FURTHER INVESTIGATION OF FLOW MODELING DURING SOLID PROPELLANT PROCESSING

Y. S. Cha
H. M. Domanus
W. T. Sha
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439

S. L. Soo
Department of Mechanical and Industrial Engineering
University of Illinois-Urbana
Urbana, Illinois 61801

MAY 1989

Prepared for:
Propulsion Directorate
Research, Development, and Engineering Center

Contract No. W-31-109-ENG-38

U.S. ARMY MISSILE COMMAND
Redstone Arsenal, Alabama 35898-5000

Approved for public release, distribution is unlimited.
DISPOSITION INSTRUCTIONS

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.
FURTHER INVESTIGATION OF FLOW MODELING
DURING SOLID PROPELLANT PROCESSING

by

Y. S. Cha, H. M. Domanus, W. T. Sha

Materials and Components Technology Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439

and

S. L. Soo

Department of Mechanical and Industrial Engineering
University of Illinois-Urbana
Urbana, Illinois 61801

May 1989

Approved for public release, distribution is unlimited.

Prepared for:
Propulsion Directorate
Research, Development, and Engineering Center

Contract No. W-31-109-ENG-38
Further Investigation of Flow Modeling During Solid Propellant Processing (U)

10. SOURCE OF FUNDING NUMBERS

Commander
U.S. Army Missile Command
ATTN: AMSMI-RD-PR
Redstone Arsenal, AL 35898-5249

11. TITLE (Include Security Classification)

Further Investigation of Flow Modeling During Solid Propellant Processing (U)

12. PERSONAL AUTHOR(S)

Y. S. Cha, H. M. Domanus, W. T. Sha, S. L. Soo

13a. TYPE OF REPORT

Final

13b. TIME COVERED

FROM 9/87 TO 9/88

14. DATE OF REPORT (Year, Month, Day)

May 1989

15. PAGE COUNT

35

16. SUPPLEMENTARY NOTATION

17. COSATI CODES

FIELD GROUP SUB-GROUP
21 08 Propellant Processing
Flow Modeling
Liquid/Solid Flows

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

A two-fluid model is employed to investigate the velocity and volume fraction distributions during the solid propellant casting process. Two important dimensionless parameters, the dimensionless interfacial momentum transfer coefficient \(D \), and the viscosity ratio of the two fluids \(Z \), are identified and varied parametrically in the numerical calculations. The results show that when \(D \) is small (< 0.05), separation between the particles and binder occurred and the smaller the \(D \), the larger the degree of separation. When \(D \) is large (> 1), separation did not occur since the two fluids move like a single fluid when interfacial momentum transfer is dominating. Near the transition point between separation and no separation (\(D \approx 1 \)), an M-shaped profile was observed for the particle volume fraction distribution in an annular duct. The degree of separation is very small and the reason for the existence of such an M-shaped profile is not clearly understood.

(Continued)
It is pointed out that a viscosity model recently proposed by Probstein and Sengun may be relevant to the solid propellant system. It is suggested that the next logical step is to incorporate the non-Newtonian behavior of the binder (and the fine particles) into the two-fluid model.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.0</td>
<td>IMPORTANT PARAMETERS</td>
<td>1</td>
</tr>
<tr>
<td>3.0</td>
<td>EFFECTS OF INTERFACIAL DRAG AND RELATIVE VISCOSITY</td>
<td>4</td>
</tr>
<tr>
<td>4.0</td>
<td>DISCUSSIONS</td>
<td>5</td>
</tr>
<tr>
<td>5.0</td>
<td>SUMMARY</td>
<td>7</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>
1.0. INTRODUCTION

It was observed that a bump existed in the pressure-time curve during the burning of solid rocket propellant. The pressure bump is likely due to a concentration of ammonium perchlorate in the propellant, and thus related to the filling process [1]. A common feature of all propellant compositions giving a bump is a high solids fraction, not less than 70% by weight (mostly ammonium perchlorate) dispersed in a binder. Unfortunately, the current understanding of a densely packed particle/fluid system is rather poor and no simple explanation is satisfactory. Furthermore, non-Newtonian behavior is expected during the filling process which makes the theoretical analysis of the practical system very difficult.

