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INTRODUCTION

“The US Army is currently investigating the use of liquiqd
propellants (LPs) in large and medium caliber guns. These LPs
are characterized by the use of hydroxylammonium nitrate (HAN) as
their oxidizer. On 30 August - 1 September 1988, the Fourth
Annual LP Conference on HAN-Based Liquid Propellant Structure and
Properties was held at the BRL.with Dr. Walter F. Morrison as

- General Chairman. ¢The papers presented at this highly successful

<.conference were given by people from academia, industry, and
- other government agencies.

This report is a compilation of the abstracts and viewgraphs
of these papers where available. The final program is included
in appendix A and a list of attendees in appendix B.




LIQUID PROPELLANT FAIL-SAFE CRITERIA PROGRAM

The use of Liquid Propellant (LP) as a replacement for solid propellants in some
applications requires complete and extensive characterization of these new propeilant
systems in order to establish fail-safe criteria. The fail-safe criteria program is designed
to provide information to relate propellant composition and condition with performance.
Prolonged aging effects on LP will be determined in order to recommend storage
containers for long-term storage of LP. Analytical methodology is currently being
established to monitor the LP during storage as well as during production to provide
necessary and reasonable specifications for LP.

The phase of the program which is now in progress has dealt with {1) reviewing.
recommending and developing applicable analytical methods for monitoring the LP
before, during and after storage; (2) determining physical properties requircd for this
study; (3) initiating and monitoring pressure-time studies as a function of temperature,
compaosition, impurities and ullage; (4) utilization of the pressire-time studies to
determine degradation products, rates of pressure build-up and rates of formation of -
degradation products; (5) establishing which components or degradation products are
the best indicators of propellant utility or instability; (6) determining which impurities or
degradation products or combinations are most detrimental to the propellant stability and
(7) establishing long-term storage container design based on pressure-time study data.

Preceding Page Bjank
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OBJECTIVES

DEVELOP ANALYTICAL METHODOLOGY FOR
MONITORING THE LP.

DETERMINATION OF PRESSURE BUILD-UP FOR
STORAGE CONTAINER DESIGN.

SELECTION OF VARIABLES TO SUBJECT THE LP
TO DURING STORAGE.

COORDINATION OF BALLISTICS AND RELATED
TESTING.




GOALS

LIFETIME AND SAFETY FACTORS FOR LP UNDER
STORAGE CONDITIONS.

EFFECT OF CONTAMINANTS AND OTHER
VARIABLES.

ESTABLISH SPECIFICATIONS FOR LP.
ESTABLISH RATES, KINETICS AND
DECOMPOSITION MECHANISMS.

FLAGS FOR ESTABLISHING CONDITION OF LP.
ANALYTICAL METHODOLOGY FOR MONITORING
LP DURING STORAGE.

APPLICABILITY OF ANALYTICAL METHODOLOGY
FOR QC OF LP DURING PRODUCTION.

EFFECT OF LP COMPOSITION ON BALLISTICS.




LIQUID GUN PROPELLANT COMPOSITION

THE LIQUID PROPELLANT (LP) FORMULATIONS
SELECTED FOR EVALUATION ON THE FAIL-SAFE
CRITERIA PROGRAM WERE LP 1845 AND LP 1846.
TYPICAL COMPOSITIONS OF THESE LP'S ARE LISTED

BELOW:
LP1845 LP1846
HYDROXYLAMMONIUM NITRATE (HAN) 63 61

TRIETHANOLAMMONIUM NITRATE (TEAN) 20 19
WATER 17 20




ANALYTICAL MONITORING TECHNIQUES

Component
HAN

TEAN

H20
Nitric acid

Metals

AN, EAN, DEAN

Gas Phase degradation
products

Liquid Phase
degradation products

Recommended

IC-sensitive to small variations

IC-sensitive to small variations

Titration

Titration

IC-all TM+2 in one run; TM+3
method being coordinated with
Waters

1C

GC-Two column method

LC-method bein%\'
coordinated with Waters




Titrant, mls

mls

<+

[V}
b
+)

LP with ~ 2% Ammonium Nitrate

(,, TEAN
T ——
e HAN as lINO
/ - |
LP with Trace Ammonium Nitrate
TEAN
<‘:._...~. HAN as 1INO4
L

TITRATION CURVES - FIRST DERIVATIVE

‘, |




NH4
HA

MEA

a I
. i =
- —’/\.r’_/\
- AT - 1@ 15

Minutes

ION CHROMATOGRAM - STANDARDS
(SAMPLES 1/5000 DILUT!ON)

10

co



Cu

iy

Co

= i
< s
J > Mry -

i
(v

B BYE =L R ' 49
Mirgtes

tON CHROMATOGRAM - METAL STANDARDS
TM+2 0.5 TO 1.0 PPM




- QO
e
-
4-1
-
“-—Ju_j;\_ ﬁ__h'E G ol =
@ "1 e i) 43

Minutes

ION CHROMATOGRAM - LP 1846 FOR TM
1/10 DILUTION




METALS ANALYSIS OF LP 1846 (LP-2 & LP-3)

Metal

Iron

Chromium
Copper
Nickel
Cobalt

Lead
Tin

BY ICP

LP-2, ppm

<0.09
0.74
<0.18
0.88
<0.09
<0.87
3.06

Iron by polarography:

LP-3, ppm
2.06
.40

<0.17
0.34

<0.09
<0.87
3.03

0.31(Fe+3)
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COMPOSITIONAL ANALYSIS OF LP 1846
BEFORE AND AFTER EXPOSURE AND RATE
OF DECOMPOSITION AS A FUNCTION OF
TEMPERATUREAND NITRIC ACID AT
65% ULLAGE

LP1846 Temp.°C %HAN %HNO3 Days Rate

LP-2** 59.3 0.44

0.44%HNO3 25 59.7 0.48 136 0.1
0.44%HNO3 50 58.4 0.74 116 2.0
0.44%HNO3 65 57.7 1.18 48 8.5

Note: All rates are final rates in mmHg/day.
**.Initial composition (LP-2: Lot # ABY87FS2C013).




COMPOSITIONAL ANALYSIS OF LP 1846

BEFORE AND AFTER EXPOSURE AND RATE
OF DECOMPOSITION AS A FUNCTION QOF

TEMPERATURE AND IRON AT
65% ULLAGE

LP1846 Temp,’C %HAN

LP-3**

2.1ppmFe 25
7.25ppmFe 25
2.1ppmFe 50
7.0ppmFe 50
49.9ppmFe 50

59.4
60.0
59.9
59.8
59.5
58.4

0.03
0.12
0.14
0.23
0.28
0.80

%HNO3 Days

Rate

120
120
120
120

70

Note: All rates are final rates in mmHg/day.

**-Initial composition (LP-3: Lot # 1846-01).
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Rate, mmHg/day
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0.44% HNO3
0.44% HNO3
0.44% HNO3
0.54% HNO3
0.98% HNO3

19

PRESSURE BUILD-UP IN STORAGE
CONTAINERS HOLDING LIQUID PROPELLANT
CONTAMINATED WITH NITRIC ACID

LP1846 Type Temp.C

25
50
65
65
65

Pressure, psi

0.71
14.1
60.0
45.1"
94.6

* v .
- Denotes current rates from pressure-time studies
that are still in progress.




PRESSURE BUILD-UP IN STORAGE
CONTAINERS HOLDING LIQUID PROPELLANT
CONTAMINATED WITH IRON

LP1846 Type Temp.C Pressure, psig/yr
2ppm Fe 25 0

2ppm Fe 50 0

2ppm Fe 65 21.2"

7ppm Fe 25 0

7ppm Fe 50 3.0

7ppm Fe 65 56.5"
25ppm Fe 50 29.6"
50ppm Fe 25 0.1"
50ppm Fe 50 53.5

* - Denotes .current rates from pressure-time studies
that are still in progress.




PRESSURE BUILD-UP IN STORAGE
CONTAINERS HOLDING LIQUID PROPELLANT
CONTAMINATED WITH COPPER

LP1846 Type Temp.C Pressure, psig/yr
25ppm Cu 50 19.8"
50ppm Cu 25 0.1*
50ppm Cu 50 35.3

* - Denotes current rates from pressure-time studies
that are still in progress.

21




PROGRAM STATUS

1. Analytical methods have been selected for
monitoring the LP during storage.

2. Preliminary pressure-time screening studies of
LP1846 are nearing completion.

a. Preliminary data has provided patterns of
decomposition and effects of various
contaminants.

b. Data reduction is in progress to establish
pressure build-up during long-term storage.




FUTURE PLANS

1. Samples of LP 1845 and LP 1846 from current
production lots wili be tested.

a. Pressure-time screening studies will be
conducted.

i. Clarification of current pressure-time
studies.

ii. Effect of other variables and contaminants.
iii. Effect of inhibitors.
b. Initiation of long-term storage studies.
i. Correlation of data from pressure-time
studies with data from lcng-term storage

studies.

(a) Establish liquid propellant
specifications.

(b) Establish kinetics.

(c) Establish decomposition
mechanism.

ii. Comparison of ballistics from exposed and
unexposed samples.

lIl. Determination of propellant lifetime and
other safety considerations.




4th ANNUAL CONFERENCE ON HAN-BASED LIQUID PROPELLANT
STRUCTURE AND PROPERTIES
US ARMY BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MD
30 AUG - 1 SEP 88

Title of Paper An Overview of the Thermal Reactivity of Substituted

Ammonium Nitrates

Presentation Time Request 30 (min)
Type of Paper: Progress; Summary; X State-of-art; Other
Speaker’'s Name Dr. V. R. Pai Verneker Phone Number(301y 247-0700

Affiliation/address  Martin Marietta Laboratories, 1450 South Rollings Rd.
Baltimore, MD 21227
Co-author(s) name(s) S. C. Deevi and C.K. Law, Univ. Of California, Davis, CA 95616

ABSTRACT (Use reverse side if necessary)

The importance of alkyl and aryl substituted ammonium nitrates as energetic materials
stems from the fact that both th2 fuel and oxidizer groups are present within the
molecule. An indepth study has been carried out (a) to evaluate the relative

thermal stability with increase of substitution on the central nitrogen atom,

(b) to examine the thermal stability of the substituted ammonium nitrate due to

the configurational stability of the cation, (c) to investigate the role of basicity

of the central nitrogen atom on the thermal stability of the ammonium nitrate and

(d) to establish a unified mechanism of thermal decomposition process for the
substituted ammonium nitrates. Our results based on a variety of thermoanalytical
techniques coupled with mass spectrometry revealed that the thermal stability

decreases with increase of methyl substitution in the case of mono-,di, and tri-methy]l
ammonium nitrates. Tetramethyl ammonium nitrate exhibited high thermal stability

as compared to the mono-, di- and tri-methyl ammonium nitrates due to the configurati~nal
stability of the compact tetramethyl ammonium ijon. The overall decomposition process
in the case of mono-, di- and tri-methyl ammonium nitrates involves dissociation

of the nitrate via proton transfer. Proton transfer process has been shown to occur as
in the case of hydroxyl ammonium perchlorate. We present an overview of the thermal
behavior of substituted ammonium nitrates and present a unified picture of the
decomposition of ammonium nitrates.
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A Technoproducts drop weight tester was used to evaluate
impact sensitivity of fouwr liquid monopropellants; QOTTO II, NOS
265, LF 184%, LF 12844, LF 1845, and LF 1846. The monopropellants
were evaluated for impact senzitivity at ambient temperature and
at temperatures in excess of 50 degrees T with energies at and
below 10® kg-—cm. Four additional propellants, (LGF 1361, LGF
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diaphragm thicknessz to study the drop weight senzitivity of the
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levels. The effect of water content of the LGP propellants  was

not measurabkle wusing the FCRL meithod.
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NORMAL FROFYL. NITRATE

SOURCE 50~-%Z POSITIVE
kg cm
ASTM D 2540 8.4
Mason et al. 17.3
BRL, 1982 12.8
BRL, 19864

(90% - 99.9%) -

GC - Iso propyl nitrate -



OTT(O—II 34-77 Nov 1974

NITRATE ESTER - DESENSITIZED - STARILIZER

8.% - 70 kg e¢m - Mason, Ribovich, Weiss, Bureau of Mines

NOS— 285 THIOKOL, Lot 240

HAN — IFAN
100 kg cm - Smith et al., NSWC

152 kg cm ~ Cruice, Hazards Research Corp.

L 1845 THIOKOL, Lot Z44

HAN - TEAN

1352 kg em - Cruice, Hacards Resear' h Corp.

L FP—184%6 NOS, Lot %50-2

HAN - TEAN +

3 % Water




AMBIENT MONOPROPELLANT DROP WEIGHT TESTS

PROPELLANT REFERENCE TEST PRESENT STUDY
50X IGNITION . 30X IGNITION
(kg—cm) (kg—om)
oTTO I 8.5-70 28
NOS-383 >100 88
LP 1845 152 33% @100

LP 1848 —— >100




ELEVATED TEMFERATURE TESTS

PROPELLANT TEMPERATURE SO %4 IGNITION .
°c kg cm
Otto-I1 ambient 8
J4 - 54 < 52
NOS-=65 ambient I8
34 — 49 E
LFP 184% ambient I3 % = 100)
37 - 57 a8
LF 1846 ambient = 100
1 - 532 96




LP 1846 SENSITIVITY CONDITIONED LESS
THAN 82 DEGREES C

! TEST NOS. TEMPERATURE ENERGY POSITIVE
! (degrees C) (kg—cm) RESULTS

| 18 JUNE 51-57 54—62 100 2/4

98 1/1
A 96 1/1
80 1/1
20 JUNE 15 22 100  o/5
| 20 JUNE 6-15 44—48 100 1/1
94 2/2

92 2/4
90 0/2
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TEMPERATURE SENSITIVITY OF OTTO i

1-5
6-10
11-15

ENERGY TEMPERATURE POSITIVE
(kg—em) (degrees C) RESULTS
86—-100 38-40 3/5
80-92 38-45 4/5

68—74 35-45 4/5
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Dr. Hans Joachim de Greiff
Fraunhofer-Institut flur Chemische Technologie (ICT)
Joseph-von-Fraunhofer-Straje
P.O.Box 12 40
D-7507 Pfinztal 1 (Berghausen)

Phone: (0721)4640-321
Telex: 7 826 909 ict d
Telefax: (0721)46 40-111

Quantitative Analyses of HAN-Based Liquid Propellants

Abstract

This paper deals with guantitative analyses of HAN-Based monopro-
pellants, in particular following stability tests. In the case of
the propellant LP 1846, the compounds hydroxylamine nitrate and |
triethanolammonium nitrate are determined as the primary com- i
pounds, while free nitric acid and ammonium nitrate are consid- |
ered as decomposition products. |

As a determination method, potentiometric titration with water as
solvent has been selected, using as apparatus a Metrohm
“Titroprocessor 636" with a combined glass electrode as an
indicator. |

The propeliant components were to,be quantified by simultaneous
titration in a sample. Therefore, the pK values of the different
propellant components have been measured before starting the |
analytical work. HAN and AN had to be converted to derivates |
(acetoxim and formaldoxim) to enable the separation of the ‘

compounds. |
|

As for triethanolammonium nitrate containing propellants such as |
LP 1846, AN can be titrated after steam destillation due to the

nonvolatility of the free triethanolamine.



Table 1

Dissociation constants Ka as well as relevant pKa- and pKs values

nitrate (IPAN)

in a number of propellant components in aqueous solution at 20 °C.
No. Propellant Components Ka pKa pKs
mol x dm-3
1 Hydroxylammonium nitrate
) (HAN) + formaldehyde .
--> formaldoxime 0.245 j0-1 1.61 12.56
2 Hydroxylammonium nitrate
(HAN) + Acetone
--> Acetoxime 0.191 10-1 1.72 12.45
3 Ammonium nitrate (AN) +
formaldehyde -->
hexamethylene tetramine 0.141 10-5 5.85 8.32
4 Hydroxylammonium nitrate
(HAN) 0.733 10-8 6.135 8.035
5 Triethanoil ammonium
nitrate (TEAN) 0.112 10-7 7.95 6.22
6 Ammonium nitrate (AN) 0.331 10-9 9.48 4.69
7 Isopropyl ammonium




Determination of the pK value by potentiometric titration in
accordance with the Henderson-Hasselbalch equation:

PH = pka = 1og(Cacid/Csait).

