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Applications of the Quartz Crystal Microbalance to Electrochemistry

Daniel A. Buttry

University of Wyoming

Laramie, Wyoming

I. Introduction

--- he quartz crystal microbalance (QCM) is a piezoelectric device capable of extremely

sensitive mass measurements. It oscillates in a mechanically resonant shear mode by

application of an alternating, high frequency electric field using electrodes which are

usually deposited on both sides of the disk Sauerbrey was the first to recognize that these

devices could be used to measure mass chiges at the crystal surface (1). The mass

sensitivity arises from a dependence ofdht oscillation frequency on the total mass of the

(usually disk-shapedy crystal, its electrodes, and any materials present at the electrode

surface. Yfiese devices have been used for many years to measure the masses of thin films

in various types of deposition processeg (. To the extent that the density of the deposit is

known, the thickness may be calculated, so these devices are used in a number of

commercial film thickness monitors. Until about ten years ago it was thought that these

crystals would not oscillate i ids due to excessive energy loss to the solution from

viscous effects. At that time onas .Bastiaans'(3) and ", iura'4)demonstrated the

use of the QCM in the liquid environment for the determinatiou of mass changes at the

crystal surface. These reports made clear the potential utility of the QCM for accurate, in

situ determinations of extremely small mass changes of the crystal electrodes or films

deposited on them. X , ' \ dAC- M4C '- C3 " -

The use of the QCM in an electrochemical context to monitor mass changes at
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electrodes was first demonstrated by Jones and Mieure (5,6), who showed that trace metal

determinations were possible by plating the metals onto a QCM electrode and measuring

the change in resonant frequency of the crystal in air following its removal from the

electrochemical cell. The first in situ application of the QCM to electrochemical problems

was by Nomura and coworkers (7,8) who used it to determine Cu(II) and Ag(I) by

electrodeposition. (Such in situ applications of the QCM to electrochemical systems will

be distinguished from non-electrochemical applications by referring to the former as

EQCM (electrochemical QCM) experiments.) When used as an in situ technique for

measuring mass changes at electrode surfaces, one of the EQCM electrodes is used

simultaneously to provide for the alternating electric field which drives the oscillation of

the crystal and as the working electrode in the electrochemical cell. Thus, the EQCM

experiment involves the measurement of the various electrochemical parameters, such as

potential, current, and charge, at one of the EQCM electrodes and the simultaneous

measurement of the oscillation frequency of the piezoelectric crystal from which, in

favorable cases, minute mass changes at the electrode may be inferred. Various

instrumental approaches to this have been used which will be described in a later section.

Since the pioneering publications of Nomura appeared the EQCM has been used to

study monolayer and multilayer depositions and dissolutions, mass transport in polymer

fflms on electrodes, corrosion processes at electrodes, electroless depositions, and mass

changes caused by protein adsorption at electrodes. In addition, many other applications

are on the horizon. It is the purpose of this Chapter to describe the use of the EQCM to

study problems of interest to the electrochemical community, to give information about

the experimental aspects of its in situ use, and to discuss its potential for future

application. A detailed review of the piezoelectric effect in quartz crystals is not presented

here, as this topic has been adequately discussed elsewhere (see reference 2 and references

therein). Also, the use of the QCM for other (non-electrochemical) analytical applications
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related to the determination of mass changes at surfaces in liquids or gases, while of

considerable current interest, are not discussed in detail here, except to the extent that such

results impact on electrochemical studies.

IL Experimental Methods

A. Instrumentation and Materials

1. Crystals

Nearly all of the reported applications of the QCM have employed alpha quartz

crystals because of the superior mechanical and piezoelectric properties of alpha quartz.

The QCM transducers are prepared (usually by the manufacturer) by cutting the desired

parts from large single crystals of alpha quartz at certain angles with respect to the

crystalline axes of the quartz crystal (9). For QCM applications, the AT, BT, and SC

(stress-compensated) cuts (9) have been most frequently employed. AT-cut crystals are

particularly popular because they can be cut to give nearly zero temperature coefficients

(the proportionality constant relating the oscillation frequency of a crystal in vacuum to its

temperature) at one or two temperatures (9). However, as will be discussed below,

temperature effects for crystals immersed in liquids far outweigh the intrinsic temperature

dependence of the crystals themselves, and must be taken into account in most

electrochemical applications. SC-cut crystals would seem to offer certain advantages in

terms of the elimination of stress-induced frequency changes (vide infra), but have not as

yet been investigated in EQCM applications. In the remainder of this Chapter, the

discussion will be restricted to AT-cut crystals unless otherwise specified.

QCM crystals are typically employed as thin, disk-shaped transducers which oscillate

in a pure shear mode when an alternating electric field of the proper frequency is applied

across the disk, i.e. the electric field lines are normal to the disk surface. Figure 1 shows

an edge view of a QCM disk with an exaggerated view of the shear distortion from the

oscillation. The designation of the oscillation as a pure shear mode indicates that the
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motion of the disk surface is precisely parallel to the disk face. Typical frequencies for

these oscillations in EQCM's are from 1-10 megahertz (MHz).

Aside from the thickness shear mode described above, other modes of vibration can

also be excited by the applied electric field. While most other modes are only weakly

coupled to the shear mode, the flexural modes are sometimes strongly coupled (10). When

the frequencies of these flexural modes are near that of the shear mode, deviations in

resonant frequency can occur such that the response of the QCM to mass changes is no

longer linear. Fortunately, it is usually possible to eliminate this source of error by proper

design of the crystal and its electrodes. This will be described further below.

For shear mode oscillation, there are several frequencies which correspond to

resonant conditions. The distinctions between these and their relevance will be described

later. For the present purposes, the resonant frequency of the crystal may be identified as

the frequency of maximum displacement of the crystal surface (for a constant driving

voltage). This condition corresponds to the establishment of a standing acoustic wave

within the bulk of the crystal with a node existing in the center of the disk (see Figure 1)

and the antinodes at the two surfaces. The resonant frequency can thus be seen to be

related to the thickness of the crystal through the following equation:

tq = Vq/ 2fo = Iq/2  (1)

where vq is the velocity of the acoustic wave in quartz, fo is the resonant frequency, tq is

the thickness, and ?Xq is the wavelength of the acoustic wave in quartz. This equation

shows the reciprocal dependence of fo on the crystal thickness. For an AT-cut crystal vq =

3340 m s"1 (11) which gives tq = 334 im and Xq = 668 jim for a crystal with a resonant

frequency of 5 MHz. Higher frequency, odd harmonics may also be excited. These will be

considered further below in regards to the higher mass sensitivity obtained at these higher

frequencies.

Figure 2 shows a top view of a QCM disk with electrodes in what is sometimes called
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a keyhole pattern. The crystals used in these laboratories are one inch in diameter, with a

concentric disk electrode of area 0.28 cm2 . Smaller diameter crystals may also be used

(12). Small crystals have the advantage of being less expensive, but they suffer from the

serious drawback that the structures used to mount the crystal are closer to the

piezoelectrically active area, so the influence of stress from the mounting can become a

problem (13). Larger crystals allow for the mounting structures to be farther from the

region of the crystal undergoing displacement (which is nearly confined to that part of the

crystal sandwiched between the two circular pads in the center of the disk (1,14)).

As stated above, the dimensions of the electrodes and the crystal disk have a strong

influence on the coupling of other modes to the thickness shear mode. This coupling

represents a source of spurious frequency changes which must be addressed for optimum

performance of the EQCM. A recent discussion of the frequency, amplitude, and shape of

vibrations in quartz crystals describes many of the design criteria which provide for the

suppression of unwanted modes (15). The critical dimensions are the thickness of the

quartz disk (tq), the diameter of the crystal (dc), and the diameter of the concentric

electrode pad (de). For a ratio of dc/tq of greater than 50, unwanted modes may be

suppressed by 40 dB when the ratio of de/tq is larger than 18 (15). The values of these

ratios for the design in Figure 2 are 85 and 20, respectively, well within the acceptable

ranges for excitation of the thickness shear mode without significant coupling to other

modes. Following these design criteria, the minimum value of dc for a 5 MHz crystal (tq =

3 x 10-2 cm) is 1.5 cm, and the minimum value for de is 0.54 cm. These calculations do

not take into consideration the "flag" which extends from the edge of the circular part of

the electrode to the edge of the crystal disk, but it has generally been found that the flag

has minimal influence on oscillator stability.

Another way of considering the problems of coupling to unwanted modes or to the

structures used to mount the crystal is with the concept of energy trapping (9,15). Energy
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trapping refers to the fact that most of the energy contained in the mechanical oscillation

of the crystal can be confined to the electroded region of the crystal if this region has a

resonant frequency which is significantly lower than that of the non-electroded region.

This can be easily effected by using rather thick electrodes (with thicknesses greater than,

say, 100 nm) or by contouring one or both faces of the crystal disk so that the thickness of

the electroded region is significantly different than that of the rest of the disk (9).

The two predominant types of AT-cut crystals used for mass measurements are the

so-called plane and the piano-convex. Plane crystals have both disk surfaces parallel to

within ca. 1 gtm, depending on the manufacturer. Plano-convex crystals have one side of

the disk flat and the other ground to have a very slight radius of curvature. A typical range

of radius of curvature for a 1 inch diameter, 5 MHz crystal would be 10-50 cm. For

piano-convex crystals the region of the crystal which undergoes displacement during the

oscillation (and therefore senses mass changes) is confined completely to the area defined

by the electrodes (or by the smaller of the two electrodes if they have different sizes) (13).

For plane crystals this region extends somewhat past the edge of the electrode, onto the

face of the quartz disk itself (1,13,15). The degree of extension of this region depends on

the total mass loading of the crystal, with the displacement being more completely

confined to that part of the crystal sandwiched between the electrodes for higher loading.

The amplitude of the displacement is known to depend on the driving voltage (15), and

probably also depends on the total mass loading. For AT-cut crystals operating in the

frequency range of 1-10 MHz in the fundamental mode, the range of amplitudes reported

is from ca. 10 to 100 nm, as determined by a wide variety of optical methods as well as

electron microscopy (1,15,16). These are fairly large displacements with respect to

molecular dimensions, but it should be kept in mind that the relative velocities and

displacements of the electrode surface with respect to the solution are much smaller. This

is because the boundary layer of solution very near to the surface is dragged along with the
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surface at a similar velocity.

The distribution of the vibrational amplitude as a function of radial distance from the

center of the electrode is also known from the same studies (15-17). The amplitude is

maximum in the center of the disk and decays in an apparently Gaussian fashion with

distance, nearly reaching zero at the edge of the electrode. This Gaussian distribution

becomes considerably sharper for plano-convex crystals as the radius of curvature is

decreased or with increasing harmonic number. For example, for a 4 MHz crystal crystal

operating in the fundamental mode, the radial distance at which the amplitude is l/e of its

maximum value decreases by 30% when the radius of curvature is decreased from 50 to 6

cm (16). Also, for a crystal having a radius of curvature of 10 cm, this distance is

decreased by 50% when the crystal is operated in its 3rd harmonic mode (12 MHz) as

opposed to the fundamental mode (4 MHz) (16). Thus, for piano-convex crystals or for

plane crystals operated in the 3rd harmonic, the vibrational amplitude can be considered to

be essentially zero at the edge of the electrode. For plane crystals operated in the

fundamental mode in vacuum or in a low density gaseous environment, the amplitude

distribution is known to be more confined to the electrode area as mass loading is

increased (13).

Since the mass measurement made with quartz resonators is actually an inertial

measurement, the mass sensitivity is intimately related to the vibrational amplitude

distribution. There is ample experimental evidence supporting a Gaussian mass sensitivity

for AT-cut crystals (1,13,15-19) with the maximum sensitivity at the center of the

electrode and zero sensitivity at the edges for piano-convex or harmonically driven plane

crystals. In one particularly revealing study, the mass sensitivity distribution for plane

crystals was shown to become slightly more confined to the tiectrode region as the mass

loading was increased (13). The differential mass sensitivity, cf-=df/dm, was shown to be a

function of radial distance from the center, while the integrated mass sensitivity, Cf, given
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by equation 2, was shown to change slightly at small loadings and then become relatively

constant for larger loadings (1,15-20):

Cf = f cf dA (2)

where A is the area of the vibrational displacement.

The implication of this differential radial mass sensitivity for EQCM applications is

that the distribution of any mass changes at the electrode surface must be known, whether

or not it is uniform. That the radial mass sensitivity changes with mass loading might at

first glance seem to cause problems (i.e. a different proportionality constant relating

frequency and mass for different mass loadings). However, the evidence is that most of the

change occurs at fairly low mass loadings, with little change in the radial mass sensitivity

at higher loadings (13,19,20). Thus, since the mass loading from the vapor deposited

electrodes and from immersion of the crystal in a liquid is so large, it would seem that this

alone would serve the function of keeping the vibration amplitude confined to the

electrode region, thereby bringing the value of Cf to its high-loading limit. This is an

important consideration for precise, in situ mass r.ieasurements with these devices which

has not yet been addressed experimentally.