In a previous report [2], preliminary investigation was performed by using the multiple velocity field model. This is a continuum approach as opposed to a discrete particle track. It was demonstrated in the preliminary investigation that, by using different velocity boundary conditions for the two fluids, partial component separation was predicted. No slip was assumed for the liquid binder while free slip was assumed for the ammonium perchlorate particles, since particle velocity may have a finite value at the wall. Even though the results are encouraging, it was pointed out that while the multifluid model is more complete than the diffusion model, there are more unknown coefficients associated with the model, and these coefficients need to be determined either experimentally and/or theoretically.

In this report, the multifluid model will be adopted. Emphasis will be placed on identifying important parameters (dimensional or dimensionless) for the two-fluid model. An attempt will be made to narrow down the parameters range and to interpret the results of the multifluid model that are relevant to the solid propellant casting process.

2.0. IMPORTANT PARAMETERS

The momentum equations for a two-fluid system are

\[
\frac{\partial}{\partial t}(\theta_1 \rho_1 u_1) + \nabla \cdot (\theta_1 \rho_1 u_1 u_1) = -\theta_1 \nabla p + \nabla \cdot \tau_{1m} + \theta_1 \rho_1 f_1 - K_{12} (u_1 - u_2) \tag{1}
\]

\[
\frac{\partial}{\partial t}(\theta_2 \rho_2 u_2) + \nabla \cdot \tau_{2m} + \theta_2 \rho_2 f_2 = -K_{21} (u_2 - u_1) \tag{2}
\]

where \(\theta_1, \rho_1, \vec{u}_1\) refer to the volume fraction, the material density, and the velocity of the binder respectively, subscript 2 refers to the particles (ammonium perchlorate), \(\tau_{1m}\) is the shear stress of component 1 in the mixture, \(f_1\) is the field force per unit mass on component 1 and may include that due to shear lifting effect, \(p\) is pressure, \(K_{12}\) is the interfacial momentum transfer
coefficient between the two phases, etc. The parameters and properties needed are \(f_1, f_2, \tau_{1m}, \tau_{2m}, \theta_1, \theta_2, f_1, f_2, K_{12}, \) and \(K_{21} \). Additional key parameters are the particle size and its distribution. The volume fractions are related,

\[
\theta_1 + \theta_2 = 1
\]

(3)

The field forces \((f_1 \text{ and } f_2) \) will be treated separately and are not included in the present investigation. The shear stress terms \((\tau_{1m} \text{ and } \tau_{2m}) \) are not readily determined at this time for dense suspensions. In the numerical calculations, it is simply assumed that each of the two fluids behave in a Newtonian fashion and the viscosity of each fluid is not affected by the presence of the other fluid. Even with this simplified assumption, it is still difficult to determine the viscosity of the second fluid, i.e., ammonium perchlorate particles.

The interfacial momentum transfer coefficients \((K_{12} \text{ and } K_{21}) \) can be expressed as

\[
K_{12} = \theta_1 \rho_1 F_{12},
\]

(4)

\[
K_{21} = \theta_2 \rho_2 F_{21},
\]

(5)

where \(F_{12} \) is the inverse relaxation time for momentum transfer from phase 2 to phase 1, etc., and

\[
K_{12} = K_{21}
\]

(6)

from action and reaction. For the motion of a particle suspended in a fluid in the Stokes regime [3],

\[
F_{21} = \frac{9 \mu_1}{2 a^2 \rho_2},
\]

(7)

where \(a \) is the radius of the particle, \(\mu_1 \) is the viscosity of the fluid, and \(\rho_2 \) is the material density of the particle. Combining Eqs. 5, 6, and 7, the following equation is obtained:

\[
\frac{K_{12}}{\mu_1} \frac{a^2}{\rho_2} = \frac{9 \theta_2}{2}.
\]

(8)

If a dimensionless interfacial momentum transfer coefficient is defined as

\[
D = \frac{K_{12}}{\mu_1} \frac{a^2}{\rho_2},
\]

(9)

then
\[D = \frac{9 \theta_2}{2}, \quad (10) \]

which is valid only for a single particle suspended in a fluid medium in the Stoke's regime.