If the concentration of the acid is equal to that of the salt,
the logarithmic term then becomes zero, and pK is equal to pH.

Ammonium salts react with t+>rmaldehyde to form the very weak base

hexamethylen tetramine

4 NH3 HNO3 + © ZTE-( -- Na(C= ¢ + & H20 + HNOQ3,.

Aldoxime or acetoxime 1+, -btained from hydroxylammonium nitrate

with formaldehyde or acetone:

H2aNOH-HNO3 + «1i.t: > H2C=NOH + H20 + HNOs3,

He NOH»HNO3 4 (CHay -0 - (CHa )C=NOH + H20 + HNO3 .




Fig. 21

Seam Dicstillation
it after Strohlein




NS
GJ_

i

W\

T

L
' /
v\

\

' OO0
LG G
LAY \S\- '\\\J'\_‘,vku

~ = =
Q
v
-~} o

Y

)

— L

[ )

T T

519,5 } Scheme of the Steam Distillation Unit

Electric boiler,
Distilling flask,

(1) Inlet connection for the Sample, (3)

(4) Drop Separator, (&) Condenser, (7)
(8) Recelver.




0.26ML/DIV  VI(START) ML @.000 PH
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ROUTINE # 181
] 704 PHUINIT) 2.248 YITE) /ML 0.782
1 v/ML 0.148 PH(N) 3.4180

DATE 17.12.87 NAME Martini

0.25ML/DIV V(START)I/NL 0.p068

T — 45 i

- /——--—"// =
/

ROUTINE » 191

] 4704 PHUINIT) 2.248 YTE ) /ML 68.7082

1 v/ML 0.144 PH(NM) 3.610

DATE 17.12.87 NAME lartini

BUR.1 VoML 5.8 ROUTINE » 1681
TEMP-C 22.8 RERGENT U.on KOH, aqueous, litrisol
KINET D 8.0 TITER L.ooa?
MPD VAR 8.0 ELECTRODES 1 (nMetrohm) ccadbined micro pH ,isss
START V/ML 9.0008 clectrode (type T)
STOP PH 100. 000 SAMPLE
STOP V/HML 5.008 563.6m3 dilution (= 1o, lzmg propellint) were
STOP # EP 9.8 sdded with 10ml H,0 and titrated.
PAUSE~S 9.0

' EP~CRIT S.8 REMARKS
ggfu :;:k g:ggg Deperminutiop of the concentration of nitric

. PH  LIN2 14. 900 acid (HNU, ) in liquid propellant.
9185 HNUy = 2.62%

Fig. 4: Analysis of LP 1846: Determination of free
nitric acid: Titration curve (top) and 1st

derivative (bottom)




9.28ML/DIV  VISTART)/NL 0.000 PH

1 2 3 . s é ? e » 19 1t 12 13 14

T T T T T [ T Y TN T TN T TN (RN N SO Y [N T O TR N T N B B
- ™
N
b ot

——— |

B ~ 2
ROUTINE # 101
® 1706  PHUINIT) 1.418 V(TE)/ML  3.476
1 V/ML  2.184 PH(M) 5.048 ,

2 VYsnL 2.547 PH(N) 10.16%

DATE 5.11.87 NAME wiartini

Fig. 5: Analysis of LP 1846: Simultaneous
determination of HAN and TEAN by
substitution titration: Titration curve.
Here: 1) Determination of HAN after acetoxime
formation by the addition of acetone
2) Determination of TEAN




9.25NML-DI

S

V  V(START /AL e.000

ot 7’5 1
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ROUTINE # 101
L 1706 PHUINIT) 1.410 VITE) ML 3.474
1 v/ML 2.184 PH(NM) 5.048
2 vsmML 2.547 PH(M) 190.143
DRTE S.11.87 NARME surtini
BUR.1 v/ML 5.0 ROUTINE » 101
TEMP-/C 23.0 REAGENT U.5m VUH, agqueous, Titrisol
KINET D 8.0 TITER [IRVIeL
MPD VAR 8.0 ELECTRODES 1 (Metrohm) compined micro pil glasc
START V- /ML 9. 000 electrode (Lype T)
STOP PH 190. 000 SAMPLE
gIgs :’g; 5-298 596, Img dilution’(= 170.5¢mg propellant) were
PAUSE/S B:B added with tuml HyO and Sm] acetone and titrated.
EP-CRIT 5.0 REMARKS
ADD ¥-ML 0.000 Vetermination ot tne concentration of hydroxyl-
EP-UW LIMI1 Qa.900 amponiunnitrate (Hal) anl triethanolammoniuwm~-
;T . Lim2 14. 0800 nitrate (fLhalv) in liquid propellant.
8 HAN = Y7, 0850 TLAN = 17, 15%

Fig. 6: Analysis of LP 1846;: Simultaneous

determination of HAN and TEAN by

su
He

bstitution titration: 1st derivative.
re: 1) Determination of HAN after acetoxime
formation by the addition of acetone

2) Determination of TEAN
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TN N A AN AN NN N A B SN E N NN BN
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ROUTINE # 181
# 17182 PHOINIT) 4.781 VITE) 7ML 2.6e8y

1 ¢/ML 8.680 PH(NM) S.145

DRTE 10.03.88 NAMNE Martini

9.50ML/DIY V(STRRT)/NL 0.000

ROUTINE # 191
* 17182 PHUINIT) 4.701 VITE) /7ML 2.08%

1 v-s/NL 8.688 PH{N) 5.145

DRTE 16.063.88 NAME aarcini

ROUTINE # 181

BUR.! V/mML 18.0

TEMP /L 23.5  RERGENT J.05z_hCl, aqueous, Titrisol
KINET D 8.0 TITER O0.vvyu2

MPD VAR 8.0 ELECTRODES 1 {(wuetrohm) comvined oicro ph glass
STRRY V/ML 8.000 e.ectrode (type 7)

STOP PH 190.008 SRHPE; ]

STOP V/ML 10.000 105.5mzg pure l:quid propellant were adied with
STOP # EP 9.0 25nl Fehling I, 2%nl1 Fenling 1I, £5ml E,O
PRUSE S 0.0 Jistilied and titratved. e
EP-14 LIMI 8. 000 n‘LrJ:en’f}?nif lp.f_:o:cefuiqclgn of smnornium
PH  LIM2 14.000 T 55?“’ Boriende propellant.

810S me /TR

Fig. 7: Analysis of LP 1846: Titration of Ammonia
in diluted boric acid with 0.05 N hydrochloric acid,

Titration curve (top) and 1st derivative (bottom)
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. 217 PHCUINIT)  1.431 V(TEI/ML  P.174 _
1 VAL 8.877 PH 6.068 0 426,27 ag MAR ¢ wn0g 3 58,99 5 (HANFNO,4)

DATE 31.10.84 nAnt Ja

Fig. 8: Analysis of NOS-365:
Simultaneous determination of HAN, IPAN and
AN by substitution titration:
Here: Determination of HAN after formation of
acetoxime by the addition of acetone
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DATE 31.10.8¢4 1% EJds
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wINEY D 0.0 TITER 1 000

MPD VAR 5.8 ELECTRODES 2 kumbinierfe Glaselhtrode Me'roha
STHRY VAL e.000

STOP PH 106.000 SAMPLE J22.6 ag NOS 365 + 10 ml A eton (' .An-Best )
s;g: wz: u.:e: ¢ 5 al fForualdehyd 37

$ [ ] . ¢ 406,9 mg NM . (20,0 LINL
PAUSE oS o o 9 mg QNO; lS’ (adP. 4 a9 T
EP-CRIT $.8  REMARKS

/P v/nlL 9.000

£r-d LINL e.000

PH LINZ 14.080

8185

1.00ML/01V VISTARY )L 8. 008

ROUTINE 0 1 ’
¢ 217 PHUINIT)  6.488  WITE)AL  €.848
1 Ve 1,000 PH 7,318 0 426,2) mg (NANSKNOy) & S8,99 T (NANSHNO)
2 v/l B3.083 PH P.940 2 2,074 wl ® 126,64 mg IPAN

: 812,53 1 IrAr

DATEL 31.10.94 L SN

Fig. 9: Analysis of NOS-365:
Simultaneous determination of HAN, IPAN and AN by
substitution titration: Titration curve (top)
angd 1st derivative (bottom).
Here: 1) Determination of AN after the
addition of ammonium nitrate at a
known quantity and the addition of
formaldehyde (formation of hexamethylene
tetramine)
2) Determination of 1PAN
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An Overview of the U.K. Approach to the Characterisation and
Classification of the HAN-Based Liquid Propellant LP101.

S Westlake.

Royal Armaments Research and Development Establishment.
Powdermill Lane, Waltham Abbey, Essex ENS 1AX,
(United Kingdom).

Sunmary,

HAN-Based liquid propellant LP101, is currently being
considered by the U.K. for use as a liquid propellant for
guns. This paper summarises the initial assessment of LP101
for this use. It covers work connected with the manufacture
and assay of the propellant and the assessment of its
stebility and compatibility with other materials it’'s likely
to come into contact with during manufacture, storage and
use. This paper will briefly outline some of the methods used
i this assessment.

COPYRIGHT <::> CONTROLLER HMSO, LONDON 1888
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Problems have been encountered in finding a suitable method

for essayindg the propellant. It is very difficult to analyse
HAN in the presence of TEAN. Chromatographic and titrimetric
methods have been tried, but in both cases the results were

non reproducible. The reaction between HAN and benzaldehyde

was the basis of both methods.

NHaOH+*NOs- + CeHsCHO ------ > CaHsCH=NOH + Hz20 + HNOs

In the titrimetric method the liberated nitric acid is
titrated sgainst ethanolic potassium hydroxide. In the
chromatoghraphic method the liberated water is detected by
gas chromatography. It is believed that the reaction of
benzaldehyde with HAN does not go to completion, hence the
non reproducible results observed.

At the moment the propellant is blended by weight. The water
content of the propellant is then determined by gas
chromatography or Karl Fischer.

This situation is obviously not ideal and effort is being
made to find a suitable method. However we have been assured
that there has been good reproducibility between the blends
that have been manufactured to-date.

The density, viscosity and refractive index of each blend is
measured. Inorder to determine the effect of slight
compositional changes on these parameters several small
batches of modified composition have been made. These are
shown in Table 1. along with their measured density,
viscosity and refractive index.

~ COMPOSITION DENSITY R.I. VISCOSITY
XHAN XTEAN ¥WATER ~ 20°C 249C -1 -10 O oc 10 20

63.2 20.0 16.8 1.4555 1.4876 43.5 32.2 22.1 15.3 12.4
64.7 20.5 14.8  1.4748 1.4723 58.2 42.5 25.3 18.3 13.8
81.7 18.5 18.8  1.4409 1.4730 38.5 26.0 18.3 14.7 11.8
81.2 22.0 16.8  1.4482 1.4668 45.0 30.5 21.7 15.7 12.8
85.2 18.0 18.8  1.4824 1.4870 37.3 28.3 18.5 13.0 9.0

TABLE 1.

The different compositions represent propellants that are
outside the specification limits and cover the variation of
HAN/TEAN ratio at constant water and of water at constant

66
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1. Introduction.

LP101 is currently being assessed by the U.K. as a liquid
propellant for guns, with the emphasis being on its ultiuate
use as a tank gun propellant. The U.S. have spent many years
researching the possibilities of using liquid propellants for
both artillery and tank guns and have produced several viable
propellants. LP10l1 is equivalent to American LFG 1845, but
has been given a U.K. designation for specification purposes
and to avoid confusion with propellant of U.S. origin. Like
LPG 1845, LP101 is a solution of Hydroxylammoni .« nitrate
(HAN) and triethanolammonium nitrate (TEAN) in water.

Prior to the start of this project U.K. experien:e with
liquid propellants had been concentrated on packaged systems
and confined to very specialist use. The gun propellant being
proposed was unlike any propellant currently in service use
in the U.K. and so a programme was set up to establish its
characteristies and suitability for service use. The U.K. had
access to a certain amount of U.S. data, but as LP101 was
manufactured in the U.K., using ingredients from British
suppliers, it was necessary to characterise the propellant,
as made, to ensure that LP10l was indeed comparable to

LPG 1845.

Royal Ordnance were contracted to manufacture the propellant
and to determine its compatibility with other materials
likely to come into contact with it.

Z. Manufacture.

LP101 is a solution of hyroxylammonium nitrate (HAN) and
triethanolammonium nitrate (TEAN) in water. The TEAN is=s
manufactured from Triethanolamine and nitric acid and
purified by crystallisation. The HAN is currently
manufactured by a chemical method’(which is commercial-in-
confidence ) and supplied as a 40X solution in water.
However, HAN, from an alternative supplier, is in the process
of being assessed. This HAN is supplied as a 24X solution.
The HAN from both suppliers requires concentrating before
blending. Concentration takes place under vacuum and the
temperature is not allowed to exceed B0°9C. This requires a
vacuum of about S5mm of mercury to remove the last few percent
of water and still keep the temperature below 80°C,

The HAN and TEAN are blended together and the percentage of
water adjusted to give a suitable propellant.




HAN/TEAN ratio. This was to determine the effect a variation
from specification had on these physical properties.

The refractive index varied linearly with water content but
not with the HAN/TEAN ratio in the range studied. The low
temperature viscosity increased markedly as water content
decreased but only slightly as the TEAN is increased. The
density varies linearly with respect to TEAN but is non
linear with respect to water. The density variation is shown
graphically in figure 1.

Density and refractive index are now being used to monitor
the blending process.

It is known that the stability of HAN based propellants is
seriously affected by metal ion contamination, particularly
iron and copper. Therefore each batch of propellant has been
screened for iron using atomic adsorption. The results are
shown in table 2.

ppm wt/wt
Blend No: Copper Iron
2 0.03 0.3
4 0.10 0.4
5 N.D. 0.3
8 .17 0.3
Table 2.

3. Compatibility and Stability.

4

As part of the propellant assessment programme a test
procedure has been developed to screen all materials that are
likely to come into contart with the propellant during
manufacture, storage and life.

Candidate materials are initially checked for possible severs
incompatibility using a splash and immersion test. A few
drops of propellant are placed in contact with the candidate
material so that the surface is just wetted. Observations are
made over one hour. If no rapid reaction or rs«romposition
occurs then more propellant is added such that the sample is
just submerged. The test is examined after a further hour,
after 5 hours, 24 hours and 7 days. All observations are
recorded. .
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If no rapid reaction or decompomition occurs the test is
repeated at 60°C., These tests can warn of severe
incompatibility and screen materials for short term exposure
and socidental contact.

Materials under consideration for long term contact are
subjected to further tests to establish their long term
compatibility. Im this test aging is sccelerated by using
elevated temperatures. Most monopropellants =re inherently
thermally unastable and give rise to gaseous products when
heated. This decomposition can be catalysed by contamination
or contact with foreign material.

The test to establish long term stability compares gas
evolution of propellant in contact with candidate material,
when held at an elevated temperature, with that of cantrol
sapples. The gas evolved is monitored for up to 6 months
using a pressure transducer and the temperature of the test
is 899C. This temperature was the lowest temperature at
which measurable levels of gas could be detected from the
control samples. On completion of the test the propsllant is
analysed for dissolved and particulate matter and the
candidate materials are tested for any changes in physical
properties. Full details of both the short and long term
stability tests are given in reference 1 and 2.

These tests are not totally satisfactory. They are not
general encugh to detect all types of incompatibility
reaction; for example a non gas producing reaction or one
with an initial induction period. However virtually =ll
reactions are accompanied by heat generation. A test method
has been developed using heat flow calorimetry to determine
if the propellant is thermally stable. This test will show if
any treatment of the propellant, such as heating or contact
will a suspect material, has affected its chemical stability.
Full details of the test are given in reference 3 and will be
described in the following paper.

