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Absolute instability of a liquid jet in a gas

S.P. Linand Z. W. Lian

Department of Mechanical and Industrial Engineering, Clarkson University, Potsdam, New York 13676
(Received 15 September 1988; accepted 8 November 1988)

' ’>}he effect of the ambient gas density on the onset of absolute instability in a viscous liquid jet is
examined. The critical Weber number, above which the instability is convective and below
which the instability is absolute, is determined as a function of Reynolds number and the
density ratio of gas to liquid. It is shown that the gas density has the effect of raising the
critical Weber number. It also raises the cutoff wavenumber below which disturbances are
spatially amplified and above which they are damped. |* .

1. INTRODUCTION

-~ The capillary instability of an infinitely long jet with
respect to temporally growing disturbances was analyzed by
Rayleigh." Keller’ et al. examined the capillary instability of
a semi-infinite jet with respect to spatially growing distur-
bances. They found that the temporal and spatial distur-
bances are analytically related if the Weber number is suffi-
ciently large. For sufficiently small Weber numbers, Leib
and Goldstein ' found that the state of convective instability
obtained by Keller er al. actually cannot be reached by a
given iritial disturbance in the sense of Briggs® and Bers.*
Leib and Goldstein demonstrated, for the first time, the exis-
tence of the absolute instavility in an inviscid jet. Recently,
they® determincd from Chandrasekhar’s’ dispersion equa-
tion the critical Weber number below which a viscous jet is
absolutely unstable as a function of Reynolds number. They
also found that the cutoff wavenumber, above which the dis-
turbance is spatially damped, is one independent of the We-
ber number.

Here, we examine the effect of the ambient gas density
on the absolute instability discovered by Leib and Goldstein.
It is shown that the gas density has the effect of enlarging the
domain of absolute instability in the Reynolds—Weber num-
ber space. Moreover, it raises the cutoff wavenumber below
which the jet is convectively unstable, and also raises the
amplification rate of the spatially growing disturbances
when the absolute instability is absent.

Il. FORMULATION

Consider a circular cylindrical jet of an incompressible
viscous Newtonian liquid issued from a nozzle into an un-
bounded inviscid gas. The governing dynamic equations of
motion in the liquid and the gas phases are, respectively, the
Navier-Stokes and Euler equations. The boundary condi-
tions are the vanishing of the net force per unit area of the
interface, and the equality of radial fluid velocity in each
phase with the total time rate of change of the interfacial
position. A uniform velocity distribution U in a circular jet
of radius 7, in a quiescent gas is an exact solution to this set of
differential equations in the absence of gravity. This exact
mathematical solution representing a possible basic state is
physically unstable. The stability analysis of this basic state
with respect to any Fourier component of the disturbances
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of the form C, exp(wT + iky) led to the characteristic equa-
tion (1) when viewed in a reference frame with its origin
fixed at the nozzle exit,*°

(w_ik)2+2k2(1:(k)_ 2kA I.(k)l;(l))
R \I, (k) A2+4k? I(k)I,(4)
(@ — ik) 4+ o2 P2 2T = K7 Kolk), (k)
P AT+ kT K (k) (k)
LIV R Sl 100 N (N
B AT+ k? I (k)

where C,, is the wave amplitude, w is the complex wave fre-
quency (the real part of which gives the exponential tempo-
ral growth rate, and imaginary part of which gives the wave
frequency of disturbances), k is the complex wavenumber
[the real part of which is equal to 27r,/(wavelength) and
the imaginary part of which gives the spatial amplification
rate], 7 is time normalized with r,/ U, y is the axial distance
measured in the unit of 7, in the opposite direction of the jet
flow, I and K are, respectively, the modified Bessel func-
tions of the first and second kind, their subscripts denote the
order of the functions, and 4 is defined by

A =k?+ R(w— ik).