A thin (ca. 2-5 nm) adhesion layer of either Cr or Si is usually deposited directly onto

the quartz crystal to aid in the adhesion of the metal electrode. Spurious electrochemical

responses can sometimes result if diffusion of the material from the adhesion layer to the

electrode surface occurs. Au electrodes have been the most commonly used in EQCM

studies because of the ease with which Au is evaporated. However, Cu, Pt, Ni, and other

metals have also been employed. In principle, any type of material which can be deposited

onto the surface of the underlying metal electrode, either by electrodeposition or from

vacuum, can be used. The only limitations on the use of such materials are that they have

good adhesion to the underlying electrode (which must be present to supply the alternating

electric field) and the deposition must be carried out in such a way that the temperature of
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the quartz crystal does not exceed 573 'C, above which alpha quartz loses its piezoelectric

activity (21). It is worth pointing out here that mass changes at the EQCM electrodes

influence fo because these electrodes actually become a part of the composite resonator

composed of the quartz crystal, its electrodes, any film deposited on the electrodes, and

any liquid adjacent to the electrode (or deposit) surface which experiences shear forces.

Thus, when the electrodes become delaminated due to poor adhesion of the underlayer,

large, discontinuous changes in frequency occur which render a particular crystal useless.

Considering both convenience and cost, it is nearly essential that crystals be reused,

i.e. cleaned and recoated with fresh electrodes when a particular experiment is over. This

can be done if facilities for vacuum deposition are available. Either thermal or sputtering

techniques may be employed. To ensure reproducible results careful attention to

cleanliness must be paid, both in the vacuum chamber and in the preparation of the crystal

blanks prior to deposition. Normal methods for cleaning glass parts may be used with the

exception of basic baths which will cause etching.

Crystals may be obtained with either rough or smooth surfaces. Rough surfaces are

the most common because they are less expensive, but they suffer from a quantitatively

unpredictable dependence of the absolute oscillation frequency in a liquid on the trapping

of the liquid in the pores on the surface (22,23). The influence of surface roughness and

deposit morphology on the oscillation frequency will be discussed further below. Crystals

having smooth surfaces are sometimes called overtone polished crystals because the

excitation of overtone (harmonic) modes requires a flatter surface due to the smaller

wavelength of the acoustic wave at higher frequencies. This type of crystal is generally

preferred because roughness effects then exist only in the deposit (which might be of

interest, depending on the system studied) and do not arise from the underlying electrodes.

As stated above, EQCM's may be operated either in the fundamental mode or in any

of the higher frequency, odd harmonics. The advantage of higher frequency operation is a
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greater mass sensitivity. However, since fo is inversely related to tq it becomes

increasingly difficult to handle the extremely thin crystals which are needed for high

frequency operation in the fundamental mode. Thus, a practical limit of about 15 MHz

exists for the fundamental frequency of crystals which can be easily handled. Note that a

15 MHz crystal is just slightly thicker than 100 gtm. Use of lower frequency crystals at odd

harmonics is possible (24) at the expense of slightly more complicated oscillator circuitry.

Another potential difficulty with the use of higher frequencies is that the viscous damping

from the solution can more easily cause the oscillation to cease, depending on the circuitry

used. A common cause of this would be roll-off in the gain of the oscillator circuit at the

higher frequency. A good compromise used in these laboratories is the use of 5 MHz

crystals which offer acceptable (submonolayer) mass sensitivity, relative robustness, and

stable oscillation in most viscous media (given the proper oscillation circuitry).

2. Cells

The method of mounting the crystals to the electrochemical cell is an important

consideration because of possible influences of stress on the absolute frequency of

oscillation, either in air or liquid, and because simple and rapid exchange of crystals is

required when the thin film electrodes become damaged (which can occur from large

potential excursions, aggresive chemical treatments, or mechanical abrasion). Several

methods for mounting have been described (12,25-29), all of which make it possible to

expose only one side of the EQCM disk (the working electrode side) to the electrolyte

solution. This is usually necessary to prevent the two EQCM electrodes from being

capacitively shunted by the solution, which can cause the cessation of oscillation (12). It is

possible to sirr 'y attach the crystals to an opening on the cell with some type of adhesive

(12). Howe,,er, this method does not provide for easy replacement of the crystal when

damage o, urs. e nother method which allows the use of glass cells is to sandwich the

crystal between two o-rings in a vacuum o-ring joint which has been blown onto a
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standard H-cell (26). In these laboratories a number 9 o-ring joint is used with the material

of the o-ring chosen for compatibility with the solvent system under investigation. Finally,

cells of Kel-F, Teflon, or other chemically inert materials can be employed with mounting

again achieved by sandwiching between o-rings (25,27-29). Large diameter crystals and

o-rings seem to be best for keeping the mounting stresses away from the piezoelectrically

active area. In all cases, the cells should be designed so that the oscillator circuitry is

situated as close as possible to the crystal to minimize the length of the leads from the

circuit to the crystal.

3. Oscillator circuits

The oscillator circuit used determines in large measure the stability of the instrument

and, therefore, the types of experiments which can be done. A key requirement of the

circuit is that it provide sufficient gain to allow for oscillation of the crystal in a viscous

medium. Three different designs have thus far been reported (12,24,25). In one of the

designs, the oscillation frequency of the EQCM crystal is measured with respect to a

reference crystal which is external to the electrochemical cell (12). Depending on the

configuration used, the output can be sent to a frequency-to-voltage converter or a

frequency counter. This design has the advantage of not requiring the use of a frequency

counter. A disadvantage of this design would seem to be its failure to use a true ground for

the EQCM working electrode. However, this system has been used to produce data on

monolayer mass changes (perhaps the most challenging application for EQCM

instrumentation) with very good signal to noise ratios. The second design (25) uses a

modified Pierce-Miller oscillator with a high frequency 2N1711 transistor operating as an

inverting amplifier. This is a more conventional design, similar to those used in many

types of frequency control oscillator circuits (30). The EQCM working electrode is at true

ground, facilitating the connection of electrochemical circuitry, and some adjustment is

provided to increase signal amplitude when viscous losses are severe.
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Figure 3 shows the oscillator circuit used in the author's laboratory. This is essentially

the same as that designed by Kanazawa (24), but it lacks the inductor-capacitor (LC) tu.aed

element used to provide for oscillation at the third harmonic. This oscillator uses a

Motorola MC1733 differential video amplifier as the central component, with a 2N3904

switching transistor in the feedback loop to provide for the signal inversion needed to

achieve oscillation. The MC1733 is strapped for maximum gain (x400) and the transistor

also provides significant gain (x50-200). The Schottky diodes act as limiters to prevent the

crystal from damage due to large driving voltages. The values of the resistors in the

feedback loop were chosen to provide for maximum stability of the oscillation frequency

under conditions of viscous loading. The other output of the differential amplifier is sent

to a frequency counter, which will be described below. A significant attribute of this

circuit is that it provides a relatively constant ac voltage across the crystal (ca. 0.4 V peak

to peak with a power supply voltage of 3.5 V) for a wide range of viscous loading

conditions. This will be true so long as the gain is large enough for the diode limiters to be

the elements determining the voltBBage in the feedback loop. Thus, the circuit is usually

able to sustain crystal oscillation even under conditions of large viscous loading from

thick, viscoelastic polymer films and highly viscous solutions. Most importantly, changes

in this viscous loading do not appear to have strong influence on the characteristics of the

oscillator circuit. In addition, the EQCM working electrode is at true ground which

conveniently allows the use of Wenking-style potentiostats. Several groups have reported

the successful use of this circuit (24,26,29,31-33).

4. EQCM apparatus

Figure 4 shows a schematic of the EQCM instrument used in the author's laboratory.

The quartz crystal is mounted in the electrochemical cell with one electrode exposed. This

electrode is maintained at true ground and is connected to the ground of the oscillator

circuit and to the working electrode lead of the Wenking style potentiostat previously
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described (24). The other crystal electrode is connected to the "hot" side of the oscillator

circuit. These connections are made using small, flat-nosed alligator clips. Silver paint is

used on the electrode flags to protect the thin Au films from abrasion. The oscillator

circuit is connected to the frequency counter, which generates either an analog (0 to 1 V)

or digital (IEEE 488) signal for the computer acquisition system. The frequency counter

used in these laboratories is a Philips PM 6654, capable of measuring frequencies with an

accuracy of 1 part in 106 in as little as 6 msec. Many commercial counters would require 1

second for such a measurement. Since the rapidity of the frequency measurement is

generally the factor which limits the time scale of the experiment, it is desirable to use a

counter with the maximum counting rate available. Connection to the computer (an IBM

PC, AT, or 80386-based clone) is made with an A/D board such as the Data-Translation

DT 2801-A or using any of a number of IEEE 488 boards. The Philips PM 6654 provides

for either type of connection with accessory plug-in boards.

The potentiostat is of the standard Wenking design, using a true ground for the

working electrode. Potentiostatic or galvanostatic control is achieved either by using the

DT 2801-A to generate staircase waveforms or by triggering an external analog ramp

generator. In the absence of an external analog ramp generator, the 12 bit accuracy of the

DT 2801-A forces the use of staircase voltanmetry because the resolution is not sufficient

to produce a staircase waveform which mimics closely enough the analog ramp required

for cyclic voltammetric experiments.

With the instrument shown in Figure 4, a typical cyclic voltammetric EQCM

experiment would involve the application of the electrochemical waveform to the working

electrode and (virtually) simultaneous measurement of the current flowing through the

electrochemical cell and the oscillation frequency of the crystal. For large currents

(i>lgA) or large frequency changes (Af>1OHz), single scans are generally sufficient to

achieve acceptable signal to noise ratios. Smaller signals require the use of signal
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averaging techniques. As always, proper attention to shielding is required for achieving

the maximum signal to noise ratio (34). Placing the oscillator circuit within a shielded

metal enclosure has been found to be especially helpful in reducing noise levels.

A variation on the apparatus shown in Figure 4 is one in which the oscillator and

frequency counter are replaced by some type of impedance analyzer or network analyzer.

The use of such instruments in EQCM applications has not yet been described in the

literature. However, experiments in these laboratories have shown it to be a useful

complement to the more standard configuration of Figure 4. The parameters which can be

measured using such instruments and their relevance to the EQCM experiment are

discussed below. Again, it is especially useful if one of the inputs to the impedance

analyzer can be maintained at true ground. A Hewlett-Packard 4192A low frequency

impedance analyzer is used in these laboratories for this reason.

B. Equivalent circuit description of the EQCM

The equivalent circuit description of the quartz crystal has been widely used to model

its behavior in oscillator circuits (9,30). Figure 5a shows the equivalent circuit for an

AT-cut crystal. Figure 5b shows an equivalent representation of this circuit which is of

some use in the experimental determination of the values of the circuit elements in Figure

5a. In Figure 5a, CO is the electrical capacitance of the quartz sandwiched between the two

vapor deposited electrodes, R1 corresponds to the dissipation of the oscillation energy

from mounting structures and from the medium surrounding the crystal (e.g. losses

induced by the presence of a viscous solution), C1 corresponds to the stored energy in the

oscillation and is related to the elasticity of the crystal and the surrounding medium, and

L1 corresponds to the inertial component of the oscillation which is related to the mass

displaced during the vibration. In Figure 5b, Re and Xe represent the resistive and reactive

components of the circuit in Figure 5a, respectively (30). Typical values for the

components in Figure 5a at the fundamental frequency of the crystals shown in Figure 2
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are CO =7.3x 10"12 F,R 1 = 100(,C 1 =23x 10- 15 F, andL 1 =45 x 10-3 H. These

values are those found for a crystal with both faces exposed to air. The values are different

for crystals operated at their harmonic frequencies.

For a crystal with one face exposed to an aqueous solution, the value of R1 increases

to ca. 500-1500 Q depending on the solution, with little change in the other values,

confirming the notion that R1 can be associated with the viscous loading introduced by

immersion of the crystal in the solution. The determination of R1 , which will be discussed

below, thus provides a means of evaluating the extent of changes in viscous loss due to

changes in the surrounding medium.

Several workers have analyzed the circuit in Figure 5a, providing expressions for the

various resonant frequencies and a few other parameters of interest (9,30). The frequency

of maximum conductance, fs, is the resonant frequency of the motional branch of the

circuit, where the conductance, G, (i.e. the real part of the admittance) is a strong function

of the applied frequency near the resonant point. The frequency of zero phase, fr, occurs

when the current flowing through the crystal is exactly in phase with the applied voltage.

The sharpness of the resonance is measured by the Q value or quality factor of the

resonator. Another parameter of interest is the capacitance ratio, r. Equations 3-6 give

some relevant relationships between these variables:

fs = {2t(L1C1)l/ 2 }-1  (3)

Q = (2nfsC 1R1)"1 = 27tfsL 1 / R1  (4)

(fr - fs)/fs = r / (2Q2) (5)

r = CO / C1  (6)

Note that fs and fr are, in general, not equal, and that their separation depends on both r

and Q.

