the unstable large pores (a pore with radius sufficiently large will always dominate G) is to reformu-

late the problem and perform a Monte Carlo calculation, which requircs much more computing power.
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For the initial condition, we assume that at ¢t = 0 the membrane is in equilibrium with U = 0.

The quasi-steady state solution 10 Equation (3) can be found analytically; it is

gcx 84 - 8‘- - Zﬂ‘xr - rmin) + Rr(rz - rminz)
I P kT Poin S 7 <71.(0)

= @7
") 0 r>r.(0)

THE EXTERNAL CIRCUIT

To close the sysiem of equations, one nceds an additional cquation to describe the time evolution
of U. The membrane is adequatcly modcled as a capacitor C in parallel with a resistor with conduc-
tance G (1). The valuc of C can be computed with the familiar formula from elementary clectrostatics

4% A,

C = h (48)

where A, is the arca of the membrane. The capacitance of the partition that holds the membrane is
much smaller than the capacitance of the membrane itself and can be neglected. G (¢) can be expressed
in terms of an integral over the pore population. The current /, flowing through a pore of radius r in

a membrane with voltage U across it is

U
l, = ——————— (49)
P Ry(r) + R, (r)
where R, (r) and R, (r) arc defined in Equations (19) and (20), respectively. The current/ flowing
through the entire membrane is simply the sum of the current flowing through cach pore and can be

expressed as an integral over n(r, t)

= n (r.t) )
] =U j [R(r)+R(r)J dr (50,

The membranc conductance G = _L,/'- is thercfore
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. -1
- n (r.)
G() j [R_,(r)+R,,(r) dr s

Figure 3 is a schematic diagram of the entire circuit. A square wave pulsc of amplitude /; is
applied to the clectrodes for 0 < ¢ < 1, , and at ¢t = 1, the switch is opened. Thus, charge is
supplied to the mcmbranc from an external source, but discharge after the switch opens at the end of
the pulsc can occur only through the membrane. Such a circuit is described by the differential equa-

tions

"
IR
._".L_U(G(,)+._1__) i
duU 4 RE + Ry Re + Ry 1t < 'pu'.te
C— = U 52)
dt —? ift > tpul.\'e

and the initial condition

v =0 (53)

NUMERICAL SOLUTIONS OF THE EQUATIONS

In the present model, the membrane is characterised by eleven parameters (A, g, A, Y, I, D, v,
Y, 8. 8z. and r;). Unfortunately, it is difficult to obtain better than an order of magnitude estimate
for eight of them from measurements of membrane properties other than electroporation. In principie,
one could determine their values by obtaining a "best fit" 1o experimental data. Because the number of
data points one can obtain (thc membrane potential U (1) for many values of t for diffcrent pulse
lengths, applicd poicntials, solutes, temperatures, etc.) greatly exceeds eight. the system is multiply
over determined. Therefore, unless the system is mathematically ili-conditioned. a fitting procedure
could be used 10 determine the values of the parameters. Due to the large amount of computing time

required for such a fitting proceedure, we do not fit data. Instead, we show that, for one plausible sct
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of values of the parameters (the "standard membrane”), the present model describes both REB and rup-

ture. In future work we will explore the behavior of the solutions as the parameters are varied.

We solve the Equation (3) using the Crank-Nicholson mcthod. In addition to the cleven parame-
ters that describc the membrane, one must describe the remainder of the experimental apparatus by
specifying the temperature T, the clectrical conductivity of the solution @, the radii r; and charge z; of
cach species of small ion, the shunt resistance Ry, the resistance R of the clectrodes and the solution,
and the strength of the current source as a function of time. Wc usc a squarc wave of amplitude /;
and duration ¢, for the applicd current. We specify the grid size Ar = (= rmin)/m and the
time step size At = Ar? dr /D, by quoting the values of the parameters m (the number of intervals
between grid points) and dr (the time sicp size in units of the diffusion time based on the grid spac-

ing). The values of all of the parameters used in the numcrical calculations are given in Table 1.

