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Abstract

In this paper we show that it is necessary to utilize different partitioning coefficients in
interconnection length analyses which are based on Rent’s rule, depending on whether one- or
two-dimensional placement strategies are used. B is the partitioning coefficient in the power-law
relationship 8P which provides a measure of the number of interconnection that cross a boun-
dary which encloses B blocks. The partitioning coefficients are f=p/2 and B=p for two- and one-
dimensional arrays, respectively, where p is the experimental coefficient, of the Rent relationship
T=aBP. Based on these separate partitioning coefficients, an average interconnection length pred-
iction is presented for rectangular arrays that outperforms existing predictions. Examples are

given to support this theory.
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1. Introduction

The estimation of interconnection lengths on a chip is important for several reasons: it is a rough
indicator of the chip size [1], it is a measure of the goodness of cell placement, and it allows a first cut esti-
mate of the delay of a typical logical path on a chip [2]. Estimates of interconnection length can be made
in various phases of the design process. Those estimates made in the early stages of the design should rely
on a few simple parameters. As more design information becomes available additional parameters may be

taken into account to refine the accuracy of the average interconnection length estimate.

-

The terminal-block relationship, T=aB”, Rent’s rule, where a and p are empirical constants and p is
typically between .57 and .75 [3] has proved useful in the analysis of interconnection lengths [4-11]. The
Rent relationship provides a measure of the number of interconnections which cross a given boundary
which encloses B blocks. Simple first cut estimates of the average interconnection length for square arrays
can be made in the early stages of a design based on two parameters, the number of cells to be placed on
the chip and the empirical coefficient p of the Rent relationship {4]. However, in some instances, the aver-
age interconnection length predictions based on the Rent relationship tend to consistently overestimate the

actual interconnection length for both rectangular and square arrays [4, 11].

In this paper we will consider the estimation of average interconnection lengths and the distribution
of interconnection lengths in analyses based on Rent’s rule. We generalize the Rent relationship to the
power-law relationship, o8P, where B is referred to as the partitioning coefficient, and investigate the use
of the power-law relationship in - . aber of studies [4-7, 11]. Based on these investigations we determine
whether there is a one-to-one corresporidence between p, the empirical coefficient of the Rent relationship,
and B, the partitioning coefficient of the power-law relationship. Afterwards we propose an average inter-

connection length estimate for rectangular arrays based on our findings.

In section 2 we consider the methodology presented by Sastry and Parker [6, 7] in describing inter-
connection distributions based on Rent’s rule. We expand their analysis to a two-dimensional lattice model
and introduce the notion of separate partitioning coefficients for one- and two-dimensional placements of
logic cells. In section three we consider square arrays. To test our theory on the size of the two-

dimensional partitioning coefficient we construct interconnection distributions based on the methodology




used in the derivation of a popular average interconnection length prediction method [4]. We compare our
generated interconnection distributions to actual interconnection distributions and afterwards compare

predicted average interconnection lengths to actual average interconnection lengths.

In section four we consider rectangular arrays. We show that a rectangular array is characterized by
two partitioning coefficients, one for the two-dimensionally placed cells and one for the one-dimensionally
placed cells. The concept of a top-down versus bottom-up partitioned array is introduced. An average
interconnection length prediction is derived for rectangular arrays and is shown to outperform an existing
prediction scheme [11]. In section five the theories presented in the paper are tested out on actual designs

collected from the literature [12-17]. Section six contains the conclusions.

2. One-dimensional versus Two-dimensional Partitioning Coefficients

In this section we utilize the approach outlined by Sastry and Parker [6,7] to characterize intercon-
nection length distributions. Our analysis differs in that we distinguish between different placement stra-
tegies which result in one- and two-dimensional array representations. The concept of separate partitioning

coefficients for one- and two-dimensional arrays is introduced.

