Abstract: Fourier transform infrared spectroscopy and Raman spectroscopy are being used to study the structure and stability of biomembranes from Archaeabacteria as well as to probe their function at the single residue level. In the case of bacteriorhodopsin, structural stability can be probed by examining the effect of single amino acid substitutions. A method of utilizing these crystalline membranes as 2-dimensional masks for nanometer molecular lithography has been developed. Methods for incorporating active membrane components into ordered arrays fabricated on conducting films and addressing these components is an additional objective of this project.
ANNUAL REPORT-YEAR 1

CONTRACT: N00014-88-K-0464

PRINCIPAL INVESTIGATOR: Kenneth J. Rothschild

CONTRACTOR: Boston University

CONTRACT TITLE: Biophysical Study of Archaeabacteria Biomembrane and Possible Application in Biomaterials

START DATE: July 1, 1988

RESEARCH OBJECTIVES: The objective of this project is to study the structure and molecular basis for structural stability in Archaeabacterial membranes. An additional objective is to study the utilization of these membranes in the production of new materials which are fabricated on the nanometer scale. We are focussing on the 2-dimensionally crystalline protein from the S-layer of *Sulfolobus acidocaldarius* which is resistant to low pH and high temperature. An additional system is bacteriorhodopsin from *Halobacterium halobium*, a light driven proton pump, which also exhibits structural stability and two-dimensional ordering.

PROGRESS (Year 1): In the past 10 months we have made progress in several areas as detailed below:

1. **Utilization of Archaeabacterial Membranes for Molecular Device Fabrication.** We have extended our method of nanometer lithography using the S-layer from *Sulfolobus Acidocaldarius* (1-5). This method enables us to produce a 2-dimensional array of nanometer size holes in a thin metal layer (1,2). We have now demonstrated (3,4) that by controlling the charge on the exposed carbon and metal surfaces we can produce selective binding of ferritin, an electron dense protein. The selective binding of biomolecules into a 2-d array provides us with a new tool for nanometer device fabrication. For example, ferritin can be conjugated with a variety of molecules including antibodies, thus enabling additional specificity to be obtained.

2. **FTIR Study of the Structure of S-layer Protein.** We have begun studies on the structure of the S-layer from *Sulfolobus acidocaldarius*. Our initial measurements indicate that well oriented films of S-layer can be formed. Infrared absorption in the amide I and II region indicates an unusual β-type secondary structure. Studies are currently being carried out to probe the orientation and temperature dependence of this structure. The recent demonstration that absorption
from single groups in the spectrum of biomembranes can be detected using deconvolution will enable these studies be made at the level of single residues (8).

(3) Scanning Tunneling Microscopy of Biomembranes. Two Nanoscope II scanning tunneling microscope systems (Digital Instruments, Inc.) have been setup for this project in Dr. K. Douglas and N.A. Clark’s laboratory at the University of Colorado. These systems will be used as a probe of both the membrane protein array structure as well as a potential means of addressing hybrid biomolecular structures. Initial measurements on fabricated nanostructures has begun (4). A key problem is the development of a metal overcoating which enables tunneling currents to be detected and is also suitable for nanometer lithography

(4) Studies on the Properties of Site-directed Mutants of Bacteriorhodopsin. In collaboration with Dr. H.G. Khorana’s laboratory at MIT we are studying the effects of site-directed mutations on bacteriorhodopsin (5-7). For this purpose, we have assembled a nanosecond UV/visible flash spectroscopy system capable of characterizing the photocycle of bacteriorhodopsin mutants. These measurements, being carried out by Dr. Dunach in our laboratory, will enable us to probe the structural stability of these mutants as well as to identify unusual photocycle behavior.

INVENTIONS (Year 1): A patent which was filed prior to the start date was received (see publication 1) on a method for parallel fabrication of nanometer scale multi-device structures.

WORK PLAN (Year 2):

1. Improve methods of isolation and purification of S-layer from Sulfolobus Acidocaldarius in order to eliminate impurities that interfere with obtaining uniform nanometer arrays in thin metal films. Scale-up production using an improved environmental chamber.

3. Continue development of technique to bind proteins selectively into nanometer arrays.

4. Develop methods to image and address biological molecules incorporated in nanometer arrays.

5. Continue to characterize the properties of site-specific mutants of bacteriorhodopsin.
PUBLICATIONS (Year 1):

TRAINING ACTIVITIES: There is currently one undergraduate, one Senior Research Associate and one technician involved in this project. The demographic data regarding the project personnel are:

Women or minorities-2
Non-citizens-1
Distribution List for Annual and Final Reports

1. Put a cover page (Form DD 1473) on your report and attach a copy of the distribution list. Mail one copy of the report to each person on the contractor subset list attached on which your name appears. The other subset list is for your information only. Please don't forget to attach this distribution list to your report - otherwise the folks below think they have mistakenly received the copy meant for the Molecular Biology Program and forward it to us.

2. Mail two copies to (include a DTIC Form 50 with these two copies too)
 Administrator
 Defense Technical Information Center
 Building 5, Cameron Station
 Alexandria, VA 22314

3. Mail one copy to each of the following:

(a) Dr. Michael Marron
 ONR Code 1141
 Molecular Biology Program
 800 N. Quincy Street
 Arlington, VA 22217-5000

(b) Administrative Contracting Officer
 ONR Resident Representative
 (address varies - see copy of your grant)

(c) Director,
 Applied Research Directorate
 ONR Code 12
 800 N. Quincy Street
 Arlington, VA 22217-5000

(d) Director
 Office of Naval Technology
 Code 22
 800 N. Quincy Street
 Arlington, VA 22217-5000

(e) Director
 Chemical and Biological Sci Div
 Army Research Office
 P. O. Box 12211
 Research Triangle Park, NC 27709

(f) Life Sciences Directorate
 Air Force Office of Scientific Research
 Bolling Air Force Base
 Washington, DC 20332

(g) Director
 Naval Research Laboratory
 Technical Information Div, Code 2627
 Washington, DC 20375