ELECTROMAGNETIC SCATTERING FROM TWO DIMENSIONAL OBJECTS USING THE FIELD FEEDBACK FORMULATION

by

Thaddeus B. Welch III

March 1989

Thesis Advisor: Michael A. Morgan

Approved for public release; distribution is unlimited
REPORT DOCUMENTATION PAGE

Unclassified

security classification of this page

REPORT DOCUMENTATION PAGE

1a Report Security Classification: Unclassified
1b Restrictive Markings
2a Security Classification Authority
2b Declassification Downgrading Schedule
Approved for public release; distribution is unlimited.
4 Performing Organization Report Number(s)
5 Monitoring Organization Report Number(s)
6a Name of Performing Organization
Naval Postgraduate School
6b Office Symbol (if applicable) 62
Monterey, CA 93943-5000
6c Address (city, state, and ZIP code)
Monterey, CA 93943-5000
7a Name of Monitoring Organization
7b Address (city, state, and ZIP code)
8a Name of Funding Sponsoring Organization
8b Office Symbol (if applicable)
9 Procurement Instrument Identification Number
10 Source of Funding Numbers
11 Title (include security classification): ELECTROMAGNETIC SCATTERING FROM TWO DIMENSIONAL OBJECTS USING THE FIELD FEEDBACK FORMULATION
12 Personal Author(s) Thaddeus B. Welch III
13a Type of Report Engineer's Thesis
13b Time Covered From To
14 Date of Report (year, month, day) March 1989
15 Page Count 150
16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.
17 Costi Codes
Field Group Subgroup
18 Subject Terms (continue on reverse if necessary and identify by block number) electromagnetics, scattering, numerical methods, FFF
19 Abstract (continue on reverse if necessary and identify by block number) Integral equations (IE's) are widely utilized to calculate induced currents on antennas and scatterers, but they are seriously restricted in their ability to handle inhomogeneous penetrable structures having multiwavelength dimensions. The utilization of finite element (FE) techniques has not been as pervasive as the use of IE's. The IE representation matrix is "full", containing few, if any, zero valued elements. The techniques for operating on these large-sized full matrices require undesirable amounts of processor time. FE techniques produce sparse matrices due to the strictly local interactions between discrete unknowns. The application of FE's to unbounded problems, however, requires supplementary enforcement of the far-field radiation conditions. The Field Feedback Formulation (6) circumvents the full-matrix computational "bottleneck" by allowing FE based numerical methods to be employed. Even though the resultant sparse matrices may be larger than the "full" matrices discussed earlier, most elements have a value of zero. Numerical procedures exist to optimize operations with these sparse matrices. Calculational speeds can be orders of magnitude faster. Computer techniques to implement and validate this new technique are the basis for this thesis. Excellent agreement with classical results are demonstrated.
20 Distribution Availability of Abstract
21 Abstract Security Classification Unclassified
22a Name of Responsible Individual Michael A. Morgan
22b Telephone (include Area code) (408) 646-2677
22c Office Symbol 62Mw

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted
All other editions are obsolete

security classification of this page

Unclassified
ELECTROMAGNETIC SCATTERING FROM TWO DIMENSIONAL OBJECTS USING THE FIELD FEEDBACK FORMULATION

by

Thaddeus B. Welch III
Lieutenant, United States Navy
B.E.E., The Georgia Institute of Technology, 1979

Submitted in partial fulfillment of the requirements for the degrees of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
and
ELECTRICAL ENGINEER

from the

NAVAL POSTGRADUATE SCHOOL
March 1989

Author: Thaddeus B. Welch III

Approved by: Michael A. Morgan, Thesis Advisor
Ramakrishna Janaswamy, Second Reader
John P. Powers, Chairman,
Department of Electrical and Computer Engineering
Gordon E. Schacher, Dean of Science and Engineering
ABSTRACT

Integral equations (IE's) are widely utilized to calculate induced currents on antennas and scatterers, but they are seriously restricted in their ability to handle inhomogeneous penetrable structures having multiwavelength dimensions. The utilization of finite element (FE) techniques has not been as pervasive as the use of IE's. The IE representation matrix is "full", containing few, if any, zero valued elements. The techniques for operating on these large-sized full matrices require undesirable amounts of processor time. FE techniques produce sparse matrices due to the strictly local interactions between discrete unknowns. The application of FE's to unbounded problems, however, requires supplementary enforcement of the far-field radiation conditions. The Field Feedback Formulation (F^3) circumvents the full-matrix computational "bottleneck" by allowing FE based numerical methods to be employed. Even though the resultant sparse matrices may be larger than the "full" matrices discussed earlier, most elements have a value of zero. Numerical procedures exist to optimize operations with these sparse matrices. Calculational speeds can be orders of magnitude faster. Computer techniques to implement and validate this new technique are the basis for this thesis. Excellent agreement with classical results are demonstrated.
TABLE OF CONTENTS

I. INTRODUCTION

A. HISTORY .. 1

B. FIELD FEEDBACK FORMULATION 1

C. POTENTIAL BENEFITS 2

II. FORMULATION .. 3

A. INITIAL NOMENCLATURE 3

B. MAXWELL'S EQUATIONS 6

C. VARIATIONAL EQUIVALENCE TO THE DIFFERENTIAL EQUATION 8

D. FINITE ELEMENT BOUNDARY VALUE SOLUTION 10

E. EVALUATION OF THE F-MATRIX CONTRIBUTIONS 16

F. GREEN'S FUNCTION CONTOUR INTEGRAL 19

G. FAR-FIELD EVALUATION 21

III. MESH GENERATION 24

A. INTRODUCTION .. 24

B. INPUT DATA ... 24

C. MESH GENERATION PROGRAM 26
 1. IO (Input-Output) 26
 2. Rotate ... 27
 3. Bound (Boundary) 27
 4. Normal .. 28
 5. Nodset (Node Set) 29
 6. Sorter ... 32
 7. Finder ... 33

D. OPTIMIZATION OF THE MESH 35

IV. FINITE ELEMENT BOUNDARY VALUE PROGRAM 42

A. INTRODUCTION .. 42

B. FINITE ELEMENT BOUNDARY VALUE PROGRAM 43
 1. Zero ... 43
2. Varint (Variational Integration) ... 43
3. Fill ... 44
4. BNDC (Boundary Condition) ... 44
5. Loader .. 44
6. March .. 45
7. CSMINV (Complex Square Matrix Inversion) 45
8. Sweep ... 45
9. Save ... 45
C. VARINT VALIDATION ... 45
D. FINITE ELEMENT BOUNDARY VALUE PROGRAM VALIDATION 48
E. INHOMOGENEITY .. 53
F. FINITE ELEMENT CONCLUSIONS 55

V. FIELD FEEDBACK PROGRAM ... 56
A. INTRODUCTION .. 56
B. FIELD FEEDBACK PROGRAM ... 57
 1. Input ... 57
 2. TMAT (T Matrix) ... 57
 3. CNSOLV ... 58
 4. FFLD (Far Fields) ... 58
C. FIELD FEEDBACK VALIDATION 58
 1. Small Object Phenomenon .. 58
 2. Offset Distance Phenomenon 59

VI. VALIDATION .. 60
A. INTRODUCTION .. 60
B. HOMOGENEOUS CIRCULAR CYLINDRICAL SCATTERING 60
C. HOMOGENEOUS IRREGULAR OBJECTS 61
D. AN INHOMOGENEOUS OBJECT 66

VII. CONCLUSIONS ... 71
A. RESULTS .. 71
B. RECOMMENDATIONS AND EXTENSIONS 71

APPENDIX A. INPUT DATA FILE EXAMPLE 72
LIST OF FIGURES

Figure 1. A Typical Object ... 3
Figure 2. Field Feedback Formulation 4
Figure 3. Rectangular Object .. 11
Figure 4. Rectangular Mesh ... 12
Figure 5. Pyramidal Basis Function, (a) top view, (b) perspective view 13
Figure 6. Mesh Element .. 16
Figure 7. Basis Functions Interpretation 18
Figure 8. Green's Function Integration 20
Figure 9. Typical Objects .. 27
Figure 10. Bisection Segment and Row Arrangement 28
Figure 11. Unit Normal Calculation 29
Figure 12. Element Row Numbering Scheme 30
Figure 13. Mesh Orientation Attributes 31
Figure 14. Three Row Cylinder 32
Figure 15. Element Numbering Scheme 32
Figure 16. Two Possible Element Intersections, (a) extreme, (b) normal 33
Figure 17. Typical Row Structure 34
Figure 18. Global Mesh Structure 34
Figure 19. Unknowns and Number of Rows Versus Mesh Resolution 36
Figure 20. Method 1 Mesh Structure Example 37
Figure 21. Method 2 Mesh Structure Example 37
Figure 22. Method 3 Mesh Structure Example 38
Figure 23. Method 4 Mesh Structure Example 39
Figure 24. Method 5 Mesh Structure Example 40
Figure 25. Method 6 Mesh Structure Example 40
Figure 26. Test Mesh Structure 46
Figure 27. Solution Error for a Test Mesh Structure 47
Figure 28. Solution Error for a Test Mesh Structure (Expanded) 48
Figure 29. Perimeter Error ... 49
Figure 30. Bisection Segment Error 50
Figure 31. 0.5 λ cylinder, ε = 1 + j0 51
Figure 32. 0.5λ cylinder, $\varepsilon = 4 + j0$.. 52
Figure 33. 0.5λ cylinder, $\varepsilon = 4 - j4$.. 53
Figure 34. Cylindrical Mode Geometry ... 54
Figure 35. Typical Cylindrical Mode Boundary Value Problem Result 55
Figure 36. Contour Arrangement ... 56
Figure 37. Cylinder, TE and TM Case, $k_0 a = 0.5$, $\varepsilon = 2.56$ 62
Figure 38. Cylinder, TE and TM Case, $k_0 a = 1.0$, $\varepsilon = 2.56$ 63
Figure 39. Cylinder, TE and TM Case, $k_0 a = 2.0$, $\varepsilon = 2.56$ 64
Figure 40. Cylinder, TE and TM Case, $k_0 a = 0.5$, $\varepsilon = 25.6$ 65
Figure 41. Dielectric Shell Mesh ... 66
Figure 42. Dielectric Shell, TE and TM Case, $\varepsilon = 4 + j0$ 67
Figure 43. Dielectric Ring ... 68
Figure 44. Partial Mesh with Inner Radius Curve ... 69
Figure 45. Effective Geometry for the Dielectric Mesh ... 69
Figure 46. Dielectric Ring, TE and TM Case, $\varepsilon = 4 + j0$ 70
I. INTRODUCTION

A. HISTORY

The application of finite element techniques to evaluate the solution of differential equations is well documented. The utilization of these techniques by the electromagnetics community has not been as pervasive as the use of integral equations (IE's). IE's are widely utilized to calculate induced currents on antennas and scatterers, but they are seriously restricted in their ability to handle inhomogeneous penetrable structures having multiwavelength dimensions. As the complexity and number of nodal degrees of freedom grow, the size and dimension of the representative matrix must also grow. This matrix is "full", containing few, if any, zero-valued elements. The available numerical techniques for operating on these large-sized full matrices require undesirable amounts of processor time.

Differential equation (DE) based techniques, such as the finite element method, produce sparse matrices due to the strictly local interactions between discrete unknowns which result. The application of DE's to unbounded problems, such as those of scattering and radiation, require some form of supplementary enforcement of the proper far-field conditions. These radiation boundary conditions are innately incorporated into integral equations.

B. FIELD FEEDBACK FORMULATION

The Field Feedback Formulation (F^3) circumvents the full-matrix "bottleneck" in the computational process by allowing DE based numerical methods to be employed. Even though the resultant sparse matrices may be larger than the "full" matrices discussed earlier, most elements have a value of zero. Numerical procedures exist to optimize operations with these sparse matrices. Calculational speeds can be orders of magnitude faster than with full matrices [Ref. 1]. Although the F^3 employs sparse matrices to represent the fields in the materials being considered, it does require augmentation to enforce the radiation condition at infinity on the scattered fields. This comes in the form of a feedback matrix composed of surface integration generated elements. A concept evaluation, for a special axisymmetric case, was already accomplished, as detailed in [Ref. 2] and [Ref. 3]. Computer techniques to implement and validate this new technique are the basis for this thesis.
C. POTENTIAL BENEFITS

This thesis will lead to an increased understanding of the advantages and disadvantages of this novel computational procedure for handling geometrically complex material scatterers. This method may ultimately allow computer-aided design of important electromagnetic structures such as low-observable aircraft, high efficiency dielectric lens antennas, and other electromagnetic scattering occurrences due to atmospheric anomalies. Structural details and material inhomogeneities, as well as physical dimensions (in multiple wavelengths), can be accommodated using the Field Feedback Formulation. These capabilities far surpass those which are possible with contemporary integral equation techniques for the case of inhomogeneous penetrable scatterers and antennas.
II. FORMULATION

A. INITIAL NOMENCLATURE

Assume there is a three dimensional object that is infinite in one direction. Such an object, in cross section could look like Figure 1. This object only varies in two dimensions, and therefore, is actually a two dimensional (2-D) object.

![Figure 1. A Typical Object](image)

The wavenumber k_0 is defined as

$$ k_0 = \frac{2\pi}{\lambda_0} = \frac{2\pi f_0}{c}, $$

where λ_0 is the free space wavelength associated with an electromagnetic wave of frequency f_0 and c is the speed of light. The X and Y Cartesian coordinates are
wavenumber normalized, such that \(X = k_x x \) and \(Y = k_y y \). This coordinate normalization will be used throughout this development. A similar technique could also be developed in the polar coordinate system. The magnetic field will also be normalized such that \(\bar{H} = -j\eta_0 \bar{E} \), where \(\eta_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}} = 120\pi \approx 377\Omega \), is the impedance of free space and \(\bar{E} \) is the usual magnetic field in units of A/m. Thus the normalized \(\bar{H} \) has the same V/m units as \(\bar{E} \). Potentials may be defined as,

\[
E_z(x,y) = \psi_1(X,Y)
\]

(2.1)

for the transverse magnetic (TM) case, with \(E_x, E_y, \) and \(H_z = 0 \), and

\[
H_z(x,y) = \psi_2(X,Y)
\]

(2.2)

for the transverse electric (TE) case, with \(H_x, H_y, \) and \(E_z = 0 \).

Our objective is to calculate the scattered fields for an arbitrary (2-D) penetrable object using the Field Feedback Formulation \(F^3 \). As shown in Figure 2, a familiar closed loop system illustrates the relationship between the incident, scattered, total and far fields.