In the analysis, a chip consists of a collection of cells. A cell may be a gate, as in a gate array, or a
logic block, as in a master image design. The sample space is the set of the possible placements of a given
cell on an array. In the one-dimensional model the cells are placed in a row and a row may be several cells
deep. In the two-dimensional model the cells are placed in a lattice. Distances are measured in a radial
fashion from an arbitrary origin. When using the lattice model Manhatten distances (horizontal and verti-
cal directions only) are assumed. In each case a cell is considered a point source whose distance from the
arbitrary origin is x. Figure 1 shows the one-dimensional row model and the two-dimensional lattice

model.

Using the notation of Sastry and Parker (6, 7] let L(x) denote the random variable defined on the
sample space that measures the length of an interconnection from its source to the point of crossing at the
boundary x. Recall that in the two-dimensional lattice model, the distances are measured in a radial

fashion from the origin. Let A denote the event that an interconnection born from a gate in (¢~dt )
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@
Figure 1. (a). A one-dimensional row model with a depth of three. (b). A two-dimensional
lattice model. Distances x=1 and x=5 from the origin o0 are shown.
crosses the boundary at x:
A=x-t <L(x)<x—-t+dt, 1)
let B denote the event that an interconnection bomn before ¢ crosses the boundary at x :
B =L(x)>x~t, ?2)

and let C denote the conditional probability that an interconnection crossing the boundary at x was bomn in
(¢1—dt .t), given that it was born before ¢:

C=AIB. 3)
If F (x) and f (x) represent the distribution and density functions of L (x), respectively, the probabilities of
the three events defined above are given by

PA)=f@&x~-1)
PB)=1-F(x —1t) @)
= = - = f&x—t)dt
P(C)=P(A1B)=Z(x - )di = (LG 1L
where P(C)=P(A)/P(B) since A is a subset of B. The distribution of interconnection lengths, F (x),

may be found by integrating Z (x~t), that s,

Fix)=1- exp[—IZ (x -t)dt ] &)
where exp (a)=e®. Assuming the power-law relationship aBP yields the number of interconnections cross-
ing any boundary x and B is the number of blocks or cells contained within the boundary, then the power-

law relationship can be used to characterize Z(x —¢), the instantaneous number of interconnections




crossing the boundary at x.

In the one-dimensional representation of a chip the number of cells in the interval [0, x] is
C(x) = 2Kx, where X is the depth in cells of the row. Thus, using the power-law relationship it is possible

to write

IZ(x ~ £)dt = a(2Kx)P. ©)
Based on Equation (6), the interconnection length distribution is
F(x)=1-exp(-a(2K)P xPB)

=1-exp(-sx”)

which is a Weibull distribution function with scale parameter s=c(2K )8, location parameter 0, and shape

Q)

parameter r=f.

In the two-dimensional representation of a chip, the number of cells as a function of x, where x is
measured radially from the origin, is C (x) = 2x2 + 2x + 1. If we approximate the number of cells in terms
of distance x as C (x) = 2x2, then, analogous to the one-dimensional case, the total number of interconnec-

tions born in [0, x] which cross the boundary at x leads to

IZ(x —1)dt = (2628 @®
which has the form of a Weibull distribution function with scale parameter s=02f, location parameter 0,
and shape parameter r=2§.

The scale parameter s and the shape parameter r of the Weibull distribution can be estimated if the
interconnection distributions of a design or logic graph are available. In [6,7] Weibull parameters were
found for interconnection length statistics in the form of quantized frequenries for the three logic graphs
given in (5] by using both a graphical method and the method of moments. The graphical estimation of s
and r for the three logic graphs and the resulting Weibull density functions in comparison to the experi-

mental data are shown in Figure 2.