For a cloud of particles suspended in a fluid stream, the inverse relaxation time is [3],
\[
F_{21} = \frac{75 (1 - \theta_1) \mu_1}{2 \theta_1^2 \rho_2 a^2} + \frac{1.75 \rho_1 u_s}{2 \theta_1 \rho_2 a} \quad (11)
\]

where \(u_s \) is the superficial fluid velocity based on unobstructed flow area. In the interest of the solid propellant system, the largest particle size is in the order of \(a = 100 \) \(\mu \text{m} \). The viscosity of the binder (\(\mu_1 \)) is relatively large (\(\sim 200 \) Pa-s versus \(10^{-3} \) Pa-s for room temperature water). Thus, the first term on the right-hand side is dominating for the solid propellant system. Therefore, Eq. 11 can be written

\[
F_{21} \approx \frac{75 \theta_2 \mu_1}{2 \theta_1^2 \rho_2 a^2}. \quad (12)
\]

Combining Eqs. 4, 5, and 12,
\[
D = \frac{K_{12} \mu_1}{\mu_1} = \frac{75}{2} \left(\frac{\theta_2}{\theta_1} \right)^2. \quad (13)
\]

Equations 10 and 13 indicate that the dimensionless interfacial momentum transfer coefficient, which is a function of volume fraction only, is the relevant scaling parameter for interfacial momentum transfer. For given volume fraction (\(\theta_1 \) or \(\theta_2 \)), Eqs. 10 and 13 can be used to estimate the order of magnitude of \(D \) for single particle and a cloud of particles suspended in a fluid stream, respectively.

In addition to the dimensionless interfacial momentum transfer coefficient \(D \), the viscosity ratio, defined as
\[
Z = \frac{\mu_2}{\mu_1}, \quad (14)
\]
is another important parameter since the velocity and volume fraction distributions will depend strongly on the relative magnitude of the two viscosities in the two-fluid model.

The particle size and its distribution will significantly affect the outcome of the solid propellant casting process. The two-fluid model is not capable of dealing with a system with a number of particle sizes. However, by using certain physical models, such as the Probstein-Sengun bimodal model [4],

3
it is possible to include the contribution from various particle sizes in a two-fluid model, and therefore avoid going to a multifluid model which will only introduce more unknowns, with current status of knowledge a fluid system with multiple particle sizes.

3.0. EFFECTS OF INTERFACIAL DRAG AND RELATIVE VISCOSITY

To investigate the effects of interfacial momentum transfer and relative viscosity of two fluids, steady-state calculations were performed for an annular flow, which is the two-dimensional axisymmetric flow between two concentric cylindrical surfaces employed in previous investigations [2]. The characteristics of the geometry, values of properties, and boundary conditions are given in Table 1.

Table 1. Properties and Characteristics of Annular Flow

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner Radius, (R_i)</td>
<td>1.905 cm</td>
</tr>
<tr>
<td>Outer Radius, (R_o)</td>
<td>2.540 cm</td>
</tr>
<tr>
<td>Gap</td>
<td>0.635 cm</td>
</tr>
<tr>
<td>Inlet Velocity (U_1 = U_2 = U_0)</td>
<td>1.0 cm/s</td>
</tr>
<tr>
<td>Inlet Volume Fraction</td>
<td></td>
</tr>
<tr>
<td>(\theta_1) (binder)</td>
<td>0.2242</td>
</tr>
<tr>
<td>(\theta_2) (particle)</td>
<td>0.7758</td>
</tr>
<tr>
<td>Material density</td>
<td></td>
</tr>
<tr>
<td>(\rho_1) (binder)</td>
<td>920 kg/m³</td>
</tr>
<tr>
<td>(\rho_2) (particle)</td>
<td>1950 kg/m³</td>
</tr>
<tr>
<td>Velocity Boundary Condition</td>
<td></td>
</tr>
<tr>
<td>Binder</td>
<td>no slip</td>
</tr>
<tr>
<td>Particle</td>
<td>free slip</td>
</tr>
</tbody>
</table>

An average particle size with a radius of 100 μm is assumed. Since the average diameter (or radius) is used, the particle volume fraction can exceed the maximum packing fraction for particles with a single diameter. The binder viscosity \(\mu_1 \) is assumed to be equal to 200 Pa-s.

Figures 1 through 8 show the fully-developed velocity and volume fraction distributions at the exit of an annular duct for different values of the dimensionless interfacial momentum transfer coefficient \(D \), and viscosity ratio \(Z \). For a viscosity ratio of \(Z = 1 \), Figs. 1 through 4 indicate that the effects of interfacial parameter \(D \) begin to appear when it is decreased from 0.50 to 0.05 and the effects become appreciable when \(D = 0.005 \). Significant separation occurred when \(D = 0.005 \), as shown in Figs. 3 and 4. When the interfacial momentum transfer coefficient is large (\(D > 0.5 \)), there is very
little separation and the volume fraction of either the binder or the particle remains nearly constant across the duct. This is understandable since the two fluids will move as a single fluid if the interfacial drag D becomes large.