Figure 2. Field Feedback Formulation

At point 1, the incident field drives the total system. The incident field at 1, combined with the scattered field at 4, forms the total field at 2. This total field forms the boundary conditions that drive the finite element program at 2. At point 2, initially, the incident field drives the \(U \) operator. \(U \) represents the feed forward operator in the \(F^3 \). This operator uses a finite element technique to solve the boundary value problem. At point 3, the boundary conditions are solved for the object perimeter potentials and the
normal derivative of these potentials. \(T \) represents the field feedback operator that takes the perimeter potentials and associated derivatives and provides the scattered fields at point 4, the offset boundary. The fields at point 1 and 4 are added (unlike the familiar feedback or control system where negative feedback is employed). At point 2, a combined incident and scattered field exists. These fields are the combined boundary conditions for the finite element boundary value program. These combined fields (total fields) are then applied to the \(U \) operator to calculate the perimeter fields and the associated derivatives on the objects perimeter. This looping may be repeated until a steady state condition, at point 3, is reached. The existence of a steady state condition assumes stability. Stability for physical systems should not be a problem. However, when mathematically modeled, instabilities may result. The error magnification or condition number of the system must also be seriously considered if this iterative looping process is to be used. The alternative approach is to form an equivalent system, where:

\[
\text{equivalent operator} = U \cdot [I - T \cdot U]^{-1},
\]

with

\[
I = \text{Identity Matrix}
\]

and

\[
T \cdot U = \text{Combined Effects of the T and U operators}.
\]

Either approach is viable since,

\[
\psi_{total} = \psi_{incident} + T \cdot U \cdot \psi_{incident} + (T \cdot U)^2 \cdot \psi_{incident} + \ldots = [I - T \cdot U]^{-1} \psi_{incident}
\]

This becomes more obvious when \(\psi_{incident} \) is factored from the equality leaving,

\[
I + T \cdot U + (T \cdot U)^2 + \ldots
\]

Placing this in closed form,

\[
\sum_{n=0}^{\infty} (T \cdot U)^n = \frac{1}{I - T \cdot U} = (I - T \cdot U)^{-1}.
\]
Finding the equivalent operator will require a matrix inversion and for very large problems this may lead to excessive computation times. The matrix inversion technique will be investigated. The fields may then be extended to any point in space using a far field Green's function surface contour integral. This far field pattern is available at point 5.

The incident field is usually produced by a plane wave generator. This provides the boundary conditions on the offset contour. This contour is called "offset" since it is approximately the same "shape" as the objects perimeter but is slightly larger. The distance between the perimeter and this contour is called the offset distance and will be discussed in Chapter III. The boundary conditions may be any desired field or wave that satisfies Maxwell's equations. These waves may arrive from any direction and be of any magnitude. The boundary conditions may also be a composite of any number of waves since superposition does apply to these systems. A user provided subroutine is necessary if conditions other than a single plane wave, cylindrical mode (of arbitrary mode number) or individual input boundary condition is desired.

B. MAXWELL'S EQUATIONS

Maxwell's equations can be written using our previous normalizations as,

\[\nabla \times \vec{E} = \mu_r \vec{H} \quad (2.3) \]

and

\[\nabla \times \vec{H} = \varepsilon_r \vec{E}. \quad (2.4) \]

[Ref. 4] Let \(D_x = \frac{\partial}{\partial x} \), with similar definitions for \(D_y \) and \(D_z \). Equations 2.3 and 2.4 can be further expanded into the \(D_x, D_y \), and \(D_z \) components such that,

\[\mu_r H_x = D_y E_z \quad (2.5) \]

\[\mu_r H_y = -D_x E_z \quad (2.6) \]

\[\mu_r H_z = D_x E_y - D_y E_x \quad (2.7) \]

\[\varepsilon_r E_x = D_y H_z \quad (2.8) \]

\[\varepsilon_r E_y = -D_x H_z \quad (2.9) \]

\[\varepsilon_r E_z = D_x H_y - D_y H_x.\quad (2.10) \]
For the TM case, with propagation in the z direction,

\[H_x = \frac{D_y E_z}{\mu_r} \]

and

\[H_y = \frac{-D_z E_x}{\mu_r} \]

Note that the \(H_z \) field = 0. These two equations can be combined to form,

\[\vec{H} = \frac{1}{\mu_r} \nabla \psi_1 \times \hat{z}. \] (2.11)

Similarly for the TE case, with propagation in the z direction,

\[\vec{E} = \frac{1}{\varepsilon_r} \nabla \psi_2 \times \hat{z}. \] (2.12)

Substituting equations 2.5 and 2.6 into equation 2.10 yields,

\[\epsilon_r E_z = D_x \left(\frac{-D_x E_z}{\mu_r} \right). \] (2.13)

Substituting equation 2.1 into equation 2.13 yields,

\[\epsilon_r \psi_1 + D_x \left(\frac{D_x \psi_1}{\mu_r} \right) + D_y \left(\frac{D_y \psi_1}{\mu_r} \right) = 0. \] (2.14)

Equation 2.14 can be further simplified to,

\[\nabla \cdot \left[\frac{1}{\mu_r} \nabla \psi_1 \right] + \epsilon_r \psi_1 = 0. \] (2.15)

Similarly, equations 2.2, 2.8, 2.9 may be substituted into equation 2.7. This yields,

\[\nabla \cdot \left[\frac{1}{\varepsilon_r} \nabla \psi_2 \right] + \mu_r \psi_2 = 0. \] (2.16)

Equations 2.15 and 2.16 are TM and TE duals. These two differential equations describe the potentials inside the object of interest. Defining \(\frac{1}{\mu_r} = \alpha \) and \(\varepsilon_r = \beta \) for the TM case
and $\frac{1}{\varepsilon} = \alpha$ and $\mu = \beta$ for the TE case and substituting these new definitions into equations 2.15 and 2.16 yields one differential equation,

$$\nabla \cdot [\alpha \nabla \psi] + \beta \psi = 0. \quad (2.17)$$

C. VARIATIONAL EQUIVALENCE TO THE DIFFERENTIAL EQUATION

The Euler-Lagrange variational formulation is based on the stationarity of a functional, of the function ψ and its first derivatives. [Ref. 4]

$$I = \int \int_{\text{inside S}} F(X, Y, \psi, \nabla \psi) dX dY \quad (2.18)$$

It can be shown that the first variation of the functional is zero, $\delta I = 0$, if the Lagrangian, F, satisfies the Euler-Lagrange equation:

$$\frac{\partial}{\partial X} \left(\frac{\partial F}{\partial (D_X \psi)} \right) + \frac{\partial}{\partial Y} \left(\frac{\partial F}{\partial (D_Y \psi)} \right) - \frac{\delta F}{\delta \psi} = 0. \quad (2.19)$$

The problem thus becomes to find the F, which when substituted into equation 2.19, yields the original differential equation. The Lagrangian,

$$F = \alpha \left\{ (D_X \psi)^2 + (D_Y \psi)^2 \right\} - \beta \psi^2$$

can be simplified to,

$$F = \alpha \nabla \psi \cdot \nabla \psi - \beta \psi^2. \quad (2.20)$$

When equation 2.20 is substituted into equation 2.19,

$$\frac{\partial F}{\partial (D_X \psi)} = 2\alpha D_X \psi$$

$$\frac{\partial F}{\partial (D_Y \psi)} = 2\alpha D_Y \psi$$

$$\frac{\delta F}{\delta \psi} = 2\beta \psi.$$
Therefore,
\[\frac{\partial}{\partial X} (2\alpha D_X \psi) + \frac{\partial}{\partial Y} (2\alpha D_Y \psi) + 2\beta \psi = 0 \]
or,
\[D_X[\alpha D_X \psi] + D_Y[\alpha D_Y \psi] + \beta \psi = 0 \]
which simplifies to,
\[\nabla \cdot [\alpha \nabla \psi] + \beta \psi = 0. \quad (2.21) \]

Therefore, the general functional has been found since equation 2.21 and equation 2.17 are identical. Substituting the \(\alpha \) and \(\beta \) definitions into equation 2.20 yields,
\[F_1 = \frac{1}{\mu_r} \nabla \psi_1 \cdot \nabla \psi_1 - \varepsilon_r \psi_1^2 \quad (2.22) \]

and
\[F_2 = \frac{1}{\varepsilon_r} \nabla \psi_2 \cdot \nabla \psi_2 - \mu_r \psi_2^2. \quad (2.23) \]

Equations 2.22 and 2.23 are integrated over the interior to \(S \) with known boundary conditions for either \(\psi_1 \) or \(\psi_2 \) on \(S \). To physically interpret the variational formulation, it is noted that,
\[\nabla \psi_1 = \mu_r \left \{ H_x \hat{Y} - H_y \hat{X} \right \} \]
and
\[\nabla \psi_2 = \varepsilon_r \left \{ E_x \hat{Y} - E_y \hat{X} \right \} \]

Therefore,
\[I_1 = \int_\Sigma \int \mu_r \overline{H} \cdot \overline{H} - \varepsilon_r \overline{E} \cdot \overline{E} \, dX \, dY \]

and
\[I_2 = \int \int_S \varepsilon_0 \vec{E} \cdot \vec{E} - \mu_0 \vec{H} \cdot \vec{H} \, dX \, dY. \]

Substituting Maxwell's equations into \(I_1 \) gives,

\[I_1 = \int \int_S (\nabla \times \vec{E}) \cdot \vec{H} - (\nabla \times \vec{H}) \cdot \vec{E} \, dX \, dY \]

\[I_1 = \int \int_S \nabla \cdot (\vec{E} \times \vec{H}) \, dX \, dY \]

\[I_1 = \int_{\partial S} \vec{E} \times \vec{H} \cdot \hat{n} \, dl. \]

Note that \(\vec{E} \times \vec{H} \) is the complex oscillatory Poynting vector. It is different from the usual Poynting vector of \(\vec{E} \times \vec{H} \). Thus, both functionals, \(I_1 \) and \(I_2 \), are proportional to the complex phasors for oscillatory power. The oscillatory power is the phasor representing the excess of instantaneous radiated power minus the average radiated power.

D. **FINITE ELEMENT BOUNDARY VALUE SOLUTION**

With the discussion of the variational mathematics completed, a simple rectangular boundary value problem will be discussed in detail. The rectangular geometry allows for an easier formulation but in no way limits the solution from being extended to more complicated object geometries. Figure 3 on page 11 shows the region of concern.
Consider spanning the rectangular region by a triangular mesh, as shown in Figure 4 on page 12. Both α and β may be functions of position but may not vary within an individual triangular element. Given a fine enough mesh structure, a smooth transition in material properties may be approximated. For notational simplicity this positional dependance will not be carried forward. The variational approach will yield the solution to the boundary value problem by finding the $\psi(x, y)$ which gives the stationary value of,

$$I = \int_{x_0}^{a} \int_{y_0}^{b} \left(\alpha \nabla \psi \cdot \nabla \psi - \beta \psi^2 \right) dx dy$$

which is constrained on the boundary by the previously specified boundary conditions. [Ref. 5]
The values of ψ at the interior nodes become the discretized unknowns:

$$\psi_{ij} = \psi(X_i, Y_j) \quad i = 1 \ldots M \text{ and } j = 1 \ldots N$$

where

$$X_i = i \cdot \Delta X$$

and

$$Y_j = j \cdot \Delta Y$$

for the uniform mesh structure with $\Delta X = \frac{a}{(M + 1)}$ and $\Delta Y = \frac{b}{(N + 1)}$. Approximating,

$$\psi(x, y) = \sum_{i=0}^{M+1} \sum_{j=0}^{N+1} \psi_{ij} u_y(x, y)$$

which includes the known boundary nodal values $\psi_{n,j}$ and $\psi_{M+1,j}$ for $j = 0$ and $N + 1$, and $\psi_{i,0}$ and $\psi_{i,N+1}$ for $i = 0$ and $M + 1$, linear pyramidal basis functions, $u_y(x, y)$, which
have unit value at the \((i,j)\) node and zero value at all surrounding nodes. Figure 5(a) is a top view of the pyramidal basis function, while Figure 5(b) is a perspective view.

![Figure 5. Pyramidal Basis Function, (a) top view, (b) perspective view](image)

The functional \(I\) will thus be a discrete function of each of the nodal values of \(\psi\),

\[
I = I(\psi_{0,0}, \psi_{0,1}, ..., \psi_{i,j}, ..., \psi_{M+1, N+1}).
\]

The approximate discrete solution will be found by the system,

\[
\frac{\partial I}{\partial \psi_{m,n}} = 0, \quad \text{for } m = 1 \ldots M \text{ and } n = 1 \ldots N.
\]

Now,

\[
\frac{\partial I}{\partial \psi_{m,n}} = 2 \int_{-1}^{1} \int_{-1}^{1} \left(\alpha \frac{\partial \psi}{\partial \psi_{m,n}} \cdot \nabla \psi - \beta \frac{\partial \psi}{\partial \psi_{m,n}} \psi \right) dx \, dy = 0
\]
where,

\[\nabla \psi(x, y) = \sum_{i=0}^{M+1} \sum_{j=0}^{N+1} \psi_{ij} \nabla u_{ij}(x, y). \]

The gradient of the basis function is,

\[\nabla u_{m,n}(x, y) = \frac{\partial \psi}{\partial \psi_{m,n}} \]

and the basis function is,

\[u_{m,n}(x, y) = \frac{\partial \psi}{\partial \psi_{m,n}}. \]

Therefore, the system of equations to solve becomes,

\[\int_0^a \int_0^b (\alpha \nabla u_{m,n} \cdot \nabla \psi - \beta u_{m,n}) \, dx \, dy = 0, \text{ for } m = 1 \ldots M \text{ and } n = 1 \ldots N. \]

Substituting for \(\nabla \psi \) and \(\psi \) in terms of the nodal values of \(\psi \) for \(m = 1 \ldots M \) and \(n = 1 \ldots N \) gives,

\[\sum_{i=1}^{M+1} \sum_{j=0}^{N+1} \psi_{ij} \int_0^a \int_0^b (\alpha \nabla u_{m,n} \cdot \nabla u_{i,j} - \beta u_{m,n} u_{i,j}) \, dx \, dy = 0 \]

where,

\[\int_0^a \int_0^b (\alpha \nabla u_{m,n} \cdot \nabla u_{i,j} - \beta u_{m,n} u_{i,j}) \, dx \, dy = F((m, n),(i, j)). \]

Regrouping this to put the known nodal values on the right hand side gives for \(m = 1 \ldots M \) and \(n = 1 \ldots N \) (interior nodes),

\[\sum_{i=1}^{M} \sum_{j=1}^{N} \psi_{ij} F[(m, n),(i, j)] = - \sum_{\text{Boundary Nodes Only}} \psi_{ij} F[(m, n),(i, j)]. \]
By renumbering the nodes using a single index for the unknown nodal values,
\[k = N(i - 1) + j \] and
\[l = N(m - 1) + n \] and,

\[
\sum_{k=1}^{N} F(l, k)\psi_k = -\sum_{k'} F(l, k')\psi_{k'}.
\]

The functional \(F(l, k) = 0 \) if nodes \(l \) and \(k \) are not both associated with at least one common triangular element. Therefore, \(\nabla u_l \cdot \nabla u_k \) and \(u_l u_k \) will be zero except in triangles where \(l \) and \(k \) both appear as nodes. For the example mesh structure of Figure 3 on page 11, this produces a banded matrix, \(F \). This sparse matrix can be easily displayed by first defining column vectors of the unknown nodal values in the mesh

\[
\overline{\Psi} = [\psi_{i,1}, \psi_{i,2}, \ldots, \psi_{i,N}]^T.
\]

The \(F \)-matrix elements \(F[(m, n), (i, j)] \) are zero unless the \((m, n)\) node shares at least one element with the \((i, j)\) node. Thus, the node values in \(\overline{\Psi} \), will be coupled only to \(\overline{\Psi}_{i-1}, \overline{\Psi}_{i+1} \) and any associated boundary nodes. This is written as,

\[
[A_i]\overline{\Psi}_{i-1} + [B_i]\overline{\Psi}_{i} + [C_i]\overline{\Psi}_{i+1} = -[P_i]\overline{\Psi}_{Bi},
\]

where \(A_i, B_i \) and \(C_i \) are \(N \times N \) complex arrays and \(P_i \) is a \(N \times N_{b_i} \) array where \(N_{b_i} \) is the number of boundary nodes associated with the \(i \)-th column. This appears as,

\[
\begin{bmatrix}
B_1 & C_1 \\
A_2 & B_2 & C_2 \\
A_3 & B_3 & C_3 & 0 \\
0 & A_{M-1} & B_{M-1} & C_{M-1} \\
A_M & B_M & C_M & 0
\end{bmatrix}
\begin{bmatrix}
\Psi_1 \\
\Psi_2 \\
\Psi_3 \\
\Psi_{M-1} \\
\Psi_M
\end{bmatrix}
=
\begin{bmatrix}
P_1 \\
P_2 \\
P_3 \\
P_{M-1} \\
P_M
\end{bmatrix}
\begin{bmatrix}
\Psi_{B_1} \\
\Psi_{B_2} \\
\Psi_{B_3} \\
\Psi_{B_{M-1}} \\
\Psi_{B_M}
\end{bmatrix}
\]

If we denote \(\overline{\Psi}_o \) as the initial boundary values and \(\overline{\Psi}_{M+1} \) as the final boundary values then \(\overline{\Psi}_{B_i} \) becomes only the boundary conditions on the top and bottom at \(j \neq 0 \) and
Note that the above system is tri-block in nature and has a large number of zero valued elements. The zero valued elements were omitted for clarity. Each element is actually a matrix and therefore it is evident how sparse this system is. Each of the A, B, C, and P, matrices are equally sparse, however, a global symmetry does not appear.

