Title
Adaptive Grid Methods for Numerical Weather Prediction

Author(s)
Joseph Oliger, Professor

Contract or Grant Number(s)
N00014-84-K-0267

Performing Organization Name and Address
Department of Computer Science
Stanford University
Stanford, CA 94305

Program Element, Project, Task, and Work Unit Numbers
214a001---02/22 OCT 1987/1214

Confidentiality of this Report
Unclassified

Distribution Statement (of this Report)
Approved for public release: distribution unlimited

Distribution Statement (of the abstract entered in Block 20, if different from Report)

Supplementary Notes

Key Words
(Continue on reverse side if necessary and identify by block number)

Abstract
(Continue on reverse side if necessary and identify by block number)
FINAL REPORT

Contract Title: Adaptive Grid Methods for Numerical Weather Prediction
Principal Investigators: Joseph Oliger and Robert L. Street
Contracting Institution: Stanford University, Stanford, CA
Funding Agency: Office of Naval Research
Contract Number: N00014-84-K-0267
Contract Period: 1 March 1984 through 31 December 1988

Summary of Accomplishments:

The major objective of this project was to develop automatic adaptive grid methods for numerical weather prediction based upon computed error estimates. We began with the adaptive grid system developed at Stanford by Oliger and Berger for problems in two space dimensions and with a developmental hydrostatic primitive equation weather constituted by Tim Hogan at NEPRF. The adaptive grid system was extended to three space dimensions and the data structures of the Hogan model were modified and a solver was developed for use with the adaptive grid system. Computational experiments were successfully carried out with this system for a barotropic cyclone and an unstable baroclinic jet with horizontal refinement. The primitive hydrostatic equations were demonstrated to be inadequate for use with vertical refinement and the equations derived by Browning and Kreiss for meteorological applications were incorporated into the model and shown to reproduce the earlier results with horizontal refinement. These results are reported on in the paper by Oliger, Skamarock and Street (1989) and in the Ph.D. Thesis of Skamarock (1986). We then developed an interpolation method to preserve near hydrostatic balance of the atmosphere for use with vertical refinement. A report on this work is in preparation and this method is proposed to be used in further work for mesoscale phenomena with ONR.

We have also carried out several supporting investigations in the course of this work. We have developed an accelerated Schwarz iteration for solving elliptic equations on adaptive grid structures for the initialization calculations needed in meteorology. This work is reported on in the paper of Oliger, Skamarock and Tang (submitted for publication) and in the Ph.D. Thesis of Tang (1987). We have also investigated open boundary conditions for use with limited area forecasts. This work is reported on in the two papers by Gustafsson (1987a, 1987b).
Journal Articles:

Submitted:

B. Gustafsson, Far field boundary conditions for time-dependent hyperbolic systems.

B. Gustafsson, Inhomogeneous conditions at open boundaries for wave propagation problems.

Published:

Books Published:

Ph.D. Theses:

Wei-Pai Tang, Schwarz Splitting and Template Operators, Stanford University, 1987.

Patents Filed:

None
Patents Granted:
None

Invited Presentations:

Joseph Oliger:

Scientific Applications and Algorithm Design for High Speed Computing Workshop, University of Illinois, Urbana, IL, 7-10 April 1986.

Wei-Pai Tang:

SIAM Meeting on Parallel Computation, Los Angeles, CA December 1987.

Contributed Presentations:

William Skamarock:

Technical Reports:

W. Skamarock, J. Oliger and R.L. Street, Adaptive grid refinement for numerical weather

Personnel Supported:

Faculty:
Joseph Oliger
Robert L. Street

Visiting Faculty:
Bertil Gustafsson, University of Uppsala, Sweden

Research Associates:
Stephen Klotz

Graduate Students:
Amala Krishna
Sally Liu
C. Perng
William Skamarock
Wei-Pai Tang
Ramana Venkata
Rob van der Wijngaart