Experimentally, one approach to obtaining these values is to measure the appropriate

combinations of functions using an impedance analyzer, network analyzer, or bridge
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methods. A Hewlett-Packard 4192A impedance analyzer is used for this purpose in these

laboratories. This type of instrument performs an essentially different function than does

the apparatus shown in Figure 4 above. An alternating voltage having a precise,

synthesized frequency is applied to the crystal, usually with the capability of sweeping this

frequency over a wide range. The amplitude and phase of the ac current which passes

through the crystal are measured, and these quantities are used to compute various

parameters of interest. Such measurements directly provide the conductance (G), the

reactance (Xe), the resistance (Re), and the phase angle (8), as well as several other

parameters which are characteristic of the crystal resonator. Note that G, Xe, Re, and 9

are functions of frequency, and in general vary strongly near the resonant point. fr is

obtained from the frequency at which 9 = 0". fs is found from the frequency at which G is

a maximum (i.e. G = Gmax). R1 is approximately equal to Re at the frequency at which

Xe is equal to zero, which is just above fs (30). CO may be measured at any frequency

sufficiently far from the resonant frequency of the motional branch of the circuit (e.g. 100

kHz). Thus, the measured quantities are R1 , Co , fr, and fs. Equation 7, obtained by

combination of equations 4-6, gives C1 as a function of these known quantities:

C1 = (fr - fs) (2nr2 fs3CoR12) "1  (7)

Once C1 is known, L1 may be calculated from equation 3 and Q from equation 4 or 5.

A dimensionless quantity which is frequently referred to in discussions of quartz

crystal oscillators is the figure of merit, M = Q / r. It has been shown (9) that when M < 2

then fr will not exist, i.e. there will be no frequency at which the zero phase condition

exists. For typical AT-cut crystals operating at 5 MHz, this will occur when R 1 exceeds

ca. 3000 Q. Since most oscillator circuits actually operate at a zero phase condition (which

may not occur at exactly the same frequency as fr due to influence of the components of

the oscillator circuit), there will usually be cessation of oscillation when excessive viscous

loss causes R1 to be larger than this value. Values of R1 in excess of this are rather easily
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obtained when thick, solvent-swollen polymer films are investigated with the EQCM.

However, even under these conditions it is still possible to make meaningful

measurements of crystal parameters (e.g. to monitor changes in Gmax as mass loading

changes) if an impedance analyzer is available.

The purpose of this section has been to briefly describe the use of impedance analysis

methods for the evaluation of some of the important parameters which can be used to

judge the type of behavior exhibited by a particular QCM composite resonator (i.e. the

quartz, electrode, thin film, solutioin system). In the sections below the criteria for such

judgements are discussed, with emphasis on the ability to distinguish between rigid,

elastic, and viscoelastic behavior. As will be seen, such distinctions are crucial to the

proper application of the EQCM to quantitative mass measurements.

C. Effects of various parameters on crystal oscillation

1. Mass-frequency correlations

Sauerbrey was the first to recognize the potential usefulness of AT and BT crystals as

mass sensors (1). He demonstrated the extremely sensitive nature of these piezoelectric

devices towards mass changes at the surface of the QCM electrodes. He also described

their differential radial mass sensitivity and correlated this with the radial distribution of

the vibrational amplitude (17). The results of his pioneering work in this area are

embodied in the Sauerbrey equation, equation 8, which relates the mass change at the

QCM electrode surface to the observed change in oscillation frequency of the crystal:

Af =- (fo / tq Pq)Am

(2 n fo2 / (Pq 9q)1/ 2 ) Am

- (fo2 / N Pq) Am

=-CfAm (8)

where Af is the observed frequency change (Hz), fo is the resonant frequency of the

fundamental mode of the crystal (which may be significantly different than either fs or fr,
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depending on the particular oscillator circuit used), Am is the change in mass per unit area

(g cm-2 ), Pq (= 2.648 g cm "3 ) is the density of quartz, 9q (= 2.947 x 1011 g cm- 1 s-2 ) is

the shear modulus of quartz, N (= 1670 kHz mm) is the frequency constant for quartz, n is

the number of the harmonic at which the crystal is being driven (i.e. 1 for the fundamental,

3 for the third harmonic, etc.) and Cf is the sensitivity factor for the crystal employed for

the measurement, which depends on the thickness, and therefore, the fundamental

frequency. For a 5 MHz crystal operated in its fundamental mode, Cf is 56.6 Hz gg- 1 cm 2,

so that a uniformly distributed mass increase of 1 g±g cm -2 would result in a frequency

decrease of 56.6 Hz. The sensitivity factor is a fundamental property of the QCM crystal.

Thus, these mass sensors do not require calibration. This ability to calculate the mass

sensitivity from first principles is a most attractive feature of these devices.

Equation 8 shows the linear dependence of Af on Am, the dependence of Af on f0
2 , and

the linear increase in sensitivity which accompanies the use of higher harmonics (i.e. Af

n). Thus, for a given crystal, the mass sensitivity increases linearly with the harmonic

number, while for different crystals, the mass sensitivity increases as the square of the

fundamental frequency. The implication of this is that sensitivity enhancements need not

be made through the use of crystals with high fundamental frequencies (which are

necessarily thin and fragile). Rather, such enhancements may be made by driving crystals

having lower fundamental frequencies at their harmonics. This occurs at the expense of

greater complexity in the oscillator circuitry.

The negative sign shows that increases in mass correspond to decreases in frequency.

The rather strong functional dependence of the mass sensitivity on fo dictates that for

precise work the deviation of the fundamental frequency from the nominal value must be

taken into account. In other words, in the example above Cf would need to be modified

appropriately if fo were much different from 5 MHz (e.g. 4.9 rather than 5 MHz).

Equation 8 is indirectly based on equation I in that the incremental change in mass
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from the foreign film is treated as though it were really an extension of the thickness of

the underlying quartz disk. Thus, the material properties of the foreign film are not

considered explicitly in equation 8. The foreign film is considered to be so thin that it

exists entirely at the antinode of the vibration, so that it does not experience any shear

forces. When this implicit assumption does not hold true, then the material properties of

the foreign film must be taken into account.

Sauerbrey's early work has been extensively discussed and extended (see reference 2

and references therein). Significant improvements in later treatments have centered around

the explicit incorporation of the elasticity (i.e. the shear modulus) of the deposit (35,36)

and the extension of the measurement to higher harmonics (37). Lu and Lewis (36) gave

an especially simple equation for the dependence of Af on Am:

tan(l'fc/fo) = - (zf/zq) tan(nfc/ff) (9)

where fc is the resonant frequency of the composite resonator formed from the crystal and

the film(s) present at the surface, ff can be thought of as the resonant frequency of the free

standing foreign film, and zf and Zq are the acoustic impedances of the film and quartz,

respectively. Equation 8 can be shown to be an approximation of equation 9 in which the

tangent function is expanded in a power series, retaining only the first term. Some

equations which interrelate these parameters are:

Af = fc - fo (10)

ff=vf/2tf = vfpf/2Am (I i)

vf= (p f/pf )1/2  (12)

Vq = ( /Iq/ Pq )1 /2  (13)

Zq Pq Vq = (Pq 9q)1/2  (14)

zf pf vf = (pf gf)1/2  (15)

where tf(= Am/pf) is the film thickness, 9q (= 2.947 x 1011 g cm- 1 s-2) and g.tf are the

shear moduli of quartz and film, respectively, pf is the density of the film, and Vq and vf



20

are the velocities of the acoustic waves in the quartz and film, respectively. This analysis

of frequency changes using the acoustic impedances of the quartz and film is usually

called the Z-match method.

The choice of whether to use equation 8 or 9 for determining the mass change for

deposition or dissolution processes of rigid films at electrode surfaces depends on the

thickness of the deposit which is to be investigated. (Considerations pertaining to

non-rigid films will be discussed below.) When the mass loading from the deposit causes a

change in the resonant frequency of less than 2% of fo, then equation 8 may be used.

Equation 9 is accurate for frequency changes of up to ca. 40% of fo (36). The degree to

which equation 8 deviates from the more accurate equation 9 depends on the ratio of

acoustic impedances for quartz and the deposit.

Use of the Z-match method requires that the shear modulus of the deposit be known.

While this will not be a problem for many cases (e.g. some metal or metal oxide bulk

depositions), in other instances the properties of the deposit may be completely unknown

or may be very different from those of the bulk material. It has been asserted that the

density of solid materials varies more strongly than does the shear modulus from one

material to another (37). Thus, an approximation for the z of a deposit may be obtained (if

its density is known) by assuming that its shear modulus is the same as that of quartz (i.e.

Zf,approx = (pf lq) 112 ). However, this provides only a very rough approximation of zf,

and still requires that pf be known.

An alternative method (37) makes use of the fact that the response of the crystal to

varying acoustic impedance of the foreign film is different at the fundamental and

harmonic frequencies. Measurement of the change in resonant frequency at more than one

frequency (usually the fundamental and third harmonic) thus provides a method for

obtaining zf, allowing the use of equation 9 for the accurate calculation of mass changes.

This method will be useful only when the relative frequency change is large (greater than
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ca. 10%), because this is the condition required for significant deviation from equation 8.

Experimentally, this method requires the use of an oscillator that can be easily switched

between operation at the fundamental and third harmonic frequencies or the use of an

impedance analyzer which can operate at a frequency high enough to measure the

parameters of interest at the third harmonic. Details of the method have been described

(37).

Even though the influence of the deposit elasticity on the frequency change can be

easily dealt with, it will frequently be true that equation 8 provides sufficient accuracy,

because the film thickness (and, therefore, the relative frequency change) will be small.

However, this situation holds only for rigid deposits. Films which are behaving

viscoelastically, such as some organic polymer films with large thickness or viscosity, will

exhibit significant deviations from both equations 8 and 9. The influence of such effects is

discussed below.

2. Effect of the solution on oscillation

When a planar surface which is oscillating in a shear mode is immersed into any

medium, a shear wave propagates normally away from the surface into the medium.

Because of the energy dissipation caused by the viscous response of liquids, the shear

wave is damped exponentially as it travels through the liquid away from the surface. This

situation, as applied to oscillating quartz AT shear wave transducers, was first treated by

Glassford (38) and later by Kanazawa and Gordon (39,40). The equation for the shear

wave velocity as a function of distance from the surface of the oscillating crystal was

given (39):

v(z,t) = vo exp(-klz) cos(klz - 2nfot) (16)

where v(z,t) is the shear velocity (parallel to the surface) which is a function of distance

(z) from the surface (which is at z=O) and time (t), vo is the velocity of the crystal surface,

kI is the propagation constant, and the other quantities have been defined. The propagation
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constant k1 is given by:

kl = ( nfoPl / 1 )/1 1 2  (17)

where Pl and ill are the density and viscosity of the liquid, respectively. Equation 16

shows the damped sinusoidal nature of the shear wave, and equation 17 shows the

dependence of the damping on the density and viscosity of the medium. Figure 6 (40)

shows the shear velocity profiles in the fluid at three different times: at peak surface

velocity, at intermediate surface velocity, and at zero surface velocity.

The reciprocal of the propagation constant is the decay length of the shear wave. For

pure water at 20 'C, with pl = 0.9982 g cm -3 and i1 = 1.002 x 10-2 g cm-1 s-1 , this length

is ca. 250 nm. Thus, only the first micron or so of the solution is perturbed by the shear

displacement. Since these displacements are parallel to the surface and rather small

(10-100 nm, see above), there should be negligible stirring effects, as has been found by

workers in these laboratories and others.

Kanazawa's treatment of the influence of the solution properties on the crystal

permits the prediction of the change in resonant frequency which accompanies immersion

of the crystal into a viscous medium. This is given in equation 18:

af = - fo3/2 ( P1I111 /'t Pq q )1/2  (18)

where the decrease in resonant frequency is seen to be proportional to (p1ill) 1/ 2 . This

equation predicts a decrease in fo of ca. 700 Hz on transfer from vacuum to pure water at

20 'C. Due to experimental difficulties associated with mounting stresses, it has been

more common to measure frequency changes for different solutions relative to pure water.

Very good agreement with equation 18 for such relative changes has been obtained for

aqueous solutions of glucose, sucrose, and ethanol using this type of differential

measurement (39,40). Linearity to only the solution viscosity has also been demonstrated

(12), indicating that density effects can be neglected under certain conditions, but this will

not be true in general.
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Based on the results of an analysis similar to Kanazawa's, Hager has proposed that

the QCM can be used in the evaluation of fluid properties, specifically (plirl) 112 (41). A

significant result of this contribution was the demonstration that the Gaussian velocity

distribution of fluid at the crystal surface can be replaced by a surface average velocity,

making the analysis of the problem considerably more tractable. He also proposed the use

of multiple crystal arrays for the separate determination of pl and ill from the frequency

shifts caused by exposure of the crystals to a fluid.