E. EVALUATION OF THE F- MATRIX CONTRIBUTIONS

Given an arbitrary element as shown in Figure 6, the potential, ψ, can be linearly approximated by [Ref. 5],

$$\psi(x, y) = (x, y, 1) \cdot [T] \cdot \begin{bmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{bmatrix} = \sum_{k=1}^{3} \psi_k \mu_k(x, y),$$

where $\psi_k = \psi(x_k, y_k)$ is the nodal value at the k-th node, $[T] = 3 \times 3$ Transform Array and
\[u_k(x, y) = \text{Linear basis functions for the } k\text{-th node} \]
\[= (x, y, 1) \begin{bmatrix} T_{1,k} \\ T_{2,k} \\ T_{3,k} \end{bmatrix} \]
\[= T_{1,k}x + T_{2,k}y + T_{3,k}. \]

Note that,
\[u_k(x_m, y_m) = \begin{cases} 1, & \text{for } k = m \\ 0, & \text{for } k \neq m \end{cases}. \]

It can be shown that,
\[[T] = \frac{1}{2A} \begin{bmatrix} (y_2 - y_3) & (y_3 - y_1) & (y_1 - y_2) \\ (x_3 - x_2) & (x_1 - x_3) & (x_2 - x_1) \\ (x_2y_3 - x_3y_2) & (x_3y_1 - x_1y_3) & (x_1y_2 - x_2y_1) \end{bmatrix}. \]

where \(|A| = \text{triangle area, and}\)
\[2A = \det \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix} \]
\[2A = (x_2y_3 + x_3y_1 + x_1y_2) - (x_3y_2 + x_1y_3 + x_2y_1) \]

Furthermore, the linear basis functions, \(u_k(x, y)\), can be interpreted as relative areas of the triangle shown in Figure 7 on page 18.
Figure 7. Basis Functions Interpretation

\[A = A_1 + A_2 + A_3 \]

is constant as \((x, y)\) varies and,

\[u_k(x, y) = \frac{A_k(x, y)}{A} \]

Within a given triangular element, the evaluation for \(k = 1, 2, 3\) and \(l = 1, 2, 3\) in the element is of interest and,

\[\int \int_{\text{inside triangle}} (\alpha \nabla u_l \cdot \nabla u_k - \beta u_l u_k) \, dx \, dy. \]

The assumption is made that \(\alpha\) and \(\beta\) will be approximated as constants within the triangle. These material constants can, however, vary from element to element. Taking the gradient terms first,

\[\nabla u_k = T_{1,k} \hat{\mathbf{x}} + T_{2,k} \hat{\mathbf{y}} \]

\[\nabla u_l \cdot \nabla u_k = (T_{1,k} \cdot T_{1,l} + T_{2,k} \cdot T_{2,l}). \]
Therefore,

\[
\iint_{\text{triangle}} \alpha_q \nabla u_l \cdot \nabla u_k \, dxdy
\]

\[= \alpha_q (T_{1,k}T_{1,l} + T_{2,k}T_{2,l}) |A_q|,
\]

where \(A_q\) is the area of the \(q^n\) element. Next it can be derived that,

\[
\iint_{\text{triangle}} u_l u_k \, dxdy = \begin{cases}
\frac{1}{12} |A| & \text{for } k \neq l \\
\frac{1}{6} |A| & \text{for } k = l
\end{cases}.
\]

More generally, with each \(u_i\) raised to an integer power, \(n_i\),

\[
\iint_{\text{triangle}} u_1^n u_2^n u_3^n \, dxdy = 2 |A| \frac{n_1!n_2!n_3!}{(n_1 + n_2 + n_3 + 2)!}
\]

The final result is,

\[
F_q(l, k) = \int \int_{\text{triangle}} (\alpha \nabla u_l \cdot \nabla u_k - \beta u_l u_k) \, dxdy
\]

\[= |A| \left\{ \alpha (T_{1,k}T_{1,l} + T_{2,k}T_{2,l}) - \frac{1}{12} \beta \right\}, \quad k \neq l
\]

\[= |A| \left\{ \alpha (T_{1,k}^2 + T_{2,k}^2) - \frac{1}{6} \beta \right\}, \quad k = l.
\]

F. GREEN'S FUNCTION CONTOUR INTEGRAL

The scattered fields, \(\psi\), from an arbitrary object in a vacuum satisfying Helmholtz's equation (see Figure 8 on page 20),

\[\nabla^2 \psi + k^2 \psi = 0,
\]

are [Ref. 6].
\[\psi_s(\bar{r}) = \int_{\text{contour}} \left\{ G(r | r') \frac{\partial \psi}{\partial n} - \psi(\bar{r}') \frac{\partial G}{\partial n} \right\} \, dc'. \]

Figure 8. Green's Function Integration

where the Green's function is,

\[G(\bar{r} | r') = \frac{i}{4} H_0^{(2)}(k_0 | \bar{r} - r'|) \]

and

\[\frac{\partial \psi}{\partial n} = \hat{n} \cdot \nabla \psi \quad \text{on the contour} \]

and

\[\frac{\partial G}{\partial n} = \hat{n} \cdot \hat{r} \frac{jk_0}{4} H_1^{(2)}(k_0 | \bar{r} - r'|). \]
The Hankel functions of the second kind of order zero and one, H_0^2 and H_1^2, will present a problem for the numeric integration discussed in Chapter V. The imaginary portion of these functions rapidly approaches negative infinity as the argument approaches zero. The $\frac{\partial \psi}{\partial n}$ is obtained by a finite difference method using the field boundary conditions on surface B (boundary conditions) and the calculated field conditions on surface P (object perimeter). This results in,

$$\frac{\partial \psi}{\partial n} \approx \frac{\psi_{\text{boundary}} - \psi_{\text{perimeter}}}{\text{offset distance}}.$$

It will be shown that to maximize the accuracy of the Green's function the offset distance should be made as large as possible. This, however, causes the $\frac{\partial \psi}{\partial n}$ to be inaccurate. Thus, an optimal condition must be found that maximizes the accuracy of the entire numeric integration. Such a condition does not maximize the accuracy of any one of the contributing parts to the Green's function integrand.

G. FAR-FIELD EVALUATION

When the Green's function integral discussed above is used for far field calculations several simplifying relationships develop. These simplifications require a less demanding numerical integration. To be in the far field region three conditions must exist,

$$|\vec{r}| > D, \quad |\vec{r}| > \lambda_0 \quad \text{and} \quad |\vec{r}| > \frac{2D^2}{\lambda_0},$$

where λ_0 is the free space wavelength and D is the maximum dimension of the object. [Ref. 7] As x approaches infinity,

$$H_0^2(x) \rightarrow \sqrt{\frac{2j}{\pi x}} e^{-jx}$$

and

$$H_1^2(x) \rightarrow \sqrt{\frac{2j}{\pi x}} je^{-jx}.$$

This requires,

$$G(\vec{r} | \vec{r}') = \frac{j}{4} \sqrt{\frac{2j}{\pi k_0 R}} e^{-j\kappa R}$$

and

21
\[
\frac{\partial G}{\partial n} = -\hat{n} \cdot \hat{R} \frac{k_0}{4} \sqrt{\frac{2j}{\pi k_0 R}} e^{-j k_0 R}.
\]

In the far field \(\sqrt{\frac{1}{R}} \rightarrow \sqrt{\frac{1}{r}} \) and \(\hat{n} \cdot \hat{R} \rightarrow \hat{n} \cdot \hat{r} \). Thus,

\[
e^{-j k_0 R} \rightarrow e^{-j k_0 r} e^{jk_0 \hat{r} \cdot \hat{r}}.
\]

Therefore,

\[
G(\vec{r} | \vec{r}') = \frac{j}{4} \sqrt{\frac{2j}{\pi k_0 r}} e^{-j k_0 r} e^{jk_0 \hat{r} \cdot \hat{r} \cos \theta}
\]

and

\[
\frac{\partial G}{\partial n} (\vec{r} | \vec{r}') = -\frac{k_0}{4} \sqrt{\frac{2j}{\pi k_0 r}} e^{-j k_0 r} \hat{r} \cdot \hat{r} e^{jk_0 \hat{r} \cdot \hat{r} \cos \theta}.
\]

With these new definitions substituted into the original Green's function integral equation,

\[
\psi_{\text{scattered}}(\vec{r}) = \sqrt{\frac{j}{8 \pi k_0 r}} e^{-j k_0 r} \int_C \left[j \frac{\partial \psi}{\partial n} + k_0 \hat{n} \cdot \hat{r} \psi(\vec{r}') \right] e^{jk_0 \hat{r} \cdot \hat{r} \cos \theta} dc'.
\]

Note that this equation is partitioned into a distance dependent term and a theta dependent term. The theta dependent term may be defined as

\[
I = \int_C \left[j \frac{\partial \psi}{\partial n} + k_0 \hat{n} \cdot \hat{r} \psi(\vec{r}') \right] e^{jk_0 \hat{r} \cdot \hat{r} \cos \theta} dc'.
\]

The two dimensional bistatic radar cross section (RCS) per unit length of the cylindrical structure may now be defined as,

\[
\text{RCS} = \sigma(\phi^s, \phi^t) = \lim_{r \to \infty} \frac{2\pi r P^t}{P^{inc}} = \lim_{r \to \infty} \frac{2\pi r |\psi^t|^2}{|\psi|^2}
\]
\[\sigma = \lim_{r \to \infty} 2\pi r \frac{f^2}{8\pi hr} = \frac{|f|^2}{4k_0}, \]

where the wavenumber, \(k_0 = \frac{2\pi}{\lambda_0} \) and the incident field is assumed to be of unit magnitude, \(|\psi'| = 1.0 \).
III. MESH GENERATION

A. INTRODUCTION

A display or plot of the computer generated mesh structure is not required for the problem solution, however, it provides an immediate visual confirmation that the intended problem geometry has been entered correctly into the computer. A large amount of initialization data is required for even the most rudimentary problem. For this reason, the input data is provided to the mesh generation program via a data file. Modifications are possible at a later time with minimum effort.

B. INPUT DATA

The input data file is called INPUT.DAT and contains 25 input fields. Of these fields, 14 relate directly to the generation or display of the mesh structure. Only the object surface coordinates require adherence to a specific format. All other data need only be of the correct type (i.e., character, integer or real). A brief description of each field is provided below.

- Field 1 is a label of no more than 12 characters. This label is for the plot and input data file.
- Field 2 is a character flag that specifies the input coordinate system. If set to "R" or "r", the rectangular system is used. If set to "P" or "p", the polar system is used. If a "P", "p", "R", or "r" is not detected, an error is returned to the display.
- Field 3 is a character flag that if set to "I" or "i" will cause several intermediate values to be stored to disk during the Finite Element Boundary Value (FEBV) program execution. This option was used during the debug process.
- Field 4 is a character flag that if set to "D" or "d" will create a DISSPLA FORTRAN program capable of replicating the input object, in wavenumber normalized coordinates, on mainframe computers having a DISSPLA graphics package. DISSPLA is a subroutine-based language. The generated program, called DISSPLA.FOR, is a compilation of four subroutines calls per element. This file can get very large for dense mesh structures.
- Field 5 is a character flag that if set to "U" or "u" will cause a uniform material to be assumed. In the uniform case, no material interface exists. This option was only used to verify the Finite Element solution accuracy.
- Field 6 is a character flag that if set to "M" or "m" will cause only the mesh to be generated. This is very useful when first starting a problem and the optimal mesh structure has not been determined.
- Field 7 is a real number specifying the desired mesh resolution in wavelengths. The mesh resolution determines the dimension of the mesh elements.
• Field 8 is a real number specifying the distance, in wavelengths, between the object perimeter and the offset boundary contour.

• Field 9 is a real number that specifies a multiplicative scaling factor for the numerical integration stepping function discussed in Chapter V.

• Field 10 is a bias term that can be used to shift the numerical integration stepping function. This term is used for distances less than 1.0.

• Field 11 is a bias term that can be used to shift the numerical integration stepping function. This term is used for distances greater than 1.0.

• Field 12 is a real number specifying the maximum distance beyond which no further contribution to the Green's Function Integral is made. If this feature is not desired, this term should be made larger than the object's maximum dimension plus twice the offset distance.

• Field 13 is an integer specifying the number of input data points.

• Field 14 is an integer specifying the angular resolution, in degrees, desired for the final radar cross section calculation.

• Field 15 is an integer specifying the mesh generation technique.

• Field 16 is an integer specifying the perimeter node from which the bisection segment originates. This node is called the "start node".

• Field 17 is an integer specifying the perimeter node on which the bisection segment terminates. This node is called the "stop node".

• Field 18 is a pair of real numbers (on two lines) specifying the x and y coordinates by which the object will be displaced.

• Field 19 is a real number specifying, in wavelengths, the desired distance between the origin and the first input data point. Fields 18 and 19 when used together, allow an object to be placed at any position and scaled to any size.

• Field 20 is a pair of real numbers (on two lines) specifying the real and imaginary parts of $\frac{1}{\mu}$ for the TM case or $\frac{1}{\varepsilon}$ for the TE case.