We hypothesized that the number of interconnection emanating from a cluster of B logic cells
adhered to the power-law relationship «BP. We now consider whether the actual Rent empirical

coefficients of the relationship T=aB? have a direct one-to-one correspondence with the power-law
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Figure 2. Weibull density functions with scale parameter s and shape parameter r for the three
logic graphs in [S]. p is the experimental Rent coefficient.

coefficients. If we assume the logical graphs in Figure 2 may be represented by the two-dimensional model

as is specified in [4, 5] we find for the three logic graphs the shape parameter, r=2f, does not correspond to

2p; rather, it is closer to p, where p is the experimental Rent coefficient. This is not unexpected since

Weibull density functions with a shape parameter greater than one have a bell-curve shape [18] which is

contrary to observed interconnection length distributions in chip designs. Based on this evidence, we pro-

pose the following: for two- and one-dimensional placements a partitioning coefficient B=p/2 and B=p,

respectively, should be used in average interconnection length prediction methods based on Rent’s rule. In

the remainder of this paper we provide evidence based on previous studies and actual design data collected

from the literature that different partitioning coefficients should be utilized depending on whether a one- or

two-dimensional placement and routing approach is followed.




3. Interconnection Distributions and Average Length for Square Arrays.

In this section we investigate the effect of using a partitioning coefficient of 8=p versus using a parti-

tioning coefficient of B=p/2 as proposed in the previous section on a popular average interconnection

length estimate for two-dimensionally placed square arrays [4]. In order to gain more insight as to why one

partitioning coefficient may be better than another, we construct interconnection distributions based on the

methodology used in deriving Donath’s average interconnection length estimate. These interconnection
distributions will be compared to previously published interconnection distributions [S]. Afterwards, com-

parisons of predicted average interconnection lengths are made to the logic examples in [4].

Donath’s prediction of average interconnection length relies on the hierarchical nature in the place-
ment of logic cells. The reasoning behind the estimate will be reviewed briefly. Given a logic graph of C
logically interconnected nodes, the expected number of boundary terminals may be predicted using the
power-law relationship aC®. If we assume a logic graph consisting of C nodes is composed of groups of
size N nodes, then the total number of groups of size N, in the logic graph is C/N; and the total number of
terminals associated with a graph of size C divided into groups of size N is
aN{# CIN; = aN ! C. o)
If at the next level of the hierarchy, the nodes are divided into groups of size N, N,>N |, then the number
of terminal connections associated with interconnecting the groups of size N, is
aC (VB! -NF), (10)
The number of connections interconnecting the groups of size Ny, n(N), is simply some fraction f of
those terminals:
n(N1) = faC (N - N, (11)
For example, for nets which connected two points, f = 1/2. It is assumed that the fraction f is uniform

throughout all the levels of the hierarchy.

In order to hierarchically partition the logic graph, groups of 4 are used. For example, at level 0, 4
groups of size 1 are interconnected; at level 1, 4 groups of size 4 each are interconnected. Using the

method of moments the average interconnection length in cell pitches, R, is given by
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'};‘nw) r(al)

R = — (12)
25;:(4‘)

where r (4!) is the average level | interconnection length of the 4 groups of size 4/ assuming every node in
each one of the groups is equally likely to be connected to every other node in the other three of four
groups and L =log (C)/log (4) is the number of hierarchical levels in the design. For the two-dimensional

array model, the average level / interconnection length is

r@h)= g2 +2'y) - $ @ +270Y) (13)
where X and y correspond to the horizontal and vertical directions, respectively and the average array

interconnection length, R , is [4]

< 2[7&!/7-1 1-ce—w2] 14

2 2 o
for B=.5. Note that the average interconnection length is a function of two parameters, B and C.
In order to construct the interconnection length interconnection density, f (x), based on Donath’s

average interconnection length prediction method, we need R in the form

R =‘=xg"f(x)x as)

which is basically the expected value of f (x). The average path length of four two-dimensionally placed
groups of size 4' may be expressed analytically as shown in Equation (13) or it may also be expressed as
the summation

s () x
r 4'): x_ﬁT—'

(16)
where §,,(x) is the number of paths of length x and 6 is the number of combinations of two groups out of
the four groups. We have determined S, (x) analytically. Unfortunately §,(x) is not a continuous func-
tion so a closed form solution for the interconnection density could not be found. Instead, we wrote a pro-
gram which kept track of the number of interconnections of length x at each level of the hierarchy and, at
the end, summed cach of the contributions to find the total number of interconnection of each length x.