The test has also been used to screen the batches of
propellant that have so far been manufactured. Good
correlation has been found between iron content and thermal
stability, as demonstrated by this method.

An example where gas generation can be misleading was
observed during some work designed to measure the rates of
gas evolution from samples of LP101 heavily contaminated

with metal ions (reference 4 ). Samples of LP10l containing
0.5 g/litre of CU2+ yere heated at 50, 80 and 709C for up to
4 days. The sample heated at 70°C gave an initial gas
evolution rate of 1.48 cc/hour. This steadily decreased and
after 3 days the rate had reduced to 0.67 cc/hour. After 4
days the sample "boiled off” and the contents of the
container were ejected with some violence. This experiment
gave strong indication that the reactions taking place during
the decomposition of LP101 are not simple. It is obvious that
there are at least two different reactions occurring in this
case. 69 :




4. Hazard Asseasment..

As part of the qualification procedure, a new propellant
needs to be screened to establish whether or not it is a
candidate for inclusion in UN Class 1, ie whether it needs to
be treated as an explosive or not. This screening is required
for transport and storage purposes. It was hoped that LP101,
if suitably packaged, would not fall into this category and
be classed as non explosive. In order to establish this LP101
was subjected to UN series 1 and 2 tests. These tests are
described in detail in reference 5 but are described briefly
below:~

BAM 50/80 Steel Tube. Propellant is placed in a steel tube of
50mm i.d. and 60mm external diameter and subjected to the
detonative shock from a 50g Debrix 13 high explosive booster
and a2 No 8 aluminium concave~based detonator in series 1 and
2 respectively. The number and size of the tube fragments
determines whether the propellant is class 1 or not.

Koenen Steel Tube. Propellant is placed in a 24mm diameter
steel tube of 70mm length, closed at one end with an orifice
plate. The tube is heated and in consecutive tests the
orifice is reduced until fragmentation of the tube occurs.
The size of the orifice that causes fragmentation determines
whether the propellant is class 1 or not.

The results of these tests classified the propsllant as UN
Class 1. These tests do not allow for differentiation between
high explosive (1.1) or propellant (1.3) so the propellant
was given a temporary 1.1 classification.

Results from further testing using the Large Sealed Vessel
Test (reference 6) indicated that hazard division 1.3 was
appropriate for LP101. The next series of tests (reference 7)
confirmed this for the proposed method of packing. The single
package test showed that, if confined in a 5 litre rigid
polythene, narrow necked screw top containers, explosion did
not propagate in the package and surrounding packages would
not be endangered.

LP101l was finally given a 1.3L classification i.e. Propellunt
to be stored and transported separate from other propellants,
Isclation is necessary because of the corrosive and oxidative
nature of LP101.
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5. Conclumions.
Manufacture,

The method of manufacture of LP101 has been fairly well
established, but problems in assaying the propellant have
been encountered. Work in this area is about to commence and
it is hoped that a full assay method should be available in
the near future. Refractive index or density measurement
are being used for monitoring the blending procedure.

Compatibility and Stabilitv,

The splash and immersion test, gas evolution test and heat
generation test are currently being used to screen materials
for use with LP101. The information from all these tests are
used when making a sentencing decision.

Hazard Assassment.

UN series 1 and 2 tests and supporting tests have classified
LP101 as 1.3L. This only applies to propellant stored in 5
litre lots or less and in the specified packaging. Further
testing will be required before the propellant can be
transported or stored in bulk containers.
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Possible Test Methods to Study The Thermal Stability
of Hydroxylammonium Nitrate Based Liquid Gun Propellant

P F Bunyan
S Westlake

Royal Armament Research and Development Establishment,
Powdermill Lane, Waltham Abbey, Essex ENS8 1AX,
(United Kingdom).

Sunmary

The effect of contamination of a hydroxylammonium nitrate
based liquid gun propellant with various metal ions has been
studied using the techniques of heat flow calorimetry,
thermogravimetry and a simple time to pressure burst test.
All three tests showed a destabilising effect of dissolved
copper and iron on this propellant. The three approaches are
compared and their relative merits and disadvantages are
discussed. It is concluded that heat flow calorimetry would
provide the most suitable method for detailed compatibility
studies, while a pressure burst test could be used for
routine surveillance checks,

N.B. This document 1s intended to support a verbal
presentation to be given at the 4Ch Annual Conference on
HAN~-Based Ligzuid Propellants, Structure and Properties at the
Ballistics Research Laboratory, Aberdeen Proving Ground,
Naryland. It reproduces the information reported in RARDE
Memorandum 4/88, but includes mome additional results that
have been gathered since that Memorandum went to press.
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1 Introduction 3
2 Laboratory Work 4
2.1 Heat Flow Calorimetry 4
2.2 Thermogravimetry 8
2.3 Time to Pressure Burst Test 6
3 Discussion and Conclusions 8
. 4 References 9
5 Symbols and abbreviations 8
Tables 1-3
Figures 1-3

Annex A Sample Preparation Procedures




1 INTRODUCTION

Following several years of investigation into the use of
liquid gun propellants in the USA, a programme of work has
recently commenced in the UK to develop a gun system
enploying a liquid monopropellant based on Hydroxylammonium
nitrate (HAN).

This material is unlike any other propellant currently being
used in British service and it can be expected to behave
differently from conventional solid gun propellants based on
NG/NC/nitroguanidine.

It has been reported that the stability of this class of \
propellant deteriorates if contaminated with trace quantities
of certain metal ions, particularly iron and copper (Ref 1).

When left in contact with many metal components commonly
found in gun systems, this type of propellant has besn found,
by experience, both to corrode the metal surface and to take
metal ions into solution in appreciable quantities (up to
several hundred ppm).

In order to investigate the effect of various treatments on
the propellant (age, temperature, contact with other
components of the gun system etc) it is necessary to have
nethods of measuring the decomposition rate of the
propellant. In the case of conventional single, double and
triple base solid gun propellants, this has usually been done
by measuring the rate of stabiliser consumption either
directly (eg by quantitative chromatographic determination of
stabiliser degradation products) or indirectly (eg by
neasuring the time delay before brown fumes are visible as in
the heat test).

Since HAN based propellants contain no stabiliser, these
traditional tests are obviously of no use and alternative
means of characterising them are required.

Tests are needed to fulfil 2 requirements:
a. Requirement 1

A reproducible, discerning, sensitive test to measure
the effect on stability of various forms of
contamination quantitatively, to provide information to
help with the selection of suitable construction
naterials for guns and storage vessels, ie to perform
the role that accelerated ageing followed by
quantitative stabiliser analysis currently fulfils for
conventional gun propellants.

b. Requirement 2

A quick stability check to be used as an indication of
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useful life remaining and to give early warning of
contamination with incompatible materials. This test may
be Qqualitative but it must be simple to perform and use
inexpensive, universally available equipment, ie to
perform the role that Abel’s heat test currently fulfils
for conventional solid gun propellants.

2 LABORATORY WORK
2.1 Heat Flow Calorimetry
2.1.1 Equipment and Materials

Heat generation was monitored using an LKB 2277
microcalorimeter ("bioactivity monitor”). Its instrumentation
and detection principle are described in reference 2.

Samples were contained in 3cm® glass ampoules and sealed with
Teflon lined rubber seals (LKB part no. 2277-303). Data were
recorded using the microcomputer logging system described
previously (Ref 3).

A sunfficiently large sample of the liquid propellant
desi.gnated LP101 was obtained from a single batch of
experimental propellant (batch 2) to enable all experiments
in this investigation to be completed on the same material.
(LP101 is a British copy of the US propellant LP1845. It is
an aqueous solution of HAN and triethanolammonium nitrate
[TEAN])

Analytical reagent grade metal nitrate salts were used to
prepare contaminated propellant samples.

2.1.2 Experimentation and Results

Sanples containing known concentrations of metal ions were
prepared by adding the appropriate metal nitrate salt to the
nixed propellant, or to agqueous solutions of its components
(HAN or TEAN).

Heat generation was measured by following the experimental
procedure described in Annex A.

Heat evolution rates after 3 hours at 77°C associated with
various treatments of the propellant are shown in Table 1.

2.1.3 Qhasrvations and Remarks
Tron

It can be seen that the presence of trace quantities of
dissolved iron causes a large increase in the heat generation
rate of the propellant. The effect appears to be a linear
function of concentration under the conditions investigated
(Fig 1).
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The presence of copper also causes a large increase in the
heat generation rate of the propellant. The effect is again a
linear function of concentration and the rate is about an
order of magnitude greater than for a similar concentration
of iron.

Nickel

The presence of nickel increased the heat generation rate
slightly, but the effect was far smaller than that seen with
either iron or copper.

Aluminunm

It can be seen that aluminum has very little effect on heat
generation rate from the propellant when in solution compared
with other metals investigated. (However, this propellant is
known to be very incompatible with so0lid metallic aluminum)

Chromiunm

The presence of chromium increased the heat generation rate
slightly, but the effect was far smaller than that seen with
iron or copper.

Silver

It can be seen that the presence of silver had very little
effect on the heat generation rate given by the propellant.

Propellant Components

No heat generation was detected from agqueocus solutions of
TEAN whether contaminated or not.

Aqueous solutions of HAN can be seen to be exhibiting a
similar enhancement in their heat generation rate when
contaminated by iron or copper as was seen with the intact
propellant when similarly treated.

It would appear that the heat genération enhancement observed
is the result of a reaction between the HAN and the metal
ions. TEAN appears to neither react with the metal ions
itself, nor to influence their reaction with HAN.

LP101 - Blend 4

When heat flow calorimetry was performed on a new batch of
propellant (blend 4) it was found to be generating about
twice as much heat as the original blend 2. It was shown
subsequently that the new propellant contained a trace
impurity of about 1.5 ppm of iron, compared with the 0.5 ppm
present in the old propellant (Ref 5). This finding is
consistent with the higher heat generation rate reported
here.
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2.2 Thermogravimetry
2.2.1 Equipment and Materials

Weight loss curves were recorded using a Mettler TGS50
thermobalance.

Samples were contained in 150 ul alumina crucibles (Mettler
part no. ME 24124)

2.2.2 Experimental and Results

Propellant samples containing known concentrations of metal
ions wecre prepared by weighing in the appropriate meta)
nitrate malt.

Weight loss curves were racorded on prepellants contsining
different contaminants using the experimental procedure and
conditions described in Annex A. A typical weight loss curve
for an uncontamninated sample is shown in figure 2. All curves
were of this general shape, but with the step tending to be
displaced to lower temperatures when the sample was
contaminated.

A summary of the temperature at which a 50% reduction of
weight had occurred for each treatmert is shown in table 2.

2.2.3 Qbservations and Remarks

It can be seen that a significant reduction in the mean
temperature of 50% weight loss could be demonstrated if 10
runs each of uncontaminated propellant and either 5 ppm (or
greater) of iron contamination or 1 ppm (or greater) of
copper contamination were considered.

The results are nocv quantitative, but agree qualitatively
with the HFC results as follows:

a Copper and iron appear to cause thermal instability.

b The effect of copper is greater than that of iron
for similar concentrations.

2.3 Time to Pressure Burst Test
2.3.1 Equipment and Materials
Liquid propellant samples were seaied in 3cm?® glass ampoules,

identical with those used for the HFC tests (LKB part no.
2277-303).
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An elevated temperature was maintained in the sample using an
electrically heated, cylindrical, aluminium block with
20x100mm cylindrical holes cut into the plane surface to
contain the samples (Fig 3). Isothermal temperature control
of the block was achieved with an AEI platinum resistance
thermometer controller. All experiments reported here were
performed at a block temperature of 118°C.

2.3.2 Experimeptation and Results

The pressure required to rupture the ampoule cover was found

by sealing distilled water inside the glass ampoules and

increasing the temperature slowly. Rupture of the seals

occurred between 160 and 1700C, implying & bursting pressure .
of between € and B8 atmospheres (Raf 3).

Time fo pressure burst was recorded by monitoring, with a
potentiometric chart recorder, the voltage from a
thermocouple embedded in a cork bung used to seal the
cylindrical hole in the heating block containing the sample
ampoule. When a pressure burst occurred, the bung was forced
out of the hot block and the thermocouple cooled, causing a
deflection on the recorder.

Details of sample preparation and experimental procedure are
described in Annex A.

Pressure burst times for propellant samples contaminated in a
variety of ways are summarised in Table 3.

2.3.3 Obse. whrcrnasad Kemarks

It can be seen that contamination of the propellant with
copper and iron causes a large decrease in time to pressure
burst while nickel, aluminum, chromium and silver have little
or no effect.

Duplicate results are variable, as would be expected from the
6 to 8 atmosphere variation in rupture pressure of these
rmpoules. However, the effect due to contamination with
traces of iron and copper is sufficiently pronounced to be
seen above random var.ation, even on single results,

As with the TGA test, the results are not quantitative, but
agree qualitetively with the HFC results.
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3 DISCUSSION AND CONCLUSIONS
All three types of test show the destabilising effect of
traces of certain metals in solution on this type of

propellant and agree qualitatively on the ranking order of
nagnitude of effect of those metals.

The HFC method gives the most sensitive, discerning and
reproducible information of the three, is quantitative and
operates at a temperature closer to that which the propellant
is likely to encounter during manufacture and use than the
other two. It would therefore appear to be an acceptable
technique for performing sophisticated tests to allow
decisions about suitable construction materials to be used
for storage vessels and gun systems etc (Requirement 1).
However, the equipment is expensive, requires a skilled
operator and carefully controlled laboratory conditions and
is not widely available. It would not appear practicable to
use it as a quick, cheap, simple surveillance check.

The time to pressure burst test gives semi-quantitative
information and the results are too variable to be used for
exact work. However, it requires simple, cheap, universally
available equipment and little training. This type of test
could thus fulfil the need for a quick stability test
(Requirement 2).

The thermogravimetric method does show a decrease in
stability caused by copper and iron contamination and agrees
qualitatively with the other two tests., It would therefore be
conceivable to employ such a test as s stability check for
these types of propellants. However, it shares the
disadvantages of the HFC test of requiring carefully
contrclled laboratory conditions, expensive equipment and a
skilled operator, without offering the advantages of
reasuring any single recognised feature of the decomposition
reaction quantitatively, It ‘= therefore not proposed to
pursue this approach any fuorther.

Future work will concentrate on empleying the HFC test

described here to study the effect on thermal stability of
various treatments of HAN-based liquid propellants.
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5 SYMBOLS AND ABBREVIATIONS
BAM Bioactivity Monitor

HFC Heat Flow Calorimetry

HAN Hydroxylammonium Nitrate
TEAN Triethanolammonium Nitrate
W Watts

£ Grammes

Parts per million (weight/weight)



TABLE 1 Heat Evolution Rates of Liquid Propellants

LP101
LP101
LP101
LP101
LP101
LP101
LP101
LP101
LP101
' LP101
LP101
LP101
LP101
LP101
LP101
LP101
LP101
LP101
80.3%
80.3%
80.3%

Measured Using The Bioactivity Monitor

SAMPLE
(uncontaminated blend 2)

(uncontaminated blend 4)

+ 8.4 ppm iron

+ 19.7 ppm iron

+ 50 ppm iron

+ 82 ppm iron

+ 100 ppm iron

+ 3.8 PpPm copper

+ 8 ppm copper

+ 100 ppm copper

+ 50 ppm nickel

+ 100 ppm nickel

+ 50 ppm aluminum
+ 100 ppm aluminum
+ 100 ppm chromium
+ S0 ppn chromium
+ 100 ppm silver

+ 50 ppm silver

HAN (uncontaminated)
HAN + 8.3 ppm iron

HAN + 8.8 ppm copper

HEAT GENERATION RATE gp"/l)

1.2
2.4
13.2
33.4
88
171
208
26.8
70
>1000x
3.2
5

N N N O D
o N o O o O o”

11.5
59

¥ Generating heat at a rate above the maximum range of the
squipnent. Sample removed tc prevent damage.