• Field 21 is a pair of real numbers (on two lines) specifying the real and imaginary parts of ε, for the TM case or μ, for the TE case.

• Field 22 is a character flag that if set to "P" or "p" enables a plane wave generator. The plane wave is propagating down the y axis, and generates an $E_0 e^{i\gamma}$ condition on the offset boundary contour. If the flag is set to "C" or "c", a cylindrical mode generator is enabled. This generates an $E_0 \cos n\phi$ condition on the offset boundary contour. If a "P", "p", "C" or "c" is not detected, then manually input boundary conditions must follow, and fields 23 and 24 are not used.

• Field 23 is a real number specifying the wave amplitude.

• Field 24a is a real number specifying the wave frequency (in Hz).

• Field 24b (only for cylindrical case) is an integer specifying the mode number, n.

• Field 25 is the object perimeter data, in either polar or rectangular form.
An example of an input data file for a homogeneous circular cylinder is provided in Appendix A. The majority of the input data is echoed to the computer display and a system “pause” is initiated to allow for user inspection. The program may be aborted or continued at this time. The initial object dimensionalization has already occurred, and the number of unknowns and the maximum unknown width is displayed. These factors give an excellent indication of the expected run time for the FEBV routines. For example, a problem with 512 unknowns and a maximum unknown width of 31 took 806 seconds to execute while a run with 8 unknowns and a maximum unknown width of 3 took only 10 seconds to execute. These times are for a Intel 80386 based personal computer with an Intel 80287 co-processor chip calculating the fields for a circular cylinder. The FEBV routines are the next code block to execute after the pause is cleared.

C. MESH GENERATION PROGRAM

The mesh generation program consists of seven subroutines. These subroutines are an integral part of the finite element program and, therefore, were not separated. These routines are discussed below.

1. IO (Input/Output)

 This subroutine reads the information contained in the INPUT.DAT file discussed earlier. A two dimensional object can be described in any number of ways, however, for simplicity, the polar and rectangular coordinate systems are used. In either case, the initial assumption is that all data points are referenced to a local origin. This local origin can be offset by any desired amount using field 18. This offset is independent of the entered data points or any size scaling provided by field 19. A plot label file, named TEXT.LBL, is created and the initial object perimeter (coded for a display in blue) is written to the output file, PLT.DAT. These data points describe the perimeter of the object. This will later prove helpful in determining the conformity of the generated mesh to the input perimeter. All subsequent screen writes are coded for a display in green. Two example objects are shown in Figure 9 on page 27. These objects will be used throughout this chapter. The circular cylinder was generated by a separate computer program. The “horseshoe” shaped object was manually input. Graph paper was used to determine the x and y coordinates of the 28 unequally spaced perimeter points.
Figure 9. Typical Objects

2. Rotate

This subroutine reorders the input data points to allow for any desired bisection segment start and/or stop node. This subroutine is only used if manual selection of the bisection segment start and/or stop nodes is requested.

3. Bound (Boundary)

This subroutine sub-divides the object perimeter based on the mesh resolution specified in Field 7. The mesh resolution is the approximate length, specified in wavelengths, that the user desires the perimeter to be divided into. The division of the perimeter is based on linear interpolation between input data points. A new perimeter node is placed at each of the sub-division points. Additional input data points are necessary in areas of rapid change to allow for a correct object perimeter representation. The object bisection extends from the "start node" to the "stop node". These nodes are user specified in Fields 16 and 17 and, in general, divide the object in half. The bisection should be arranged such that the object width, perpendicular to the bisection segment, is minimized. Thus, a long slender object should be oriented for a major axis bisection. Whether the major axis is oriented vertically or horizontally is of no importance. This is demonstrated in Figure 10 on page 28 (right side).
For more complex objects, the bisection is not a straight line, but rather a series of line segments that approximate a curve. The number of perimeter nodes on the left side of the bisection segment must equal the number of perimeter nodes on the right side of the bisection segment. The bisection segment also contains this same number of nodes. Thus, the program must adjust the requested mesh resolution to ensure proper nodal spacing. This allows for a piecewise continuous segment to cross the object.

4. Normal

This subroutine calculates the unit normals to the object perimeter at each newly established perimeter node. The normal is a perpendicular constructed to the chord connecting the two nodes adjacent to the node for which the calculation is occurring. This perpendicular originates at the current node and is of unit length. See Figure 11 on page 29.
5. Nodset (Node Set)

This subroutine uses a two sweep technique to compute the number of nodes on each nodal row. The rows are labeled $I = 1, 2, 3, ..., I_{\text{maximum}}$ consecutively from the top of the object to the bottom. Segments normal to the perimeter surface, calculated in NORMAL, connect the perimeter nodes to the offset boundary contour. Two such completed normal segments, one on each end, complete a nodal row. When all rows are complete, a second contour has been established that approximates the object's perimeter. This contour is displaced from the perimeter by the distance specified in Field 8. This contour provides the boundary conditions for the FEBV routines. The optimal selection of this offset distance will be a topic of Chapter IV.

With the object divided into rows, each row can be further divided into equally spaced nodes. Based on the requested resolution and whether the objects dimensions are expanding or contracting, the nodal spacing is adjusted to keep the elements approximately the same size. Two adjacent nodal rows form an elemental row. These rows are given the same label, $I = 1, 2, 3, ..., I_{\text{MX}}$ as the upper nodal row. The nodes on an elemental row are numbered consecutively, starting with the left-most node. This node is always an offset boundary contour node. When the upper nodal row is
numbered, the process is continued for the lower nodal row. An example of this element row numbering scheme is shown in Figure 12 on page 30.

A mesh orientation attribute is set for the left and right portion of each element row. This attribute determines if the object has a clockwise or counter-clockwise orientation. See Figure 13 on page 31. Switching between the four available mesh orientations allows for a mesh that more accurately conforms to the input object perimeter without resulting in a disproportionate mesh structure.
There is an additional requirement that the number of nodes on a given left or right half row must be only one more, equal to, or one less than the number of nodes on the adjacent left or right half row. Thus, a two sweep process is utilized. This process ensures that this requirement is met and that the first and last row have only two nodes. The second and second from last row (if present) must have three nodes. It is possible, as shown in Figure 14 on page 32, to generate a mesh that has only three rows. This object was input as a circular cylinder. It is evident that, due to a small number of elements, the generated mesh more accurately resembles a square. This will be a problem for calculating the scattered fields, however, the internal fields can be accurately approximated. In this special case, the second and second from last rows are the same. It will be shown, in Chapter V, that since this mesh does not closely approximate the input objects perimeter the resulting Green’s function contour integrals and subsequent far field calculations have reduced accuracy.

The nodes of the nodal rows form the vertices of triangular elements. An element, as defined in Chapter 11, has three vertices, each assigned a unique number (1, 2 or 3). The ordering of these vertices depends on the mesh orientation attribute. Each element also has an associated relative dielectric constant (ε_r) and relative permeability (μ_r).
6. Sorter

This subroutine generates a complete mesh row and all the element/node interconnection relationships. With the nodal structure in place, individual nodes can be assigned to individual elements within the global mesh structure. Each element in a given row is assigned a unique local element number starting with the left most element (relative to the bisection segment). See Figure 15.

![Three Row Cylinder Diagram](image)

Figure 14. Three Row Cylinder

![Element Numbering Scheme Diagram](image)

Figure 15. Element Numbering Scheme
It is vital that a method of determining which nodes form the vertices of a given element and which elements have a vertex attached to a given local node. The nodes that are not part of the offset contour have unknown field values. A single node can be connected to as many as six elements, only four of which can be in the current row. This relationship is shown in Figure 16(a). This hexagonal arrangement of six elements is very common within the mesh. Along the bisection segment or where the mesh orientation attribute changes from one row to another, this pattern is disrupted. An example of an extreme case (the center of a circular cylinder) is shown in Figure 16(b). After all elements and nodes in an elemental row are assigned, an ordered sweep is conducted of that elemental row to determine which nodes are connected to which elements, which elements are connected to which nodes, and how many elements a single node is connected too. A complete row has now been generated. See Figure 17 on page 34.

![Figure 16. Two Possible Element Intersections, (a) extreme, (b) normal](image)

The information necessary to generate the rows and elements will be used again, in Chapter IV, to solve the (FEBV) problem.

7. **Finder**

This subroutine determines the x, y coordinates of each node. This data is also necessary to solve the FEBV program of Chapter IV and provides the plotting coordinates for the PLT.DAT file. This process is repeated for all rows. Thus, the entire object is generated as the compilation of elemental rows made of triangles. See Figure 18 on page 34.
A file is now available for display using a commercially available program called "CURVE-DIGITIZER". Any program that can accept x, y coordinate data will accomplish the same display process. Minor changes to the MESH program provided in Appendix B may be necessary since several "CURVE-DIGITIZER" plotting codes are embedded in the file generation code.

Figure 17. Typical Row Structure

Figure 18. Global Mesh Structure
D. OPTIMIZATION OF THE MESH

For most objects, it is recommended that the MESH program be executed in the mesh generation only mode (Field 6 set to "M" or "m") prior to the execution of the total finite element program. This will ensure that the desired mesh structure is obtained prior to solving for the unknown field values. The MESH (generation only) program requires only a few seconds for even the most dense mesh structures. It is readily seen that as the mesh resolution increases, the number of rows increases linearly while the number of unknowns increases geometrically. Therefore, the mesh calculation times may not change appreciably when the mesh is made more dense, however, the calculation time for the finite element program will rise geometrically. For this and other reasons, the mesh density should be kept low. This will lead to a smaller number of unknowns and result in faster program execution times. Figure 19 on page 36 plots this relationship for a circular cylinder. The solution for these unknown field values will be a topic of Chapter IV.

Six different mesh generation methods are available to create mesh structures. Some of these methods were evolutionary in nature and provide limited practical benefit. Methods 1 and 6 are by far the most useful. Each method is discussed below.

Method 1 constructs the bisection segment by connecting the first input data point to the midpoint of the perimeter. This segment is divided into equal length segments each separated by a node. This method is useful for very simple objects such as the circular cylinder shown in Figure 20 on page 37. This circular cylinder will be used in the explanations of all mesh generation methods. These illustrations are not intended to optimize the mesh structure but rather allow for easy comparison of the 6 basic methods.

Method 2 constructs the bisection segment as described in method 1. The bisection segment nodes are, however, ordered differently. This segment is divided by connecting line segments from corresponding nodes on the left and right side perimeter. Where these line segments intersect the bisection segment, a node is placed. This leads to unequally spaced bisection segments. This can be seen in Figure 21 on page 37.
Figure 19. Unknowns and Number of Rows Versus Mesh Resolution

Method 3 modifies method 1 by allowing the user to specify, using Field 17, the stop node for the bisection segment. This method can be useful to rapidly adjust around slightly irregular objects. This can be seen in Figure 22 on page 38.

Method 4 combines methods 2 and 3 by using the connected line segment technique of method 2 to determine the node positions on the bisection segment, the stop node of which is specified as in method 3. This can be seen in Figure 23 on page 39.

Method 5 improves upon method 4 by repositioning the unequally spaced bisection nodes. Linearly interpolated positions for the nodes leads to equal spacing. This method reduces the node “bunching” that frequently occurs with methods 3 and 4. This can be seen in Figure 24 on page 40.
Figure 20. Method 1 Mesh Structure Example

Figure 21. Method 2 Mesh Structure Example
Method 6 is the final improvement in which method 5 was modified to allow for a user-specified start node. This provides the user with the ability to start and stop the bisection segment at any input node without having to rearrange the input data. Since method 6 contains all of the capabilities of the other five methods, it is almost exclusively used for mesh generation. This can be seen in Figure 25 on page 40. There are situations that could be best served by one of the other methods. For example, a circular cylinder and other simple symmetric objects can be represented using method 1. Method 2 would work well with a square or diamond shape. These objects would be bisected by a diagonal. Method 3 would be most suited for a symmetric object with a planar material interface. The more dense mesh would be used for the higher permittivity material. Method 4 would work well with a rhombus or other slightly asymmetric object. Method 5 is almost as versatile as method 6, and would work well in any situation where the start node is fixed. A great deal of planning is not needed in designing most mesh structures since they are calculated and displayed in a matter of seconds.
Iterative selection of different mesh generation parameters has proven to be the best technique. A summary of all mesh generation capabilities is provided in Table 1.

Appendix C contains a program called READ.FOR. This program takes the output data file from the "Curve-Digitizer" CAD program, called FINALDWG.DAT, and after receiving the answers to several prompted questions, creates a new INPUT.DAT file. Typically, the CAD program is used to generate the perimeter of the object. This may be as a series of points, line segments or a combination of the two. The answers to the prompted questions provide the additional information needed to fill the remaining data fields. This is intended to be a first step towards allowing a user to specify or design an object and then be able to calculate the scattered fields from this object. Although it is far from efficient, it does serve a definite purpose. Further refinement of this program will allow for an easier user interface. This should enable technically trained personnel, without a detailed understanding of these programs, to benefit from the Field Feedback Formulation.
Figure 24. Method 5 Mesh Structure Example

Figure 25. Method 6 Mesh Structure Example
Table 1. SUMMARY OF MESH GENERATION CAPABILITIES

<table>
<thead>
<tr>
<th>Method Number</th>
<th>Straight Line Bisection</th>
<th>Straight Line From Left to Right Side</th>
<th>User Selected Stop Node</th>
<th>Equally Spaced Bisection Nodes</th>
<th>User Selected Start Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

41
IV. FINITE ELEMENT BOUNDARY VALUE PROGRAM

A. INTRODUCTION

The Finite Element Boundary Value (FEBV) program is the feed forward (U) operator in the Field Feedback Formulation (F^3) as shown in Figure 2 on page 4. This program solves the Helmholtz equation, as discussed in Chapter II, for the Dirichlet boundary condition specified in the input data file, as discussed in Chapter III. These boundary conditions are imposed on the offset boundary contour. The purpose of this program is to find the unknown field values inside the offset boundary contour within the input object. Since the ultimate goal is to obtain the scattered far fields from the object, the unknown field values on the perimeter are of primary interest. It will also be necessary to approximate the normal derivative of the field at the object perimeter. As derived in Chapter II, the goal of this program is to solve,

$$ [A_i] \Psi_i - 1 + [B_i] \Psi_i + [C_i] \Psi_{i+1} = -[P_i] \Psi_i. $$

The A matrix represents the effect that the $I - 1$ row has on the I^n row values. Similarly, the B matrix represents the effect that the I-th row has on itself, while the C matrix represents the effect that the $I + 1$ row has on the I-th row. All other rows do not effect the I-th row. This is due to the pyramidal basis functions, discussed in Chapter II, that all have zero value when a node is not directly connected to another node. The P matrix represents the combined effects of the boundary nodes on the I-th row. These values are transposed to the right side of the equality to form the system forcing function. It is worth remembering that for the $I = I$ row, the A matrix = 0 and that for the $I = IMX$ row, the C matrix = 0. Thus, using the row by row stepping process, first discussed in Chapter III of the mesh generation process, the A, B, C and P matrices can be filled. There is an A, B, C and P matrix for each row, and it is necessary to calculate the functionals for two elemental rows to fill one set of matrices. It is, therefore, obvious that the data is used twice, once for the current row and again for the next row. Specifically, the functionals necessary to complete the B matrix and totally fill the C matrix is used again to totally fill the next row’s A matrix and partially fill the B matrix. Thus, for a row $I - 1$, (such that $I - 1 \neq 1$), all of the A matrix and part of the B and P matrices are filled. When the row is stepped to I, the B and P matrices are completed and all of the C matrix is filled. The A, B, C and P matrices represent tri-block matrices within a
much larger global matrix. This row of tri-block matrices in the global matrix can be partially solved using the forward portion of the Ricatti transform. The Ricatti transform is a numerical technique that optimizes the solution for banded (tri-block) systems of linear equations. The equations are,

\[R_{i+1} = -(B_i + A_i R_i)^{-1} C_i \]

and

\[S_{i+1} = (B_i = (B_i + A_i R_i)^{-1} \cdot (P - A_i S_i) \]

where \(R_{i+1} \) is the \(i^{th} + 1 \) R matrix and the \(S_{i+1} \) is the \(i^{th} + 1 \) S vector. Note that the next rows R matrix and S vector depends on the previous rows R matrix and S vector. During the forward step (MARCH subroutine) an R matrix and S vector is generated for each row. When all rows have been calculated, a back sweep computes the unknown field values, \(\psi_j \). The equation is

\[\psi_{i-1} = R_i \psi_i + S_i. \]

This back sweep must read the RS data from the disk backwards. This is a storage intensive process for all but the most trivial problem. The field values \(\psi_{i-1} \) is first found by remembering that the last row \((1 = IMX), C_{IMX} = 0 \). With \(C_{iMX} = 0, R_{iMX-1} = 0 \) and \(\psi_{iMX} = S_{iMX} \), which is the last calculated S vector. The recursion continues until all of the \(\psi_i \)'s have been calculated.