In a recent contribution, the equivalent circuit description of the QCM has been used

to derive an equation relating R1 to (plrl)1/ 2 (42). Impedance analysis techniques were

used to arrive at a value of R1 , and this was plotted versus (pl1l)112 for water/ethanol and

water/glycerol mixtures. Good linearity was observed except for the case of crystals which

had both electrodes immersed in solutions with high proportions of water. This deviation

was rather speculatively attributed to unusual dielectric properties of water or to unknown

electrical effects. However, the important finding was the linearity of R1 to (plil)

Thus, R1 serves as a good measure of viscous loading by the medium at the crystal

surface.

When the EQCM resonator is loaded by viscous coupling to a liquid, its conductance

spectrum exhibits predictable changes. Recalling equation 4, which shows the reciprocal

dependence of the crystal Q on the value of R1 , it is predicted that the increase in viscous

loss should appear as an increase in R1 , and therefore, as a decrease in Q. The methods

described in Section B above may be used to measure the changes in RI .

A more intuitive, graphical way of measuring the changes in viscous loading is

provided by plots of conductance (the real part of the admittance) versus frequency, which

can be conveniently obtained using impedance or network analyzers. Figure 7 shows such

a plot for a 5 MHz crystal, mounted in the o-ring mounting as in Figure 4, both in air

(curve A) and in water (curve B) at room temperature. Curve A shows the sharpness of the
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resonance when viscous loading is absent, while curve B (note the difference in vertical

scales for the two curves) shows the dramatic increase in the width of the resonance and

decrease in the maximum conductance which accompany immersion in the liquid. The

size of the frequency shift, ca. 800 Hz, is in reasonable agreement with the prediction from

equation 18 (700 Hz). A measure of the change in Q is obtained graphically by

comparison of the widths at half height for these conductance plots. In this way, the Q is

found to decrease by a factor of ca. 15 upon immersion of the crystal in water. As will be

discussed below, the changes in Q induced by changes in the viscoelastic properties of the

deposit may also be monitored by such impedance techniques.

The dependence of fo on the properties of the liquid at the crystal surface has

important consequences for experiments in which transfer from one solution to another is

needed (e.g. in measuring changes in swelling for polymer films in different solutions).

One must take special care to account for the different values of fo which obtain in the

different solutions by measuring these offsets with bare crystals. Even then, subtle

changes in the boundary conditions can render such measurements suspect. For example,

the exact position of the slip plane, which defines the position in the solution which moves

with the same amplitude and phase as the underlying crystal surface, may not remain

constant upon transfer from one solution to another. Also, the degree to which solvent

trapping in pores at the surface occurs may change for a bare crystal and a coated crystal,

so that simple subtraction of the offset may not always be possible. Other possible sources

of discrepancy also exist. On the other hand, it has been amply demonstrated that when

experiments involve only relative frequency changes which are measured in a given

solution, the offset caused by the viscous loading has negligible effect on the accuracy of

equation 8 for the determination of small mass changes.

3. Temperature dependence of oscillation

The intrinsic dependence of the resonant frequency of a quartz crystal on temperature
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(T) is caused by changes in Pq and pgq with T. These effects are well known, and generally

quite small, being around 1 Hz per 'C depending on the particular cut of the crystal (2). In

fact, the AT-cut is so popular partially because it is cut specifically to give a near zero T

coefficient at room temperature. Thus, the intrinsic T dependence of the crystals is

practically negligible in EQCM applications. However, much larger changes in fo with T

occur when crystals are immersed in solution due to the coupling of the acoustic shear

wave into the solution as described above. Equation 18 shows that fo is proportional to (pl

rll) 112 and allows calculation of the effect of changes in T given the density and viscosity

as functions of T. For example, the values of Pl at 20 and 25 0C are 0.99823 and 0.99707 g

cm "3 , respectively, and the values of '1 at 20 and 25 'C are 1.002 x 10 -2 and 0.8904 x 10

-2 g cm- 1 s-l, respectively. Use of these values in equation 18 to calculate the expected

change in fo gives 41 Hz. This frequency change is larger than those for monolayer

adsorption/desorption processes and not negligible with respect to those for solvent or

ionic transport in thin films. Thus, in experiments in which the frequency is to be

monitored at length, the temperature must be controlled to at least 0.1 'C, preferably to

better than 0.02 'C. This is possible with commercially available temperature control

baths and jacketed cells. On the other hand, measurement of short term, relative frequency

changes (which might occur during a cyclic voltammetric experiment, for example)

generally do not require such careful control of the temperature because the drift in T

which can occur during a scan lasting only a few seconds is negligibly small.

4. Viscoelastic deposits

An attractive use of the EQCM is to study the mass transport processes which occur

during redox events in thin polymer films. Due to their large molecular weights and the

resulting chain entanglement, to crosslinking (whether chemical or physical), and to

solvent-induced swelling, these systems frequently exhibit viscoelastic behavior. It is

extremely important to determine whether the viscoelastic nature of the deposit is



26

influencing the resonant frequency of the crystal oscillator, because the linear

mass-frequency correlation discussed above will, in general, not hold under such

conditions.

An excellent source for general information on the viscoelastic properties of organic

polymers is the classic book by Ferry (43). In general, the viscosity and shear moduli of

polymeric solids, gels, and solutions are functions of the frequency at which they are

measured (43). The shear modulus (g), a measure of the stiffness of the material, increases

with frequency, while the viscosity (0) tends to decrease with frequency. At MHz

frequencies, polymeric systems will tend to have values for A which are lower than that for

quartz due to their lower stiffness, while having values for Ti which are higher than that for

quartz due to the possibility for viscous loss from translational motion of the chains

relative to one another. Since rigid layer behavior will tend to prevail when g is large and

r is small, the higher the frequency, the greater the chance of observing rigid layer

behavior (i.e. the behavior of elastic, as opposed to viscous, deposits). Also, since A

increases and rl decreases below the glass transition temperature (Tg), a knowledge of the

Tg for the film material will be useful in gauging whether or not viscoelasticity in the

deposit is influencing the resonant frequency of the EQCM. Films with Tg's far above the

temperature of the experiment will tend to behave more rigidly than those with lower

Tg's. Also, q will tend to increase for films when they are swollen by solvent. Thus, the

conditions under which the measurements are made (high frequency, above or below Tg,

swelling solvent or not, etc.) influence the degree to which rigid layer behavior prevails,

and therefore, the extent to which mass changes can be inferred directly from Af using the

Sauerbrey equation or the Z-match method.

The quantitative connection between the material properties of the film (i.e. g and r1)

and the behavior of the EQCM resonator has yet to be established for the important case of

a thin film on the EQCM in a semi-infinite liquid, the configuration of most polymer
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modified electrodes or thin film sensors based on the QCM. The problem is complex

because the shear wave exists simultaneously in the quartz crystal, the thin film, and the

adjacent solution, so reflection of the shear wave at several interfaces must be taken into

account. It would be most worthwhile to solve this problem, because then p and ,i for the

film could be calculated from the information provided by an impedance analysis of the

film. This would allow for correlation of the electrochemical behavior of the film (i.e.

charge transport rates, permeability, etc.) with the material properties of the film, clearly a

worthy goal. Reed, Kanazawa, and Kaufman have recently solved the problem of a

viscoelastic film of arbitrary thickness atop the QCM resonator, taking the piezoelectricity

of the quartz explicitly into account (44). This contribution will be a valuable one, and will

hopefully lead the way for an analysis which takes into account the shear wave

propagation into the liquid adjacent to the film.

As was pointed out earlier, it is essential to determine whether or not the viscoelastic

properties of the film influence the measurement. For example, if mass measurements are

being made of a film deposition process, it is possible that as film thickness increases, the

mass sensitivity may change due to excessive viscosity of the deposit (e.g. this would be a

problem common to highly solvent swollen polymer films). There are several ways of

checking for such effects.

One method is to verify that changes in deposit thickness or surface coverage scale

linearly with changes in Af. This requires that some parameter can be found which

provides an independent measure of thickness or coverage, such as electrochemical

charge, optical absorbance, ellipsornetric functions, etc. Then, to the extent that the

changes in these quantities scale with changes in the observed Afs, a good argument can

be made that the measured Af's are a true representation of the mass changes occurring at

the surface. However, many effects could obscure such comparisons, an example of which

would be varying porosity or density of the deposit as a function of thickness (an effect
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which is rather common in electrodeposited oxide and conducting polymer films).

A more straightforward and less ambiguous method relies on the dependence of the

crystal Q on the viscosity of the deposit. Thus, measurements of Q during a fMlm

deposition will reveal the extent of changes in the deposit viscosity which can signal the

potential for deviations from rigid layer behavior. In particular, as Q decreases due to

increasing deposit viscosity, the width of the G versus f plot will increase above the value

which arises from immersion of the bare crystal in solution. It is not yet clear how large

this increase must be to generate significant deviation from equations 8 or 9, but the

presence of detectable increases in Q (e.g. > 10%) should certainly give rise to the

suspicion that such deviations might exist.

5. Deposit roughness and porosity.

As mentioned above in the context of crystal surface finishes, roughness can cause

large apparent mass loadings due to the liquid which is trapped within pores at the crystal

surface. This can occur not only from roughness of the quartz crystal surface, but also

from roughness which might exist in the deposit. Schumacher et al. (22) showed that such

roughness in gold oxide deposits can cause very large discrepancies between the expected

Af and the observed value. They attempted to fit the discrepancies by modeling the surface

as having hemispherical undulations which trapped solution, and further assuming that this

trapped solution behaved as a mass rigidly attached to the surface (22). Although some

disagreement between this model and the experimental data was observed, the general

trends suggest that the qualitative features of the model are sound. In a later contribution,

Schumacher et al. (23) gave other experimental examples of the appearance of such

roughness effects for Ag and Cu surfaces following oxidation. They also showed that, for

the case of Ag, prolonged application of sufficiently negative potentials caused the surface

to become relatively smooth again, as judged by both the increase in EQCM frequency

due to the loss of trapped solution and by differential capacitance measurements. Again,
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however, quantitative predictions of the expected frequency changes from the roughness

based on SEM observation of the roughened surfaces were not in agreement with the

experimentally observed Af's.

Experiments recently done in these laboratories have also indicated that deposit

morphology can influence the EQCM frequency response. The deposition and dissolution

mechanisms of electrochromic films of diheptylviologen bromide (DHVBr) were studied

using the EQCM (45). In this work, the dissolution at fast scan rates of the DHVBr films

was shown to proceed by a pitting mechanism, with the pits eventually growing together

over time so that the film disintegrated only late in the scan. This situation is shown

schematically in Figure 8. To the extent that the solvent trapped within the pores has a

density similar to that of the film, the frequency should only increase late in the scan,

when the disintegration occurs. This is because the mass lost by film dissolution is

replaced by the solution trapped within the pores. The observation of this behavior in the

EQCM experiments prompted the proffering of a model for dissolution involving pit

nucleation and allowed for a (rather speculative) assignment of pit nucleation as being

progressive rather than instantaneous, based on the scan rate dependence of the frequency

changes. This study serves as an example of the use of indirect EQCM information

regarding surface roughness to help elucidate mechanistic details about the behavior of

thin films.

In the measurement of monolayer mass changes, the magnitude of the observed

frequency change is frequently so small that meaningful mass changes cannot be made

using the usual experimental conditions. One way around this is to purposefully roughen

the surface to increase the surface area of the electrode. Since the sensitivity to mass

changes increases with the true surface area, this strategy makes it possible to increase the

detection limit for mass changes linearly with the increase in surface area. Preliminary

experiments have indicated the feasibility of this approach for sensitivity enhancements of
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approximately a factor of two. Larger increases should be possible. A disadvantage of

such an approach is that the measurement of absolute frequency changes cannot be made

due to the relatively unpredictable effects of solvent trapping within the pores on the

roughened surface.

Another possible source of frequency changes for thick films is porosity of the

deposit. If a film is porous, then significant amounts of mass may be trapped within the

pores of the film (i.e. in the void volume of the film). In this case the frequency decrease

for deposition of the film will result not only from the mass of the film itself, but also from

the mass of solution trapped within the pores. In the limit of microscopic pores, this model

reduces to one of film swelling by the solvent or solution, so that all of the effects

discussed above regarding film swelling hold here. To the extent that the film behaves

elastically both with and without the trapped solvent, it is possible to calculate the amount

of trapped solvent (and, therefore, the pore volume). This is done from the difference in

the oscillation frequency of the crystal coated with the (dry) film in air and with the

hydrated crystal in solution. For this calculation, the offset due to solution viscous loading

must be corrected for, and, therefore, must be the same for the bare and coated crystal. For

highly porous films, roughness effects will be important, so that these types of calculations

will only be feasible for very thick films for which the contribution from surface effects

(e.g. roughness) will be small in comparison to the total frequency change.