Figures 5 through 8 show the effects of viscosity ratio ($Z = \mu_2/\mu_1$) on velocity and volume fraction distributions for $D = 0.005$. It can be observed that the viscosity ratio affects the volume fraction distribution somewhat, but the most pronounced effect appears in the particle velocity distribution as shown in Fig. 6. If the particle viscosity is much larger than the binder viscosity (for example, $Z = 8.70$), then the particles move in a manner as if the binder is absent. On the other hand, if the binder viscosity is much larger than that of the particles (for example, $Z = 0.04$), the particle velocity distribution becomes closer to the binder velocity distribution. The binder velocity distribution appears to be less sensitive to the viscosity ratio.

Two additional interesting phenomena were observed from the numerical results. If the interfacial momentum transfer coefficient is large ($D > 1$), the volume fraction distributions for both the binder and the particles are uniform and are independent of the value of the viscosity ratio Z. This means that there is a limiting value of D (=1), above which there is no separation and below which separation does occur. This result indicates that it is extremely important to determine the value of the dimensionless interfacial momentum transfer coefficient for the solid propellant system. The authors are not aware of any existing theoretical/experimental model that can accurately predict the value of D for a densely packed system such as the solid propellant system. Further experimental and theoretical investigation in this direction will be very helpful.

The second interesting phenomenon occurs near the transition point between separation and no separation ($D \approx 1$). Figures 9 and 10 show the binder and the particle volume fraction distributions for $D = 1$ and $Z = 10$. At such a high value of D, separation is minute, but finite. This can be observed from the M-shaped or W-shaped profile and the small increment in the vertical scale shown in Fig. 9 or 10. The reason for the existence of an M-shaped (or W-shaped) profile is not clearly understood at this time.

4.0 DISCUSSIONS

In the preliminary investigation, both the multifluid model and the single velocity field model were proposed [2]. In the multifluid model, the transport properties F_{12}, μ_m, etc., are not readily computed or measured. The closeness of the phase velocities suggest that the mixture velocity may be sufficiently representative. This leads to the development of a single velocity field model described in Ref. 2. It is recognized that the inverse relaxation time $[F_{12}]$ and the mixture viscosity μ_m still have to be determined experimentally. However, it is difficult to visualize how a single fluid model can produce particle separation observed in the solid propellant system.

In the investigation of dense slurry rheology, Probstein and Sengun [4] recently proposed a bimodal model to describe the polymodal behavior of coal-water slurries. Their model appears to have some merit and seems relevant to the solid propellant casting process. In the bimodal model, the following definitions were employed.
where \(\theta_v \) is the volume fraction of the suspended solids, \(\theta_{ff} \) is the fine-filler volume fraction, \(\theta_C \) is the coarse particle volume fraction, \(V_f \) is the volume of the fine filler, \(V_C \) is the volume of the coarse particles, and \(V_L \) is the volume of the fluid. It is further defined that

\[
\eta_{nr} = \eta_{cr} \cdot \eta_{fr} = \left(\frac{\mu_C}{\mu_f} \right) \left(\frac{\mu_f}{\mu_0} \right)
\]

where

- \(\eta_{nr} \) = net relative viscosity = \(\mu_C / \mu_0 \),
- \(\eta_{cr} \) = coarse relative viscosity = \(\mu_C / \mu_f \),
- \(\eta_{fr} \) = fine relative viscosity = \(\mu_f / \mu_0 \),
- \(\mu_c \) = apparent viscosity of the suspension,
- \(\mu_f \) = apparent viscosity the suspending fluid with fine particles present, and
- \(\mu_0 \) = viscosity of the pure liquid.