B. FINITE ELEMENT BOUNDARY VALUE PROGRAM

The eight subroutines comprising the FEBV program are discussed below.

1. **Zero**

 This subroutine fills all the array positions of the A, B, C and P matrices with \(0 + j0 \). This zeroing is necessary after all calculations concerning a given row are completed.

2. **Varint (Variational Integration)**

 This subroutine calculates the complex functionals for a given input element. The functionals reflect the effect that each node has on the three nodes associated with an element. The subroutine must be provided with the X, Y coordinates of the element nodes, and the material parameters \(\varepsilon \) and \(\mu \). These functionals are returned in a \(3 \times 3 \) complex matrix. The area of the input element is also provided as a by-product of this
numerical integration. The areas of each element are sorted and used to find the largest and smallest elements. Once found, the largest and smallest areas are combined to form the area ratio, which is defined as,

\[
\text{area ratio} = \frac{\text{maximum area}}{\text{minimum area}}.
\]

This ratio should be kept as small as possible. For a circular cylinder, values slightly less than 2.0 are possible. For more complicated objects, the ratio can get considerably larger. A ratio ≥ 2.5 causes a screen message of "YOU SHOULD CONSIDER ABORTING THIS RUN AND LOOKING AT THE MESH IN CURVE DIGITIZER. A BETTER METHOD MAY BE AVAILABLE". It may or may not be possible to obtain an area ratio < 2.5. The intention of the area ratio is to insure that a uniform mesh is constructed prior to attempting a problem solution. Smaller area ratios are indicative of mesh structures that do not have grossly different element sizes. This will lead to more accurate finite element solution.

3. **Fill**

This subroutine calculates and stores all of the functionals for an entire elemental row. This is accomplished by repeated VARINT calls for each element that comprises an elemental row.

4. **BNDC (Boundary Condition)**

This subroutine calculates and stores the boundary conditions desired for the offset boundary contour. These conditions can be plane wave, cylindrical modes or input manually. For plane wave conditions, the percent error of the FEBV program will also be returned. This calculation only has meaning for the uniform case (Field 5 set to "U" or "u"). Memory limitations do not allow this feature for the cylindrical mode boundary conditions for modes other than zero and one. A separate routine could be made available for offline percent error calculations. No such feature is provided if the boundary conditions are manually input. Any desired boundary condition may be generated by modifying or appending the proper code to this subroutine.

5. **Loader**

This subroutine loads the A, B, C and P matrices for a given row. For all but the I = 1 and IMX rows, two calls of FILL/VARINT for two elemental rows of data are required to fill the A, B, C and P matrices. This is an additive process that starts after the ZERO subroutine initializes the matrices. Successive functionals are added to the existing data in the proper array positions.
6. March

This subroutine performs the forward portion of the Riccati transform. The output data, called RS.DAT (R matrix and S vector), are stored on disk.

7. CSMINV (Complex Square Matrix Inversion)

This subroutine accomplishes the complex matrix inversion required by the forward Riccati transform. A maximum dimension of 50 x 50 was established to limit memory utilization. This allows for a maximum unknown width of 50.

8. Sweep

All of the above subroutines are called at least once for each row. The sweep routine is called only after all of the row calculations are completed, and then only once. This subroutine conducts the Riccati back sweep by reading the RS data generated by the MARCH subroutine. This data is read off the disk backwards, using the FORTRAN "backspace" command. The returned field values are actually individual contributions due to a unit valued basis function being individually applied to each of the boundary nodes. In so doing, the problem need only be solved once. After the data is stored, in matrix form as the U.DAT file, the boundary value problem may be solved for any incident field by multiplying the U matrix by the new incident fields. Thus,

\[\psi_{\text{perimeter}} = [U] \cdot \psi_{\text{incident}} \]

A summary of the input, output and error data is provided in the OUTPUT.DAT file.

9. Save

This subroutine was necessary to allow for reasonably sized problems. Since all of the Field Feedback Formulation code could not fit into 640 kilobytes of memory, the program was divided into two parts. All of the data necessary to perform the programs is saved in the F3.DAT file. This data is then read by the field feedback program. This technique, though very inefficient, circumvents the 640 kilobyte memory limitation imposed by the IBM Disk Operating System (DOS). Efforts to convert this code to run under a compiler that does not have a 640 kilobyte memory limitation, such as Microway NDP FORTRAN compiler, will be pursued at a later date.

C. VARINT VALIDATION

The first step in the program validation required an understanding of the error convergence of the variational elements as a function of element size, d and material properties, \(\varepsilon \), and \(\mu \). The test program provided in Appendix D varies the element size, in wavelengths, for a test mesh structure. This test structure shown in Figure 26 on
page 46 has only one unknown at the center. The mesh is made of four adjacent elements. These elements are inside a uniform material having properties, ε, and μ. The other four nodes are established as boundary nodes.

![Diagram of mesh structure]

Figure 26. Test Mesh Structure

A plane wave, of user specified frequency and amplitude, is used to determine the boundary conditions on the four boundary nodes. This plane wave is propagating down the vertically oriented axis. The unknown nodal value is calculated and compared to the actual plane wave value $(1 + j0)$. A percent error is calculated as the dimension of the elements, d are reduced. As expected, the solution became more accurate as the elements become smaller. A plot of the results of this test program is provided in Figure 27 on page 47. This data was generated with $\varepsilon, = 1 + j0$, and $\mu, = 1 + j0$.
The region of interest is where the error approaches zero. An expanded plot of this region is provided in Figure 28 on page 48. The accuracy of the solutions were desired within 1 percent of the exact value. This requires an element that is $\leq \frac{2}{17}$, in the material. To ensure the desired error was achieved, elements were usually scaled to be $\leq \frac{2}{20}$, in the material. The phase of the plane wave was also varied to determine the effect on convergence. No significant effect was noted.
The next validation step required an actual object to calculate the fields in and on. The simplest object was actually not an object at all, but rather an imaginary circular cylinder in free space. A plane wave was propagated through this free space. Since no material interface existed, the exact solution would be known for all positions. The plane wave established the boundary conditions on the offset contour. Trial runs were conducted varying the mesh resolution and boundary offset contour distance. With the error defined as,

\[\text{error} = \sqrt{\frac{\sum (\text{calculated value} - \text{actual value})^2}{\sum (\text{actual value})^2}} \]

two errors were defined. The perimeter error only considers the perimeter nodes in the error calculation. The bisection segment error only considers the bisection segment nodes, with the exception of the two end nodes, in the error calculation. The end nodes
of the bisection segment are part of the perimeter and are, therefore, not considered. As expected, the perimeter error could be rapidly reduced by decreasing the offset distance. This is due to the fact that the node or nodes closest to an unknown node dominate the field contributions at this node. Again, a goal of < 1% error was desired. The reduced offset distance had a very small effect on the bisection segment error. The only way to significantly reduce this error was to increase the mesh resolution. An increased mesh resolution reduced both errors. Figure 29 shows the perimeter error as a function of the number of bisection segment nodes.

![Figure 29. Perimeter Error](image)

The three curves are for offset distances of 0.05, 0.025 and 0.01 \(\lambda \). Figure 30 on page 50 shows the bisection segment error as a function of the number of bisection segment nodes. The two curves are for offset distances of 0.05 and 0.025 \(\lambda \). For offset distances less than 0.025 \(\lambda \), the curves are almost identical to the 0.025 \(\lambda \) curve. These curves are omitted for clarity.
The calculated and exact field values for a 0.5 \(\lambda_0 \) diameter circular cylinder, with a 0.05\(\lambda_0 \) mesh resolution and offset distance and \(\varepsilon_r = 1 + j0 \) is shown in Figure 31 on page 51. The exact fields values for the real and imaginary portion of the plane wave are shown as squares and diamonds, respectively. The solid curves are the calculated field values. The perimeter and bisection errors were 0.74 and 1.69 percent, respectively. Figure 32 on page 52 shows the effects of not properly adjusting the mesh resolution and offset distance when the material is changed. In this case, the permittivity was changed to \(\varepsilon_r = 4 + j0 \). This caused the perimeter and bisection segment errors to increase to 18.2 and 41.1 percent, respectively. The mesh resolution and offset distance were reduced to 0.021\(\lambda_0 \) and the permittivity was changed to \(\varepsilon_r = 4 - j4 \). The results are shown in Figure 33 on page 53. This proper selection of mesh resolution and offset distance reduced the perimeter error and bisection segment error to 0.44 and 0.56 percent, respectively. Note that in the lossy material case the two errors are very close in

Figure 30. Bisection Segment Error

![Bisection Segment Error](image-url)
magnitude. This is due to the way that the error is defined. This definition, in a lossy material, overemphasizes the objects leading edge.

This portion of the object (as well as the trailing edge) is the most accurate for the bisection segment calculations. This is because of the relative closeness of these nodes to the perimeter. For the lossless material, the bisection segment error is typically two to three times the perimeter error, for the same number of bisection nodes. The conclusion that the offset distance should be made as small as possible in order to minimize the perimeter error is correct, but will prove to be counterproductive in the long run. There is a competing effect that will require this contour offset distance to be as large as possible. This effect, associated with the accuracy of the Green's function contour integral, will be discussed in Chapter V.

Figure 31. 0.5 \(\lambda \) cylinder, \(\varepsilon_r = 1 + j0 \)
Figure 32. 0.5λ cylinder, $\varepsilon_r = 4 + j0$
Until this point, all testing was done in circular homogeneous dielectric materials. It was, at a minimum, desirable to place the object in a vacuum to calculate the scattered fields. This requires the first two and last two elements of each row to have $\varepsilon = 1 + j0$ and $\mu = 1 + j0$. These elements represent the space between the objects perimeter and the offset boundary contour. Since the plane wave solution is no longer valid for this geometry, a new problem with a known solution was needed.

Given a homogeneous dielectric circular cylinder of radius a and permittivity ε, as shown in Figure 34 on page 54, it can be shown that [Ref. 8],

$$\Psi_n(R, \phi) = A_n J_n(kR) \cos n\phi,$$
Figure 34. Cylindrical Mode Geometry

where,

$\psi_n(R, \phi)$ is the field value inside the dielectric material.

$$A_n = -\frac{j2D_n}{\pi a \nabla_n}$$

$$\nabla_n = \frac{J_n(k_r R_b)[J_n(k_r R_a)H_n^{(2)}(R_a) - k_r J'_n(k_r R_a)H_n^{(2)}(R_a)] - H_n^{(2)}(R_b)[J_n(k_r R_a)J'_n(R_a) - k_r J'_n(k_r R_a)J_n(R_a)]}{H_n^{(2)}(R_b)[J_n(k_r R_a)J'_n(R_a) - k_r J'_n(k_r R_a)J_n(R_a)]}$$

$J_n =$ Bessel Function of the 1st kind of order n

and

$$k_r = \sqrt{\varepsilon_r}.$$
An additional formulation is required for the fields outside of the cylinder. A cylindrical wave (mode, \(n = 1 \)) was applied to a homogeneous dielectric cylinder. The exact and finite element field values were calculated and compared. Figure 35 on page 55, shows a typical result. Mesh resolution, offset distance and material permittivity were varied to determine convergence. The results were similar to the dielectric homogeneous plane wave case discussed earlier.

![Figure 35. Typical Cylindrical Mode Boundary Value Problem Result](image)

F. FINITE ELEMENT CONCLUSIONS

High accuracy solutions can be obtained by maintaining a mesh resolution of \(< \frac{j_0}{20}\) in the material. The offset distance should be kept at approximately the same magnitude as the mesh resolution, but may be as large as \(\frac{j_0}{20} \). Increased accuracy requires an increased mesh resolution. This increase in accuracy is at the expense of increased processor time.
V. FIELD FEEDBACK PROGRAM

A. INTRODUCTION

The Field Feedback Program is the feedback (T) operator in the F^3. This program utilizes the output of the finite element program and the input incident fields to evaluate a "near field" Green's function integral. This integral is called "near field" in that the integral will be performed within $\frac{\lambda_0}{20}$ of the object perimeter. As seen in Figure 36, three surface contours are defined. The boundary contour is where the incident field boundary condition is applied.

![Figure 36. Contour Arrangement](image)

The perimeter contour is where the finite element program solves for the field values on the object perimeter. The geometric contour is midway between the boundary and the perimeter and is the contour over which the Green's function contour integral is performed. This is necessary to allow the $\frac{\partial \psi}{\partial n}$ to be approximated by a finite difference
technique. The ψ_{GC} is the average of the field values on the boundary and perimeter. Thus,

$$\frac{\partial \psi}{\partial n} = \frac{(\psi_{boundary} - \psi_{perimeter})}{\partial n}$$

and

$$\psi_{GC} = \frac{(\psi_{perimeter} + \psi_{boundary})}{2}.$$

The Field Feedback program is provided as Appendix E.

B. FIELD FEEDBACK PROGRAM

1. Input

This subroutine reads the finite element data stored in the F3.DAT file by the SAVE subroutine. All necessary nodal X, Y coordinates are calculated.

2. TMAT (T Matrix)

This subroutine loads a complex matrix called TMAT. Each element of the T matrix is the result of a Green's function contour integral. This integral is conducted on the GC contour. The m-th column of the T matrix is evaluated with a single unit valued basis function on the m-th boundary node. The equation,

$$T_{n, m} = \int_{GC} \left[G \frac{\partial \psi}{\partial n} - \psi_n \frac{\partial G}{\partial n} \right] dGC,$$

may now be numerically evaluated at each of the n boundary nodes. This process is repeated for each row until the entire matrix is filled.