CONDITIONS Samples contained in z2aled 3 cm3® glass ampoules
at 779C. Heat generation rate reported after 3

hours.
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TABLE 3 Time To Pressure Burst Of Liquid Gun Propellant
Contaminated With Metal Ions

SAMPLE TIME TO PRESSURE BURST (HOURS)
Uncontaminated LP101 45,38,35,308,41,43,48 41!
LP101 + 100 ppm iron 2,2 2!
LP101 + 50 ppm iron 3.75,3 3.375!
LP101 + 20 ppm iron ' 8,7.5 7.75!
LP101 + 10 ppm iron 12.5,12.5 12.5!
LP101 + 5_ ppm iron 13,18 14.5!
LP101 + 100 ppm copper 0.5,0.75 0.825!
LP101 + 50 .-ppm copper 1,1 1!
LP101 + 20 ppmn copper 4,4.5 4.25!
LP101 + 10 ppm copper 7,7 7!
LP101 + 5 ppm coppe. 10.5,8 8.75!
LP101 + 100 ppmn aluminum 34,32 33!
LP101 + 50 ppn aluminunm 34,45 39.5!
LP101 + 100 ppm nickel 17.1§ 17.5!
LP101 + 50 ppm nickel 18,20 19.5!
LP101 + 100 ppm chromium 24,38 30!
LP101 + 50 ppm chromiunm 28,38 34!
LP101 + 200 ppm silver g 37,44 40.5!
LP101 + 100 ppm silver 35,40 37.5!
80.3% HAN (in water) 17,17 17!

! Mean value (hours)

CONDITIONS: 3g samples of propellant sealed in 3cm?d glass
anpoules held isothermally at 1180C

Seals burst between 8 and 8 atmospheres
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FIG. 3

TO RECORDER

CORK BUNG

THERMAOCOUPLE

SAMPLE CONTAINED
IN GLASS AMPOULE

FIG.3 PRESSURE BURST TEST - SAMPLE CONFIGURATION
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ANNEX A

SAMPLE PREPARATION PROCEDURES

Al HEAT FLOW CALORIMETRY

| Heat new glass ampoules and lids for 24 hours at 80°C in
a vacuum oven. Store in a desiccator over P20s until ready
for use.

2 Set the BAM bath to the desired temperature and allow 24
hours for the cylinder to equilibrate.

3 Adjust the output to zero volts using the potentiometer
on the BAM, with thermally balanced, inert ampoules in both
the sample and reference wells.

4 When the output becomes constant, record the blank
signal for 1 hour.

5 Subject the sample well to an appropriate, known
calibrating power, supplied by resistive heating of the
calibration element around the sample detection zone.

6 Record the calibration signal, when constant.

7 Fill a glass sample ampoule with uncontaminated
propellant using a Pasteur pipette. This step is to remove
any source of contamination present in the ampoule as
supplied.

8 Discard the uncontaminated propellant.

8 Place betwesn 3.5 and 4g of propellant which has
received the treatment of interest into the sample ampoule
and record the sample weight.

10 Seal the asmpoule with a Teflon-lined aluminium cap.

11 Lower the ampoule into the equilibration region of the
BAM cylinder. Retain the sample in this region until
temperature equilibrium is achieved (this will take about 30
ninutes)

12 Lower the sample into the detection region of the
cylinder and commence measurement of powsr output.

A2  THERMOGRAVIMETRY

1 Weigh between 25 and 35mg of the sample of liguid
propellant into a clean 150ul alumina crucible (Mettlecre part
no 24124).

2 Place on the balance pan of a calibrated Mettler TG50
thermobalance. Do not cover the crucible with a lid, since
this would be pushed off by the foaming, decomposing
propellant. :
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3 Increase the temperature experienced by the sample from
50 to 3009C at a linear rate of 20 degrees per minute in an
atmosphere of nitrogen flowing at 200 ml/minute and record
the sample weight as a function of temperature throughout the
analysis. :

4 Record the temperature at the point where the sample had
experienced a 50X weight loss.

A3 TIME TQ PRESSURE BURST

1 Clean a 3cm? glass anpoule with uncontaminated liguid
propellant as for steps 7 and 8 of the HFC method.

2 Transfer 3g of treated propellant sample into the sample
anpoules and seal with a Teflon-lined aluminum cap.

3 Heat the ampoule and sample to 118°C by placing thenm
inside a cylindrical hole drilled into a heated aluminum
block. '

4 Seal the entrance to the neating block well with a cork
bung containing a chromel/aluminel thermocouple.

5 Monitor the voltage from the thermocouple as a function
of time using a potentiometric chart recorder.

8 When the ampoule senl ruptures, the cork bung is blown
out of the hot block allowing the thermocouple to cool down.
the tine to pressure burst may be deduced from the associated
pen deflection on the chart recorder.
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SAMPLE

NOTE: HEAT FLOW IS ACTUALLY THREE DIMENSIONAL

OUTPUT .
VOLTAGE
TEMP TEMP
T, T>T, T,
—— —
> >
Lo ) —y,
==
HEAT HEAT
FLOW FLOW
THERMO ELECTRIC
DETECTOR
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LARGE
HEAT
SINK



DIGITAL PANEL
METER (DVM)

MAINS AND
OUTPYT
CONNECTIONS
AT REAR

DISPLAY

SELECTION
SWITCH

SIGNAL

LIGHTS

HINGED LID OVER
MEASUREMENT
ELECTRONICS
CONTROL PANEL
(CALIBRATION UNIT,
CHANNEL AMPLIFIERS)

AMPOULE LIFTER

MEASURING CYLINDER
FLOW TUBING

CONNECTIONS
FOR EXTERNAL
WATER CIRCULATOR

LLEVELLING
FEET

INPUT/OUTPUT
FLOW TUBE SPIRAL

HEAT EXHANGER
AMPOULE (IN TEMPERATURE

STABILISING POSITION)

MEASURING CYLINDER

WATER-BATH

MEASURING CUP

MAIN HEAT SINK

WATER BATH
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CIRCULATING PUMP

WATER BATH TEMPERATURE
REGULATION UNIT :

HINGED BOTTOM
PLATE



AMPOULE
LIFTER
X
DRY GAS
FLUSHER
TUBR INLLT
b HEAT EXCHANGER
COIL (FOR FLOW MODE)
s-r%s STREL ‘
MEASURING
(SHOWN IN
EQUILIBRATING CYLINDER
POSITION)
MEASURING
cur
PELTIER
ELEMENT
| S AT Eeoun
ATS i — |
HEATSINK - HEATSINK
ELRCTRIC
CALIBRATION
HEATER
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HYDRODYNAMIC THEORY OF
LIQUID PROPELLANT DYNAMICS

J.W. Haus and F. Chung-Yau
Rensselaer Polytechnic Institute
Troy, New York 12180-3590

l. Linearized Hydrodynamics
A. Three component fluid
i) light scattering spectra
ii) sound absorption and
dispersion
B. Chemical reactions in Equilibrium

2, Continuing Research’
A. Instabilities

i) Thermodynamic
11) Chemical

B. Inhomogeneous distribution
of gases

C. Thermal effe s of inhomogeneities
on instabilities

S'uppor‘l'caL 1>>/ U S Af'M)/ Wa'f‘erv/ic.'t
Arsenal , Grant No. DAAA 22 -85-C-018
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1. Linearized Hydrodynamic equations for
a three-component mixture

HAN + TEAN + water

Continuity equation =6 €,
-—f— - -'?o v.

Navier Stokes equation

BV VT =-YPp+n V>V + V]
£.5¢=V'E P, IICAY

Conservation of energy T=T, +T,

foﬁr%‘_g‘ - KT'?.’.—KJ AC, K a/(a. QC; i XVZT

3¢, It T* 3¢, °ay 3T
Conservation of particle species

1% S 7 _ 2 TR T Ko
X917 =D[v c¢+5%V7j+—§.&V“P]

L2, &
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Parameters for three component fluid

Thermodynamic
r, Gy, X
AA%4 éﬁzg
¢, ’° aca
thermal ratios: kﬁr. , Kra

-

baricentric ratios: KPI , KPJ_.

Transport

viscosities: ,ZB ._.(_g 'ZS*'ZV) R ]Z’ p
thermal diffusion: k/ -
g.Cp=D

chemical diffusion:
D,

T

roD
Chemical Reactions

relaxation times: ’Z’ ) ’z:-
I

enthalpic changes:
Sh 2

2 oC,
oT 3T

thermodynamic:
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A. Three-component fluid

solution of equations via Fourier-
Laplace transform methods

t—>2z

Xk
R.D. Mountain, J. Res. NBS A72, 95(1968).
R.D. Mountain and J.M. Deutch, J. Chem.

Phys. 50, 1103(1969).

J.W. Haus, J. Chem. Phys. 60, 2638(1974)

5-component vector for the thermodynamic

state variables A
.—A—A .

A A
NiE2=(6,6 P ¥ ¢)
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The probability distribution for fluctuations
is statistically independent

WINED)= 4, (c) h(c)h (P A, M/z,(«#) %

the functions h(Q) are Gaussian:
eg. /‘l (C):: /V exp{ 3/«‘1 (S\(, /Zk T} C)/(I

The linearized hydrodynamic equations are
written in matrix form:

l. = - ‘ "'/ 7 —
B N2 = P (62 N o)
'M(k,z) is the matgix of coefficients of
the variables in N(k,z).

det(g) is a polynomial of order 5 in z.
It contains only even orders in k.

det(M) = (2- ) (- >\) - (2-2s)
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The determinant of M has the following
roots:

2 roots are complex, these are assoclated
with the propagating modes

K_,. = ;‘.l:)'Cak“/-'kL

3 roots are real, these are diffusion modes
- o)

~ -.—*—-—

2 !
Az, ,.é_ [0+t rH+R)-9D (D.q;)] A

=L e J((Y—a)
r 2'i jﬂ. C%.F’ *'25: ]> (_,SL Y/H k$r¢ )

el °¢ 3G ¢, 8.
Keie dA.
ﬁ D (/+ 6:7; 3C; )
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i) Light scattering spectrum gé,

E o -
Bzz@/

=

structure factor is the spectral density of
dielectric constant fluctuations.

Sé (f,w)=  he (f,w)A'e (E,o)>

spectrum of fluctuations in the state
variables 22~/

S, (k)= 7 Re [ ("R Kis>

-
oty

Refs Vi Yie 7

/
T L w+ )y
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i1) Ultrasonics

Frequency imposed by transducer,
akin to light transmission experiment

N
—XX

c

INTENSITY

> x
absorption: wave intensity dimishes
with distance

dispersion:"time~of-flight" after
launching acoustic wave

det(M) gives solution for plane-
wave propagation

(EoX ~wt)
O (X, t) =g e

k=ké k= ke tik;

in limié w—=> O

disPorsion N

: o
QLSOPP{_I\OV\ kl - /—'2‘&)




B. Chemically reacting fluid near equilibrium

ot ®
&§=VI

9.4 -L(8c -2 -2 2%7)

.-i-ef JOT I S % fka-%-ifr—%-ifﬁi

eigenvalues of det (M)

prope 3 a.f' "'3 »oles ../SQ Lﬁé J'QJ :

" The real P"r(— s

part i wnchanged .
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2. Continuing research

A. Instabilities
1) Thermodynamic, spinodal
decomposition

liquid-gas transition

X'T< O | no profﬁaa}fﬂa medes

phase separation of fluid components

aﬂ O ' u'plu'/( liffusi N

II) Chemical

model: change of activation energy with

pressure:
- E/T

- (
T.7 =7 €
-Zzﬂ
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Inhomogeneous distribution of gases

07‘ ° ]

o 0

X" >D X" gas is easily compressed

a. large change of volume on compression
b. hot spots. They affect the chemical
stability.
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CONCLUSILIONS

A. Hydrodynamic theory gives a complete
description that can unify both light
scattering and ultrasonic experiments
under a single formalism.

B. The hydrodynamic theory provides
insight intc modelling instabilities
in fluid mixtures.

C. Chemical reactions change the light
scattering spectra, especially in the
forward scattering direction, and the
ultrasonic absorption.

D. An inhomogeneous distribution of

reaction products could be modelled
within this formalism. |
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Abstract.

‘HAN aqueous solutions are stable at room temperature however
application of an appropriate stimulus either thermal or chemical can
initiate the decomposition of the HAN to produce NZO, NO, Nz, N02, etc.
Since HAN solutions are highly ionic it is reasonable to examine the role
that ion-molecule reactions may play in the decomposition process. It is
believed that the initial step is a proton transfer reaction from the
hydroxy lammonium ion so to this end the proton affinities of NHZOH, NH3, HZO
and nitric acid will be discussed and a chemical mechanistic scenario will
be developed which is consistent with the known experimental facts of HAN
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ABSTRACT (Use reverse side if necessary)

A program has been developed to study the reaction kinetics of gun propellants
such as the HAN based liquids using a personal computer. These HAN based systems
can be studied using a mainframe computer but oftemn-require long run times. 1In
order to eventually model the liquid propellant guns, including the fluid flow, it
was necessary to develop a fast reacting program which would form part of the final
system. In addition, a reaction program which could run on a PC is convenient for
initial testing of possible fuels. The main problem with any such system is that
the equations are stiff with ideal time steps varying from 10E-18 seconds to
10E+03 seconds. Under these conditions many integration schemes become unstable.
An additional problem of using a PC is that the accuracy is limited and with long
runs, the atom conservation can become badly in error.

A semi-implicit time advance scheme was vced to obtain stability. The time
step was varied through a prescribed regime and equations were included or eliminatec
depending on the particular part of the regime in operation. By varying the time
step pattern, the accuracy could always be improved at the expense of increased
computer time. The equilibrium conditions were calculated using the MCVECE code.
Using the equilibrium conditions, the reaction kinetic code was used to study
various HAN, HAN-walter, TEAN and TEAN-Water and the results compared with available
experimental data.
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ELECTRICAL IGNITION OF HAN-BASED LIQUID GUN PROPELLANTS

G. Klingenberg*, H. J. Frieske**, and H. Rockstroh*

* Fraunhofer-Institut fOr Kurzzeitdynamik, Ernst~Mach-Institut,
Abteilung fir Ballistik (EMI-AFB), Weil am Rhein, FRG

** Dynamit Nobel AG, Werk Dellbrick, Abteilung Grundlagen und
Zukunftstechnik, ¥Kdln, FRG

ABSTRACT

The present paper reports on progress achieved in the study
of the electricdl ignition of the hydroxylammonium nitrate (HAN)
based liquid gun propellant LP 1846. The goal of the present work
is to develop an igniter system suitable for regenerative liquid
propellant guns. Several igniter configurations, designed by the
Ballistic Research Laboratory (BRL) and the Ernst-Mach-Institute
(EMI-AFB), have been tested. Voltage and current as well as the
pressure histories were measured for each discharge. The electro-
static field distribution was calculated by a finite element code
implemented at Dynamit Nobel. The theoretical analysis ylelded
improved electrode designs for future testing.

1. INTRODUCTION

The discharge by an igniter system into the combustion chamber
of a regenerative liquid propellant gun (RLPG) builds up the pres-
sure required to set the injector piston into motion and to generate
the energy for igniting the liquid propellant (LP) thus injected.
Solid propellant igniters are currently being used to initiate the
combusticn in medium and large caljiber RLPGs. However, the goal of
the future RLPG development is to incorporate a liquid propellant
ignition system eliminating solid propellants from the logistic
train [1]. One LP used for the tests is LGP 1846, which contains
hydroxylammonium nitrate (HAN), triethanolammonium nitrate (TEAN),
and water [2]. Since LGP 1846 is an electrolyte, primarily electri~
cal ignition has been studied so far.
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2. EXPERIMENTAL

The ignition experiments were conducted with two different
ignition test fixture types used in the closed bomb mode.