D. Correlations between frequency changes and electrochemical parameters

In correlating EQCM frequency changes with electrochemical data, it is useful to use

different methods of data presentation. For convenience, the case of application of the

EQCM to the study of a simple deposition process will be considered. An example would

be the electrodeposition of Ag. The two important electrochemical parameters to compare

to Af are the charge (Q) and the current (i). The charge is an integral measure of the total

number of electrons delivered at the interface during the process (reduction, in this case).
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To the extent that each electron which is supplied results in the deposition of one atom of

Ag, there should be direct proportionality between Q and Af. This is shown by equation

19:

&f = (106 MW CfQ) / (n F) (19)

where n is the number of electrons transferred to induce deposition, F is the Faraday

constant, MW is the apparent molar mass of the depositing species, Cf is the sensitivity

factor for the crystal employed (see equation 8), and the factor of 106 provides for the unit

conversion from gxg in Cf to g in MW. A plot of Af versus Q will give the apparent mass

per electron of the deposited species, when n is taken into account. The corresponding

equation for the relationship between i and Af is:

i = {d(Af)/dE) (10-6 n v F) / (MW Cf) (20)

in which d(Af)/dE is the derivative of Af with respect to potential (for a cyclic

voltammetric experiment), v is the scan rate, the factor of 10-6 provides for unit

conversion described above, and the other parameters have been described above.

Equation 19 is useful for comparing total changes in oscillation frequency with

electrochemical charges, while equation 20 is especially useful for the detection of subtle

relationships between Af and i. These equations will be used in the sections below to

provide for detailed comparison between frequency and electrochemical parameters for

various systems. Of course, electrochemical experiments other than cyclic voltammetry

may be used in conjunction with the EQCM. The appropriate equations for these may be

easily derived keeping in mind the proportionality between Q and Af.

Il. Monolayer systems

A. Introduction

EQCM studies of the electrosorption of monolayer systems are an extremely

challenging application of the technique due to the very small mass changes which occur.

In addition to the electrosorption event, several other processes may contribute to the
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observation of frequency changes, such as adsorption/desorption of solvent or supporting

electrolyte ions during the electrosorption, changes in the position of the slip plane (i.e. the

plane which defines the first layer of the adjacent medium which is not rigidly attached to

the electrode surface) due to the electrosorption, and changes in the viscosity and/or

density of the double layer induced by changes in composition as a function of applied

potential. These effects have not yet been unambiguously observed, but few systems have

been quantitatively studied as of yet.

One feature of monolayer systems which makes them somewhat more tractable is

that, since the adsorbate layer is so thin compared to the wavelength of the shear wave in

the resonator, the added mass from the electrosorbed layer should exist entirely at the

antinode of the shear wave. Therefore, the adsorbate layer should experience no

significant shear deformation, and its viscoelastic properties should have no influence on

the measurement.

The studies which are described in this section demonstrate the detection of

submonolayer mass changes during Faradaic processes at electrode surfaces. In most,

mass changes are directly correlated with charge to gain insight into the compositional

changes accompanying the interfacial charge transfer event. For example, it is possible to

determine the electrosorption valency from such measurements. In other cases, deviations

in the predicted correlations are speculatively attributed to the influence of solvent and/or

ion association with the monolayer. Much remains to be done to elucidate how interfacial

interactions contribute to the observed frequency change.

B. Electrosorption of oxides and halides on Au

The first application of the EQCM to the in situ measurement of mass changes from

monolayer deposition or dissolution processes was by Bruckenstein and Shay (46) who

studied the formation of the adsorbed oxygen monolayer at Au electrodes. They were able

to observe frequency changes for this process as small as ca. 15 Hz with a signal to noise
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of better than 50. A 10 MHz crystal operating in its fundamental mode was used in this

study, for which the mass sensitivity is ca. 1 x 10-9 g Hz "1. Frequency decreases were

observed for formation of the adsorbed monolayer, and these frequency changes were

reversible in the sense that the original frequency was reattained when the adsorbed layer

was removed by reduction. The agreement between the mass change predicted from the

charge measurements and that inferred from the frequency change was better than 10%.

Hysteresis between the time of passage of electrochemical charge and the observed mass

change (i.e. 40% of the charge for a monolayer was passed before any mass change

occurred) was used to support a postulated place exchange mechanism for 0

electrosorption which was consistent with a number of previously proposed mechanisms.

This first application of the EQCM to the study of a monolayer system revealed the power

of the technique for making detailed mechanistic proposals based on precise mass

measurements during redox events at electrodes.

These workers also observed gradual frequency changes which occurred in the double

layer region of the voltammetric scans. These frequency changes were speculatively

attributed to changes in the structure of the double layer (e.g. adsorption of supporting

electrolyte anions at potentials positive of the point of zero charge).

Schumacher et al. (22) also used the EQCM to study the formation of electrosorbed

oxide layers on Au electrodes. These workers observed mass gain coincident with

formation of the oxide layer, however, their conditions promoted the roughening of the

surface, in contrast to those of Bruckenstein and Shay (46). As discussed in section 11(5)

above, this roughening caused larger than expected frequency decreases for oxide

formation, especially in basic and neutral media. This result was confirmed in a later study

by Stockel and Schumacher (27), who also observed that frequency decreases in aqueous

sulfuric acid are smaller than expected. They postulated that place exchange only occurs

in neutral and basic media, with monolayer discharge in acid perhaps accompanied only
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by deprotonation of adsorbed water. While clearly of a speculative nature, these results

point to the type of information available from the EQCM.

The electrosorption of bromide and iodide on Au electrodes was studied by Deakin et

al. (47), who showed that full monolayer coverages were attained at sufficiently positive

potentials. This conclusion followed from the evaluation of the mass changes which

occurred during the electrosorption process and the geometric constraints imposed by the

sizes of the halide ions. The slopes of plots of the charge for electrosorption versus surface

coverage (obtained from the EQCM frequency change) were shown to provide the

electrosorption valency, y. Values for y obtained in this way were reported as 1.01 ± 0.05

for iodide and 0.30 ± 0.03 for bromide, both in excellent agreement with previously

reported values from other groups. This was one of the first reports to demonstrate the use

of signal averaging methods for the acquisition of EQCM data, and clearly demonstrated

the extension of the method to detailed, submonolayer mass/charge correlations.

C. Underpotential deposition of metals

The first application of the QCM to UPD processes was by Bruckenstein and

Swathirajan (48). These authors made ex situ measurements of mass changes due to UPD

of Pb and Ag on Au electrodes by removing the QCM crystal from the cell following the

deposition and measuring ,f for the dried crystal in air. They were able to determine the

UPD coverage with quite good accuracy, as compared to parallel rotating disk and rotating

ring disk electrode measurements. The reported accuracy was 5-10%. A 10 MHz crystal

with a sensitivity factor of ca. 0.227 Hz ng "1 cm2 was used in this study.

The first in situ application of the EQCM to UPD processes was the determination of

the electrosorption valency for Pb UPD on Au by Melroy et al. (24). A value for y of 2.0

was obtained by comparison of the total charge and the total mass gain for a scan over the

UPD region. The accuracy for this determination was ca. 5%, and the value for y was in

good agreement with those previously reported. This study employed a 5 MHz crystal
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driven at its third harmonic frequency (15 MHz) through the use of a tuned LC element in

the feedback loop of the oscillator circuit, as described above (24). The use of the third

harmonic provided a three-fold larger mass sensitivity than would have been obtained at

the fundamental frequency, as shown by equation 8. In this case, the mass sensitivity was

0.170 Hz ng "1 cm 2 .

Deakin and Melroy (28) reported on a very detailed study of the UPD of Pb, Bi, Cu,

and Cd on Au. They used a computerized apparatus which provided for facile

manipulation of the frequency and electrochemical data. This allowed them to easily

construct plots of charge versus mass, the slopes of which are equal to Fy/MW, providing

a simple determination of -y. This analysis follows along the same lines as that used to

arrive at equation 19. Further, they demonstrated the use of the derivative representation

of &f (see equation 20 above) for the direct comparison of the rate of mass change with the

electrochemical current. The data in Figure 9 serve as an example of the type of

information which can be obtained from such an analysis. The dashed line is the cyclic

voltanmmetric current for a scan through the UPD region and into the region for bulk

deposition of Bi. The solid line is generated from Af using equation 20 and assuming that y

= 3. It is immediately evident that the voltammetric peaks which occur near 0.15 V are

accompanied by mass changes which are much smaller than and in a direction opposite to

expectations. The authors presented two possible explanations for this effect. Referencing

to the negative scan, first, the current may be from further discharge of adsorbed (but only

partially reduced) Bi, with a consequent desorption of weakly adsorbed anions. Second,

the reduction may induce some change in electrode morphology which influences the

coupling of the crystal to the solution, thereby changing the frequency in such a way as to

obscure any mass flux which may accompany this reduction. A study of the anion

dependence of this effect would be an obvious test of the first hypothesis, which seems the

most reasonable of the two. At any rate, this study showed that use of the derivative
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representation of Af clearly allows one to observe very subtle relationships between

current and mass flux.

D. Adsorption/desorption of surfactant molecules

Work in these laboratories has shown that mass changes associated with

electrochemically induced changes in surface coverage of redox surfactants can be

monitored using the EQCM (49,50). These redox surfactants are derivatives of

(dimethylamino)methylferrocene ((CH3)2 NCH2 Fc or DMAFc, where Fc is the ferrocene

group) which have been quaternized at the amino nitrogen using 1-bromoalkanes having

chain lengths ranging from 1 to 18 carbons. These are referred to by the number of

carbons in the chain, so that the 18 carbon derivative would be called C18, the 12 carbon

derivative, C12, and so on. This class of molecules was first reported by Saji et al. (51)

who showed that these surfactant derivatives form micelles when the ferrocene group is

present in its Fe(II) form (when the molecule is a cation), while oxidation to the Fe(Ill)

form (the dication) results in disruption of the micelles. This behavior suggested that the

tendency toward adsorption for these surfactants could also be electrochemically

modulated, a notion which has since been verified (49,50).

Figure 10 shows results which are representative of this behavior. Curve A shows the

cyclic voltammogran observed for a 22 p.M solution of C12. At this low concentration,

the contribution to the current from diffusion is negligible, and the only response is from

those molecules of C12 which are adsorbed at the Au electrode surface. Thus, a symmetric

surface wave centered near 0.48 V is seen. Curve B shows the EQCM frequency response

obtained simultaneously with the CV data. These data clearly show a loss of mass

(frequency increase) coincident with the redox process at 0.48 V. Most of the mass is

regained during the return scan, but over a slower time frame due to the slow delivery of

C12 to the surface from this extremely dilute solution. For this same reason, the cathodic

wave in the CV is smaller than the anodic wave.
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The implication of these data is that the oxidation of C12 to its dicationic form results

in its desorption, and a corresponding mass loss. Direct comparison of the mass loss with

the charge required to electrolyze the adsorbed layer indicates that MW (see equation 19)

is, within experimental error, equal to the molar mass of the surfactant derivative,

excluding the mass of any counterion or solvent which may associated with it. In other

words, the frequency increase can be accounted for entirely from the electrochemically

induced desorption of the surfactant itself.

The value of ,f of 3.2 Hz corresponds to a mass loss of 53 ng cm -2 or a loss of 1.3 x

10- 10 mole cm "2 . This is roughly half of a monolayer, based on a head group limited

molecular area of 50 square angstroms (estimated using molecular models). It is clear

from the signal to noise ratio in the figure that the detection limit is at least as small as 5%

of a monolayer. These data were obtained with a 5 MHz crystal operated at its

fundamental frequency, and are the average of 10 scans.

This very close agreement between predicted mass loss and charge consumed during

desorption does not hold for other chain lengths. For example, for the C10 derivative, the

mass loss is larger than predicted when the surfactant is present at submonolayer

coverages (50). For the C14 derivative, the mass loss is also larger than predicted, but only

after complete monolayer coverage has been achieved (These molecules exhibit

Langmuirian adsorption isotherms with saturation at one monolayer (50).) These effects

have been tentatively attributed to a) solvent incorporation into the monolayer for C 10 at

low coverages, so that the mass for desorption includes a contribution from loss of this

trapped solvent and b) association of counterions with the high charge density C14

monolayer at saturation coverage so the mass for desorption includes a contribution from

these tightly bound counterions. Such effects are not without precedent (50). While of a

highly speculative nature, these proposals from preliminary studies of monlayer

adsorption/desorption processes are indicative of the wealth of unique information which
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is, in principle, available from the EQCM.