RESULTS

Figures 5 - 12 show the results of our numerical calculations. Wc simulated five charge pulse
experiments. which differed only in the amount of injected charge Q = 1,4, /¢ The pulse length 2,
was 0.4us for all five simulations, the amount of injected charge Q was 5 nanocoulombs, 10 nano-
coulombs, 15 nanocoulombs, 20 nanocoulombs, and 25 nanocoulombs. and the membrane parameters
are given in Tabie 1. Figures § and 6 show U’ (¢), Figures 7 and § show N (1), and Figures 9 and 10
show G () for all five simulations. The curves in Figures 5 - 10 are labeled by values of the injected
charge. There are two time scales of intcrest: a shont time scale (approx 1 us ) characieristic of mem-
brane charging and REB, and a long time scaie (=80 us) characieristic of membrane recovery or rup-
ture. Figures 5. 7 and 9 show short time scale behavior, while Figures 6, 8, and 10 show long time
scale behavior.

We denote by U the value of the membrane potential at the cnd of the applied pulse (7 = 0.4pxs),

Viewed as a function of @, Uy increases for small values of Q. reaches a maximium value, and then
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decrcases again. We dcnote by Uy, the maximum value of Uy, and by Q. the maximum value of Q.
For these simulation, Q. = 20 nanocoulombs and U, = 0.94 v. If the injected charge is greater than
Q.. REB occurs before the end of the pulse, and the membranc conductivity incrcascs so much that
the membrane stans to discharge before the pulse ends (sce Figs. 5, 7, and 9). A membrane undergo-
ing REB discharges completely in less than 1 ps. Following discharge the membrane recovers in
about 80 pus. The recovery can best be scen in Figures 8 and 10. The number of pores increascs in
less than 1 us, which looks like a step function in the long time scale plot (Fig. 8), and then decays
cxponcntially back to its equilibrium value. The membrane conductance also increascs in about 1 s,
but it decays in two stages, as can be scen in Figure 10. The first stage, during which the decay is
rapid, is causcd by the shrinking of the the porcs: the second stage, during which the decay is much
slower, is caused by the decrease in the number of pores. The membranc retums 1o its initial state in
about 80 ps. The evolution of G and N during REB are best understood by considering the evolution
of n(r) shown in Figure 11. Figure 11 shows n(r) at different times between 0 and 60 us for 0 = 20
nanocoulombs. the curves in Figure 11 are labeled with the time since the begining of the pulse.

Driven by the strong electrical forces, n increases rapidiy for all » until REB occurs. As the mem-

brane begins to discharge. the pore creation rate drops, but the force — a—aAé- still acts 10 increase the
r

size of existing pores until ¢+ = 0.5 - 0.6 us, by which time the membrane has discharged sufficiently
that the electrical force no longer dominates the mechanical force, which favors contraction. The pores
shrink faster than they are destroved, causing a decrease in the average pore size. During this time, N
decreases slowly while G decreases rapidly due to the rapid shrinking of the pores. Eventually n
relaxes to a guasi-static equilibrium; its shape no longer changes, but its magniwde decreases due 1o
destruction of pores radius ry,,. During this final phase, G decrease slowly, its variation catirely due

10 the change in A, as the membrane asymptotically approaches its original state.

For injected charge less than ., REB docs not occur during the pulse, and the membrane retaing

~Ct

its charge for a much longer time. In this case. the number of pores and the membranc conduciance
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continue to grow even after the end of the pulse. There even exists a range of Q for which the mem-
brane does not undergo REB until after the end of the pulse. For @ = 15 nanocoulombs, the mem-
brane discharges rapidly for ¢ between 0.8 ys and 4 ps, at which time U = 0.05 v and thc membranc
conductance only slightly excceds the conductance of an uncxcited membrane (= 4.5 x 107%). The

membranc cvcntually discharges completcly with an RC time constant of about 2 s.