These totals were divided by the total number of interconnections in the design to create a statistical inter-

connection density. Statistically calculating f(x) is a matter of solving
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In Figure 3 statistically calculated interconnection frequencies based on the hierarchical partitioning
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of a logic graph in groups of 4 with two partitioning coefficients, B=p and B=p/2 are plotted along with the
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Figure 3. Comparison of interconnection density versus interconnection length: actual,
statistically calculated with a partitioning coefficient =p, and statistically calculated with a
partitioning coefficient B=p /2, for the three logic graphs in [5].




actual interconnection distributions for three logic graphs. It is evident that a partitioning coefficient of p /2
results in a interconnection distribution which more closely resembles the actual interconnection distribu-
tion. This being the case, we should also expect that Donath’s average interconnection length prediction
calculated with a partitioning coefficient of B=p/2 would also result in a more accurate estimation of the
average interconnection length than the originally proposed partitioning coefficient of B=p. Comparisons
made on the logical designs in [4] are shown in Table 1. The average interconnection lengths predicted

using a partitioning coefficient of B=p /2 are closer than those predicted using a partitioning coefficient of

B=p.
4. Average Interconnection Length of Rectangular Arrays

For large designs or designs with a rectangular array, that is, an array of C; cells by C, cells with
C,#Cy, it is a common practice to partition the logic graph into sections, place and wire the smaller sec-
tions, and afterwards place and wire the previously wired sections [19]. For a rectangular array with sub-
stantially more rows than columns, this would involve dividing the array into several groups, each group
consisting of several rows of the array and performing a two-dimensional placement and routing on these
individual groups. Afterwards, a one-dimensional placement and routing of the previously wired groups
would be performed. A technique used to predict the average interconnection length should take these
design steps into account. In this section we develop an average interconnection length prediction for rec-
tangular arrays which is based on partitioning an array first into two-dimensional groups and then into

one-dimensional groups. The prediction relies on the proposed separate partition coefficients for one- and

Table 1. Comparison of average interconnection length of the logic designs in [4] using two
different partitioning coefficients, B=p and f=p/2, to experimental average lengths.

cells | p | Rexp. | R(p) | R exp/R(®) | R(p/2) | R exp/R(p/2)
60 | 67| 129 | 276 0.47 2.23 0.58

528 | 59 | 215 | 4.02 0.53 2.70 0.80

576 | .75 | 2.85 | 5.26 0.54 3.00 095

671 | 57| 263 | 4.07 0.65 2.71 097

1239 | 47| 214 | 3.76 0.57 2.64 0.81

2148 | 75 | 3.50 | 737 0.48 3.36 1.04
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two-dimensional array placements. We compare and contrast our prediction with that of Masaki and

Yamada [11].

Consider hierarchically partitioning a rectangular array. The partitioning consists of a set of subar-
rays where eack. subarray is characterized by the number of groups in the subarray, the cell size of a group,
and the placement of the groups relative to one another, i.e., one- or two-dimensional placement. For
example, in the previous section on square arrays, r (4') can be characterized as a two-dimensional place-

ment of four groups of size 4/. One may either take a top-down or a bottom-up partitioning approach.

-

In a top-down partitioning approach the rectangular array is successively divided into four groups,
that is, the array is initially divided into four groups and in the next step each of the groups is divided into
four groups. The dividing process ends once the smaller dimension of a group is of size one. What
remains is a set of 1 by k one-dimensional arrays. In a bottom-up partitioning approach, initiaily the array
is partitioned into set of subarrays of size four and each cell is considered a group. In the next step the
array is partitioned into a set of subarrays consisting of four groups of size four. This process continues
until the width of the four groups is equal to the width of the array under investigation. The remaining
groups are then hierarchically partitioned one-dimensionally into groups of four. The successive divisions

of a 16 by 128 cell amray is depicted in Table 2 for both a top-down and a bottom-up partitioning approach.