2.1 Test Fixture No. 1

A view of the first test chamber is shown in Figure 1. It cc
prises the isochoric test chamber equipped with pressure gage anc
rupture disk or sapphire window and the center electrode assembly

The test chamber volume can be preselected, via an insert, to 60.

or 101 cm>.

TEST CHAMBER BODY
b

Kipt

TEST CHAMBER

VOLUME WITH INSERT
Lvoume WITHOUT INSERT

3 CAVITY HOUSING
// ELECTAODE WITH VENT
/ : \ e -, YOLUME 1.9 ¢m?
\ /,/ i :'/ VN 1 ease INSULATOR
~ 1y [N}

R

7

N
N
-’,-f;’/ // R
72
N

A% NN

N
CENTER ELECTROQE
NN N
/j/ =N LA o INSULATON
N /
/ R \§ / %
/%/ N 3 ‘.\ s //
N ’
RN N ;f/ 77 ADAPIOR
4/’ N o A
99N NN E :&\ <1
/ // NN PSRN \ A
AN SR .
ANNNAN \‘&‘\ \\ fa.
SN RN £LELTRODE SUPPORT
. N 2 SANN . _ PR
W, \\\ ‘4‘ Y
. §\l\\ 50 SN
L=
p "

Fig. 1. EMI-AFB test chamber (first design)
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The center electrode assembly is depicted in somewhat greater
detail in Figure 2. The principle structural features of this

Y]
SN
7
/] STEEL (42 CrMo4 V)
NN HYLON
RIS GLAS CERAMIC 914 g
TEFLON
PLASTIC

Fig. 2. Center electrode assembly

assembly are the center electrode, the vented outer electrode and
the base insulator. Figure 2 displays a more recent design than
Figure 1. Two igniter cavity configurations were investigated:
One, a design introduced by BRL; the other developed by EMI-AFB
(Figs. 3 and 4).

e -12—-—.-
— 17 13
y;j_’-;%i—'—.; A/ 5
o= ‘pj Q
e ) I} R9 - ///‘ e
— = hY Lldld—" 4| o
T = e L\, ® e
o~ V7% wl
PR N 77/ 7 R T S
Q= = = 1%
1-—~l
|
16

VOLUME : 1.9¢m3

Fig. 3. BRL type igniter cavity
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Fig. 4. EMI-AFB type igniter cavity

The cavity volume was 1.9 cm3 in both cases. During the course of

the experiments,the vent diameters were narrowed from 2 to 1.6 mm
thus improving the confinement of the liquid propellant £111l.

2.1.1 BRL Igniter Configuration

The study commenced with one of the BRL type [1] configurations
- (Fig. 3) according to the request of the contracting agency. The
design ‘tested at EMI-AFB is characterized by its cylindrical cavity

and the fact that the center electrode ends well below the insu-
lator's upper edge.

2.1.2 EMI-AFB Igniter Configuration

Figure 4 shows the igniter configuration designed at EMI-AFB.
The cavity is circular rather than cylindrical; in addition, the

center electrode protrudes further upward into the cavity.
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2.2 Test Fixture No. 2

A special test chamber has been designed and built at EMI-AFB
(Fig. 5). This chambexr includes sapphire windows for monitoring the
ignition process by optical techniques and a measuring port for

ELECTRODE

\ [

eef 7
; ,/if,,l -)

§&' Y,

SAPPHIRE
ELECTRODE WINDOW

-~

(+)

Fig. 5. EMI-A¥B test chamber (second design)

recording the pressure or temperature history. The f£ill volume of

3 can be reduced by appropriate inserts. In our current

3

20 cm
experiments a volume of 6.7 cm” was used. Various electrode con-
figurations can be built into the chamber. The configurations
tested so far include plate, sphere, and needle electrodes (Fig. 6).

The maximum pressure is limited to 60 MPa by the rupture disk.

Fig. 6. Basic electrode configurations
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3. SAMPLE RESULTS

3.1 BRL Igniter Configuration

Tests were conducted with the test fixture number 1 using both
the 101 and 60 cm3
were 2.0, 1.8, and 1.6 mm, respectively; some of the data measured
are summarized in Table 1. Note, that the maximum pressure is

volumes. In the latter tests the vent diameters

determined by the rupture disk to Ppax = 16 MPa.

Table 1. Tests of BRL igniter cavity; chamber volume: 60 cm3
Test Vent Volume | Current| Voltage| Power | Energy [ Pressure | Ignition
No. |Orificej of LP I 8] P E Ppax Delay

Diam. 3

[mm] {cm™] {a] [volt] [xw] [Joule]] [MPa] Ims]
1 1.6 1.9 132 1700 192 79 16.4 1.6
2 1.6 1.9 147 1660 225 88 15.1 1.6
3 1.8 1.9 12¢ 1600 184 101 16.5 2.9
4 1.8 1.9 127 1620 184 94 16.0 2.8
5 1.8 1.9 130 1660 183 91 l15.9 2.9

For a vent diameter of 2.0 mm, the ignition characteristias
was poor. In several cases there was no ignition of the LP. In
other cases svwbstantial amounts of LP were expelled prematurely
into the test chamber. The shortest ignition delays were obtained
with the highe:t confinement of 1.6 mm vent diameter. Generally,
the reproducibility of the tests was unsatisfactory. A possible
explanation for this will be given in the theoretical section.

In view of the above results the subsequent tests with the
chamber volume of 101 cm3 were performed using the 1.6 mm vent
diameter exclusively (Table 2). The scatter of the ignition delay
is not really improved.
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Tests of BRL igniter cavity; chamber volume: 101 cm

3

Table 2.
Test Vent Volume Current | Voltage | Power| Energy | Pressure| Ignition
No. Orifice of LP I u P E Pnax Delay
Diam. 3
{mm)] {em”] [a] [volt] [(kw] {[Joule] [MPa] [ms]
6 1. 1.9 140 1560 200 85 9.0 1.7
7 1. 1.9 130 1650 194 63 12.0 1.3
8 1.6 1.9 145 1580 208 78 12.5 1.0
9 1 1.9 153 1560 210 84 9.5 2.2
10 . 1.9 133 1650 195 60 8.5 1.9
3.2 EMI-AFB Igniter Configuration

The EMI-AFB cavity configuration is escsentially a geometrically
compressed version of the BRL design. The basic idea was to produce
an even spacing in the field lines centered at the tip of the inner
electrode. It was assumed that this would ensure improved ignition

behavior. Sample results of these experiments are summarized in
Table 3. When compared with the data of Table 1, less electrical
energy 1is required to achieve sustained ignition with the EMI-AFB

configuration. Also, the ignition delay is significantly reduced.

Table 3. Tests of EMI-AFB igniter cavity; chamber volume: 60 cm3
\
Test Vent Volume Current | Voltage Power | Enerqgy | Pressure | Ignition
No. Orifice of L¢ I U , P E Ppax Delay
Diam. 3
(mm] [em™) {An] [voit] [kw] | [Joule] [MPa) [ms]
11 1.6 1.9 180 1500 215 66 11.6 1.2
12 1.6 1.9 175 1550 225 62 11.5 1.2
13 1.6 1.6 170 1550 215 56 12.5 1.1
14 1.6 1.9 180 1700 250 59 11.5 0.9
15 1.6 1.9 170 1500 220 68 12.0 1.2
L
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3.3 Test Fixture No. 2

This design permits the investigation of both conductive and
non-conductive LPs, by generating either a plasma through an arc
discharge or by electrochemical initiation. The following anode-
cathode configurations have been tested so far: (1) plate-plate,
(2) sphere-plate, (3) needle-plate, and (4) sphere-sphere.

Preliminary results indicate that at the selected electrode
distance of 7.2 mm the configuration (3) yields an arc discharge
but no ignition. Comparatively, the other configurations gave
electrochemical ignition. However, extremely long and inconsistent
ignition delays were observed. Generally, ignition took place well
after the current had been shut off (30 ms ~ 1.5 min). The investi-
gation of the physical and chemical processes involved by optical
meanrs, starting with high-speed camera recordings, has begun.

4. CALCULATION OF ELECTRICAL FIELD

The calculation of the electrical field between the electrodes
was made by means of a finite element code for the electrostatic
case. This work was carried out for the BRL and EMI-AFB igniter
cavity configurations. In addition, a modified version is proposed
aiming at an optimal field distribution.

The calculated field lines for the BRL and EMI-AFB configu-
rations are drawn in Figures 7 and’ 8. The spaces or segments
between‘individual field lines are numbered 1 to 11. The segment
sizes were chosen for convenience. Figure 9 depicts the change of
electrode surface areas and the segment volume versus the segment
number. No distinct differences are seen for.the center electrode
surface area curves (Fig. 9 A). Comparatively, the outer electrode
surface area curves are characterized by the existence of a maximum.
The maximum surface for the BRL configuration is to be found at
segment number 4, that for the EMI-AFB type at segment number 8
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SEGMENT 3

11

Fig. 7. Field lines calculated for BRL type igniter cavity

Fig. 8. Field lines calculated for F¥MI-AFB type ignhiter cavity

125




EVALUATION FROM PREDICTED FIELD LINES

——— EMI TYPE IGNITER CAVITY
===~ BRL TYPE IGNITER CAVITY

A
e CENTER
z ELECTRODE
SURFACE
Lél AREA
=
<
-]
w
[+ 4
B
OUTER
i ELECTRODE
= SURFACE
> AREA
w
>
-
-4
-
[H]
x
C
' VOLUME
e OF
z SEGMENTS
w
>
=
L- ¢
—d
w
[+ 4

2 34 56 7 8 9 10
SEGMENT NUMBER

Fig. 9. Electrode surface area and volume of segments versus
segment number for BRL and EMI-AFB type igniter cavities

(Fig. 9 B). The corresponding volume curves, whose maxima are at

segments numbers 4 and 9, respectively, are shown in Figure 9 C.
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Ignition is expected to be favored in the vicinities of the
minima of the curves in Figure 9. That is, for the BRL design
there are two such regions, one at the inner electrode in seg-
ments 2, 3, 4, the other at the outer electrode in segments 38, 9,
10 (Fig. 7). Contrarily, the EMI-AFB design has only one such
favored region, namely in segments 2, 3, 4 for both electrodes
(Fig. 8).

The points made above suggest that an optimized cavity geo-
. metry should feature both an even spacing of the field lines and
a narrow surface/volume minimum at or near the tip of the center
electrcde. Figure 10 shows such a configuration, obtained from the
computer calculations. The corresponding surface area/volume versus
segment number curves are drawn in Figure 11.

Fig. 10. Field lines calculated for optimized version of
igniter cavity
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Fig. 11. Surrace area and volume of segments versus segment
number for optimized version of igniter cavity
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5. CONCLUDING REMARKS

Although it is tempting to speculate on the connection between
the experimental data in Tables 1 and 3 and the theoretical results
in the last section, we prefer to wait for the test results of the
modified chamber. We do not expect to find a simple connection
between the electrostatic field line distribution and the ignition
behavior. In reality, a non-uniform time-varying electrical field
develops in the liquid propellant charge interacting with the
electrolyte.

Our scepticism is reinforced by the preliminary results ob-
tained with the EMI-AFB test fixture (Section 3.3). Apart from the,
unsurprising, occurrence of an arc discharge for the needle-plate
geometry, the ignition delays did not seem to follow any pattern.
However, it may well be that electrode surface uniformity plays a
more important role than previously appreciated. In this case, the
conventional finishing procedure will prove to have been inadequate.
The extreme scatter of the ignition delays indicates that factors
other than the basic electrochemistry may come into play.
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Title of Paper The Burning Rate of HAN-Based Liquid Propellants: The Effect
of HAN Concentration on Burning Rates

Presentation Time Request 20 (min)
Type of Paper: __ Progress; _  Summary; _X State-of-art; ____ Other
Speaker's Name Steven R. Vosen Phone Number(415) 294-3434
Affiliation/address Sandia National Laboratories

Livermore, CA_ 94550 -

Co-author(s) name(s)
ABSTRACT (Use reverse side if necessary)

Propellants being considered for use in liquid propellant (LP) guns consist of a
stoichiometric mixture of the salts hydroxylammonium nitrate (HAN) and triethanolammonium

nitrate (TEAN) in water. The flame structure at pressures of less than 34 MPa has been shown!
to consist of a HAN decomposition reaction followed by a TEAN decomposition reaction. The
burning rate of the propellant has been shown to be limited by the decomposition rate of HAN, to
the extent that HAN decomposition may occur in the absence of TEAN. One implication of this is
that it may be possible to sustain a "fume-off" in which HAN decomposes (releasing 20% of the
heat of reaction), resulting in a highly explosive mixture. In an attempt to better understand the
initial reactions which occur during LP combustion, previous experiments were conducted on
HAN-water mixtures which have the same HAN concentration as does LP. This provides one
with information on the initial reactions which occur in an LP flame and also closely approximates
the burning rate of the propellant.

To obtain more information on the HAN decomposition reaction as it occurs in a flame, a
series of experiments will be conducted on HAN-water mixtures of varying concentrations at
various pressures. Specifically, HAN-water concentrations of 13, 11, 9, 7 and 5 molar will be
conducted at pressures of 6 MPa to 34 MPa. (For comparison, LP 1846 is 9.1 molar HAN and
burns at these pressures during the ignition of LP guns.) The mixtures will be contained in a
strand burner while undergoing combustion at approximately constant pressure (less than 1%
pressure increase during combustion) and will be observed by shadowgraph photography. This
will provide information on the importance of HAN decomposition on the burning rates of LP, on
the presence of drops in the region above the decomposing liquid, and on the stability of the liquid-
gas intertace. In addition, the relationship between HAN concentration and pressure on the
decomposition rate will be indicative of the importance of condensed phase reactions in the
decomposition of HAN.

* This work is sponsored at Sandia National Laboratorics by a cooperative research and development program funded
by the Department of Energy and the Department of Army.

1 vosen, S. R. "The Burning Rate of HAN-Based Liquid Propellants.” To appear in the Twenty-second
(International) Symposium on Combustion, also in the Twenty-fourth JANNAF Combustion Meeting, October
1987.
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Title of Paper Study of Thermal Diffusive-Reactive Instability in Liquid

Propellants: The Effects of Surface Tension and Gravity

Presentation Time Request 20 (min)
Type of Paper: Progress; Summary; X State-of-art; Other
Speaker’s Name Robert C. Armstrong Phone Number(415) 294-2470

Affiliation/address Sandia National Laboratories

Livermore, CA 94551

Co-author(s) name(s) S. B. Margolis
ABSTRACT (Use reverse side 1f necessary)

We have extended previous work by considering a thermal and pressure dependence
to the reaction dynamics. We predict that, in addition to the well-known cellular
instabilities first found by Landau, pulsating instabilities will be found associated with
flame interaction with the thermal and pressure (hydrodynamic) fields. These results
are found in the limit of small gas-phase density and are related to similar results
found for solid propellants. As a consequence of this discovery, it is predicted that
there are regimes of instability under conditions that woulid have been predicted stable
by previous work. Entirely different behavior is found for a relatively dense gas phase.
We predict a separate new mechanism for instability that is a direct interaction
between convection cooling of the flame and the thermal field's ability to restore itself
via thermal diffusion.

It becomes evident from this and previous work that many regimes of instability in
liquid propellant combustion are possible and even likely. Some direction from
experiment is necessary to make the best use of theoretical effort. We will discuss
the ways in which stability analyses can be used to interpret liquid propellant
experimental data for the purpose of uncovering which of the proposed mechanisms of
instability are present in physical systems.

This work sponsored at Sandia National Laboratories by a cooperative research and
development program funded by the Department of Energy and the Department o
Army. _




Title of Paper: The Response of an LP to Heating at High Pressure
Presentation Time Requested: 15 min.

Type of Paper: Progress

Speaker's Name: Richard A. Bayer

Affiliation: US Army Ballistic Research Laboratory
SLCBR-IB~-I
APG, MD 21005-5066

A seriles of experiments has been performed with the goal of
understanding the rate and phenomenology of the energy release of
drops of a liquid monopropellant when subjected to hot, high pressure
flows. The propellant studied was I.P 1846.