Another benefit of using the EQCM to study adsorption/desorption processes of such

molecules is the ability to observe these processes in the presence of large excesses of

solution phase species. Figure 11 illustrates this point (49). The voltammogram (curve A)

shows clearly the wave for the C12 derivative in solution (0.5 mM). The surface wave for

the adsorbed redox couple is not readily apparent due to the relatively large current for the

solution phase couple. However, the EQCM frequency response shown in curve B clearly

shows the mass loss which is a consequence of the oxidation of the surface species. Thus,

the adsorption/desorption behavior of the adsorbed couple may be inferred from the mass

flux, even under conditions in which the electrochemical response is dominated by the

solution phase couple.

The longer chain derivatives (e.g. C16 and C18) are more strongly adsorbed at the Au

electrode surface. Studies of the mass changes which occur during redox cycling of these

tightly bound monolayers give more convincing evidence that ion association processes

can be probed using the EQCM. Plate A of Figure 12 shows the voltammetry of a

monolayer of adsorbed C16 at 50 mV s"1. The morphology of the waves is similar to those

described above and essentially invariant with scan rate. Plate B shows the corresponding

EQCM data, but at three different scan rates. At the lowest scan rate, a smooth frequency

increase like that in Figure 10 is observed, characteristic of mass loss during oxidation as

described above. However, at higher scan rates, the frequency shows a pronounced

decrease prior to this increase. This is attributed to a desorption rate for C16 which is slow

enough on this time scale so that charge compensating anion insertion into the monolayer

occurs prior to the ultimate desorption event (52). These rather speculative interpretations

suggest that transient mass transport phenomena can also be observed with the EQCM,

given the right conditions.

The objective of this section has been to demonstrate the various types of information
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available from EQCM studies of monolayer systems, especially monolayers of redox

molecules. Given that the application of the EQCM to monolayer assemblies is still in its

infancy, and in light of the great current interest in such systems (see reference 50 and

references therein) it seems clear that EQCM methods will make many important

contributions to their understanding.

IV. Multilayer deposition and dissolution

A. Introduction

Studies of multilayer depositions and dissolutions have a long history in

electrochemistry. Early interest focused on electrodeposition of metals. More recently, the

deposition of semiconductor materials, the growth and cycling behavior of oxide layers,

and the deposition and dissolution mechanisms of electrochromic films have been popular

topics of investigation. While a great variety of phenomena is observed in the

electrochemical responses of these diverse systems, many of these studies have probed

processes common to all of them such as mechanisms of nucleation, growth, and

dissolution, current efficiency for deposition and dissolution, the physical state of the

deposit (i.e. roughness, porosity, etc.), and the stoichiometry of the deposit. In this section

the use of the EQCM to provide this type of information for selected examples is

described.

B. Deposition and dissolution of electrochromic films of diheptylviologen bromide

The highly colored deposits formed by reduction of various salts of

N,N'-disubstituted-bipyridines have been widely investigated due to their potential

applications in electrochromic devices. Recently, Ostrom and Buttry (45) used the EQCM

to study the mechanisms of deposition and dissolution for films of

1,1 '-diheptyl-4,4'-bipyridinium bromide (diheptylviologen bromide (DHVBr)) under both

potential step and sweep conditions. As discussed in section 11.5. above, under potential

sweep conditions, the observed frequency changes during dissolution were consistent with



40

a pitting mechanism in which deposit roughness increased during dissolution followed by

film disintegration late in the dissolution process. This conclusion was based on the

observation of large apparent mass loading due to the trapping of supporting electrolyte

within small pores in the film. As will now be discussed, deposition under potentiostatic

conditions also causes large apparent mass loadings which can be attributed to nucleation

processes.

When deposition under potentiostatic conditions occurs, the rate of growth of the

deposit is controlled by the delivery of reactant to the surface and the nucleation rate,

which is usually a function of the applied potential. Both the charge (Q) consumed in the

deposition and the value of &f provide information about the deposition. Q reveals the

cumulative amount of deposited material (assuming 100% current efficiency) while f

gives a measure of the total mass loading from the deposit and from solvent or supporting

electrolyte which might be associated with the deposit (i.e. trapped in pores or

incorporated into the bulk of the deposit). Thus, comparison of Q and Af can allow for

evaluation of current efficiency, film composition, and film roughness, under the proper

conditions.

For a diffusion controlled deposition under conditions of 100% current efficiency and

a uniform, smooth deposit, the equation which describes the time dependence of Af is:

f= (2 x 106 ) CfMW D 1/ 2 C tl/ 27 - 1/2  (21)

where D is the diffusion coefficient for the diffusing species (in cm2 s-1), C is the

concentration (in mole cm-3 ), t is time (in s), and the other quantities have been previously

defined. This equation comes from the combination of equation 19 above and the

integrated Cottrell equation. Note that MW is the apparent molar mass of the depositing

species. It might include contributions from solution which is trapped or incorporated

within the deposit or from deposit roughness. When linear plots of Af versus t1/2 and Q

versus t1/2 are obtained, it is possible to directly compare their slopes to get MW:
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(Sf/Sq) (10 6 F / Cf) = MW (22)

in which Sf is the slope of the Af versus t1"2 plot (in Hz s-1/ 2 ), Sq is the slope of the Q

versus t 1/ 2 (in C cm "2 s 1/2). Alternatively, plots of Af versus Q provide MW directly, as

described above. These methods have the advantage of not requiring knowledge of D or C

for the determination of MW.

Figure 13 shows the results of a potential step experiment over the first reduction

wave of DHV. Curve A is the plot of Af versus t and Curve B is the plot of Af versus t1/ 2 ,

the microgravimetric equivalent of an Anson plot. Curve B shows that Af varies with t

with essentially the same functional dependence as does Q, in accordance with equation

21. Table 1 shows the values for MW obtained for several potential step experiments of

this type. Recalling that the peak potential is at ca. -0.55, the data in the table show that

the value of MW depends very strongly on the final potential for the step. Steps far over

the wave give values for MW which are quite close to the molar mass of DHVBr (434.5 g

mol- 1), while steps to the foot of the reduction wave give values as much as a factor of

three larger than this. This behavior has been attributed to the number of nucleation sites

for fihn growth formed during the reduction (45). For steps to very negative potentials

well past the wave, the number of nuclei formed is large, so that film growth is relatively

uniform. For steps to the foot of the wave, only a small number of nuclei are formed.

These nuclei grow hemispherically with time, and, as a consequence of this, the effective

surface roughness of the electrode is increased. As discussed above, this increase in

surface roughness should result in large apparent mass loadings, and values of MW which

are larger than the molar mass of the depositing species. This coupling of adjacent solution

to the deposited nuclei is schematically depicted in Figure 14. (Note that the degree to

which the solution is coupled to the surface is unknown, and should not be inferred from

the figure, which serves only to illustrate the effect.) This model qualitatively predicts that

the smaller the overpotential, the smaller the number of nuclei, and, therefore, the greater
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the extent of coupling of the adjacent solution to the surface. This will lead to larger

values of MW, in agreement with observations. Quantitative predictions are not possible

at the present time, but the development of the theory for such a case would undoubtedly

prove useful in the study of nucleation and growth processes for other systems.

The value of MW obtained for steps well past the wave (ca. 460 g mol -1) is quite near

to the molar mass of DHVBr. This is strong evidence that at large overpotentials the film

deposits relatively uniformly and with little incorporated solvent or supporting electrolyte.

Such information on the solvent content and surface morphology of electrodeposited films

is extremely difficult, if not impossible, to obtain using other techniques. However, these

investigations have shown that the EQCM is uniquely well suited for such determinations.

C. Other systems

Grzegorzewski and Heusler (53) recently published a study in which they used the

EQCM to study the mass changes which occur during the redox cycling of MnO2 films. A

particularly novel aspect of this investigation was their construction of a rotating EQCM,

thus allowing for the facile control of mass transport to the electrode surface. Through

detailed correlations of mass and charge they were able to show that redox cycling of the

oxide causes transfer of manganese ions and oxygen ions across the oxide/electrolyte

interface in independent processes. They also showed that, in steady state, only electronic

currents flow through the oxide, while in transient experiments ionic transport occurs with

corresponding changes in the oxide stoichiometry. Using essentially the same analysis as

that implied by equation 19, they were able to calculate the molar mass of the species

associated with oxygen transfer across the oxide/electrolyte interface. A value of 144 g

mol" I was obtained, suggesting that the oxygen ions were transferred with several

molecules of water. As will be discussed below in the context of mass transport during

redox events in thin polymer films, the observation of solvent transfer is not uncommon in

thin films. However, it is important to note that such transfers should not be considered to
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be measures of hydration numbers. Rather, these transfers are a consequence of varying

thermodynamic activities of water and other components within the film during the redox

events (54).

Reynolds, Rajeshwar and coworkers (55) have used the EQCM to study the

deposition and dissolution processes which occur during the electrochemstry of HTeO 2 +

at gold electrodes. The EQCM mass changes, when compared to the electrochemical

charges, allowed identification of the direct 4 e- reduction of HTeO2 + to Te with the

simultaneous deposition of the Te. Using the analysis suggested by equation 19, the n

value for the reduction was found to be 3.6. This value was consistently lower than the

value of 4 expected, which was attributed to a competing 2 e- pathway (55). Further

reduction of Te to H2 Te caused loss of mass due to the dissolution of the H2Te. Both this

study and the previous one on MnO2 amply demonstrate the dramatic enhancement of

interpretive capability towards mechanistic assignments in deposition, dissolution, and

redox switching of thin films provided by the availability of simultaneous, quantitative

mass measurements.

V. Polymer Films

A. Introduction

Much of the work with the EQCM to date has been on the study of mass transport

processes which accompany redox processes in polymer films on electrodes. Such systems

have been recently reviewed (56), and only those aspects of their behavior pertinent to

their study using the EQCM will be discussed here.

Much of the work on polymer modified electrodes (PME's) has focussed on the

process of charge propagation through the polymer film. In the context of these studies,

many suggestions have been made regarding the nature of the rate limiting processes for

the charge propagation (56). Aside from the physical diffusion of the redox species

through the film and the electron exchange reaction between redox groups, the transport of
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solvent and/or supporting electrolyte through the films have been suggested as potentially

rate limiting processes. Thus, a significant incentive for the study of ion and solvent

transport through polymer films is to understand their role (if any) in the kinetics of charge

propagation.

Ion and solvent transport may also play a role in determining the thermodynamic

behavior of PME's in the sense that the conditions which produce non-unity activity

coefficients for immobilized or incorporated redox groups may be somehow linked to

these transport processes. Thus, the deviations from Nemstian behavior frequently

observed for such systems (56) might be better understood given detailed information

about compositional changes which occur during the rdox reactions of the films.

In the next section, the mass transport processes which occur during redox reactions

in polymer films containing redox groups are examined. Both organic and inorganic

polymers are discussed. In the following section, the mass transport processes which occur

during oxidation and reduction of conducting polymers are described. The emphasis in

these sections is on a demonstration of the types of phenomena which can be observed for

such systems using the EQCM. Examples of such phenomena include: current efficiency

for deposition in electropolymerization reactions, extent of swelling of the film and

changes in swelling which occur during redox reactions, ion transport, and changes in the

viscoelastic properties of the deposit. Because changes in Af can be measured relatively

rapidly (ca. every 10 milliseconds) the kinetics of these processes will be accessible in

some instances, although little has been done in this area to date.

B. Redox polymers

1. Poly(vinylferrocene)

The first report of use of the EQCM for measurement of mass transport processes in

redox polymers films concerned the direct observation of ion and solvent transport in thin

films of poly(vinylferrocene) (PVF) (57). Figure 15 (57) shows an example of the results
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of such experiments. Curve A shows the CV obtained on a PVF film in 0.1 M KPF6 .

Curve B shows Af versus E for the scan. The EQCM frequency is seen to decrease

substantially during the oxidation process, with reduction causing the frequency to reattain

its original value. Comparison of the total zf with the total charge consumed during the

oxidation reveals that exactly one PF6 " anion is inserted into the film for each electron

removed. No evidence for solvent transport is observed, because the EQCM frequency

change matches exactly that predicted for the insertion of the apppropriate number of

anions, based on the charge. Thus, charge compensation is achieved by the influx of

anions which serve to neutralize the ferrocenium sites created during oxidation. This

behavior is the simplest type which can be observed for such systems, i.e. unidirectional

transport with no accompanying solvent. As discussed below, such behavior is more the

exception than the rule.

Ward (32) described a study of the mass changes which occur during open circuit

reactions of PVF with oxidants in solution. He found that the values for Af which were

observed for certain cases were much larger than expected, and attributed these to

simultaneous solvent and anion transport. This represents a second class of behavior.