For 0 sufficicntly small, no brcakdown occurs. For 0 = 5 nanocoulombs, the membrane rapidly
charges up to U = 0.25 v. At ¢ = 80 ps, the membrane pore population is approaching a quasi-steady
state, and the conductance has increased by a factor of about 10. The membrane then stars to
discharge with a time constant of about 0.1 s. As the membrane discharges, G decreascs and the rate

of discharge slows until it approaches the unexcited membrane RC time constant of about 2 s.

Intermediate values of Q lead to the far more interesting casc of mechanical rupture. For Q =
10 nanocoulombs, the membrane charges up 1o U = 0.5 v. It remains almost constant for about 5 us,
during which time the membrane conductance has increased sufficiently 1o cause the membrane (o
discharge. As the membrane discharges, G reaches a2 maximum and begins to decrease at about 7 =
15 us. Uniil 2 = 30 pus the evolution resembles the case O = 15 nanocoulombs, slowed down by 2
factor of about 5. The resemblance ceases at ¢+ = 31 ps at which time G stans 1o increase again due to
the effect of an unstable pore. (The discontinuities in the curve in Figure 10 are anifacts of the tech-
nique used to keep track of the large pores; in a rcal membrane G (¢) is continuous.) As G increases
the membrane discharges more and more rapidly, until it is completely discharged by ¢ = 72 ps. The
unstable pore continues to grow until the membrane ruptures. The time constant for the exponential
crowth of the unstable pore is given by Equation (42). For the present example, 7, = 13 ps. The

evolution of n leading to mechanical rupture is shown in Figure 12.

DISCUSSION
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We have presented a quantitative theory of electroporation of lipid bilayer membranes. The
theory successfully describes the four different fates of membrancs in charge pulse cxperiments. We
have not fit any data, but rather we have performed numerical "cxperiments” with a "standard mem-
brane”. While our results qualitatively agree with the experimental work of Benz et all, comparison of

our results with theirs shows the following diffcrences:

(1) The membranc voltage at the cnd of the pulse U (1,4, ) for our "standard membranc” is a much

stronger function of the injected charge than is observed experimentally.

(2) The time delay before membrane rupture for our "standard membrane” is shorter by a factor of

about 5 than is obscrved experimentally.

We do not know how much the agreement with experiment can be improved by changing the values of

the parameters; we plan to explore this question in the future.

If the data cannot be fit better by changing the valucs of the parameters, there are several areas in
which the model can be improved. Improved approximations for AE and better modeling of pore crea-
tion and destruction might improve agreement with expcriment. In addition, the current-voliage rela-
tion of a pore is probably not lincar!2-32, and this might effect the results.

Another topic for future work is modeling voltage clamp experiments, which deal with smaller
trans-membrane voliages and longer time scales. Unfortunately, simulation of a voltage clamp experi-
ment with our present computer program takes a prohibitively long time; we would nzed to reduce the
running time by a factor of 1000.

In summary, we believe that the present theory correctly describes the overall features of electro-

poration. but further work is required 10 obtain detailed quantitative agreement with experiment.
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Table 1

membrane arca

1.45 mm?

capacitance of membrane

9.61 nF

diffusion constant

5x 1070 cm¥ss

time step size (in units of D /(Ar)?)

0.5

membrane thickness 2.8 nm
tcmperature 4 x 107! ergs
scries resistance of clectrolyte, electrodes, and wires | 30 Q
intenal resistance of currcnt source 50 Q
large pore creation size 40 nm
minimum pore radius 1 nm
radius of positive ions 0.2 nm

r_ radius of negative ions 0.2 nm

1. | Source current pulse length 0.4 us

r-Z‘ld._ charge of positive ions (in units of proton charge) +1

Z_ charge of negative ions (in units of proton charge) -1

Y pore edge energy density 2 pergs/cm

r membrane surface tension 1 erg/cm?

o

al

pore creation energy barrier

2.04 1072 ergs

| 85 | pore destruction energy barrier 2.04 107!2 ergs
| Ar | crid spacing 0195 nm

i g, | dielectric constant of lipid 2.1 €

‘e, | dielectric constant of water 80 &,

iv | pore creation rate prefactor 10% 57!