The studies to be reported has involved the application of
increased pressure, up to 4000 psi (28 MPa). Although incomplete,
several interesting observations have been made. The primary
diagnostic has been high speed photography. Drops have been heated
either by placing them in electrically heated regions while suspended
on 10 um diameter carbon fibers, or by directly heating the wire
holding them. In the first case, helium gas was used to maximize
thermal conductivity to the drops and to maintain good visualization
of event. Over a range from 2000 to 4000 psi, the drops were found t
appear quiescent for a time up to 500 msec, with no change in
transmission (the liquid is transparent until reactions begin) or
diameter; they then gassify in a time on the order of 1 millisecond.
The evolved gases are relatively transparent. Any light emission
would probably not be detected. If a drop is similarly suspended a
few drop diameters from a heating wire, the time to drop gasification
is shorter, as expected, and results in a cloud of high optical
density gas. This difference suggests that significant liquid phase
reactions are taking place in the first case. ,

Drops have also been studied by directly heating the suspending
wire. In studies with fine (25 um) diameter wires, there appears to
be an important pressure effect on behavior. 1In all cases the evolve
gases are very dense. At pressures below a threshold which is near
1500 psi (10 MPa), gases evolve from the contact point of the wire
with the drop for up to ten milliseconds or more, and the process
stops if the current is turned off to the wire. Above the apparent
threshold the gasification of the drop is rapid (ca. 1 msec) and
irreversible; 1in events where the drop was thrown from the wire by
motion upon heating, the drop gasified rapidly while free at higher
pressures, but merely emitted a small puff of gas and then stabilized
until leaving the field of view (several msec) at lower pressures.
Studies are under way to determine if this threshold is as sharp as
preliminary work indicates.

Studies into the mechanism of drop ignition are also of interest
These have been pursued by placing a srmewhat larger drop (1 mm dia.)
on 22 ga. nichrome wire. 1Imaging of emitted light shows that a flame
is present in the gas phase well away from the wire, suggesting that
the drop completely gasifies and then ignites and burns as a premixed
gas phase flame. Present efforts are to identify and time resolve th
emission from this flame to identify possible roles of the various LP
components.
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The density 5’ can be obtained from the
7

following equation

M . .
St = Mijn =R L X CETo )1 23 (PP (o1}

where M is the mass of fluid in the bellows, f; is

the fluid density at temperature T and atmospheric
pressure, AO is the bellows cross-sectional area

at reference temperature TO and atmospheric pres-
sure. X is the linear coefficient of compres-
sibility of stainless steel,'jg* 7" is the change
of bellows length. The bellows cross-sectional
area AO is determined by calibration with distilled

water.
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Viscosity measurements

Viscosities of LP1845 as a function of temperature and pressure
were measured by a high pressure falling slug viscometer of
similiar design as that descrived by R.J. Mciachlan!). To detect the
falling time exactly a linear variable differential transformer(LVDT)
was used. The viscosity 1 of the liquid at a given temperature and
pressure for a right circular cylinder of radius r falling vertically for
a distance of L in a tube of radius R, is proportioral to the falling
time T of the slug and is given by the equationb.2

T(p1-p E((R241) In(R/r)-(R2-12)2)
n= 2L(R2+r12)

where p; and pj are densities of the slug and liquid respectively, and
g is the acceleration due to gravity. In deviations of above equation
end effects have been neglected and it can be simplified as

n=c(pi-p2)T

where ¢ is the proportionality constant. The proportionality
constant was determined experimentaily by using Brookfield
viscosity standard fluid(50.5 cp, 0.960 g/ml at 25 C). All
measurements for calibration were made at constant temperature
within 0.1 C and atmospheric pressure. Special attention was paid to
cleanliness of the viscometer and removal of air bubbles in the
liquid. Viscosity measurements of LP1845 were performed at
various temperatures and  pressures. To reduce the experimental
error, the falling time was measured at least six times at same
condition. The results are shown in the table.
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Table. Viscosity of LP-1845

Temperature Density * Viscosity
(©) (g/ml) (cp)
25.0 1.4515 11.33
13.4 1.4596 15.03
4.9 1.4657 20.36
-2.8 1.4712 28.65

-13.6 1.4786 56.74
-21.2 1.4846 70.12
-28.0 1.4893 161.66

*Extrapolated value from N.A. Messina et. al 3)

0. Reference

1) R.J. Mclachlan, Journal of physics E; Scientific Instruments, 1976,

vol.9, p391-394.

2) J.B. Irving and A.J. Barlow, Journal of physics E; Scientific

Instruments, 1971, vold4, p232-236.

3) N.A. Messina et. al., Preceedongs of the 21st JANNAF Combustion
Meeting, vol.Ill, CPIA Publication 412, Oct. 1984, p515.
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will allow the study of the critical point of phase separation. Rayleigh
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jntense. Hence, study stability of Binary fluid mixtures.
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ABSTRACT

A corresponding states correlation has been developed for the
solubility of pure gases and mixtures in LGP 1846, a HAN based
liquid propellant [1). For nitrogen, methane, xenon, krypton, and
argon, and their mixtures the correlation can be used to estimate
gas solubilities for pressures upto 100 MPa in the temperature range
258 < T < 303 K. The correlation is in satisfactory agreement with
all available experimental data for these systems. Dissolved gases
are expected to significantly effect many physical and chemical
properties of liquid propellant systems.

223




INTRODUCTION

Aqueous solutions of hydroxyl ammonium nitrate (HAN), and -
aliphatic amine nitrates (AAN), posses excellent potential for use as
high performance liquid propellants. One such propellant being
actively considered is LGP 1846, which consists of 60.79, 19.18, and
20.02 weight percent of HAN, triethanol ammonium nitrate (TEAN),
and water, respectively.[2). The physical properties of these
propellants are needed to model their behavior in the gun, where
they can be under high pressures, and in contact with combustion
gases. Since such gases can in general be expected io be soluble to
some extent in the propellants, there is a need for a reliable method
for predicting such solubilities, especially under high pressures.
Dissolved gases are known to significantly affect many physical and
chemical properties of aqueous solutions.

The corresponding states theory is a powerful tool for predicting
thermodynamic and transport properties of fluids. However, the
conditions that must be satisfied for the simple corresponding
states principle to ba valid are only obeyed by simple molecules like
pure argon , krypton, and xenon [3]. In this paper we extend the
simple corresponding states theory to include more complex
substances that do not satisty these conditions. This has been
accomplished by replacing the critica! parameters (usually
temperature and volume) generally used in corresponding states, by
two adjustable parameters. These parameters can be obtained from
very limited experimental data. The technique used is similar in
spirit o the shape factor method which has been widely used to
predict thermodynamic and transport properties for a wide range of
substances {4,5).

THEORY

The soibility of a gas in a liquid can be conveniently estimated via
its fugacity. At equilibrium the fugacity ot any component i must be
equal in both the gas and liquid phases [6],




G) (L)
fi =§ (1)

The fugacity in the gas phase can usually be estimated using
generalized corresponding states charts,which are widely available
[7], although if necessary it can be directly obtained from the
relationship

£ . RT,dP

RTh\—i-—— = V,» ——)— 2

(yiP) f(v‘ 5P (2)
0

where R is the universal gas constant, T the temperature, P the
pressure, Yithe mole fraction of i in the gas phase, and ¥; the partial

molar volume of i. The integral in eqn. (2) can be evaluated using a
suitable equation of state. For the more common substances, such
equations of state are available [8].

For the liquid phase the fugacity can be estimated from [9],

* v
fi =YX HisexP(f Rid: (3)

where His is the Henry's constant in the solvent, Y, the activity
coefficient, and X; the mole fraction of i in the solution. When X;->0
(in practice less than 0.1), ;> 1, Since we expect our solubilities to

be rather low, and assuming V; to be independent of pressure (an
assumption generally acceptable up to 100 MPa), eqn. (3) can be
simplified to
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From eqns. (1) & (4), the solubility of the gas can be estimated as

G , .0 PV“
x; = £ /MHgexp (F'I‘i) (5)

Q@
Thus in addition to fi , to predict the solubility of gases in liquid

0 .
propeliants, data is needed on Hisand Vi In the next section we
describe how these can be estimated using corresponding states.

RESULTS

The fugacity of component i in the gas phase can be obtained using
generalized corresponding states tables or charts, e.g., those
provided in Lewis and Randall [7]. For pure gases,

E/PP = @/PoiE/m° (6)

where /P) and (/P)' are generally given as a function of reduced

tomperature and pressure, and o is the Pitzer acentricity factor [9].
For mixtures , one can generally make the assumption of ideal
mixing , especially when the constituents of the mixture have
similar chemical structure. In such cases the fugacity of component
i in a mixture is given by
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(G)
f, = Yifi (7)

To test the accuracy of this generalized corresponding states
method for fugacity for the gases of interest to us, we also
calculated fugacities using the rigorous definition of eqn. (2), using
accurate equations of state. Both the methods showed excellent
agreement. For mixtures we used a revised Redlich - Kwong
equation [10] with eqn. (2).

Henry's constants for gases in solvents can be estimated from
solubility data at atmospheric pressure and eqn. (5).

Hys = P/x; , (8)

since at low pressures f:Q°>P and PV/RT->0. Experimental data on
the solubility of various simple gases in LGP 1846 has been
measured recently by Koski [11]. We have used this data to obtain a
generalized correlation for Henry's constant,

2

His = 2067 +3992T -0.0126 T, (9)

where H ¢=H[s/p,and T =T/a, Values of @; and By for various gases

in LGP 1846 are given in Table 1. Figure 1 shows a comparison of
values for Henry's constants from the corresponding states
correlation given by eqn (9), and the available experimental data. As
can be seen, the correlation represents the data quite accurately.

2
There are no experimental measurements available for V; of the
gases studied here in LGP 1846. However experimental data is
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available for V; in water and other concentrated aqueous electrolyte
solutions. Eqn. (2) applied to the solubility of gases in water _andg
electrolyte solutions leads to the expression :

+
¢

exp{Hv"B-v w, (10)

w 0
X _ Hi’m

B .0 RT !
X4 Hi,w

An examination of experimental data [12,13] on gas solubilities in
water, and aqueous electrolyte solutions at pressures between 0.1

W, B
and 60 MPa, clearly shows that although X; /%, is a function ot
temperature, it is independent of _pressure. From the form of eqn

(10), this can only be possible if vi,B"vi w. We have extended this

result to LGP 1846 and approximated Vx data in water as Vl for these

gases in LGP 1846. Such "experimental data" for Vi was then fitted
to a generalized corresponding states correlation,

V; = -0.0156 +3326T (11)

where V:=VJ’:/RI‘: and T.=TP,C/CST:.

Here P{ and T; are the critical pressure and temperature of i, and Cs
is the cohesive energy density of LGP 1846, originally introduced by
Scatchard and Hildebrand in developing the regular solution theory
[6). Since water is the only volatile substance in LGP 1846 at
temperatures of interest to us, this would essentially be the value

for water. Figure 2 shows a comparison of V; values predicted using
the corresponding states correlation of eqn. (11), and available
experimental data [12,13]. In view of the relatively large
uncertainties in such experimental measurements, the correlation is
quite satisfactory.
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The solubility of gases under pressure can now be obtained by using
eqn (5). The fugacity in the gas phase can be obtained using the
correlations available in the literature (see eqns 6 and 7). The
Henry's constants required in eqn (5), can be obtained from the
correlation developed here (eqn 9), and the partial molar volumes
from eqn (11). Experimental data is not available for the solubility
of gases in liquid propellants, at high pressures. It is therefore not
possible to test our method for liquid propsllants. However, limited
data is available on gases in aqueous solutions such as sodium
chioride. In Figure 2A we have compared results obtained using the
technique outlined above with experimental data for N, in aqueous
sodium chloride [12]. The resuits confirm the general validity of
assumptions we have made for a wide range of pressures.

The results for five pure gases ( Ar, Kr, Xe, M3 and CH,).are shown in

Figures 3 to 7. The solubility increases with pressure, but the rate
of increase of solubility with pressure decreases with increasing
pressure. The solubiiity also increases with temperature at low and
moderate pressures, but it appears that there may be an inversion in
this temperature dependence at high pressures (around 100 MPa).
Although, this inversion is within the estimated accuracy of our
predictions, it is clear, that the temperature dependence of
soiubility varies considerably over the pressure range 0 to 100 MPa.
The behavior of xenon is somewhat different from that of the other
simple gases. This is because the critical temperature of xenon is
2£9.7 K, which is close to the ambiesnt temperatures studied here.

The solubility of simple gas mixtures in LGP 1846 is shown in
Figures 8 and 9 for N;CH, and Ar-CH, , respectively, for three

compositions. The solubility of the mixture as a function of
pressure increases as the mole fraction of the component with the
higher critical pressure increases. The solubility of the Ar-CH,

mixture does not vary much with composition, as the critical
pressures of the two are very close to euach other, although there
seems to be an inversion in the composition dependence at around
700 atm. This again is within the estimated accuracy of our
pradictions. The pressure dependence of the solubility is similar
and the temperature dependence is expacted to be the same as for

229




the pure gases. Similar results are obtained for Ar-N,and Kr-CH,
mixtures.

CONCILUSIONS

We have developed a technique for predicting solubilities of gases in
LGP 1846. This technique could be extended to other aqueous
electrolyte solutions, and work is currently in progress to enable
such an extension. All the correlations used are based on the
corresponding states principle, which has been found to be a very
powerful method for such predictions by us and others [4,5]
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GAS

Nitrogen 1.52 3.220
Methane 1.64 1.220
Xenon 2.64 0.373
Krypton 1.99 0.566

Argon 1.74 1.350
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FIGURE CAPTIONS

Fig. 1: The calculéted (eqn. 9) and experimental values of Henry's
constants; ___ calculated, e experimental.

Fig. 2: Thg‘: caiculated (egn. 11) and experimental values of partial
molar volumes; ___ calculated, « experimental.

Fig. A'ZA: The calculated and experimental solubilities of nitrogen in o
1 m aqueous sodium chlorid% __calculated, @ experimental [12]. at5/Z C

30,

Fig. 3: The estimated solubility of argon in LGP 1846;
.- 15, __ 0 Deg. C. .

Fig. 4: The estimated solubility of krypton in LGP 1846; ---25,
__0Deg.C.

Fig. 5: The estimated solubility of xenon in LGP 1846 at 3C Deg. C.

Fig. 6: The estimated solubility of nitrogen in LGP 1846,
--15, ___ 0 Deg. C.

30,

Fig. 7: The estimated solubility of methane in LGP 1846; _._ 30,
--- 15, ___ 0 Deg. C.

Fig. 8: The estimated solubility of nitrogen-methane mixture in LGP
1846 at 30 Deg. C; ____ 75, — 50 25 mole% methane.

-
Fig. 9: The estimated solubility of argon-methane mixture in LGP
1846 at 30 Deg. C. _._ 75, --- 50, ____ 25 mole% methane.

233




170 190 210

110 130 150

T
FIG. 1

234




0.1201
s
0.110-
0.1065 -
0.100
0.095
0.090

00085 b

. 0.080 1.

0.00

30 0.0032 0.0034 0.0036 0.0038 0.0040

T
FIG. 2

235




0.0022 -

0.00181

0.0016-

G.0013;

C-.0010 1

0.0007-

0.0004

0.0001 -

0

{ R

20 40 50 80
P (MPA)

FIG. 3

© 236

100



20

P

FlG

237

1

40
(MPR)

2A



0-0038 -

0.0033;

0.0028-

C-0023]
0-0018
0-00131
0 -0008
0.0003.‘ ’ T T L] - L
0 20 40 60 80 100
P (MPA)

FIG- 4

238




0.0041 -

0.0036
0.80031 -
0.0026
0-002]"
0-0016 -
0-0011'
0.0006 Y T T L 1]
0 20 40 60 80 100
P (MPR)
FIG. S

239




0-0018"

0.0015

0.0012

0.00089 -

0.0006 -

0.0003 -

0-0000 "

C

T 1 A 1

20 40 60 80
P (MPR)

FIG. 6

240

100




0.-0026 1

000023 7

0.0016-

0.0011]

. 0.0006-

0.0001 -

0

20 40 50 80 100
P (MPA)
FIG. 7

241

B\ ST WA




C.0025-
C.0022-
p;0019-
C.0016
C.0013-
0.0010-
C.0007-

| 0-0004‘

c.ooo1d 7 .