The numeric integration uses a rectangular mid-point approximation technique. For this linearized problem, this is equivalent to a trapezoidal integral technique. The integral path between any given two nodes is subdivided based on the distance to the first point. This subdivision maybe controlled by three input variable fields. A multiplicative scale factor and offset terms are available. To date, the utilization of the scale factor (set > 1.0) and the offset terms (set > 0) have not proved necessary. This may be necessary for more complicated geometric structures.
3. CNSOLV

This subroutine solves the equation,

\[C_n = (I - T_{\text{matrix}})^{-1} \cdot \psi_{\text{boundary}}, \]

where \(C_n \) is the total scattered fields on the boundary, \(I \) is the identity matrix and \(\psi_{\text{boundary}} \) is the initially specified incident fields.

4. FFLD (Far Fields)

This subroutine calculates the scattered far field or bistatic radar cross section per unit length of the object. Any desired integer angular resolution for the calculation may be specified. The final results are stored in the FFPAT.DAT file.

C. FIELD FEEDBACK VALIDATION

Given a plane wave boundary conditions imposed on an imaginary cylinder in free space, a Green's function contour integral may be performed around the cylinder. This cylinder is imaginary in the sense that it does not actually exist. The cylinder is actually an artificial boundary that does not form a material interface. For points inside this cylinder, the resulting integral should equal the negative of the actual plane wave value at that point in freespace. For points outside the cylinder, the resulting integral should equal zero. Several test conditions were investigated to ensure that the numerical integration of the Green's function did arrive at the expected values. Maximum absolute errors for these tests were less than \(7 \times 10^{-9} \). These test cases started with exact values of the field, \(\psi \) and the normal derivative, \(\frac{\partial \psi}{\partial n} \). After initial validation, finite element calculated \(\psi \) and \(\frac{\partial \psi}{\partial n} \) values were used. Errors increased by approximately a factor of 10. Numerous competing effects were observed with two dominant effects becoming evident.

1. Small Object Phenomenon

For very small objects, where only a few elements are needed to meet the \(\frac{\lambda}{20} \) mesh resolution requirement, the normal derivative accuracy is crucial. Since the normal derivative is the calculated normal to the piecewise linear approximation of the objects perimeter, this fit is usually not adequate. To prevent this problem, additional perimeter/boundary nodes are needed. This is easily accomplished by increasing the mesh density, which is controlled by the mesh resolution (input field 7). For these very small objects, the RCS is almost uniform for the TM case and co-sinusoidal for the TE case. The utility of this calculation must, therefore, be questioned.
2. Offset Distance Phenomenon

The offset distance must not be made too small or the accuracy of the Green's function integral will suffer. For a circular cylinder, the optimal offset was between 0.03 λ and 0.035 λ. Note that these distances are always $< \frac{\lambda}{20}$.
VI. VALIDATION

A. INTRODUCTION

The difficulty in the total Field Feedback Formulation (F^3) program validation is in finding problems that have well established or accepted solutions. The total F^3 program is the combination of the mesh generation/finite element program and the field feedback program. If possible, a problem that has a closed form analytical solution is desired.

B. HOMOGENEOUS CIRCULAR CYLINDRICAL SCATTERING

This is the first test case for the F^3 program. A penetrable circular cylinder has a closed form analytic solution, so the final results could be verified against exact values. It can be shown that for the TM case (E-wave) the reflection coefficient is,

$$
\Gamma_n^{TE} = \frac{J_n(k_rR_o)J'_n(R_o) - \sqrt{\frac{\varepsilon_r}{\mu_r}} J'_n(k_rR_o)J_n(R_o)}{J_n(k_rR_o)H_{n}^{(2)}(R_o) - \sqrt{\frac{\varepsilon_r}{\mu_r}} J'_n(k_rR_o)H_{n}^{(2)}(R_o)}
$$

and that for the TE case (H-wave) the reflection coefficient is,

$$
\Gamma_n^{TM} = \frac{J_n(k_rR_o)J'_n(R_o) - \sqrt{\frac{\mu_r}{\varepsilon_r}} J'_n(k_rR_o)J_n(R_o)}{J_n(k_rR_o)H_{n}^{(2)}(R_o) - \sqrt{\frac{\mu_r}{\varepsilon_r}} J'_n(k_rR_o)H_{n}^{(2)}(R_o)}
$$

where $k_r = \sqrt{\mu_r \varepsilon_r}$, ε_r = $\sqrt{\frac{\varepsilon_r}{\mu_r}}$ and μ_r = $\sqrt{\frac{\mu_r}{\varepsilon_r}}$. [Ref. 9] The scattered field for the TM case is,

$$
E_z^s(R, \phi) = - E^{\text{incident}} \left[\Gamma_0 H_0^{(2)}(R) + 2 \sum_{n=1}^{\infty} j^{-n} \Gamma_n H_n^{(2)}(R) \cos n\phi \right].
$$

Similarly, the scattered field for the TE case is,

$$
H_z^t(R, \phi) = - E^{\text{incident}} \left[\Gamma_0 H_0^{(2)}(R) + 2 \sum_{n=1}^{\infty} j^{-n} \Gamma_n H_n^{(2)}(R) \cos n\phi \right].
$$
In the far field region, as R approaches infinity, the scattering width may be defined as,

$$\sigma(\phi) = 2\pi \lim_{\rho \to \infty} \rho \frac{|H'|^2}{|H_{\text{incident}}|^2}$$

and

$$\sigma(\phi) = \frac{4}{k_0} |\Gamma_0 + 2 \sum_{n=1}^{\infty} \Gamma_n \cos n\phi|.$$

The source code, without the Bessel function routines, for these calculations is provided as Appendix F.

Three different radius dielectric cylinders were tested. Wavenumber normalized radii of 0.5, 1.0 and 2.0 with $\varepsilon_r = 2.56 + j0$ were selected. The TE and TM results of the 0.5, 1.0 and 2.0 radii problems are provided as Figure 37 on page 62, Figure 38 on page 63, and Figure 39 on page 64. To validate the Chapter VI conclusion that the unit normal was the cause of the errors for very small circular cylinders, the ε_r was increased from 2.56 to 25.6. This value still meets the requirement for mesh resolution not to exceed $\frac{2}{20}$. The TE and TM results are provided as Figure 40 on page 65. Actual cross section values are indicated by the squares and the Field Feedback Formulation solutions are plotted as a single solid curve.

C. HOMOGENEOUS IRREGULAR OBJECTS

The results detailed in [Ref. 10] were next validated with the F^3 program. This object, as seen in Figure 41 on page 66, is a dielectric shell with inner radius $= .25 \lambda_0$, outer radius $= .30 \lambda_0$ and $\varepsilon_r = 4 + j0$. The comparison of the [Ref. 10] data and the F^3 results are provided as Figure 42 on page 67.
Figure 37. Cylinder, TE and TM Case, $k_o a = 0.5$, $\epsilon_r = 2.56$
Figure 38. Cylinder, TE and TM Case, $k_{\infty}a = 1.0$, $\varepsilon_r = 2.56$
Figure 39. Cylinder, TE and TM Case, $k_0a = 2.0$, $\varepsilon_r = 2.56$
Figure 40. Cylinder, TE and TM Case, \(k \alpha = 0.5, \varepsilon = 25.6 \)
The TE case shows excellent agreement. The TM case tends to diverge at the smaller values of ϕ.

D. AN INHOMOGENEOUS OBJECT

The results detailed in [Ref. 11] were next validated with the F^3 program. This object, as seen in Figure 43 on page 68, is a dielectric ring with inner radius $= .25 \lambda$, outer radius $= .30 \lambda$, and $\varepsilon = 4 + j0$. The exact solution to this problem is available. [Ref. 11]
Figure 42. Dielectric Shell, TE and TM Case, $\varepsilon_r = 4 + j0$
The mesh generation program was not modified to conform to both the outer and inner material boundaries. The original mesh generation program design concept was to closely fit the mesh to the objects outer perimeter and then allow for material inhomogeneities to be accounted for by different material parameters being assigned to individual elements. A section of the generated mesh is shown in Figure 44 on page 69. Note the additional curved line showing the $.25\lambda$ inner radius. This curve does not follow the established element boundaries. The effective ring is shown in Figure 45 on page 69. This resulted in the inner radius having an irregular pattern as elements near the material interface varied in material composition. This is similar to the granular noise problem characteristic of delta modulation communication channels. The TE and TM results are provided as Figure 46 on page 70.
Figure 44. Partial Mesh with Inner Radius Curve

Figure 45. Effective Geometry for the Dielectric Mesh
Figure 46. Dielectric Ring, TE and TM Case, \(\varepsilon_r = 4 + j0 \)
VII. CONCLUSIONS

A. RESULTS

The Field Feedback Formulation proved to be an excellent tool for calculating the internal and scattered fields from the tested inhomogeneous asymmetric objects. The keys to satisfactory results are,

- Keep the maximum element dimension \(\leq \frac{\lambda}{20} \),
- Maintain a mesh with a uniform distribution, and
- Maintain the offset distance near the mesh resolution in magnitude, but no greater than \(\frac{\lambda_0}{20} \).

The techniques used proved to be capable of adapting to a wide variety of situations. These adaptations did not require program modifications or reprogramming. The numerous built-in features, as discussed in the input field description of Chapter III, allowed for this robustness.

B. RECOMMENDATIONS AND EXTENSIONS

With the basic program validated, future testing and development should,

- Emphasize large object validation against accepted results.
- Stress inhomogeneity and irregularity in all testing.
- Optimize the T matrix element calculation by improving the Green’s function contour integral.
- Evaluate the usefulness of the maximum distance feature (Field 12). Beyond this maximum distance no contribution is made to the Green’s function integral. It is not expected that this will be possible for objects less than a few wavelengths in maximum dimension.
- Modify the mesh generation program to allow for conformity to multiple interfaces (multi-layered objects without the granular noise problem).
- Modify all programs for Intel 80386 based Fortran compiler use, such as NDP FORTRAN by Microway. This will remove the 640 KB memory limitation imposed by the IBM DOS and allows for the solution to larger scattering problems.
APPENDIX A. INPUT DATA FILE EXAMPLE

CIRCLE - PLOT TITLE
R - RECTANGULAR INPUT DATA
NI - NO INTERMEDIATE DATA RECORDING
ND - NO DISSPLA PROGRAM GENERATION
NU - NON UNIFORM MATERIAL (MATERIAL INTERFACE PRESENT)
NM - NO MESH GENERATION ONLY
0.019 - REQUESTED MESH RESOLUTION (IN WAVELENGTHS)
0.03 - CONTOUR DISTANCE (IN WAVELENGTHS)
1.0 - MULTIPlicative GFI SCALE FACTOR
0 - DISTANCE < 1.0 BIAS TERM
0 - DISTANCE > 1.0 BIAS TERM
999.9 - MAX DIST BEYOND WHICH THERE IS NO CONTRIBUTION TO GFI
36 - NUMBER OF INPUT DATA POINTS
72 - NUMBER OF POINTS FOR SIGMA CALCULATION (IN THE CIRCLE)
1 - ELEMENT GENERATION METHOD
5 - START NODE
35 - STOP NODE
4.5 - X AXIS OFFSET
4.0 - Y AXIS OFFSET
0.3 - DESIRED DIMENSION (ORIGIN TO FIRST POINT, WAVELENGTHS)
1.0 - REAL PART OF ALPHA
0.0 - IMAGINARY PART OF ALPHA
1.0 - REAL PART OF BETA
0.0 - IMAGINARY PART OF BETA
P - PLANEWAVE GENERATOR ENABLED
1.0 - PLANEWAVE AMPLITUDE
3.00E+08 - INPUT FREQUENCY OF THE PLANEWAVE, FO

<table>
<thead>
<tr>
<th>Angle, X, Y Coord.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>120</td>
</tr>
<tr>
<td>130</td>
</tr>
<tr>
<td>140</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>160</td>
</tr>
<tr>
<td>170</td>
</tr>
<tr>
<td>180</td>
</tr>
<tr>
<td>190</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>210</td>
</tr>
<tr>
<td>220</td>
</tr>
<tr>
<td>230</td>
</tr>
</tbody>
</table>

72
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>43301270</td>
<td>25000000</td>
</tr>
<tr>
<td>250</td>
<td>46984630</td>
<td>17101000</td>
</tr>
<tr>
<td>260</td>
<td>49240390</td>
<td>08682403</td>
</tr>
<tr>
<td>270</td>
<td>50000000</td>
<td>00000007</td>
</tr>
<tr>
<td>280</td>
<td>49240390</td>
<td>08682416</td>
</tr>
<tr>
<td>290</td>
<td>46984630</td>
<td>17101010</td>
</tr>
<tr>
<td>300</td>
<td>43301270</td>
<td>25000010</td>
</tr>
<tr>
<td>310</td>
<td>38302220</td>
<td>32139390</td>
</tr>
<tr>
<td>320</td>
<td>32139380</td>
<td>38302230</td>
</tr>
<tr>
<td>330</td>
<td>24999990</td>
<td>43301280</td>
</tr>
<tr>
<td>340</td>
<td>17101000</td>
<td>46984630</td>
</tr>
<tr>
<td>350</td>
<td>08682401</td>
<td>49240390</td>
</tr>
</tbody>
</table>
APPENDIX B. READ PROGRAM

C
REAL A(0:2000), B(0:2000), MRES, DIST, XORIGIN, YORIGIN
REAL C, D, E, F, DPER, DD, FREQ, E0, MAXD
INTEGER I, J, METHOD, STARTND, STOPND, NRES, MODE, LBIAS, GBIAS
CHARACTER*1 CHAR, CHAR1, CHAR2, CHAR3, CHAR4, CHAR5
CHARACTER*13 NAME