We propose using both a bottom-up partitioning approach and different partitioning coefficients
depending on whether a one- or two-dimensional placement is used for predicting the average interconnec-

tion length in rectangular arrays. In the average interconnection length prediction method of Masaki and

Table 2. Bottom-up and top-down partitioning of a 16 by 128 cell array.

top down bottom u
level | group number | placement | group | number | placement
size | of groups | dimension | size | of groups | dimension
1 8x64 4 2D 1x1 4 2D
2 4x32 4 2D 2x2 4 2D
3 2x16 4 2D 4x4 4 2D
4 1x8 4 2D 8x8 4 2D
5 Ix1 8 1D 16x16 4 1D
6 16x64 4 1D
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Yamada {11] a top down partitioning approach is taken and one partitioning coefficient is used. The aver-

age interconnection in terms of two partitioning coefficients, p; and p, is

L.~1 L~ L-1 L,~1
R(p2p1)= [ Znonn)+ Z'bn(l,pz)fz(l)} +[ Fnlp)+ Fnd ,Pz)} (18)
where the subscripts 1 and 2 refer to the partitioning dimension of the array. If the array is of size C, cells

by C, cells and C, 2C, then the number of levels in the two- and one-dimensional partitioning are

L, =10g(Cy?)/ log(4) and L, =10g(C:/Cy )/ log(4), respectively.

The only term which has yet to be defined is r;(I) which is the one-dimensional average interconnec-
tion length at level ! for a sub array of four groups. Consider a one-dimensional array with two groups of
size w; by w, separated by a distance d; as shown in Figure 4. The total path length between the two
groups, which is the total length of interconnection between the two groups assuming each cell in one

group is connected to each cell in the other group, is

PL(w,,w,_d,)=f§lz=hz_; 5. (Lis +ws+di=ia]x + 1 js—ja 1)
=1 1 =L BEL (19)
= Ty 2w + ) + (g = o))

In our application we need 4 groups in a one-dimensional row array; thus, the average path length is

Wy dx Wy

(idjd) s e o (ibe) e o0

Figure 4. Two groups of size w; cells by w) cells separated by d, cells.
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ri =3 PL(wx.wy,0) + 2 PL (wy ,wy wx ) + PL (Wx,wy 2w;)] / (6w *w, ?)

20
= 35-fo + -ir(wy - w%)y‘. (20)

The summation of path lengths for the one-dimensional array may now be expressed as

Lo L -1 15 L1
Frpr()= 5 afCIAIC,2P™ - @G, P [34 Gyl + 3(Cy - )] 1)

_ ply| ~ 20015 147 L L p21 . 1, 14070
_afC(1—4 ){Cy -3- 1_4P| X+Cy j(C’ tv;)————r—l_4p‘_ ¥l .

The two-dimensional path length is
4(Fa-21')l'x_l 1_4‘Pz°%)l‘z]

L e | E ) (22)
4777 1472

L1
S npd ral) = ofCA-4"Tg| 7

The total number of connections in the rectangular array is

L1 L1
zbn (py)+ ;n(l,pz) =0fC (1-CPt + ¢, %V - P, (23)
The average interconnection length may be found by substituting Equations (21), (22), and (23) into Equa-

tion (18). Note that the resulting average interconnection length equation does not depend on of .

The effect of the differing partitioning coefficients on the interconnection density is shown in Figure
5 for the rectangular array of size 71.31 cells by 20 cells, Part D.3 [11], along with the resuiting average
interconnection length predictions and the actual average interconnection length. In this example our pro-
posed partitioning coefficients of B=p/2 for the two-dimensional partitioning and B=p for the one-
dimensional partitioning more closely predicts the average interconnection length. Note that the slight
differences in the three density functions do make significant differences in the final outcome of the aver-

age interconnection length.