!6, | conductivity of bulk solution 098 Q! em™!
!y | pore destruction rate prefactor 10'® em/s
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List of Symbols (see also Table 1)
coefficient of U? in A
concentration of i-th ion species
proton charge
electric field
electric field inside a pore
membrane conductance
steric hindrance factor for ion of radius r; in pore of radius r
applied current
measurcd current
current through a pore
flux density of pores in radius space
probability density function of pores (small pores only)
probability density function of pores (including large pores)
number of pores in the membrane as a function of time
pore creation rate
pore destruction rate

Parsegian’s function for Bom encrgy

pore radius
radius of ion of type i
pore resistance
spreading resistance (includes both sides of thc membranc)
time since stan of pulse
ransmembrane polential
applied voliage
measured voliage
transmembrane potential at the end of a square pulse
maximum transmembrane potential at the end of a square pulse
voltage drop across a conducting pore
voltage drop in electrolvie near the ends of a conducting pore (both cnds)
pore "energy”
difference in clectrical pressure at the pore edge
electrical mobility of the i-th ionic species
potential barrier for pore formation
standard chemical potential of an ion of species i inside a pore
electrical conductivity
conductivity of electrolyte within a pore
time constant for growth of an unsiable pore
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FIGURE CAPTIONS

FIGURE 1. The experimental apparatus consists of a vessel filled with an clectrolytic solution.
The vesscl is separated into two comparntments by a partition. On each side of the partition is a planar
clectrode connected 1o a power supply and a mcasuring circuit. The membranc spans an aperture in

the partition.

FIGURE 2. An equivalent circuit for a voltage clamp experiment using the apparatus shown in

Figure 1. The voltage source U;(¢) in series with the resistor Ry modcls the power supply, the resistor

Rg modcls the electrolyte, clectrodes and wires, and the capacitor C in parallel with the resistor G](r)

model the membrane. The ammeter measures the current /,, (1) flowing through the clectrodes.

FIGURE 3. An equivalent circuit for a charge pulse experiment using the apparatus shown in Fig-

ure 1. The current source /;(¢) in paralicl with the resistor Ry models the power supply, the resistor

Rg models the electrolyie, electrodes and wires, and the capacitor C in parallel with the resistor 1(1)

model the membrane. The switch is opened at the end of the current pulse. The volumetcr measures

the potential difference U,, (1) between the electrodes.

FIGURE 4. Pore "energy” vs. radius for a membrane described by the parameters listed in Table 1.
Each curve is labeled by the corresponding membrane voltage, which ranges between O and 1 volt. A
porc of radius r., is stable only for U less than about 0.35 v, and the force favors expansion of pores

larger than 20 nm for all values of U.

FIGURE &. Membrane voltage vs time (short time scale). for a simulated charge pulse experiment,

Each curve is labeled by the corresponding value of the injected charge Q. The curves for Q = 25
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nanocoulombs and 20 nanocoulombs show REB while the others do not. The values of the membrane

parameters are given in Table 1.

FIGURE 6. Membrane voltage vs time (long time scale) for a simulated charge pulse experiment.
Each curve is labeled by the corresponding value of the injected charge Q. The curves for Q = 25
nanocoulombs and 20 nanocoulombs arc the spikes at ¢ = 0. The curve for @ = 15 nanocoulombs
shows that the membrane suffered REB at ¢ = 2us, but the membrane recovered before it had time to
discharge completely. The curve for @ = 10 nanocoulombs shows rupture, while the curve for 0 =5
nanocoulombs shows that thc membrane conductance did not increasc cnough to discharge the mem-

brane. The values of the membrane parameters are given in Table 1.