Figure 16 shows an example of this (58). The experiment is similar to that in Figure 15,

except that the solution contains 0. 1 M K10 3. The inner (smaller) curve is the CV and the

outer curve is the derivative representation of Af calculated assuming unidirectional

transport of 103" to maintain neutrality and no accompanying solvent transport (see

equation 20). When viewed in this way, the extent to which the d(Af)/dE curve is larger

than the cyclic voltanmetric current is an indication of mass changes which are in excess

of those expected for simple anion (103-, in this case) insertion. Thus, it is clear that the

EQCM frequency changes for this system are far in excess of those expected based on the

amount of charge consumed during the oxidation, probably as a result of solvent transport

in the same direction as the anion transport. However, such results are not unambiguous,
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and additional information is required to arrive at a definitive description of the mass

transport processes. Furthermore, impedance measurements made on this system in both

the oxidized and reduced forms reveal a significant decrease in Q (by a factor of ca. 1.5)

after oxidation in KI0 3 electrolyte, indicative of the onset of viscoelastic behavior for the

deposit (58). Thus, quantitative calculation of mass changes from Af is suspect in this

particular instance. Even with such uncertainty in the quantitative description of the

transport processes, it is certainly reasonable to conclude from such data that anion and

solvent transport occur simultaneously and in the same direction. This is especially true

since the unambiguous observation of the onset of viscoelastic behavior following

oxidation is almost certainly a consequence of solvent swelling (43).

A third class of behavior is exemplified by the data in Figure 17 (57). In this case, the

oxidation of the film is carried out in a solution of 1.0 M NaCl. Very large increases in

frequency (mass loss) are seen to accompany oxidation. These were attributed to the

dissolution or delamination of the PVF film following its oxidation. It has since been

discovered that very high molecular weight or crosslinked PVF does not leave the surface

after oxidation. Rather, it behaves similarly to films oxidized in 103 " containing

electrolyte, in which extensive solvent swelling occurs (5).

These experiments show that the behavior of these films follows simple trends which

derive from the solubility properties of the monomeric ferrocenium cation in aqueous

solution, in that more swelling seems to occur in supporting electrolytes in which the

cation would be more soluble. The ability to directly observe such qualitative trends

represents a significant step forward towards the goal of rational manipulation of the

behavior of such deposits. These data also point out the importance of considering the

possibility of simultaneous transport of different species (both solvent and ionic) during

the redox reaction. As discussed earlier, there is no a priori reason why these transport

processes should occur in any given direction. Rather, the directions in which the various
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species will flow is entirely dependent on the changes in their thermodynamic activities

which occur within the film as a result of the redox reaction, as recently pointed out by

Bruckenstein and Hillman (54). Thus, the simple models of ion insertion and expulsion

which derive from considerations of electroneutrality serve only as starting points for a

more detailed analysis. Finally, these results reveal a need to more fully understand the

factors which dictate the directionality and extent of the various transport processes which

can occur in such systems.

2. Nickel ferrocyanide films

Thin films of nickel ferrocyanide have been studied for some time in regards to the

remarkable sensitivity of the formal potential for the immobilized Fe(III)/Fe(II) redox

couple to the identity of the cation of the supporting electrolyte (59). A recently published

EQCM study of such films (60) has provided the first quantitative, unambiguous

measurement of solvent transport in thin films on electrodes. Quantitative determination

of the extent of solvent transport during the redox process for such films was achieved by

measuring the difference in the total mass change (comprised of contributions from both

ion and solvent transport) which results from use of isotopically substituted solvent.

As has been reported in an EQCM study by Feldman and Melroy (61), oxidation of

the Fe(II) sites in Prussian Blue films (the iron analog of the nickel ferrocyanide system)

results in expulsion of cations from the lattice (and vice versa) as judged by the

observation of mass loss during oxidation in EQCM experiments on this system.

Discrepancies between the mass loss predicted based on charge consumption and that

observed were suggestive of solvent incorporation following cation expulsion. The good

stability of the Prussian Blue films (61) and their analogs (59) and their demonstrated

permselectivity towards cation transport (59) suggested the possibility of indirect

determination of solvent transport using isotopically substituted solvents, since both film

stability and permselectivity are essential to this particular experiment.
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Figure 18 (60) shows the results of such an experiment. Curves a and b in the upper

plate are the cyclic voltammograms for the nickel ferrocyanide film in 0.1 M CsC/H20

solution and 0.1 M CsC1/D 20 solution, respectively. The CV's were obtained sequentially

by transfer from the H20 solution to the D2 0 solution. The CV's track each other exactly,

indicating that equal numbers of Fe sites are electrochemically accessible in these two

media. Curves a and b in the lower plate show the EQCM frequency changes observed

during the redox reactions in the H2 0 and D2 0 solutions, respectively. That the frequency

increases during the oxidation and decreases during the reduction is expected based on the

cation transport model discussed above. However, the mass loss (frequency increase)

predicted from the charge consumed in the CV's was considerably greater than that

observed, suggesting the presence of some other mass transport process which occurs in

the opposite direction. The different values of Af observed in H2 0 and D2 0 confirm this

conclusion.

Figure 19 shows a schematic representation of the frequency changes observed during

the CV's shown in Figure 18. The electrochemical charge is used to predict the mass loss

for the expulsion of Cs+ ions during the oxidation process, assuming unidirectional

transport (i.e. a permselective film with a transport number for Cs+ of 1). The predicted

value is 224 Hz. The observed values in H2 0 and D2 0 are 125 and 115 Hz, respectively.

The discrepancies between the observed values and the predicted values are 99 and 109

Hz, respectively. If the entire discrepancy were due to solvent transport, then the

discrepancy for the D20 case should be 10% larger than that for the H2 0 case, exactly as

is observed. Thus, the expulsion of Cs+ cations is accompanied by the incorporation of

significant amounts of solvent. The observed frequency changes are quantitatively

predictable based on a model involving cation and solvent transport, verifying the

permselectivity of these films (i.e. the absence of anion transport). It is especially

significant that such detailed, quantitative determinations of solvent transport can be made



49

in the presence of simultaneous ion transport.

C. Conducting polymers

1. Introduction

A great deal of study has been done on the redox reactions responsiblu for the

insulator to conductor transitions of conducting polymers. In particular, the rate of the

switching process has, in some instances, been correlated with the identity of the ionic

species in the supporting electrolyte (62,63). Thus, the identification of the species

undergoing transport during the switching reaction is of considerable importance to the

ultimate goal of manipulating the properties of thetse interesting materials for the many

applications in which their use is envisioned. The EQCM is an excellent tool for such

studies, and has been used in a number of cases already. Additional information which is

available from EQCM measurements is the current efficiency for the

electropolymerization process which is sometimes used to produce thin films of

conducting polymers. This is especially useful since, up until recently, the charge

consumed in the electropolymerization was used for the indirect determination of the

amount of deposited material. This procedure will only be appropriate if the current

efficiency is constant when different conditions are used (e.g. supporting electrolyte,

solvent, or applied potential or current), a situation which will not be true in general. In

contrast, the EQCM provides a direct measure of the mass of deposited material. Also, as

will be described below, certain mechanistic questions regarding the

electropolymerization can be more easily addressed given direct information on the

amount of deposited material produced under different conditions. Finally, the EQCM can

provide a qualitative, and sometimes quantitative, picture of the extent of solvent swelling

or deswelling which occurs during the switching process for these films. Such data can be

very useful in determining the energy density of conducting polymers in relation to their

use in charge storage applications.
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2. Poly(pyrrole)

The first reported study of ion transport during the switching reaction of a conducting

polymer was on poly(pyrrole) (64). Oxidation of the insulating (neutral) poly(pyrrole) film

to its conducting (cationic) state was shown to be accompanied by anion insertion, and

reduction by anion expulsion. An exception was found for the case of tetrahydrofuran

solvent with lithium perchlorate supporting electrolyte. In this instance, the first oxidation

following electropolymerization was accompanied by anion insertion, but subsequent

switching was accompanied by Li+ transport with the C10 4- remaining trapped within the

film. The lack of C10 4 - transport was attributed to strong interactions of this ion with the

charged sites on the poly(pyrrole) backbone when in its conductive (oxidized) state. This

demonstrated the importance of the solvent in mediating the electrostatic interactions of

the counterions with the charged sites on the polymer chains, because the effect was only

observed for LiCIO4 in THF, not in acetonitrile.

A detailed method for determining current efficiencies for electropolymerizations was

described by Baker and Reynolds (29) who applied this to a study of the deposition of

poly(pyrrole). Measurement of changes in current efficiency as a function of the reactant

concentration was shown to give information valuable in the interpretation of the

mechanism of the electropolymerization. They gave a modified version of Faraday's law:

Q = n Fm/MW (23)

where Q is the charge consumed in the electropolymerization process, n represents the

number of moles of electrons required to deposit one mole of monomer units, m is the

cumulative mass change for the deposition, and MW is the apparent molar mass of the

deposited species. The value of n can be viewed as a measure of the current efficiency for

the deposition. It is important to note that the value of MW contains the mass of deposited

pyrrole units, the mass of any dopant anions which are contained in the film by virtue of

its partial oxidation to the conductive state at the electropolymerization potential, and the
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mass of any solvent contained in the film. The degree of oxidation can be obtained by

elemental analysis of a bulk sample of the film (29), but the amount of solvent

incorporation is more difficult to obtain. In the absence of such information, a value of

zero was used. Then, the value of n is obtained from Q, m, and the assumed value of MW.

This value of n is an upper limit due to the possible contribution of solvent to the observed

mass change. Since the value of n is inversely proportional to the current efficiency, this

procedure provides a lower limit on the current efficiency.

For a typical electropolymerization, plots of Q versus m were linear, with a slope

proportional to n (29). It was found that n varied with the solution concentration of pyrrole

from 5 electrons per pyrrole unit at 10 mM to 2.3 electrons per pyrrole unit at 100 mM.

Measurements over a wide range of concentration showed that the electropolymerization

rate depends on the square of the pyrrole concentration, in agreement with a proposed

mechanism for electropolymerization which involves a second order coupling reaction

between two pyrrole radical cations (29). This set of experiments represents a particularly

elegant example of the power of the EQCM for mechanistic studies of processes which

induce mass changes through deposition or dissolution processes at the electrode surface.

3. Poly(aniline)

The EQCM has been used to study the electropolymerization and transport processes

during switching for thin films of poly(aniline) (26). Figure 20 shows an example of such

an experiment. Curve A is a CV obtained for a scan recorded in the middle of an

electropolymerization. The sharp anodic wave at ca. 0.15 V is the characteristic signature

of the insulator to conductor transition for this and other conducting polymers.The broad

cathodic wave at ca. 0.05 V is from switching back to the insulating state. These responses

arise from the poly(aniline) which is already present on the electrode surface. The current

passed above 0.6 V is from oxidation of anilinium monomer in solution, which ultimately

results in the deposition of additional poly(aniline). Curve B shows Af versus E for the
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scan in Curve A. The decrease in frequency seen to begin at the onset of the anodic

switching process and continue until the scan reversal indicates mass gain during the

switching and charging processes (26). As seen by the frequency increase (mass loss)

during the return scan, the mass gain from these processes is reversible. Additional mass

gain occurs immediately after the scan reversal (between 0.7 and 0.55 V) which is the

result of the deposition of additional poly(aniline) as a consequence of the oxidation of

anilinium monomer between 0.6 and 0.7 V. The frequency at the end of the scan is lower

than its initial value by 10 Hz due to this deposition. This amount of mass gain

corresponds to roughly 1.0 nm of new film growth during the scan. The changes in

frequency which occur during repetitive scans can also be used to monitor the course of

the deposition (26).

Considerable detail regarding the electropolymerization process can be obtained from

such measurements. For example, by measuring the total charge consumed during the

deposition and comparing this with the total mass change, it is possible to obtain a

measure of the current efficiency for the deposition. This was done for deposition of

poly(aniline) at constant potential and by potential cycling, and current efficiencies of

15% and 40%, respectively, were calculated assuming a one electron oxidation of the

anilinium monomer for the electropolymerization process (26). Such measurements

provide a relatively simple way to optimize the deposition conditions for maximum

current efficiency.

4. Copolymers and composite polymer films

As mentioned earlier, a goal of the study of ion and solvent transport during the

switching reaction for conducting polymers (and, in fact, for all thin films which undergo

useful redox reactions) is that the information provided from such studies might be used

for the rational manipulation of their properties to enhance the switching rates, improve

the energy density, or in other ways induce the materials to have more desirable
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characteristics. Two recent studies serve as examples of the use of the EQCM to aid in the

correlation of ion transport with overall charge transport rates. These studies show that,

given such information, the rational manipulation of charge transport rates is, indeed,

possible.

In the first example, Reynolds and coworkers (63) electrochemically synthesized

copolymers of pyrrole and 3-(pyrrol-1-yl)propanesulfonate in which the pendent sulfonate

groups are neutralized with either Li+, K+, or possibly H+. Use of the EQCM to monitor

ion transport during the switching process for such films demonstrated conclusively that

cation transport was the dominant ion transport process during the switching reaction.

