The Structure of the Mercury/Dimethylsulfoxide Interface in the Presence of Tetraalkylammonium Perchlorates

by

W.R. Fawcett, R.F. Unterleitner, and A.J. Motheo

Prepared for Presentation at The Electrochemical Society Meeting Los Angeles, CA, May 1989

May 1, 1989

Reproduction in whole or in part is permitted for any purpose of the United States Government

"This document has been approved for public release and sale; its distribution is unlimited"
The Structure of the Mercury/Dimethylsulfoxide Interface in the Presence of Tetraalkylammonium Perchlorates.

W.R. Fawcett, R.F. Unterleitner and A.J. Motheo

Department of Chemistry
University of California
Davis, CA 95616

Office of Naval Research
800 N. Quincy
Arlington, VA 22217-5000

Prepared for Presentation at: The Electrochemical Society Meeting, Los Angeles, CA, May 1989

Differential capacity against potential data were obtained in dimethylsulfoxide solutions containing tetraalkylammonium perchlorates. It is shown that perchlorate anion is weakly adsorbed in the vicinity of the potential of zero charge on the basis of the dependence of the experimental capacity on electrolyte concentration for tetrabutylammonium perchlorate solutions. The influence of cation size on inner layer capacity at more negative potentials, where specific adsorption is absent, is discussed and compared with that found in other aprotic solvents.
Differential capacity against potential data were obtained in dimethylsulfoxide solutions containing tetraalkylammonium perchlorates. It is shown that perchlorate anion is weakly adsorbed in the vicinity of the potential of zero charge on the basis of the dependence of the experimental capacity on electrolyte concentration for tetrabutylammonium perchlorate solutions. The influence of cation size on inner layer capacity at more negative potentials, where specific adsorption is absent, is discussed and compared with that found in other aprotic solvents.
The Structure of the Mercury/Dimethylsulfoxide Interface in the Presence of Tetralkylammonium perchlorate.

W. Ronald Fawcett, Rolf F. Unterleimer, and Ari E. Malt

Department of Chemistry, University of California, Davis, CA 95616

The structure of the mercury/non-aqueous solution interface has been studied in the presence of a number of aprotic solvents [1, 2]. In the case of dimethylsulfoxide (DMSO), Payne [3] studied the behavior of alkali metal salts with a variety of anions and observed a strong resemblance to the corresponding aqueous systems. On the other hand, the properties of the mercury/DMSO solution interface have not been investigated in the presence of tetralkylammonium salts in spite of the popularity of these electrolytes in non-aqueous electrochemistry. In this paper, we report a study of double layer structure in the presence of tetralkylammonium perchlorate (TEAP), and the corresponding tetrapropylammonium (TPAP) and tetrabutylammonium salts (TBAP) in DMSO.

Differential capacity against potential data were obtained using an ac impedance bridge with potentiostatic control of the mercury electrode. The potential of zero charge was determined using a streaming mercury electrode. In the case of TBAP, capacity data were collected at ten concentrations in the range 0.013 to 0.10 M. The potential of the Hg electrode was measured with respect to a Ag/AgCl reference electrode. The tetralkylammonium salts and the DMSO were purified using well established procedures.

Differential capacity against potential data for the Hg/TBAP system in DMSO are shown in Fig. 1, the potential scale being referenced to the potential of zero charge (p.z.c.). Diffuse layer minima coincident with the p.z.c. are clearly defined at lower salt concentrations. According to the Gouy-Chapman-Stern model of the double layer, the reciprocal of the diffuse layer capacity at the p.z.c. $1/C_0$ should be linear in the reciprocal of the square root of the electrolyte concentration $1/\sqrt{C}$ if specific adsorption is absent, the relationship being [4]

$$\frac{1}{C_0} = \frac{1}{C_{00}} + \frac{1}{f} \Theta \frac{1}{c}^{1/2}$$

where C_0 is the diffuse layer capacity estimated on the basis of Gouy-Chapman theory (see Fig. 3). According to these plots specific adsorption disappears at negative charge densities indicating that the weakly adsorbing species is the perchlorate ion.

As expected, the shape of the capacity-potential curves depends on the nature of the tetralkylammonium cation at negative charge densities. This dependence is discussed in terms of the relative influence of the cation on the dielectric constant of the inner layer and on its thickness. Finally, the data in DMSO are compared with those obtained earlier in acetonitrile [4] and dimethylformamide [5].

Acknowledgments

This work was supported by the Office of Naval Research, Washington. A.J.M. thanks the Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil for a maintenance grant.

References

*Permanent address - Instituto de Fisica e Quimica de Sao Carlos, USP, Sao Carlos, SP 13560, Brazil.
Fig. 1 Differential capacity against potential for the Hg/DMSO interface with varying concentrations of TBAP: 0.013(1), 0.032(2), 0.056(3) and 0.10 M(4).

Fig. 2 Reciprocal capacity at the p.z.c. 1/Cₒ plotted against the reciprocal of the square root of salt concentration for the Hg/DMSO interface with TBAP as electrolyte.

Fig. 3 Reciprocal capacity 1/C against the reciprocal of the diffuse layer capacity 1/Cₒ for constant electrode charge density as indicated. The lines are drawn with unit slope.