FIGURE 7. Number of pores vs time (short time scale) for a simulated charge pulse experiment.
Each curve is labcled by the corresponding value of the injected charge Q. For Q = 25 nanocoulombs,
N increases from about 6 10 about 2 x 10%. The values of the membrane paramelters are given in Tuble

1.

FIGURE 8. Number of pores vs time (long time scale) for a simulated charge pulse experiment.
Each curve is labeled by the corresponding value of the injected charge Q. For Q = 25 nanocoulombs

and 20 nanocoulombs, cases for which REB occurs, N increases to about 10° in Iess than .S us and

ho o
«
o ]
Q.
«©
€
(L]
A
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xponcntially with a time constant of = 4.5 ps. For 0 = 15 nanocoulombs, N increases
rapidly 10 about 10° and remains almost constant for about 4 ps before the exponential decrease. For
N = 10 nanocoulombs. N increases 10 about 2 x 10° in about 5 u and remains almost constant for
about 30 us before the decay phase. The membrane in this case ruptures. For Q = 5 nanocoulombs,
N increases 10 about 40 in 80 ps. N’ will retum 10 its initial value as the membrane discharges with a

time constant of about 2 5. The values of the membrane paramcters are given in Table 1.
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FIGURE 9. Membrane conductance vs time (short time scale) for a simulated charge pulse exper-
iment. Each curve is labeled by the corresponding value of the injected charge Q. For membranes that
undergo REB (Q = 25 nanocoulombs, 20 nanocoulombs), G incrcases by 8-9 orders of magnitude in

less that .3 ps. The values of the membrane parameters arc given in Table 1.

FIGURE 10. Membrane conductance vs time (long time scale) for a simulated charge pulse experi-
ment. Each trace is labeled by the corresponding value of the injected charge Q. The curves for Q =
25 nanocoulombs and Q@ = 20 nanocoulombs, the two cases of REB, show a rapid rise in conductance,
followed by relaxation to the initial state in two stages. The first stage, during which G dccays
rapidly, lasts about 1.5 pus and is due to the shrinking of the pores. The sccond stage, during which G
decays much more slowly and approaches its initial valuc, lasts about 80 pus and is due to the death of
the pores. The curve for @ = 15 nanocoulombs is similar 10 the higher voltage curves, except that
REB is delaved and occurs after the end of the pulse, causing the first stage 1o take 7 ps. The curve
for @ = 10 nanocoulombs shows membrane rupture; the conductance increases for 1 > 30 us duc 10
the instability of a large pore. (The discontinuities in the curve are an anifact of the algorithm used to0
treat the large pores.) For Q = 5 nanocoulombs, the conductance increases 1o a new cquilibrium vaiue
2ppropriate 10 its non-zero membrane potential. The membrane will discharge with an RC time con-
siant of about 2 s as the membrane conductance retumns to its initial value. The values of the mem-

brane parameters are given in Table 1.

FIGURE 11. n vs. r for a porc undergoing REB. The density function n is of fundamental impor-
tance in the present theory of clectroporation, even though it impossible 10 measure it direcuy. The
curves are Jabecled by the time in us since the stant of the charging pulse and represent n(r.z) for Q =
20 nanocoulombs, The population of pores of all sizes grows for the duration of the pulse (which

corresponds to the time of REB). As the membrane rapidly discharges following REB, the pore des-
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truction rate increase, causing a depletion in the population of small pores. Large pores then shrink as

the population relaxes to its initial state. The values of the membrane parameters are given in Table 1.

FIGURE 12. n vs. r for a porc that rupturcs. The curves arc labeled by the time in s since the start
of the charging pulse and represent n(r, r) for Q = 10 nanocoulombs. Note the prescnce of a flux of
pores (n has a negative slope) through the boundary at r = 40 nm for ¢ > 30 ps. This flux Icads to

the creation of the large unstable pores that cause rupture. The probability that a large pore had formed

was 0.63 at r = 32 us. The values of thc membranc paramcters arc given in Table 1.
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