0 20 40 60 o0 100
- P (MPR) ?
. F I G . 8 Preceding Page Blank

243






COMPATIBILITY OF ELASTOMERIC
MATERIALS WITH HAN-BASED
LIQUID PROPELLANT 1846.

BY

GUMERSINDO RODRIGUEZ °
HENRY O. FEUER
ALAN R. TEETS

U.S. Army Belvoir RD & E Center
Fort Belvoir, VA 22060-5606

AUGUST 1988

Presented at the 4th Annual Conference on HAN-Based Liquid
Propellant Structure and Properties, Ballistic Research
Laboratory, Aberdeen Proving Grounds, MD 21005-5066

T QDTARTT

245




ELASTOMERS COMPATIBILITY WITH LIQUID PROPELLANT
G. Rodriguez, H.O. Feuer and A. R. Teets

Rubber and Coated Fabrics Research Group,
Materials, Fuels and Lubricants Directorate
U.S. Army Belvoir Research, Development and Engineering Center,
Fort Belvoir, VA 22060-5606

ABSTRACT

The Advanced Ballistic Concepts Branch of the Ballistic
Research Laboratory, BRL, tasked the Rubber and Coated Fabrics
Research Group of the Belvoir RD&E Center, BRDEC, to study the
compatibility of various elastomers with liquid propellant 1846.

In order to generate a practical system for the handling and
storage of liquid propellants a group of thirty seven elastomeric
compositions were evaluated for compatibility with 1liquid
propellant. All the materials tested were selected because they
were either currently being considered for use in fuels or water
handling equipment. In addition the materials were further selected
on the basis of resistance to alkalies due to the composition of
the liquid propellants currently in use. The measurements to assess
elastomer compatibility with the 1liquid propellant included
swelling of the elastomers, change in hardness, discoloration and
retention of tensile strength, modulus and ultimate elongation.
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TABLE 1

LIST OF MATLRIALS FOR COMPATIBILITY WITH LIOUID PROPELLANT.
ELASTOMERS
A. HIGHLY SATURATED NITRILE RUBBER TEST CODE
1. NBR-2 [(LP-1]

B. NITRILE RUBBER

1. NBR-8 [LP-2]
2.  NBR-9 [LP-3)
3. 1203-F60-R2, RADIAN (LP-4]
4. VT-380 (NBR/PVC), RADIAN [LP-5]
5. BJLT M-40, UNIROYAL (LP-6)
6. OZO-HA-0221, ({70%NBR/30%PVC), UNIROYAL (LP-7]

C. CARBOXYLATED NITRILE RUBBER

1.  XNBR-2 [LP-8)
2.  XNBR-3 . [LP-9]
3.  XNBR-6 [LP-10]

D. POLYCHLOROPRENE RUBBER

1. CR-1 ' [LP~111
2. CR-2 (LP-12)

E. FLUOROELASTOMERS

1. VITON-1 [LP-13]
2.  VITON-2 ' [LP-14]
3. REEVES S/4616, (GUM) (LP-15]
4. FLURAN F-5500-A NORTON IND. PLASTICS (LP-16]

F. ETHYLENE-PROPYLENE RUBBER

1. REEVES 4601, (GUM} [LP-17)
2. REEVES 4594, (GUM) [LP-18]

G. THERMOPLASTIC ELASTOMERS

1. THP-1, ALCRYN R1201 B-70A [LP-19]
2. THP-3, ALCRYN R1101 B70 : [LP-20]
3. THP-4, MONSANTO GEOLAST (LP-21]
4. THP-5, MOBAY TEXIN 355DR [LP-22)
5. THP-6, MOBAY TEXIN 480 AR (LP-23)
€. THP-7, GAFLEX (LP=-24]
7. THP-&, SANTOPRENE, 201-55 [LP-25]
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-8. THP~9, SANTOPRENE, 101-~-64 (LP~-26]

9. THP-10, SANTOPRENE, 101-73 [LP-27]
10. CD-9250, DI5OGRIN {ILpP-28]
11. NORPRENE, NORTON IND. PLASTICS {LP~-29]

H. POLXYURETHANES

1. PU-1, UNIROYAL, Vibrathane 5004 rLP-30]
2.  PU-2, UNIROYAL, Adiprene CM [LP-31)
3. TSE-~E-34~94, TSE INDUSTRIES, MILLATHANE (LP~32]

I. BYNTHETIC RUBBER

1. 3130 TREAD (LP=33]
2. KRATON 1650, ILC DOVER [LP~34]
3. ATL-644-30, AERO TEC LABORATORIES, INC. {LP=35]
4. GOODYEAR COLLAPSIBLE TANKS GUM [LP~36])

J. HALOGENATED BUTYL

1. PE 100A027, ILC DOVER Inc. [(LP=-37]
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NITRILE RUBBERS, (NBR, XNBR, HSN}
TENSILE STRENGTH AFTER IMMERSION IN LP
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TENSILE STRENGTH

POLYURETHANES, & OTHER SYNTHETIC RUBBERS
IN LP.

Thousands, PS!

6

<

™

N

Ly

COMPOUNDS

2
<
Q
-«
L o

7 DAYS

Z

Bl ORIGINAL
BN 28 DAYS

(] 70 DAYS

B 42 DAYS

BRDEC/MFLL

254




11dWN/03044

SAVQ 0L [ SAVQ 2¥ EEG SAVA 82 SN
SAVA YL SAVa L = TVNIDIHO

SANNOdWNOD
9

\ 1 H ¥ ooz
1 — & 11 A ooe
~ L N .

L HAURA o0p
00S
009
004

NOILVONOT3 LN3DYH3d

98l LNV113d40dd AINDIT NI G3SHInNI
STVIHILYAN HOJ NOLLYONOTI ILVAILLIN




v

ULTIMATE ELLONGATION FOR MATERIALS

IMMERSED IN LIQUID PROPELLANT 1846
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NITRILE RUBBERS, {NBR, XNBR, HSN]}

TENSILE RETENTION AFTER IMMERSION IN LP
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THERMOPLASTIC ELASTOMERS IN LP

TENSILE RETENTION
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POLYURETHANES, & OTHER SYNTHETIC RUBBERS

IN LP. TENS!.E RETENTION
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ELONGATION RETENTION FOR MATERIALS

IMMERSED IN LIQUID PROPELLANT 1846
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ELONGATION RETENTION FOR MATERIALS

IMMERSED iN LIQUID PROPELLANT 1846
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of Liauid Gun Propellants Containing HAN
Dr. R. Hansen

FRAUNHOFER-INSTITUT FUR
CHEMISCHE TECHNOLOGIE
(FR GERMANY)

ABSTRACT

In HAN-based liquid gun propellants (LP 1846), HAN (hyd-
roxylammonium nitrate) is the chemically sensitive com-
ponent. Traces of metal ions are capable of accelerating
its decomposition rate. To assess the stability and
storage life of the propellant and the effects of metal-
lic impurities, the buildup of pressure was studied in
relevant propellant samples.’

The experiments to determine the lifetime of LP 1846
were carried out 1n sealed containers at a temperature
of 90 °C (194 °F). The metal ions were added to the
propellant at different concentrations. AS a relative
measure for assessing efficacy in each case, we used
either the time up to the bursting of the containers or
observation of the pressure through time, with a sub-
sequent component analysis.

273 .



Table !:

The influence of 100 ppm metal ions on the storage life
of LP 1846 in ampoules at 90 °C (194 °F)

LP 1846

(Lot 49 - 1)

Metal ions

Decomposition time

Relative decomposition time

in days in %
Fe?* 3,5 3,9
Niz* 80,7 88,9
Co2” 73,0 80,4
cuz? 15,2 16,7
Hg?*"* 64,1 70,6
we* 94,2 103,7
Mos* 62,6 68,9
Mn2* 88,0 96,9
ALt 78,5 86,5
Ce* 82,6 91,0
Pb2* 87,0 95,8
rg* 83,4 91,9
Mg?* 87,3 96,1
Cre*. 90,7 99,9
Fe2* 3,5 3,9
Ti* 59,6 65,6
ve? 1,9 , 13,1
Zn?*t 81,8 90,1
cd** 78,1 86,0
B*t 77,3 85,1
pd? - 31,4 34,6
et 92,2 101,5
sn** 83,6 92,1
Bi'* 49,3 54,3
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Table 2: Comparison of the relative decomposition times of
LP 1846. Accelerated storage tests in glass ampoules
90 °*C. Metal ion concentrations in 2, 5, 10, 100 ppm

at

Relative decomposition time in %
Metal ions 2 5 10 100
we' 115 120 103 104
Zrs? - 98 100 102
crt? - - 92 100
Mn?* 106 102 101 97
Mg?* | - 98 95 96
Pp2* 92 88 87 96
sn?” 103 98 100 ' 92
ag” 101 99 93 92
Ce* 103 98 80 91
2n?? 99 100 84 90
Ni2?t 105 97 (75) 89
a1’ . 101 88 80 87
ca?? 96 94 80 86
B»* 102 97 96 85
Co?”? 100 99 (71) 80
Hg?' 98 100 102 79
Mo** -’ - 98 69
T 109 95 - (69) 66
B1*’ 93 100 93 54
paz* - 65 51 35
cut’ ' 73 59 48 17
v 71 59 40 13
Fe'' : 55 36 24 4
Fe?"” 57 31 20 y
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Table 3: The influence of iron and copper
compounds on the storage life of
LP 1846 {n ampoules at 90 °*C

Additive Decomposition time
in days

86,6
10 ppm Fe-ions 17,4
Ferrocene (10 ppm Fet*) 22,0
10 ppm Cu-ions 41,6
Copperphtalo- 84,5
cyanine (10 ppam Cut*)
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Table 5: The influence of stabilizers on the
decomposition of LP 1846 containing
10 ppa firon ions. Decomposition times
in days at 90 °*C

stabilizer : fron : stab. {iron : stab.
1 ¢ 1 1 ¢+ 10
.in moles in moles
.without stabilizer | 17,4 [ 17,
Turpinal SL . 19,8 0 150 25,0

(Dequest 2010)

Turpinal D 2 ' 34,2 faiﬁzis
(Dequest 2000) 1y 1_3

Reomet 19,7 ) E1é.§ {
N,N'-Disalicyloyl- 18,5 19.2f:'
hydrazine )

Dequest 2041 29,2 K,u4
Dequest 2060 S 18,3 11,8
a,a'-Dipyridyl : - | 19,2
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FRAUNHOFER-INSTITUT

FUR TREIB- UND EXPLOSIVSTOFFE l.ﬂ‘ﬁ

- Selection Criteria for Metals and Plastics as
Construction Materials for Long Term Pressure-Testing
Apparatus on Liquid Propellants (LPs)

Dr. E. Backof

4th ANNUAL CONFERENCE ON HAN-BASED LIQUID PROPELLANT
STRUCTURE AND PROPERTIES
US ARMY BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MD
30 AVG - 1 SEP 88

Abstract

The Paper describes the testing and selection of
metallic and non-metallic materials for application in
pressure-testing apparatus to determine the life term of
HAN-based liquid propellants (LPs). Metallic materials
are necessary for pressure sensors and non-metallic mate-
rials for sealing of the testing apparatus. Selection
criteria for the metals are their corrosion-resisting
quality and their capacity to influence or restrict the
chemical stability of the LP. Selection criteria for the
sealing materials are their impermeability to gases. de-
formation under strain and compatibility with the LP
used. The testing apparatus is being used at the present
time.

With effect from 10t July, 1908 we will carry the
new neme: .
FRAUNIOFEA-INSTITUT FUR
CHEMISCHE TECHNOLOGIE (ICT)
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Test arrangement for pressure measure=
ments on liquid propellants ‘
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Table 1 (continued~1): \
 The influence of metals and alloys on the chemical
~ stability of LP 1846. Accelerated storage tebt.
in ampoules at 90 °C (194 °F).

Metal/Alloy Decomposition Relative
| time in days deco»npositién
time in §
Copper 1,6 2,3 I
Zinc 69,2 100,9
Titanium 42,0 61,2
Tantalum * 47,5 61,2
Chromium 23,4 34,1
Molybdenum 47,8 69,7
Tungsten 34,4 49,7
Manganese 73,5 108,6
Iron 1,0 1,5
Cobalt 55,6 81,0
Nickel | 56,8 - 82,8
Aluminium 73,0 106,0
Silicon 57,0 83,1
Tin 45,0 65,6
Lead 74,0 107,4
Ant imony 4,0 - 5,8

* net, possibly polluted
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Tabl: 3: The influence of sealing materials on the
chemical stability of LP 1886. Accelerated
storage test in glass ampoules at 90 °C

(1958 °*F)

Sealing material

Relative decomposition time in §

in contact with LP in gas space
- (original LP) 100 100
EPDM 7.2 23,9
FPM (Viton) 21,6 21,9
NBR 23,8 22,1
vMQ 51,7 71,6
EP 7,5 25,5
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Table U4: . The permeation coefficients

of sintered PTFE (Hostaflon,
manufactured by Hoechst AG)
at room temperature in
accordance with DIN 53380

Gas Material: PTFE (Hostaflon)
TF 1740 TFM 1700

air 106 80 5

0, 250 160

N, 80 60

co, 700 450

He 2100 1700

Water vapor 0.03 0.03
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Compatibility Study With 60% HAN Solution

By

Owen M. Briles
Leonard S. Joesten

Sundstrand Energy Systems
Rockford, lllinois 61125
Unit of Sundstrand Corporation

Work Performed for
Department of the Army
USA LABCOM/Ballistic Research Laboratory
Aberdeen Proving Ground, MD

Contract No: DAA D05-86-C-0168

Presented at 4th Annual Conference on HAN-Based Liquid Propellant
30 August - 1 September 1988
Ballistic Research Laboratory

The materials tested and referenced throughout this report are not of Sundstrand manufacture and were supplied to Sundstrand
by the United States Army or directly purchased by Sundstrand.
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Abstract

A Hydroxylammonium Nitrate/Materials Compatibility Study was
conducted for the Ballistic Research Laboratory in 1967, Fifty-one
material specimens were exposed to 60 percent hydroxyl-
ammonium nitrate solution for 30 days at 25°C, and 48 material
specimens were exposed to 60 percent hydroxylammonium nitrate
solution for 30 days at 65°C. Material specimens were examined
at the end of the exposures, and gas evolution was monitored
during the exposures. Gaseous species were identified and
analyzed. The test procedures will be described and test results
presented.
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introduction

PROBLEM:
There is limited information available on material resistance to
HAN solutions and on the stability of HAN solutions when in
contact with various materiais.