The remaining examples from [11] are shown in Table 3. Ry, (B) is the average interconnection
length predicted using the formulas of Masaki and Yamada and R (B2,8:) is our proposed average intercon-
nection length prediction. For the square array examples (Part B) the partitioning coefficient of B=p /2 pro-
vides a better prediction of the average interconnection length as was also shown in the examples in section
2. For part D, two of Masaki and Yamada's predictions are fairly close while one is far off, and for our

predictions one is very close and two are far off. Looking more closely we find that although all three
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Figure 5. Interconnection densities for the bottom-up partitioning of rectangular array of size
71.31 cells by 20 cells, part D.3 {11], using three combinations of partitioning coefficients.

Table 3. Comparison of average interconnection length with two different partitioning
coefficient, B=p and P=p/2, and experimental average interconnection lengths. A Rent
coefficient of p=.666 is used in all examples.

example array size Rexp | Ryuau(P) | R exp/Ryas(p) | R(p/2p) | R exp/R(p2,p)
Al 7.29x10.01 | 1.998 2.908 0.687 2.391 0.836
A2 7.53x10.35 | 2.270 2.955 0.768 2414 0.940
Al 7.24x9.95 | 1.877 2.899 0.648 2.386 0.787
B.1 15.88x15.88 | 2.736 3.840 0.713 2.637 1.038
B.2 15.36x15.36 | 2.198 3.784 0.581 2619 0.839
B.3 15.39x15.39 | 2.887 3.788 0.762 2.620 1.102
C1 6.54x8.41 | 1.579 2.707 0.583 2271 0.695
C2 6.77x8.71 | 1.384 2.754 0.502 2.296 0.603
C3 6.95x8.93 | 2.077 2.787 0.745 2.313 0.898
D.1 86.22x20.00 | 6.159 7.341 0.839 4,704 1.309
D.2 74.34x20.00 | 6.475 6.821 0.949 4430 1462
D.3 71.31x20.00 | 4.634 6.686 0.693 4.358 1.063

arrays are roughly the same size one average interconnection length is far below the others (4.63 versus
6.16 and 6.48). Assuming these are random placements, we contend that the placement with the lowest

average interconnection length represents a very good placement while the other two are not nearly as
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good. All in all, our average interconnection method seems to more closely predict the average intercon-

nection length of a rectangular array.

5. Comparison to Actual Designs

In this section we compare our average interconnection length prediction formulas to the average
interconnection length prediction of Masaki and Yamada [11] for a series of published designs [12-17].

We consider what type of designs the prediction methods do well on.

It is a common occurrence in logical designs that the entire array is not completely populated with
cells. Given an internal array of a chip ( not including I/O cells) of size A, cells by A, cells with U percent
of the cells of the array utilized in a design, then we can approximate the number of cells utilized in each
direction as

C:=A, U

Cy=A, VU.
For example, in [15] the array is 26 cells by 32 cells and 90% of the cells are utilized; therefore, C,=24.67

(24)

and C,=30.36. If a utilization is not specified for a design, a utilization of 80% is assumed, although any
utilization may be assumed. The utilized cells in each direction and the partitioning coefficients are the

parameters of the interconnection length predictions.

The results of the interconnection length prediction formulas are expressed in cell pitches in the x
and y directions, R, and R, respectively. To convert this to the average interconnection length in metric
units, the cell dimensions need to be determined. In our analysis we assume 85% of a chip dimension is
allocated to the wiring of the internal cells; the remaining 15% is allocated to the I/O circuitry. Thus, given
a chip of size D;=7Tmm by D,=8mm , the intemnal wiring dimensions are /,=5.95mm and /,=6.80mm . The

cell sizes in the x and y directions, S, and §, are

Sx =[x/ Cx
(25)
Sy =0h/C,
and the average interconnection length, L, is

If the actual wiring statistics are specified in terms of net lengths, then the interconnection length is found
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by dividing the net length by the average fanout in the design. If one is not given, a fanout of 2.5 is

assumed.