The basic assumptions in the Probstein-Sengun model are

\[\eta_{cr} = f(\theta_C) \]

and

\[\eta_{fr} = f(\theta_{ff}) \]

They further assumed that it is the small volume fraction of the colloidal size particles that imparts the suspension most of its rheological characteristics (shear rate dependent viscosity). The large particles are essentially unaware of the presence of fine particles, but rather see a stiffened fluid that has the same viscosity and density as the suspension, with the contribution of the large particles to the viscosity increase coming about from hydrodynamic dissipation (independent of shear rate). These assumptions were supported by experimental data at low shear rate. The demarkation between fine and coarse volume fractions for six different coal/water slurries ranged from 2 to 8 microns, with an average of about 4.5 microns, even though the particle diameters in the slurries ranged from 0.5 to 300 microns. Thus, the viscosity of a polymodal system can be represented approximately by the viscosity of a bimodal system. This greatly simplifies the analysis and therefore is the more practical approach than the multifluid
model. The composition of solid propellant contains particles and powders of various sizes and is extremely difficult to handle. The bimodal model of Probstein and Sengun appears to offer a reasonable alternative. Of course, there are limitations for the application of the bimodal model as described in Ref. 4. In addition, the bimodal model does not address the problems related to particle/particle interaction, shear lift, and particle/wall interaction.

5.0. SUMMARY

(1) A two-fluid model is employed to investigate the velocity and volume fraction distributions in an annular duct. A no slip boundary condition was assumed for the fluid (the continuous phase) and free slip was assumed for the particles (the dispersed phase) at the walls. Two important dimensionless parameters were identified and parametric studies were carried out by varying these parameters. The most important parameter is the dimensionless interfacial momentum transfer coefficient \(D = \frac{K_{12}a^2}{\mu_1} \), and the second parameter is the viscosity ratio of the two fluids \(Z = \frac{\mu_2}{\mu_1} \). Both parameters can affect the velocity and volume fraction distributions significantly.

(2) Numerical results indicate that for relatively small values of \(D \) (\(D < 0.05 \)), significant separation between the binder and the particles are observed. The smaller the \(D \), the larger the degree of separation. Viscosity ratio \(Z \) also affects the volume fraction distribution, but its influence is somewhat less than that of the interfacial momentum transfer coefficient \(D \).

(3) The degree of separation decreases with increasing values of the interfacial momentum transfer coefficient. When \(D \) is sufficiently high (>1), separation no longer exists. This is understandable since when interfacial momentum transfer is dominating, the two fluids move like a single fluid and consequently, there is very little separation. Currently, there is no theoretical or experimental model that can accurately predict the value of the interfacial momentum transfer coefficient for the solid propellant system. Further investigation, either theoretical or experimental, in this direction will be extremely helpful.

(4) An interesting phenomenon is observed near the transition between separation and no separation (\(D = 1 \)). The degree of separation is rather small at \(D = 1 \), but the particle volume fraction distribution exhibited an M-shaped profile which is not present for \(D \) much smaller than 1. The reason for the existence of such an M-shaped profile is not clearly understood at this time.

(5) The bimodal model proposed by Probstein and Sengun may be advantageous relevant to the solid propellant system since it allows the use of a bimodal viscosity model to represent a polymodal system. This is a more practical approach than using the multifluid model since the latter will only introduce more unknowns.
(6) It is suggested that a logical next step is to incorporate the non-Newtonian behavior of the binder into the two-velocity numerical model. This can be accomplished by modifying the present computer program to include the effects of shear-rate dependent viscosity in the following form

\[
u = c \left| \frac{\partial u}{\partial r} \right|^n,
\]

where \(c \) is an empirical constant, \(\frac{\partial u}{\partial r} \) is the local shear rate, and the exponent \(n \) accounts for various rheological behaviors of the fluid.
Fig. 1. Fully-Developed Velocity Distributions at the Exit of an Annular Duct ($Z = 1$)
Fig. 2. Fully-Developed Particle Velocity Distribution at the Exit of an Annular Duct ($Z = 1$)
Fig. 3. Fully-Developed Binder Volume Fraction Distribution at the Exit of an Annular Duct ($Z = 1$)
Fig. 4. Fully-Developed Particle Volume Fraction Distribution at the Exit of an Annular Duct ($Z = 1$)
Fig. 5. Fully-Developed Binder Velocity Distribution at the Exit of an Annular Duct (D = 0.005)
Fig. 6. Fully-Developed Particle Velocity Distribution at the Exit of an Annular Duct (D = 0.005)
Fig. 7. Fully-Developed Binder Volume Fraction Distribution at the Exit of an Annular Duct (D = 0.005)
Fig. 8. Fully-Developed Particle Volume Fraction Distribution at the Exit of an Annular Duct (D = 0.005)
Fig. 9. Particle Volume Fraction Distribution at the Exit of an Annular Duct with D = 1 and Z = 10
Fig. 10. Binder Volume Fraction Distribution at the Exit of an Annular Duct with $D = 1$ and $Z = 10$
REFERENCES