OPEN(UNIT = 1, FILE = 'D: FINALDWG.DAT')
OPEN(UNIT = 2, FILE = 'C: MSFORT INPUT.DAT')
J = 0

WRITE(*,*) 'ENTER THE PLOT NAME OR LABEL (MAX OF 13 CHARACTERS)'
READ(*,1005) NAME
WRITE(*,*) 'ENTER THE COORDINATE SYSTEM IN USE. (R OR P)'
READ(*,1000) CHAR
WRITE(*,*) 'DO YOU WANT INTERMEDIATE VALUES? (I)'
READ(*,1000) CHAR1
WRITE(*,*) 'DO YOU WANT A DISPLA PROGRAM GENERATED? (D)'
READ(*,1000) CHAR2
WRITE(*,*) 'UNIFORM SLAB (NO MATERIAL TO VACUUM INTERFACE? (U)'
READ(*,1000) CHAR3
WRITE(*,*) 'MESH GENERATION ONLY? (M)'
READ(*,1000) CHAR4
WRITE(*,*) 'ENTER THE MESH RESOLUTION. (0.4, ETC...)'
READ(*,*) MRES
WRITE(*,*) 'ENTER THE CONTOUR DISTANCE. (0.3, ETC...)'
READ(*,*) DIST
WRITE(*,*) 'ENTER THE GFI SCALE FACTOR. (1.0, ETC...)'
READ(*,*) DPER
WRITE(*,*) 'ENTER THE GFI (< 1 BIAS TERM (0,1, ETC...)'
READ(*,*) LBIAS
WRITE(*,*) 'ENTER THE GFI (> 1 BIAS TERM (0,1, ETC...)'
READ(*,*) GBIAS
WRITE(*,*) 'ENTER THE GFI MAX DISTANCE (999.0, ETC...)'
READ(*,*) MAXD
WRITE(*,*) 'ENTER THE NUMBER OF POINTS FOR SIGMA CALC. (36,ETC...)'
READ(*,*) NRES
WRITE(*,*) 'ENTER THE DRAWING METHOD. (1 - 6)'
READ(*,*) METHOD
WRITE(*,*) 'ENTER THE STARTING NODE NUMBER. (MUST BE > 0)'
READ(*,*) STARTND
WRITE(*,*) 'ENTER THE BISECTION STOPPING NODE NUMBER. '
READ(*,*) STOPND
WRITE(*,*) 'DESIGNED DISTANCE FROM ORIGIN TO POINT 1 (IN WLs) '
READ(*,*) DD
WRITE(*,*) 'ENTER THE X AXIS ORIGIN.'
READ(*,*) XORIGIN
WRITE(*,*) 'ENTER THE Y AXIS ORIGIN.'
READ(*,*) YORIGIN
WRITE(*,*) 'ENTER THE REAL COMPONENT OF ALPHA.'
READ(*,*) C

74
WRITE(*,*) 'ENTER THE IMAGINARY COMPONENT OF ALPHA.'
READ(*,*) D
WRITE(*,*) 'ENTER THE REAL COMPONENT OF BETA.'
READ(*,*) E
WRITE(*,*) 'ENTER THE IMAGINARY COMPONENT OF BETA.'
READ(*,*) F
WRITE(*,*) 'PLANE WAVE (P) OR CYLINDRICAL MODE (C)'
READ(*,1000) CHAR5
WRITE(*,*) 'ENTER THE WAVE FREQUENCY (IN HERTZ)'
READ(*,*) FREQ
WRITE(*,*) 'ENTER THE WAVE AMPLITUDE '
READ(*,*) EO
IF((CHAR5.EQ. 'C').OR. (CHAR5.EQ. 'c')) THEN
 WRITE(*,*) 'ENTER THE MODE NUMBER '
 READ(*,*) MODE
ENDIF
DO 10, I = 0, 1999
 READ(1,*,ERR = 20) A(J), B(J)
 IF(A(J).GT.1000) THEN
 GOTO 5
 ELSEIF(B(J).GT.1000) THEN
 GOTO 5
 ELSE
 J = J + 1
 ENDIF
5 CONTINUE
10 CONTINUE
20 J = J - 1
WRITE(2,1005) NAME
WRITE(2,1000) CHAR
WRITE(2,1000) CHAR1
WRITE(2,1000) CHAR2
WRITE(2,1000) CHAR3
WRITE(2,1000) CHAR4
WRITE(2,1010) MRES
WRITE(2,1010) DIST
WRITE(2,1010) DPER
WRITE(2,1020) LBIAS
WRITE(2,1020) GBIAS
WRITE(2,1040) MAXD
WRITE(2,1020) J
WRITE(2,1020) NRES
WRITE(2,1020) METHOD
WRITE(2,1020) STARTND
WRITE(2,1020) STOPND
WRITE(2,1010) XORIGIN
WRITE(2,1010) YORIGIN
WRITE(2,1010) DD
WRITE(2,1010) C
WRITE(2,1010) D
WRITE(2,1010) E
WRITE(2,1010) F
WRITE(2,1000) CHAR5
WRITE(2,1010) EO
IF((CHAR5.EQ. 'C').OR. (CHAR5.EQ. 'c')) THEN
 WRITE(2,1020) MODE
ENDIF
ENDIF
WRITE(2,*) FREQ
DO 30, I = 1, J
 WRITE(2,1030) I, A(I), B(I)
30 CONTINUE
WRITE(2,*), 'END OF FILE'
C
1000 FORMAT(A1)
1005 FORMAT(A13)
1010 FORMAT(F8.6)
1020 FORMAT(I3)
1030 FORMAT(1X,I3,7X,F12.8,5X,F12.8)
1040 FORMAT(F8.3)
C
CLOSE(1)
CLOSE(2)
STOP
END
APPENDIX C. MESH GENERATION/FINITE ELEMENT PROGRAM

FINITE ELEMENT MESH GENERATION PROGRAM
WRITTEN BY LT. T.B. WELCH

w/ PROGRAMMING IDEAS FROM PROF. M.A. MORGAN

COMPLETELY FILE (INPUT.DAT) DRIVEN

INPUT PARAMETERS:

CHARACTER (POLAR OR RECTANGULAR INPUT DATA - FLAG)
CHARACTER (INTERMEDIATE MATRICES WRITE - FLAG)
CHARACTER (DISSPLA PROGRAM GENERATION - FLAG)
CHARACTER (UNIFORM MATERIAL - FLAG)
CHARACTER (MESH GENERATION ONLY - FLAG)
MESH RESOLUTION
CONTOUR OFFSET
DESIRED SCALE FACTOR FOR GREEN'S FUNCTION INTEGRAL
BIAS (SHIFT) FOR GFI STEP WHEN < 1.0
BIAS (SHIFT) FOR GFI STEP WHEN > 1.0
MAXIMUM DISTANCE BEYOND WHICH THERE WILL BE NO CONTRIBUTION TO THE GREEN'S FUNCTION INTEGRAL
NUMBER OF POINTS
NUMBER OF POINTS FOR CROSS SECTION, (IN THE CIRCLE)
MESH GENERATION TECHNIQUE
START NODE
STOP NODE
X ORIGIN
Y ORIGIN
DESIRED DISTANCE (FROM ORIGIN TO FIRST POINT, WAVELENGTH)
ALPHA (INPUT AS A AND B THEN CONVERTED TO COMPLEX ALPHA)
BETA (INPUT AS A AND B THEN CONVERTED TO COMPLEX BETA)
CHARACTER (PLANEWAVE GENERATOR - FLAG)
AMPLITUDE
FREQUENCY (IN HERTZ)
-- OR --
AMPLITUDE
CYLINDRICAL MODE NUMBER (GENERATOR ALWAYS DOES N=1)
FREQUENCY (IN HERTZ)
-- OR --
BOUNDARY CONDITIONS
DATA POINT PAIRS (X, Y OR RADIUS, THETA)
END OF FILE MARKER

COMPLEX ALPHA,BETA,BCOND(100),LINE(50),ANS(100)
COMPLEX A(50,50),B(50,50),C(50,50),P(50,100),SURBC(100)
COMPLEX U(100,100),PSI(50,100),SVEC(50,100)
REAL MRES,MESH(0:200,5),NDF(200,2),OFFSET,DER,MRESW
REAL MINAREA,MAXAREA,AREA,E0,XORIGIN,YORIGIN,K0,MAXD
INTEGER NPNTS,PERND,NODES(200),MOR(200),BIND,NBMX,UNK,LBIAS,GBIAS

77
INTEGER LND(0:200,3),NDL(200,4),NCT(200),MAXEL,IMX,MX,E,NRES
INTEGER METHOD,STARTND,STOPND,MINROW,MNENL,MAXROW,NABC(100,3)
CHARACTER*1 CHAR, CHAR1, CHAR2, CHAR3, CHAR4, CHAR5
EQUIVALENCE (PSI, P)

COMMON/BLK1/MESH
COMMON/BLK2/PERND,BIND
COMMON/BLK3/NODES
COMMON/BLK4/LND,NDL,NCT
COMMON/BLK5/NDP
COMMON/BLK6/MOR
COMMON/BLK7/MINAREA,MINROW,MNENL,MAXAREA,MAXROW,MAXEL,AREA
COMMON/BLK8/A,B,C,P
COMMON/BLK9/CHAR2, CHAR3, CHAR4

OPEN (UNIT = 1, FILE = 'MATRIX.DAT', STATUS = 'UNKNOWN')
OPEN (UNIT = 2, FILE = 'PLT.DAT', STATUS = 'UNKNOWN')
OPEN (UNIT = 3, FILE = 'INPUT.DAT', STATUS = 'UNKNOWN', ACCESS = 'SEQUENTIAL', FORM = 'UNFORMATTED')
OPEN (UNIT = 4, FILE = 'TEXT.LBL', STATUS = 'UNKNOWN')
OPEN (UNIT = 7, FILE = 'RS.DAT', STATUS = 'UNKNOWN', ACCESS = 'SEQUENTIAL', FORM = 'UNFORMATTED')
OPEN (UNIT = 8, FILE = 'PSI.DAT', STATUS = 'UNKNOWN', ACCESS = 'SEQUENTIAL', FORM = 'FORMATTED')
OPEN (UNIT = 9, FILE = 'ABCP.DAT', STATUS = 'UNKNOWN')
OPEN (UNIT = 10, FILE = 'BCOND.DAT', STATUS = 'UNKNOWN')
OPEN (UNIT = 11, FILE = 'FMATRIX.DAT', STATUS = 'UNKNOWN')
OPEN (UNIT = 12, FILE = 'NABC.DAT', STATUS = 'UNKNOWN')
OPEN (UNIT = 13, FILE = 'OUTPUT.DAT', STATUS = 'UNKNOWN')
OPEN (UNIT = 19, FILE = 'ABMAT.DAT', STATUS = 'UNKNOWN')
OPEN (UNIT = 20, FILE = 'DISPLA.DAT', STATUS = 'UNKNOWN')
OPEN (UNIT = 30, FILE = 'U.DAT', STATUS = 'UNKNOWN')
OPEN (UNIT = 40, FILE = 'F3.DAT', STATUS = 'UNKNOWN')

MINAREA = 999999.9
MAXAREA = -999999.9

CALL IO(NPNTS,MRES,METHOD,STARTND,STOPND,OFFSET,ALPHA,BETA,BCOND,
CEO,CHAR1,MODE,XORIGIN,YORIGIN,CHAR3,DIRX,DPER,K0,NRES,MRESW,LBIAS,GBIAS
C,MAXD)
CALL ROTATE(NPNTS,METHOD,STARTND,STOPND)
CALL BOUND(MRES,NPNTS,METHOD,STOPND)
CALL NORMAL
CALL NODSET(METHOD,NABC,NBMX,UNK)
PAUSE 'PLEASE PRESS ENTER TO CONTINUE, OR CTRL BREAK TO ABORT!'
CALL LOADER(BCOND,OFFSET,ALPHA,BETA,NABC,IMX,NBMX,EO,SURBC,CHAR1,
CLINE,MODE,XORIGIN,YORIGIN,SVEC,CHAR5)
CALL SWEEP(IMX,NABC,SURBC,LINE,CHAR1,U,BCOND,PSI,ANS,CHAR5)
CALL SAVE(BCOND,ANS,U,OFFSET,PERND,CHAR5,DPER,K0,XORIGIN,YORIGIN,
CNRES,MRESW,LBIAS,GBIAS,MAXD)

CLOSE(1)
CLOSE(2)
CLOSE(3)
CLOSE(4)
CLOSE(7)
CLOSE(8)
SUBROUTINE IO(NPNTS,MRES,METHOD,STARTND,STOPND,DIST,ALPHA,BETA,
 CBCOND,E0,CHAR1,MODE,XORIGIN,YORIGIN,CHAR5,DPER,K0,NRES,MRESW,
 CLBIAS,GBIAS,MAXD)

C
C THIS SUBROUTINE READS IN THE INPUT PARAMETERS
C AND SURFACE DATA POINTS. THESE POINTS CAN BE
C IN EITHER POLAR OR RECTANGULAR FORM.
C
COMPLEX ALPHA,BETA,BCOND(100)
REAL A,B,PI,XORIGIN,YORIGIN,E0,K0,F0,SFAC,DD
REAL MESH(O:200,5),MRES,THETA,RADIUS,DIST,C,LAMBDA,MRESW
REAL DSW,DPER,MAXD
INTEGER I,II,J,K,NPNTS,RES,METHOD,STARTND,STOPND,MODE,NRES,LBIAS
INTEGER GBIAS
CHARACTER*1 CHAR,CHAR1,CHAR2,CHAR3,CHAR4,CHAR5
CHARACTER*12 NAME

C
C COMMON/BLK1/MESH
COMMON/BLK9/CHAR2,CHAR3,CHAR4

C = 2.997925E+08
PI = 4.0*ATAN(1.0)
READ(3,1070) NAME
READ(3,1000) CHAR
READ(3,1000) CHAR2
READ(3,1000) CHAR3
READ(3,1000) CHAR4
READ(3,1000) CHAR5
READ(3,*) MRESW
READ(3,*) DSW
READ(3,*) DPER
READ(3,*) LBIAS
READ(3,*) GBIAS
READ(3,*) MAXD
READ(3,*) RES
READ(3,*) MRES
READ(3,*) METHOD
READ(3,*) STARTND
READ(3,*) STOPND
READ(3,*) XORIGIN
READ(3,*) YORIGIN
READ(3,*) DD
READ(3,*) A
READ(3,*) B
ALPHA = CMPLX(A,B)
READ(3,*) A
READ(3,*) B
BETA = CMPLX(A,B)
READ(3,1000) CHAR1
C
IF(METHOD.EQ.1) THEN
WRITE(6,*) 'METHOD 1 SELECTED - OBJECT BISECTION'
ELSEIF(METHOD.EQ.2) THEN
WRITE(6,*) 'METHOD 2 SELECTED - CONNECTED NODES'
ELSEIF(METHOD.EQ.3) THEN
WRITE(6,*) 'METHOD 3 SELECTED - SELECTED STOP NODE'
ELSEIF(METHOD.EQ.4) THEN
WRITE(6,*) 'METHOD 4 SELECTED - CONNECTED/SELECTED STOP NODE'
ELSEIF(METHOD.EQ.5) THEN
WRITE(6,*) 'METHOD 5 SELECTED - EQUALLY SPACED CONNECTED NODE'
ELSE
WRITE(6,*) 'METHOD 6 SELECTED - SELECTED START AND STOP NODE'
ENDIF
C
IF((CHAR2.EQ. 'I').OR.(CHAR2.EQ. 'i')) THEN
WRITE(6,*) 'INTERMEDIATE MATRIX FILE GENERATION - ENABLED'
ELSE
WRITE(6,*) 'INTERMEDIATE MATRIX FILE GENERATION - DISABLED'
ENDIF
C
IF((CHAR3.EQ. 'D').OR.(CHAR3.EQ. 'd')) THEN
WRITE(6,*) 'DISSPLA FORTRAN PROGRAM GENERATION - ENABLED'
ELSE
WRITE(6,*) 'DISSPLA FORTRAN PROGRAM GENERATION - DISABLED'
ENDIF
C
IF((CHAR4.EQ. 'U').OR.(CHAR4.EQ. 'u')) THEN
WRITE(6,*) 'UNIFORM MATERIAL SPECIFIED (NO INTERFACE)'
ELSE
WRITE(6,*) 'MATERIAL SPECIFIED WITH A VACUUM AROUND OBJECT'
ENDIF
C
IF((CHAR5.EQ. 'M').OR.(CHAR5.EQ. 'm')) THEN
WRITE(6,*) 'MESH GENERATION <<< ONLY >>> - ENABLED'
ELSE
WRITE(6,*) 'MESH GENERATION AND FE PROGRAM - ENABLED'
ENDIF
C
IF((CHAR1.EQ. 'P').OR.(CHAR1.EQ. 'p')) THEN
READ(3,*) EO
READ(3,*) FO
LAMBDA = C/FO
KO = 2*PI/LAMBDA
WRITE(6,*) 'PLANEWAVE BOUNDARY VALUE GENERATION - ENABLED'
WRITE(6,*) 'AMPLITUDE(E0) = ', EO, ', WAVENUMBER(KO) = ', KO
WRITE(6,1%)'WAVELENGTH = ',LAMBDA, ', FREQUENCY(FO) = ',FO
ELSEIF((CHAR1.EQ. 'C').OR.(CHAR1.EQ. 'c')) THEN
READ(3,*) EO
READ(3,*) MODE
80
READ(3,*) FO
LAMBDA = C/FO
KO = 2*PI*LAMBDA
WRITE(6,*) 'CYLINDRICAL BOUNDARY VALUE GENERATION - ENABLED'
WRITE(6,*) 'AMPLITUDE(EO) = ', EO, ', MODE NUMBER = ', MODE
WRITE(6,*) 'WAVELENGTH = ', LAMBDA, ', FREQUENCY(FO) = ', FO
ELSE
WRITE(6,*) 'ALL BOUNDARY VALUE GENERATION METHODS - DISABLED'
DO 5, K = 1, RES
READ(3,*), BCOND(K)
5 CONTINUE
ENDIF