OBJECTIVE:
Develop and demonstrate a test method whereby miaterials

resistance to HAN and HAN stability can be simultaneously
evaluated.
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HAN Solution

e 2.8M soiution procured from Southwest Analytical

e Concentrated to 60% (wt) by vacuum distillation

Analysis of HAN Solution

Test As Received After Concentration
Assay, % by wt. 23.7 61.7
iron, ppm <0.5 <0.5
Copper, ppm <03 <0.5
Chromium, ppm <0.5 <1.0
Nickel, ppm 0.4 1.4
Cobalt, ppm <0.3 <0.5
Zinc, ppm 0.1 0.4
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Test Specimens

® Purchased (5mm x 5mm x imm)
Tantalum, 99.9%
iron, 99.99 + %
Nickel, 99.98%
Aluminum, 7075-T651
Stainless Steel, 316
Chromium, 99.99 + %
Copper,©¢ %

‘@ Supplied by the Army

58 Material specimens (including metal and plastic coupons,
and metal coupor:s with metallic and nonmetallic coatings).
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Description

Tantalum

Iron

Nickel

7075 Aluminum

316SS

Chromium

Copper

Teflon 05-026®

Teflon 05-002®

Nylon 05-037
Polyamide 05-036
17-4PH

Poco Graphite ACF-10QE2®
Everlube 620C on 17-4®
Nibronze on 17-4
Metco 309N5-3 on 17-4%
Matco 565 on 17-4®
Nedox SF2 on 17-4®
HI-T-Lube on 17-4
K-Ramic SCA1002 Coating on?
Vespel 5P-210 (15% Graphite)®
Vespel SP-211D®

Torlon 7130%

Vespel SP-21®

Blank-A

Vespel SP-211®

Vespel SP-22®

Vespel SP-1®

Blank-C

UDEL Polysulfons P-1700
Nylasint MA®

Zytel 101L®

Zytel 70G43L®

Rynite 530°

Hytrel 7245®

Torlon 4275®

Jessop Alioy 20

Jessop Alloy 276
303SS

Teflon 55450-3®
Fluoracarbon 33
Fluorocarbon PEEK
Stellite 21 Weld Rod®
CrB,on 17-4

Hard Chrome on 17-4
Kennametal K602%
Kennametal K801®
Tiolube 1175 ¢n 17-4
Rynite SST-35®
Hostalen 102®

Blank-B

K-Barb

Nitronic 50

Haynes 718®

Blank-D




Test Vessels

® Glass ampule with attached manometer
® Specimens placed in ampule before assembly

® HAN solution added, mercury added, and vessels sealed in
Argon atmosphere
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Reaction Test Vessel
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Phase | Testing

® 25 + 0.2°C constant temperature bath
® 48 Vessels with specimens/2 blanks
® Record pressure daily

® Terminate after 30 days, or if pressure increase exceeds
3cm-Hg/day

Phase Il Testing

® 65 + 0.2°C constant ternperature bath
@ 48 Vessels with specimens/2 blanks
® Record pressure daily

® Terminate after 30 days, or if pressure increase exceeds
3cm-Hg/day
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Gas Evolution Rates

@ Daily manometer readings

® Pressure readings converted to standard cc¢’s of gas produced:

Vc = (Tolpo) [V2 (P,/Tz) -V, (P1rr1)l
where: Vg = Corrected Volume (gas)

V. = Uncorrected Volume (gas)

V, = |nitial Volume (gas)

T,, P, = Temperature and Pressure
Measurements

T,, P, = Initial Temperature and Pressure

TJP, = Standard Temperature and Pressure

® A statistical analysis system (SAS) program was used to
calculate and graph results.
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VOLUME OF GAS PRODUCED (CC)
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Gas Analysis

@ Gas samples taken via syringe through rubber septa if >0.3 cc
gas produced

® Analysis performed by gas chromatography
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\ Gas Evolution Rates
and Gases Produced at 25°C

Days Volume of Gas Produced Average
Sample Sample in cc Rate,
No. Material Test N, N,O Total cc/Day
1 Tantalum 30 - -_ «<0.30 <0.010
2 Iron 9 4.09 11.53 15.62 1.736
3 Nickel 30 0.38 0.46 0.85 0.028
¢ 4 7075 Aluminum 30 0.54 0.54 1.08 0.036
5 316SS 30 - — «<0.30 <0.010
6 Chromium 30 — — <0.30 <0.010
7 Copper 9 498 14.52 19.50 2.167
i 8 Teflon 05-026® 30 — - <0.30 <0.010
9 Teflon 05-002® 30 — - <0.30 <Q.010
10 Nylon 05-037 30 - —_— <0.30 <0.010
1 Polyamide 05-036 a0 — - <0.30 <0.010
12 17-4PH 30 — - <0.30 <0.010
13 Poco Graphite® 30 0.63 0.40 1.03 0.034
14 Everlube 620C® 30 — — <0.30 <0.010
15 Nibronze 30 28 2.31 5.11 0.170
16 Metco 309N5-3® 2 — - 4,13 2.065
17 ihetco 505° 30 7.25 17.62 24.87 0.829
18 Nedox SF2® 30 0.24 0.16 0.40 0.013
19 HI-T-Lube 30 — —_ <0.30 <0.010
20 K-Ramic 30 - — <0.30 <0.010
21 Vespel SP-210® 30 - — <0.30 <0.010
22 Vaspel SP-211D® 30 — — <0.30 <0.010
23 Torlon 7130® 30 — — <0.30 <0.010
24 Vespal SP-21% 3 — — <0.30 <0.010
51 K-Barb 30 — — <0.30 <0.010
52 Nitronic 50 30 — — <0.30 <0.010
53 Haynes 718% 30 — —_ <0.30 <0.010
25 Blank-A 30 — — <0.30 <0.010
26 Vespel SP-211® 0 - — <0.30 <0.010
27 Vespe! SP-22° . 30 - - <0.30 <0.010
28 Vespel SP-1® 30 — — <0.30 <0.010
29 UDEL Polysulfone 0 - — <0.30 <0.010
30 Nylasint MA® 30 — — <0.30 <0.010
31 Zytel 101L® 30 — — <0.30 <0.010
32 Zytel 70G43L® - 30 — — <0.30 <0.010
a3 Rynite 530® 30 — — <0.30 <0.010 "
34 Hytrel 7245% 30 — — <0.30 <0.010
35 Torlon 4275® 30 — — <0.30 <0.010
35 Jessop 20 30 — ' - <0.30 <0.010
37 Jaessop 276 30 — - <0.30 <0.010
38 303SS 30 247 0.80 3.27 0.109
39 Teflon 55450-3® 30 — _ <0.30 <0.010
40 “luorocarbon 33 30 — - <0.30 <0.010
41 Fluorocarbon PEEK 30 — — <0.30 <0.010
42 Stellite: 21® 30 — - <0.30 <0.010
43 CrB, 0 — — <0.30 <0.010
44 Hard Chrome 30 -— - <0.30 <0.010
45 Kennametal K602? 30 - — <0.30 <0.010
46 Kennametal KBO1® 30 0.21 0.38 0.59 0.197
47 Triclube 1175 30 — — <0.30 <0.010
48 Rynite SST-35% 30 -— — <0.30 <0.010
49 Hostalen 102® 30 — — <0.30 <0.010
50 Blank-B 30 — — <0.30 «<0.010




Gas Evolution Rates

and Gases Produced at 65°C

Sample
Material

Tantalum

Nickel

Aluminum

316SS

Chromium

Teflon 05-026%
Teflon 05-002®
Nylon 05-037
Polyamide 05-036
17-4PH

Poco Graphite®
Everlube 620C®
Nibronze

Metco 505®
Nedox SF-2®
HI-T-Lube
K-Ramic

Vespel SP-210®
Vespel Sp-211D®
Torlon 7130®
Vespel SP-21®
Vespel SP-211®
Vespal SP-22%
Vespel SP-1®
Blank-C

UDEL Polysuifone
Nylasint MA®
Zytel 101L®

Zytel 70G43L®
Rynite 530
Hytrel 7245®
Torlon 4275®
Jessop 20
Jessop 276
303SS

Teflon 55450-3®
Fluorocarbon 33
Fluorocarbon PEEK
Stollite 21®

CrB,

Hard Chrome
Kennamatal K602®
Kennametal K801®
Tiolube 1175
Rynite SST-35%
Hostalen 102®
K-Karb

Nitronic 50
Haynes 718®
Blank-D

Days Volume of Gas Produced

in

Test N,

30
30
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5.77
1.01
2.20
2.91
1.46
3.96
5.80
2.05
0.73
0.84
6.89
1.7
0.74
6.07
4.37
2.99
1.78
1.05
1.15
0.94
0.88
077
1.64
0.81
0.61
0.72
2.37
0.97
0.89
0.52
2.51
0.63
0.60
2.70
2.59
0.24
4.30
0.65
0.52
2.24
1.00
0.96
3.75
2.53
4.49
0.72
2.90
0.95
0.78
0.56

Average
cc Rate,
N,O Total cc/Day
417 9.94 0.331
0.36 1.37 0.048
5.50 7.70 1.283
2.83 5.74 0.478
0.57 2.03 0.068
2.65 6.61 0.220
8.23 14.03 .468
0.63 2.68 0.089
c.23 0.96 0.032
0.25 1.09 0.036

18.57 25.46 0.849
0.71 242 0.081
1.31 2,05 2.05

14.73 20.80 20.80
2.96 7.33 0.244
1.72 4.70 0.157
8.36 10.14 2.535
0.30 1.35 0.045
0.33 1.48 0.049
0.28 1.22 0.041
0.21 1.09 0.036
0.25 1.02 0.034
0.82 2.48 0.082
0.22 1.03 0.034
0.16 0.77 0.026
0.19 0.91 0.030
6.33 8.70 1.450
0.27 1.24 0.041
0.15 1.04 0.035
0.13 0.65 0.022
0.72 3.23 0.108
0.15 0.78 0.026
0.18 0.78 0.026
1.41 4.11 0.137
1.37 3.96 0.132
0.15 0.39 0.013
5.87 10.17 0.648
0.13 0.78 0.026
0.13 0.65 0.022
6.97 9.21 0.658
0.27 1.27 0.042
0.44 1.40 0.047
9.80 13.56 0.904
1.34 3.87 0.129

12.48 16.79 0.988
0.19 0.91 0.030
1.96 486 0.162
0.22 1.17 0.039
0.20 0.98 0.033
0.16 0.72 0.024



Specimen Examination

® Test vessels opened, specimens washed and dried

@ Specimens weighed (wt. changes recorded), and visuaily
examined
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Sample

<
[<]

CONOCOMPELLD -

Description

Tantalum

lron

Nickel

7075 Aluminum
316SS
Chromium
Coppor

Tetlon 05-026®
Teflon 05-002®
Nylon 05-037
Polyamide 05-036
17-4PH

Poco Graphite®
Everiube 620C®
Nibronze

Metco 309N5-3®

Metco 505®
Nedox SF2®
HI-T-Lube
K-Ramic

Vespel SP-210?
Vespel SP-211D®
Torlon 7130%
Vespel SP-21®
K-Barb

Nitronic 50
Haynes 718®
Blank-A

Vaspel SP-211®
Vespel SP-22%
Vespel SP-1®
UDEL Palysultone
Nylasint MA®
Zytel 101L®

Zytel 70G43L®
Rynite 530®
Hytrel 7245%
Torion 4275®
Jessop 20

Jessop 27€
303SS

Teflon 55450-3®
Fluorocarbon 33
Fluorocarbon PEEK
Stellite 1™

CrB,

Hard Chrome
Kennametal K602®
Kennametal KB01®
Tiolube 1175
Rynite SST-35%
Hostalen 102%
Blank-8
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Specimen Examinations, 25°C

Wt. Before,
gms

0.4251
0.2040
0.2188
0.07256
0.2035
0.1852
0.2190
0.4428
0.5297
0.3310
0.3693
2.0022
G.421¢
1.7668
1.9124
2.2978

2.6021
1.9302
1.9192
1.7657
0.3258
0.3369
0.2386
0.3363
0.2973
1.9106
2.3438

0.3318
0.3580
0.3128
0.2855
0.2112
0.2491
0.3246
0.3733
0.1962
0.2387
1.8598
3.4406
2.0420
0.5183
0.5557
0.2473
1.4531
1.8120
1.8400
3.8297
6.0968
1.9458
0.2721
0.2655

Wi, After,
gms

0.4245
Disintegrated
Dissolved
0.0443
0.2028
0.1851
Dissolved
0.4428
0.5308
0.3393
0.3703
2.0026
0.4099
1.7667
1.7577
1.999
(Coating Gone)
2.4130
1.8638
1.9038
1.7655
0.327%
0.3387
0.2396
0.3381
0.3036
1.9108
2.3437

0.3329
0.3591
0.3141
0.2961
0.2357
0.2631
0.3322
- 0.3734
0.1968
0.2401
1.8602
3.4404
2.0285
0.5187
0.5558
0.2478
1.4531
1.8110
1.8397
3.8294
6.0609
1.9447
0.2742
0.2654




Specimen Examinations, 65°C

Sample Wt. Before, Wi, After,
No. Description gms gms
54 Tantalum 0.4254 0.4249
55 Nickel 0.1859 0.1857
56 7075 Aluminum 0.0897 0.0358
57 31688 0.2015 0.2004
58 Chromium 0.1873 0.1872
59 Teflon 05-026° 0.4350 0.4352
60 Teflon 05-002® 0.5316 0.5331
61 Nylon 05-037 0.4087 0.4264
62 Polyamide 05-036 0.3237 0.3247
63 17-4PH 1.8115 1.8122
64 Poco Graphite® 0.4669 0.4492
65 Everlube 620C® 1.9498 1.9479
66 Nibronze 2.3115 2.1489
(Corroded)
67 Metco 505® 2.7061 2.5614
68 : Nedox SF-2¢ 1.9855 1.9243
69 HI-T-Lubs 1.9385 1.9240
70 K-Ramic 1.9501 1.9500
71 Vespel SP-210® 0.3354 0.3372
72 Vespel SP-211D® 0.3958 0.3972
73 Torlon 7130® 0.3018 0.3028
74 Vespel SP-21® 0.3899 0.3918
75 Vespel SP-211® 0.4028 0.4040
76 Vespel SP-22° 0.4182 0.4192
77 Vespel SP-1® 0.3718 0.3732
78 Blank-C —_ _—
79 UDEL Polysulfone 0.2606 0.2610
80 Nylasint MA® 0.2072 0.1997
81 Zytel 101L® 0.2799 0.2221
(Cracked)
82 Zytel 70GA3L® 0.3585 0.3586
83 Rynite 530® 0.3466 " 0.3466
84 Hytrel 7245® 0.2183 0.2154
85 Torlon 4275® 0.2988 0.3003
86 Jessop 20 1.8773 1.8778
87 Jessop 276 3.7662 3.5857
88 303SS 2.1353 2.1312
(Dark)
89 Teflon 55450-3® 0.5652 0.5657
90, Fluorocarbon 33 » 0.5299 0.5298
91 Fluorocarbon PEEK 0.2382 0.2908
92 Stellite 21® 1.5565 1.5564
93 CrB, 2.0173 2.0083
(Fiaking)
94 Hard Chrome 2.0114 2.0111
95 Kennametal K602® 4,2569 4,2564
96 Kennametal KBO1® 6.8260 6.7622
97 Tiolube 1175 1.7228 ) 1.7208
98 Rynite SST-35® 0.3011 0.2988
99 Hostalen 102® 0.2943 0.2943
100 K-Karb ) 0.2874 0.2976
101 Nitronic 50 2.1129 2.1130
102 Haynes 718° 2.5248 2.5246
103 Blank-D —_ —
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Discussion and Conclusions

. The test method provides a very sensitive method to measure
propellant stability at the same time material compatibility is
being determined.

. Iron, copper and Metco 309N5-3® were the rnost reactive.
These plus 11 other materials exceeded the 3-cm/day limit.
None of the reactions were considered vigorous.

. Temperature had a definite effect on reaction rate. Only 11 of
51 materials tested at 25°C produced measurable quantities of
gas. All tests (including blanks) produced measurable amounts
of gas at 65°C.

. N, and N,O were the only gaseous species produced. The
N./N,O ratic was < 1.0 for reactive materials and above 3.0 for
nonreactive materiais.

METALS

. Chromium, 17-4PH, Jessop 20, Stellite 21%, Kennametal
K606%, Nitronic 50, Haynes 718®, and hard chrome plating
performed well.

NON METALS

. Polyamide, Vespel®, Torlon®, Udel, Rynite®, Hytrel®, Hostalen®
and some Teflons/Zytels® performed well.

COATINGS

. Everlube 620C® and Tiolube 1175 dry film lubricants performed
well.
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