<table>
<thead>
<tr>
<th>Distribution</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commander</td>
<td>1</td>
</tr>
<tr>
<td>Naval Weapons Center</td>
<td></td>
</tr>
<tr>
<td>Code 3272</td>
<td></td>
</tr>
<tr>
<td>China Lake, CA 93555-6001</td>
<td></td>
</tr>
<tr>
<td>Air Force Astronautics Laboratory</td>
<td></td>
</tr>
<tr>
<td>AFAL/MKPA</td>
<td>1</td>
</tr>
<tr>
<td>Edwards Air Force Base, CA 93523-5000</td>
<td></td>
</tr>
<tr>
<td>Director</td>
<td>1</td>
</tr>
<tr>
<td>Ballistic Research Laboratory</td>
<td></td>
</tr>
<tr>
<td>LABCOM (ATTN: AMDAR-BL)</td>
<td></td>
</tr>
<tr>
<td>Aberdeen Proving Ground, MD 21005</td>
<td></td>
</tr>
<tr>
<td>Director</td>
<td>1</td>
</tr>
<tr>
<td>U.S. Army Research Office</td>
<td></td>
</tr>
<tr>
<td>ATTN: DRXRO-IP</td>
<td>1</td>
</tr>
<tr>
<td>P.O. Box 12211</td>
<td></td>
</tr>
<tr>
<td>Research Triangle Park, NC 27709-2211</td>
<td></td>
</tr>
<tr>
<td>Naval Surface Weapons Center</td>
<td></td>
</tr>
<tr>
<td>Code R11</td>
<td>1</td>
</tr>
<tr>
<td>Indian Head, MD 20640</td>
<td></td>
</tr>
<tr>
<td>Argonne National Laboratory</td>
<td></td>
</tr>
<tr>
<td>Components Technology Division</td>
<td></td>
</tr>
<tr>
<td>ATTN: Dr. W. T. Sha</td>
<td>10</td>
</tr>
<tr>
<td>9700 South Cass Avenue</td>
<td></td>
</tr>
<tr>
<td>Argonne, IL 60439</td>
<td></td>
</tr>
<tr>
<td>US Army Materiel System Analysis Activity</td>
<td></td>
</tr>
<tr>
<td>ATTN: AMXSY-MP</td>
<td>1</td>
</tr>
<tr>
<td>Aberdeen Proving Ground, MD 21005</td>
<td></td>
</tr>
<tr>
<td>IIT Research Institute</td>
<td></td>
</tr>
<tr>
<td>ATTN: GACIAC</td>
<td>1</td>
</tr>
<tr>
<td>10W. 35th Street</td>
<td></td>
</tr>
<tr>
<td>Chicago, IL 60616</td>
<td></td>
</tr>
</tbody>
</table>
Commander
AD (XRC)
ATTN: T. O'Grady
Eglin AFB, FL 32542

Aei jet Tactical Systems
ATTN: R. Mironenko
P.O. Box 13400
Sacramento, CA 95813

Aerospace Corporation
ATTN: Library Acquisition GP M1-199
P.O. Box 92957
Los Angeles, CA 90009

Commander
AFATL
ATTN: CPT Darla M. Roberts
Eglin AFB, FL 32542

Commander
AFRPL (DYP)
ATTN: David P. Weaver
Edwards AFB, CA 93523

Commander
AFRPL (LK)
Liquid Rocket Division
ATTN: LK, Stop 24
Edwards AFB, CA 93523

Commander
AFRPL (MKAS)
ATTN: John H. Clark
Edwards AFB, CA 93523

Commander
AFRPL (Tech Lib)
ATTN: Tech Lib
Edwards AFB, CA 93523

Commander
AFRPL (TSPR)
ATTN: (TSPR) Stop 24
Edwards AFB, CA

Commander
AFSC
ATTN: DLFP
Andrews AFB
Washington, DC 20334

DIST-2
DISTRIBUTION (Continued)

Commander
AFWAL (MLTN)
ATTN: Charles S. Anderson
Wright-Patterson AFB, OH 45433

1

Commander
Armament Rsch & Dev Command
ATTN: AMSMC-LC (D), (Dr. Jean-Paul Picard)
Dover, NJ 07801

1

Commander
Armament R&D Command
ATTN: AMSMC-LCA-G(D), (Dr. Anthony J. Beardell)
Dover, NJ 07801