The three independent flow parameters in (1) are Reynolds
number R, Weber number 3, and the density ratio Q defined.
respectively, by
R=Ury/v., B=pU’r/o, Q=pi/p,

where v is kinematic viscosity, p is density, ¢ is surface ten-
sion, and the subscripts 1 and 2 denote, respectively, the
liquid and gas phases. Note that the above nondimensionali-
zation of time implies that the dimensional frequency is giv-
enby wlU /r,

Il. RESULTS

Figure 1 shows the loci of the two characteristic roots
obtained when a given set of flow parameters as the temporal
growth rate w, varies for a number of values of the wave
frequency w,. As the w, is reduced from a finite positive
value to zero, these loci approach toward two different
branches of amplification curves w, = 0 for the spatially
growing disturbances. Note that k, >0 gives the spatial
instability because the y axis is chosen to be negative in the
flow direction. It can be seen that two of the loci with
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FIG. [. Absolute nstability: @ = 0.0013,
0.6 B=1R=20.
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0.74 <w; <0.75 will intersect in the upper half-plane at a
saddle point.® A similar situation has already been shown by
Leib and Goldstein? for the case of negligible gas density. As
the Weber number is increased, with the values of @ and R
given in Fig. 1 being fixed, this saddle point moves closer to
the pure spatial amplification curve for disturbances with a
“group velocity” in the direction of jet flow. Note that the
amplification curve, which does not originate from k, = 0, is
for the disturbances with upstream propagating “group ve-
locity.” Following Leib and Goldstein, the minimum value
of B for which the saddle point of Eq. (1) lies in the upper
half-plane is defined as the critical Weber number. Figure 2

gives the dependence of the critical Weber number on R for
three values of Q. Here, Q = 0.0013 corresponds to the air to
water density ratio in one atmospheric pressure in room tem-
perature. The curve @ = 0 was obtained by Leib and Gold-
stein. In the parameter range below the curves, the jet is
absolutely unstable. The dashed line indicates the inviscid
limit obtained by Leib and Goldstein for the case of @ = 0. It
is seen that the gas density has the effect of enlarging the
domain of absolute instability for the 5-R plane.

Above these curves, the jet is convectively unstable. Fig-
ures 3 and 4 give a few typical amplification curves for con-
vectively unstable disturbances. Leib and Goldstein showed

FIG. 2. The critical Weber number ver-
sus Reynolds number.
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FIG. 3. The growth rate for convec-
tively unstable disturbances:
R = 20000, 8 = 400.

that the cutoff wavenumber, above which the disturbance is
damped, is one independent of 8 for the case of Q = 0. It is
seen from Figs. 3 and 4 that the gas density tends to raise the
cutoff wavenumber very significantly. This has a practical
significance of producing smaller droplets by use of larger
ambient gas density.®

It is very hard to resist the temptation of speculating
that the absolute instability may correspond to the dripping
mode of the jet instability. When a saddle point of the eigen-
value exists at a certain frequency and there exist both up-
stream and downstream propagating convectively unstable
branches, a disturbance with this certain frequency may be
alternatively attracted toward these two branches as time

evolves. The simultaneous spatial and temporal growth al-
ternating in the upstream and downstream directions with a
regular frequency casually observed in a dripping jet seems
to correspond to the mathematical picture of absolute insta-
bility. This speculation is even more tempting when one real-
izes that the absolute instability is predicted only for a small
Weber number, which is the ratio of the inertial force to the
surface tension force. However, the argument remains spec-
ulative, since the dripping phenomenon involves a highly
nonlinear finite amplitude of disturbances that cannot be
accounted for in the present linear theory. However, Leib
and Goldstein® suggested that the absolutely unstable distur-
bance may grow nonlinearly by the mechamsm of direct res-

Q =0.0013, 8 =100

Q =0.0013, 8 = 200

Q = 0.0013. 8 = 400

Q =00, 8=400

FIG. 4. The growth rate for convec-
tively unstable disturbances,

R =345,
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onance advanced by Akylas and Benney.'® The physical sig-
nificance of the absolute instability in the context of
nonlinear theories remains to be explored.
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