Thus, the generation of anionic sites for the compensation of the cationic charges along

the polymeric chains created by the anodic doping process is the result of expulsion of the

anions which had originally been associated with the pendent sulfonate groups. Having

definitively demonstrated a system in which unidirectional ion transport occurs, the

dependence of overall charge transport rates on the identity of the cationic component of

the supporting electrolyte was investigated. Faster charge transport was observed for Li+

containing electrolytes than for tetrabutylammonium (TBA+) containing electrolytes. That

the faster rates occur for the cation with the smaller solvated radius (Li+) is consistent

with a model in which the cation mobility is somehow involved in determining the overall

charge transport rate. In this particular system, the sulfonated copolymer exhibited slower

overall charge transport rates than did poly(pyrrole). However, the study did demonstrate

the feasibility of controlling the identity of the ionic species undergoing migration during

the switching reaction.

A second example of the application of the EQCM to help elucidate the directionality

of ion transport and the use of such information to manipulate charge transport rates was a

study of composite films of Nafion and poly(aniline) (65). Earlier work on ion transport

during switching in poly(aniline) revealed that anion transport was dominant at pH's
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above 0 (26). It was thought that higher charge transport rates could be attained by

manipulating the ion transport in such a way as to achieve electroneutrality via proton

transport. The reasoning behind this notion was that the higher mobility of the proton

compared to other ions would allow for faster switching. Towards this end, poly(aniline)

was electropolymerized within precast films of Nafion, a perfluorosulfonated polymer

with good permselectivity for cation exchange. To the extent that this permselectivity

precludes the rapid transport of anions within the Nafion film, the switching reaction

should be accompanied solely by cation transport. As in the previous study, these cations

would be in the film as the counter ions of the fixed sulfonate sites of the Nafion matrix.

In acidic solutions, protons would be the only available cations, so they should be the only

species undergoing transport. This situation is shown schematically in Figure 21.

Such a model of ion transport based on the maintenance of electroneutrality is

obviously a highly simplified view of the possible mass transport processes which can

occur in such films during redox switching. This is especially true in light of the recent

work by Bruckenstein and Hillman (54), who presented a thermodynamic analysis

demonstrating that electroneutrality alone cannot account for all of the transport processes

in thin films. They show that, at equilibrium, the net ion and mass transport processes

which result from switching are dictated by the activities of the various species. The

implication of this work is that, for the general case, net transport can occur in either

direction and that the relative molar proportions of the transporting species need not be

integer numbers with respect to the number of moles of electrons transferred into or out of

the film.. However, under transient conditions it is possible that kinetic limitations can be

created by the need to achieve electroneutrality (66), so that manipulation of rates should

be possible for some systems by controlling the identities of those species which can

fulfill this need.

Contrary to the previous results on simple (non-composite) poly(aniline) films (26),
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and in agreement with expectations for the composite films, the switching process in these

composite films showed no detectable evidence of anion transport. Figure 22 shows a

CV/EQCM experiment for a Nafion film in which poly(aniline) has been grown to a

thickness of roughly half of the Nafion film thickness. In this case, all of the poly(aniline)

is contained within the interior of the Nafion matrix. As can be seen, scanning through the

potential region of the insulator to conductor transition causes no detectable frequency

change. This fact was attributed to the predominance of proton transport. Thus, to the

extent that electroneutrality in this permselective system is achieved by proton transport

with little accompanying solvent transport (an unproven, but not unreasonable,

supposition) the observed mass changes should be extremely small due to the small mass

of the proton. Another possible explanation derives from the possibility of fortuitous

compensation of mass changes which occur in opposite directions. For example, if the

Nafion film were not fully permselective, then a net mass change of zero could arise from

simultaneous anion insertion and cation expulsion. Such an explanation is not without

merit, but the favored model is that of proton transport, since the permselectivity of

Nafion films is well known and widely exploited.

An additional explanation for the lack of detectable mass changes during switching in

this system would be the loss of mass sensitivity due to shear wave attenuation within the

Nafion matrix (65). If the shear wave were significantly damped within the region of the

film close to the electrode surface, mass sensitivity would be lost in regions of the film

well past the propagation length of the shear wave. This would occur because only that

region of the film which experiences acceleration parallel to the electrode surface can

contribute to the EQCM frequency response. This influence of penetration depth of the

shear wave into the film has been previously observed in a QCM study of curing in

photoresist films (67). In order to exclude this possibility in the present system, the mass

changes in composites in which the poly(aniline) had been grown to thicknesses well
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beyond the Naion/solution interface were examined. For such films, that fraction of the

poly(aniline) which extends into the solution, past the boundary of the Nafion film),

exhibits "normal" mass changes which are characteristic of anion insertion/expulsion in

the previously studied (non-composite) poly(aniline) films. This observation rules out the

possibility of significant shear wave attenuation within the Nafion matrix, because in such

a situation there could be no EQCM frequency response from mass changes in regions of

the film much past the attenuation length. Thus, proton transport still seems the most

likely explanation for the observed effects.

In order to more definitively demonstrate the presence of cation transport in these

composite films, the mass changes in Cs+ containing supporting electrolyte solutions were

measured. As shown in Figure 23, these data provide additional evidence for cation

transport. (Cs+ containing electrolyte was used in this experiment to generate the

maximum possible mass change from the cation transport process.) Mass loss was

observed during the oxidation of the poly(aniline)/Nafion composite (and vice versa)

consistent with Cs+ expulsion. The mass changes observed for the switching process in

this medium were not as large as expected based solely on cation expulsion to maintain

electroneutrality. Instead, smaller changes were observed, indicative of mixed cation and

anion transport and/or cesium and proton transport (the experiments were conducted at pH

3 so the poly(aniline) would not be to" resistive (26,65)) and/or concurrent solvent

transport. Thus, considerable ambiguity remains as to the quantitative details of the mass

transport process(es) for this system. Nevertheless, the data are reasonably convincing of

the presence of a considerable component of cation transport for these composite films.

Based on the supposed predominance of proton transport for these composite films,

their charge transport rates were compared to those of the simple (non-composite)

poly(aniline) films using potential step experiments. The influence of pH was also

examined to test for dependence on the relative proton concentration within the composite
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film. Depending on the pH, these composite films exhibited charge transport rates as much

as a factor of two larger than those of the simple (noncomposite) poly(aniline) films. The

enhancement has been attributed to the predominance of proton transport in the composite

films (65). Thus, this study represents an excellent example of how the understanding of

charge transport mechanisms can be used in the rational manipulation of these processes.

VI. Future Applications of the EQCM

This review has attempted to provide an entry into the application of the EQCM to

problems of interest to the electrochemical community. As can easily be seen, many types

of phenomena can be studied, some of which are not amenable to observation by other

methods. In this respect, the EQCM represents a powerful new addition to the

electrochemist's repertoire of characterization methods. However, the information

obtained from the EQCM measurement is limited in that quantitative information is still

only available on mass changes at the surface, and then, only when certain criteria are met.

It seems likely that as additional theoretical treatments become available, it will be

possible to extract some material properties of surface films using the impedance analysis

methods described above. In this way, it might be possible to correlate some

electrochemical or transport parameters (e.g. permeation, charge transport rates, etc.) with

the microscopic relaxation processes upon which these material properties depend.

Despite the relatively non-specific nature of the information provided by the EQCM,

its low cost and simplicity make it quite attractive for the determination of compositional

changes at the electrode surface. An additional, significant attribute which it possesses is

the high precision of the measurement of changes in frequency and impedance parameters.

The method will prove especially useful when used in conjunction with other methods for

interface characterization, such as surface enhanced Raman spectroscopy, infrared

spectroscopy, ellipsometry, etc. In such multi-technique studies, the availability of a tool

for such precise mass measurements will undoubtedly be of value, especially when the
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quantitative aspects of the spectroscopic probes are in question.
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Apparent MW's of the deposit formed for various applied potentials.

Table la

Concentration Concentration Final
of of Potential MW

DHVBr 2 (mM) KBr (M) (V (glmole)

1 0.3 -0.5 80 866

1 0.3 -0.600 731

1 0.3 -0.750 449

5 0.3 -0.535 1205

5 0.3 -0.536 1145

5 0.3 -0.537 957

5 0.3 -0.538 926

5 0.3 -0.750 460

aFrom Ref. 45, with permission.



Figure Captions

1. Edge view of QCM disk showing shear deformation. The disk thickness and shear

deformation have been exaggerated for clarity.

2. Top view of QCM disk with vapor deposited electrodes. Disk diameter - 1 inch. Area of

central circular pad - 0.28 cm 2 . Width of rectangular flag for external connection - 2 mm.

The thin film metal electrodes are ca. 300 nm thick.

3. Schematic of oscillator circuit. ICI - MC1733. RI - 2.2 M2. R2 - 200 Q. R3, R4, R5,

R6 - 180 Q. R7 - 220 Q. Cl - 0.01 giF. TI, T2 - 2N3904. Dl, D2 - HP 5082-2811 Schottky

diodes.

4. Schematic of EQCM apparatus.

5. a) Equivalent circuit representing the electrical behavior of a QCM. b) Equivalent

representation of the circuit in (a).

6. Shear velocity profiles in a fluid adjacent to a QCM at three different times: a) peak

surface velocity, b) intermediate surface velocity, c) zero surface velocity. (From Ref. 40,

with permission.)

7. Plots of conductance versus relative frequency for a 5 MHz AT-cut QCM of the type

shown in Figure 2 in a) air, b) water. The scale for curve b has been increased by 5x.

8. Schematic depiction of pit nucleation and growth during thin film dissolution.



9. UPD of Bi (1.0 mM in 0.1 M HC10 4 ) on Au at 10 mV s-1, average of 30 scans,

background corrected. The current response of the EQCM Au electrode (dashed) and the

derivative representation of d(M)/dE versus E from equation 20 (solid), assuming I = 3.

(From Ref. 28, with permission.)

10. a) CV scan for 22 VM C12. b) EQCM frequency response for scan in (a). Scan rate -

50 mV s-1. Supporting electrolyte - 1.0 M H3PO4 . The data have been digitally smoothed

using a fourier filter and background corrected. (From Ref. 50, with permission.)

11. a) CV scan for 0.5 mM C12. b) EQCM frequency response for scan in (a). Scan rate -

50 mV s-1.Supporting electrolyte - 0.2 M Li2 SO4 , adjusted to pH 3 with 0.2 M H2 SO4 .

The CV has been treated as in Figure 10. (From Ref. 49, with permission.)

12. a) CV scan of 15 g.M C16. Scan rate - 50 mV s-1.b) EQCM frequency response for

the scan in (a). Scan rates - (A) 250 mV s-1. (B) 50 mV s-1.(C) 10 mV s-1. Supporting

electrolyte - 1.0 M H2 SO 4 .

13. a) Relative frequency change versus time for a 10 second step from +0.2 to -0.75 (i.e.

over the first reduction wave) for a solution containing 5 mM DHVBr2 , 0.3 M KBr, and 5

mM NaOH. b) Plot of relative frequency change versus the square root of time for the data

in (a). (From Ref. 45, with permission.)

14. Schematic depiction of solution "trapping" between nuclei during the nucleation stage

of a deposition.

15. a) CV of PVF in 0.1 M KPF6 . Scan rate - 10 mV s- . b) EQCM frequency response

for the scan in (a). (From Ref. 57, with permission.)



16. a) CV of PVF in 0.1 M KI03. Scan rate - 50 mV s- 1. b) d(f)/dE versus E (from

equation 20) for the scan in (a).

17. a) CV of PVF in 1.0 M NaCi. Scan rate - 50 mV s- 1. b) EQCM frequency response for

the scan in (a). (From Ref. 57, with permission.)

18. A. a) CV of a nickel ferrocyanide film in 0.1 M CsCI/H2 0. Scan rate - 100 mV s- 1. b)

Same as in (a) except that the solution contains D2 0 rather than H2 0. B. a) EQCM

frequency response for the scan in (a). b) Same for (b). (From Ref. 60, with permission.)

19. Schematic representation of the frequency changes measured and calculated for the

CV's in Figure 18. (From Ref. 60, with permission.)

20. a) CV scan during the electropolymerization of PA in 0.1 M aniline, 1.0 M H2 SO 4 .

Scan rate - 100 mV s- 1. C = 100 gA. b) EQCM frequency response for the scan in (a). F =

20 Hz. Curve (b) is offset 40 mV to the left with respect to curve (a). (From Ref. 26, with

permission.)

21. Schematic depiction of cation transport during switching in a PA/Nafion composite

film.

22. a) CV scan during electropolymerization of PA in a Nafion film in 0.1 M aniline, 1.0

M H2 SO 4 . Scan rate - 200 mV s- 1. C = 20 A. b) EQCM frequency response for the scan

in (a). F = 10 Hz. (From Ref. 65, with permission.)

23. a) CV scan of PA/Nafion composite film in 0.1 M CsCl. Scan rate - 200 mV s- 1. C -



20 liA. b) EQCM frequency response for scan in (a). F =5 Hz. (From Ref. 65, with

permission.)
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