2

Commander
Armament R&D Command
ATTN: AMSMC-SCA-T (D), (Mr. Ludwig Stiefel)
BG 455
Dover, NJ 07801

1

Commander
Armament R&D Command
Scientific & Tech Div
ATTN: AMSMC-TSS(D)
BG 59
Dover, NJ 07801

1

Director
Army Ballistic Research Labs
ATTN: AMSMC-BLA-S(A), (R. Paul Ryan)
Aberdeen Proving Ground, MD 21005

1

Director
Army Ballistic Research Labs
ATTN: AMSMC-BLI(A), (John M. Hurban)
Aberdeen Proving Ground, MD 21005

1

Director
Army Ballistic Research Labs
ATTN: AMSMC-BLV(A), (Richard Vitali)
Aberdeen Proving Ground, MD 21005

1

Commander
US Army Materiel Command
ATTN: AMCDE-DW
5001 Eisenhower Ave
Alexandria, VA 22333

1
DISTRIBUTION (Continued)

Commander
Army Materiel System Analysis Activity
ATTN: AMXSY-PS-SCTY Spec.
Abedeen Proving Ground, MD 21005

Chief
Army Research Office
Information Proc Ofc
ATTN: AMXRO-PP-LIB
P.O. Box 12211
Research Triangle Park, NC 27709

Atlantic Research Corp.
ATTN: Technical Info. Ctr
7511 Wellington Rd.
Gainesville, VA 22065

California Institute of Technology
Jet Propulsion Laboratory
ATTN: Lib. Acqs/Standing Orders
Floyd A. Anderson
4800 Oak Grove Drive
Pasadena, CA 91103

Administrator
Defense Technical Information Center
ATTN: DTIC-DDA
Cameron Station BG 5
Alexandria, VA 22314

Commander
ESMC(PM/STINFO)
ATTN: L. M. Adams
Patrick AFB, FL 32925

FMC Corp., Northern Ord. Div
ATTN: Library, (E. Schultz)
4800 East River Rd
Minneapolis, MN 55421

Ford Aerospace & Comm. Corp.
Aeronutronic Division
ATTN: Tech Inf. Svc/DDC Acqs.
Ford & Jamobree Roads
Newport Beach, CA 92663

Commander
FTD(TQTA)
ATTN: Arnold Crowder
Wright-Patterson AFB, OH 45433

DIST-4
Commander
FTD(SDBP)
ATTN: SDBP
Wright-Patterson AFG, OH 45433

Gould Defense Sys. Inc.
Ocean Systems Div.
ATTN: Info. Ctr, Dept. 749 PLT 2
R. J. Rittenhouse
18901 Euclid Ave.
Cleveland, OH 44117

Hercules Inc.
Aerospace Div, Allegany Ballistics Lab.
ATTN: Library
P.O. Box 210
Cumberland, MD 21502

Hercules, Inc.
Bacchus Works
ATTN: 100-H-2-LIB (W. G. Young)
P.O. Box 98
Magna, UT 84044

Hercules, Inc.
ATTN: Pub. Coord (D. A. Browne)
P.O. Box 548
McGregor, TX 76657

Hughes Aircraft Co.
Electro Optical & Data Sys. Group
ATTN: Tech Doc Ctr, BG E1E110)
B. W. Campbell
P.O. Box 902
El Segundo, CA 90245

Johns Hopkins University
ATTN: Code ML, R. D. Brown
Johns Hopkins Road
Laurel, MD 20707

LTV Aerospace & Def. Co.
ATTN LIB 2-58010
P.O. Box 225907
Dallas, TX 75265

Marquardt Company
ATTN: LIB
P.O. Box 2013
Van Nuys, CA 91409
DISTRIBUTION (Continued)
DISTRIBUTION (Continued)

Commander
Naval Air Sys Comd
ATTN: NAIR-320G, Mr. Bertram P. Sobers
Washington, DC 20361

Commander Officer
Naval Intel Spt Ctr
Information Svc Div
ATTN: Doc Lib
4301 Suitland Rd.
Washington, DC 20390

Commanding Officer
Naval Ord Sta-Indian Head
ATTN: Tech Lib, Code 4243C, Henrietta Gross
Indian Head, MD 20640

Superintendent
Naval Postgraduate Sch.
ATTN: Code 1424-Libs Dir
Monterey, CA 93943