When comparing average interconnection predictions in metric units, L, we will consider a range of
Rent coefficients bounded by p=.666 and p=.750. Since our average length prediction for rectangular
arrays, L(B2.B1), relies on separate partitioning coefficients, B=p/2 and B,=p, for the two- and one-
dimensional placements, respectively, we will compare our prediction to Masaki and Yamada's, Ly (B),
using two partitioning coefficients, B=p and B=p/2. The characteristics of the six designs we will consider
are given in Table 4. In Figure 6 the actual and predicted interconnection lengths in metric units are com-

pared for the designs in Table 4.

A number of comments are in order. For designs C and D, C,=C,; therefore, our prediction,
L(Br2,B) is similar to Ly, (p/2) and provides an accurate prediction of the actual length. In design B, a
rectangular array with C, roughly twice C,, L (p/2, p) again most closely predicts the actual interconnec-
tion length. Meanwhile, Ly, (p/2) underestimates the length while Ly, (p) overestimates the length.
Design A is interesting because this time Ly, (p) also underestimates the actual length. This is attributed

to the top-down partitioning which results in a large number of short interconnections.

The average interconnection length formula L (p/2, p) predicted the average lengths of the four
designs, A, B, C, and D, quite well. These designs were all automatically placed and wired and were also
more or less random. This random aspect even holds true for designs B and C which are multipliers
because when viewing the photomicrograph of the chips [13, 14], the cells seem to be more or less uni-

formly distributed on the chip. In contrast, we consider two design examples, E and F, which tend to have

Table 4. Characteristics of Six Designs Used to Calculating Average Interconnection Length.

Design | ref. | C; | Cy, | U | Dy(mm) | D,(mm)
A [12] [ 133 | 12 | 80 | 65 6.5
B__ | (13) | 68|32 | .53 | 94 9.2
C || 126892 90 9.2
D | (15[ 322 |9 | 76 73
E_ | (16] | 239 | 27 | 52 78 78
F_|[17]] 8 | % | 65 7.0 7.0
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Figure 6. Actual interconnection lengths and predicted average interconnection lengths of the
designs characterized in Table 4, for a range of Rent experimental coefficients bounded by
p=.666 and p=.750.

a more structured layout on the chip. Design E is a 16 bit by 16 bit multiplier and Design F is a micropro-

cessor. The predicted average interconnection length for design E is much greater than the actual average

interconnection length. A photograph of the fabricated chip which contains Design E [16] gives a clue as
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to why this occurred. The layout of the chip is highly structured and occupies less than 75% of the array
area. It is possible to modify the internal cell area in the calculations to that which is actually utilized in the
design. This would result in smaller cell sizes and, therefore, shorter average interconnection lengths
predicted. The prediction for the average interconnection length of design F underestimates the actual
average interconnection length. This is because the microprocessor contains a large number of busses and
does not truly qualify as a random design. In short, our proposed average interconnection prediction

method works best on random logic designs which are more or less uniformly distributed on the cell array.

6. Conclusions

In this paper we proposed the general power-law relationship a8 to provide an estimate of the
number of interconnections crossing a boundary which encloses B blocks or cells rather than the typically
utilized Rent relationship aB?. We have shown that it is necessary to utilize different partitioning
coefficients, B, in average interconnection length prediction formulas and interconnection density formulas
which are based on Rent’s rule, depending on whether a one-dimensional or two-dimensional placement
strategy is used. The partitioning coefficient is B=p/2 and B=p for two- and one-dimensional arrays,
respectively, where p is the experimental Rent coefficient. Based on these finding an average interconnec-

tion length estimate is presented for rectangular arrays which outperforms other existing estimates.
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