Chief Naval Research
ATTN: Dr. Richard S. Miller, Code 432
Arlington, VA 22217

Chief
Naval Research
ATTN: R. Junker, Code 412
Arlington, VA 22217

Commanding Officer
Naval Research Lab
ATTN: Code 6100
Washington, DC 20375

Director
Naval Arsearch West Pasadena
ATTN: R. J. Marcus
1030 E Green St
Pasadena, CA 91106

Commander
Naval Sea Sys Comd
ATTN: SEA-09B312, Tech Lib
Natl Ctr BG 3
Washington, DC 20362

Commander
Naval Sea Sys Comd
ATTN: Mr. Elgin Werback, SEA-62Z31B
Natl Ctr BG 3
Washington, DC 20362

DIST-7
Commander
Naval Surface Wpns Ctr
ATTN: Acquisitions, Code E431
Dahlgren, VA 22448

Commander
Naval Surface Wpns Ctr
ATTN: Code E432, S. Happel, Room 1-321
Silver Spring, MD 20910

Commanding Officer
Naval Underwater Sys Ctr
ATTN: Tech Lib 021312
Newport, RI 02840

Commander
Naval Weapon Center
ATTN: Code 343
China Lake, Ca 93555

Director
Navy Strat Sys Proj Ofc
ATTN: Tech Lib Br Hd
Washington, DC 20376

Commander
Ogden ALC (MANPA)
ATTN: Mr. Anthony J. Inverso
BG 1941
Hill AFB, UT 84056

Commander
Radford Army Ammo Plant
ATTN: SMCRA-QA
Radford, VA 24141

Rockwell Int'l Corp.
Rocketdyne Div
ATTN: Tech Info Ctr
6633 Canoga Ave
Canoga Park, CA 91304

Rohm & Haas Co.
ATTN: Scy Off, (Dr. H. M. Shuey)
723-A Arcadia Circle
Huntsville, AL 35801

Commander
SAALC (SFTT)
ATTN: W. E. Vandeventer
Kelly AFB, TX 78241

DISTRIBUTION (Continued)
SRI Int'l Document Ctr
ATTN: Classified Doc Svc, (Dr. Clifford D. Bedford)
333 Ravenswood Ave
Menlo Park, CA 94025

Talley Industries
ATTN: Eng. Tech Lib, (Kim St. Clair)
P.O. Box 849
Mesa, AZ 85201

Teledyne Ryan Aeronautical
ATTN: Tech Info Svcs (W. E. Ebner)
2701 Harbor Drive
San Diego, CA 92101

Thiokol Chem Corp
Wasatch Div
ATTN: Tech Lib (J. E. Hansen)
Brigham City, UT 84302

Thiokol Corp.
ATTN: Scty Off, (D. J. McDaniel)
P.O. Box 241
Elkton, MD 21921

Thiokol Corp.
ATTN: Tech Lib (H. H. Sellers)
Huntsville, AL 35807

TRW Inc.
Electronics & Defense Sector
ATTN: Tech Inf Ctr, Doc Svcs for S/1930
One Space Park
Redondo Beach, CA 90278

TRW Inc.
Electronics & Defense Sector
ATTN: Tech Inf Ctr, Doc Svcs
for R. C. Reeve, San Bernardino
One Space Park
Redondo Beach, CA 90278

USDRE (PCA)
ATTN: OUSDRE&E (R&AT/MST), (Dr. Robert J. Heaston)
The Pentagon, Room 3D1089
Washington, DC 20301

United Technologies Corp
Chemical Systems Div
ATTN: Tech Lib
P.O. Box 358
Sunnyvale, CA 94088
DISTRIBUTION (Concluded)

United Technologies Corp.
Research Center
ATTN: Acq Lib (M. E. Donelly)
400 Main Street
East Hartford, CT 06108

Commander
White Sands Missile Range
ATTN: Tech Lib
White Sands Missile Range, NM 88002

AMSMI-RD, Dr. McCorkle 1
Dr. Rhoades 1
Dr. Stephens 1
-RD-RE, Dr. Bennett 1
-RD-PR, Dr. Wharton 1
-RD-PR-T, Dr. Alley 1
Ms. Ducote 1
-RD-PR-P, Mr. Schultz 1
-RD-PR-M, Mr. Ifshin 1
-RD-PR-E, Mr. Maykut 5
-RD-CS-R 15
-RD-CS-T 1
AMSMI-GC, IP, Mr. Bush 1