C
C POLAR COORDINATE INPUT ROUTINE
C
IF((CHAR.EQ. 'P') .OR. (CHAR.EQ. 'p')) THEN
READ(3,1020) THETA, RADIUS
SFAC = 2*PI*DD/RADIUS
MESH(0,4) = (RADIUS*SIN(THETA*PI/180.0))*SFAC + XORIGIN
MESH(0,5) = (RADIUS*COS(THETA*PI/180.0))*SFAC + YORIGIN
DO 10, J = 1, RES-1
READ(3,1020) THETA, RADIUS
MESH(J,4) = (RADIUS*SIN(THETA*PI/180.0))*SFAC + XORIGIN
MESH(J,5) = (RADIUS*COS(THETA*PI/180.0))*SFAC + YORIGIN
10 CONTINUE
WRITE(6,*) 'POLAR COORDINATE INPUT SELECTED'
ELSEIF((CHAR.EQ. 'R') .OR. (CHAR.EQ. 'r')) THEN
READ(3,1010) MESH(0,4), MESH(0,5)
SFAC = 2*PI*DD/((MESH(0,4)**2+MESH(0,5)**2)**0.5)
MESH(0,4) = MESH(0,4)*SFAC + XORIGIN
MESH(0,5) = MESH(0,5)*SFAC + YORIGIN
DO 20, J = 1, RES-1
READ(3,1010) MESH(J,4), MESH(J,5)
MESH(J,4) = MESH(J,4)*SFAC + XORIGIN
MESH(J,5) = MESH(J,5)*SFAC + YORIGIN
20 CONTINUE
WRITE(6,*) 'RECTANGULAR COORDINATE INPUT SELECTED'
ELSE
WRITE(6,*) 'INPUT DATA FILE COORDINATE SPECIFICATION ERROR'
ENDIF

WRITE(*,1100) DD, SFAC
MESH(RES,4) = MESH(0,4)
MESH(RES,5) = MESH(0,5)
NPNTS = J
WRITE(6,*) 'NODE AT 0 DEGREES (X/Y COORDINATES) = ', MESH(0,4), CMESH(0,5)
WRITE(6,*) 'X, Y OFFSETS = ', XORIGIN, YORIGIN
WRITE(6,1090) ALPHA, BETA
MRES = MRESW*2*PI
WRITE(6,*) 'MESH RESOLUTION = ', MRES, ' WAVELENGTHS'
DIST = DISTW*2*PI
WRITE(6,*) 'CONTOUR DISTANCE = ', DIST, ' WAVELENGTHS'
WRITE(6,*) 'NUMBER OF DATA POINTS = ', RES
81
IF((METHOD.EQ.3).OR.(METHOD.EQ.6)) THEN
 WRITE(6,*) 'START NODE =',STARTND
 WRITE(6,*) 'STOP NODE =',STOPND
ENDIF

WRITE(4,*) '17'
WRITE(4,*) '10 1 0 130
C 55
WRITE(4,*) '2 1 0 365
C 80
WRITE(4,*) '2 1 0 365
C 90
WRITE(4,*) '2 1 0 365
C 100
WRITE(4,*) '2 1 0 365
C 110
WRITE(4,*) '2 1 0 365
C 120
WRITE(4,*) '2 1 0 365
C 130
WRITE(4,*) '2 1 0 365
C 140
WRITE(4,*) '2 1 0 365
C 150
WRITE(4,*) '2 1 0 365
C 160
WRITE(4,*) '2 1 0 365
C 170
WRITE(4,*) '2 1 0 365
C 180
WRITE(4,*) '2 1 0 365
C 190
WRITE(4,*) '2 1 0 365
C 200
WRITE(4,*) '2 1 0 365
C 210
WRITE(4,*) '2 1 0 365
C 220
WRITE(4,*) '2 1 0 365
C 230
WRITE(4,1070) NAME
WRITE(4,*) 'L'
WRITE(4,*) 'Mesh Resolution'
WRITE(4,1030) MRESW
WRITE(4,*) 'L'
WRITE(4,*) 'Contour Distance'
WRITE(4,1030) DISTW
WRITE(4,*) 'L'
WRITE(4,*) 'Number of Points'
WRITE(4,1040) RES
WRITE(4,*) 'L'
WRITE(4,*) 'Method'
WRITE(4,*) 'L'

82
WRITE(4,1040) 'Method
WRITE(4,*) 'L'
WRITE(4,*) 'X Origin'
WRITE(4,*) 'L'
WRITE(4,1050) XORIGIN
WRITE(4,*) 'L'
WRITE(4,*) 'Y Origin'
WRITE(4,.*) 'L'
WRITE(4,1050) YORIGIN
WRITE(4,*) 'L'
WRITE(4,.*) 'Alpha'
WRITE(4,*) 'L'
WRITE(4,1060) ALPHA
WRITE(4,*) 'L'
WRITE(4,*) 'Beta'
WRITE(4,*) 'L'
WRITE(4,1060) BETA
WRITE(4,*) 'L'
WRITE(4,*) '9'

DO 30, II = 0, NPNTS-1
 WRITE(2,*) MESH(II,4), MESH(II,5)
30 CONTINUE
WRITE(2,*) MESH(0,4), MESH(0,5)
WRITE(2,*) '999992, 999991'
WRITE(2,*) '999990, 999990'
C
1000 FORMAT(A1)
1010 FORMAT(10X,F12.8,4X,F12.8)
1020 FORMAT(3X,I3,5X,F12.8)
1030 FORMAT(F8.6)
1040 FORMAT(I4)
1050 FORMAT(1X,F8.6)
1060 FORMAT(1X,F8.6,' - J',F8.6)
1070 FORMAT(A12)
1080 FORMAT(/)
1090 FORMAT(1X,'ALPHA = ',F8.4,2X,'+ J ',F6.4,', BETA = ',F8.4,2X,'+ J C ',F6.4)
1100 FORMAT(1X,'DESIRED DISTANCE = ',F8.5,', SCALE FACTOR = ',F8.5)
RETURN
END
C
SUBROUTINE ROTATE(NPNTS, METHOD, STARTND, STOPND)
C
THIS SUBROUTINE ROTATES THE SURFACE POINTS TO ALLOW FOR A REARRANGING OF THE START NODE (FIRST DATA POINT).

REAL MESH(0:200,5)
INTEGER I, NPNTS, METHOD, STARTND, STOPND
COMMON/BLK1/MESH
C
IF(METHOD.EQ.6) THEN
 DO 10, I = 0, NPNTS-1
 MESH(I,1) = MESH(I,4)
10 CONTINUE
MESH(I,2) = MESH(I,5)
CONTINUE
C
DO 20, I = STARTND-1, NPNTS-1
MESH(I-(STARTND-1),4) = MESH(I,1)
MESH(I-(STARTND-1),5) = MESH(I,2)
20 CONTINUE
C
DO 30, I = 1, STARTND
MESH(I+NPNTS-STARTND,4) = MESH(I-1,1)
MESH(I+NPNTS-STARTND,5) = MESH(I-1,2)
30 CONTINUE
ENDIF
STOPND = STOPND - STARTND + 1
IF(STOPND.GT.NPNTS) THEN
STOPND = STOPND - NPNTS
ELSEIF(STOPND.LT.0) THEN
STOPND = NPNTS + STOPND +1
ELSEIF(STOPND.EQ.0) THEN
STOPND = 1
ELSE
STOPND = STOPND
ENDIF
RETURN
END
C
C SUBROUTINE BOUND(MRES,NPNTS,METHOD,STOPND)
C
THIS SUBROUTINE REORDERS THE SURFACE POINTS
BASED ON THE DESIRED INPUT MESH RESOLUTION. THE
OBJECT IS ALSO BISECTED.
C
REAL PERIM, DIST, MESH(0:200,5), TEMP, TEMP1, MRES, MRESN, MRESLW
REAL MRESNL, MRESNR, TEMPR, TEMPL, DISTB, DZ, PI, MRESW, MRESRW
INTEGER I, PERND, BIND, NPNTS,STARTND, STOPND, METHOD, NEWND, J
INTEGER M, L
COMMON/BLK1/MESH
COMMON/BLK2/PERND,BIND
C
PI = 4.0*ATAN(1.0)
PERIM = 0.0
C
DO 10, I = 0, NPNTS-1
DIST = SQRT((MESH(I+1,4)-MESH(I,4))**2+(MESH(I+1,5) -
C MESH(I,5))**2)
PERIM = PERIM + DIST
MESH(I+1,3) = PERIM
10 CONTINUE
WRITE(6,*) 'PERIMETER LENGTH = ', PERIM
PERND = NINT(PERIM/MRES - AMOD(PERIM/MRES, 2.0))
BIND = (PERND - 2)/2
WRITE(6,*) 'PERIMETER NODE # = ', PERND
MRESW = MRES/(2*PI)
WRITE(6,*) 'YOUR REQUESTED MESH RESOLUTION OF ', MRESW
IF((METHOD.EQ.3).OR.(METHOD.EQ.4).OR.(METHOD.EQ.5).OR.
C(METHOD.EQ.6)) THEN

C
MRESNL = (PERIM - MESH(STOPND-1,3))/FLOAT(PERND/2)
MRESLN = MRESNL/(2*PI)
MRESNR = MESH(STOPND-1,3)/FLOAT(PERND/2)
MRESRW = MRESNR/(2*PI)
WRITE(6,*),' . . . HAS BEEN MODIFIED TO . . . ',MRESLW
WRITE(6,*),' LEFT SIDE OF SEGMENT . . . ',MRESRW
WRITE(6,*),' RIGHT SIDE OF SEGMENT . . . ',MRESRW
ELSE
MRESN = PERIM/FLOAT(PERND)
MRESW = MRESN/(2*PI)
WRITE(6,*),' . . . HAS BEEN MODIFIED TO . . . ',MRESW
ENDIF
C
C PERIMETER NODE INITIALIZATION (X,Y COORD)
C
IF((METHOD.EQ.1). OR. (METHOD.EQ.2)) THEN
DO 30, I = 0, PERND-1
 TEMP = MRESN*I
 J = 1
 IF(TEMP.GT.MESH(J,3)) THEN
 J = J + 1
 GOTO 20
 END IF
30 CONTINUE
C
ELSE
DO 60, I = 0, PERND-1
 TEMPR = MRESNR*I
 TEMPL = PERIM - MRESNL*(PERND - I)
 IF(TEMPL.LE.MESH(STOPND-1,3)) THEN
 J = 1
 END IF
 IF(TEMPL.GT.MESH(J,3)) THEN
 J = J + 1
 GOTO 40
 END IF
60 CONTINUE
C
ENDIF
C
85
BISECTION NODE INITIALIZATION (X,Y COORD)

WRITE(6,*) 'BISECTION NODE #', BIND
IF((METHOD.EQ.1).OR.(METHOD.EQ.3)) THEN
 DO 70, I = 1, BIND
 TEMP1 = I/FLOAT(BIND + 1)
 MESH(I+PERND,1) = MESH(1,1) + TEMP1*(MESH(BIND+2,1) - CMESH(1,1))
 MESH(I+PERND,2) = MESH(1,2) + TEMP1*(MESH(BIND+2,2) - CMESH(1,2))
 CONTINUE
ELSE
 DO 80, I = 2, PERND+1
 MESH(PERND+I-1,1) = MESH(PERND+2-I,1) + 0.5*(MESH(I,1) - CMESH(1,1))
 MESH(PERND+I-1,2) = MESH(PERND+2-I,2) + 0.5*(MESH(I,2) - CMESH(1,2))
 CONTINUE
ENDIF

IF((METHOD.EQ.5).OR.(METHOD.EQ.6)) THEN
 DO 90, M = 1, BIND
 MESH(M,4) = MESH(PERND+M,1)
 MESH(M,5) = MESH(PERND+M,2)
 CONTINUE
 DISTB = 0.0
 MESH(0,3) = 0.0
 DO 100, L = 1, BIND+1
 IF(L.EQ.1) THEN
 DIST = SQRT((MESH(1,1) - MESH(1,4)**2 + CMESH(1,2) - MESH(1,5)**2)**2)
 ELSEIF(L.EQ.BIND+1) THEN
 DIST = SQRT((MESH(BIND,4) - MESH(BIND+2,1))**2 + CMESH(BIND,5) - MESH(BIND+2,2)**2)**2)
 ELSE
 DIST = SQRT((MESH(L-1,4) - MESH(L,4))**2 + CMESH(L-1,5) - MESH(L,5)**2)**2)
 ENDIF
 DISTB = DISTB + DIST
 MESH(L,3) = DISTB
 CONTINUE
 DZ = DISTB/(BIND + 1.0)
WRITE(6,*) 'DZ SPACING = ', DZ
DO 120, I = 1, BIND
 TEMP = DZ*I
 J = 1
 IF(TEMP.GT.MESH(J,3)) THEN

86
J = J + 1
GOTO 110

ENDIF
IF(J .EQ. 1) THEN
 TEMP1 = TEMP/(SQRT((MESH(1,1) - MESH(1,4))**2 +
C (MESH(1,2) - MESH(1,5))**2))
 MESH(PERND+I,1) = MESH(1,1) + TEMP1*(MESH(1,4)
C - MESH(1,1))
 MESH(PERND+I,2) = MESH(1,2) + TEMP1*(MESH(1,5)
C - MESH(1,2))
ELSE
 TEMP1 = (TEMP - MESH(J-1,3))/(SQRT((MESH(J,4) -
C MESH(J-1,4))**2 + (MESH(J,5) - MESH(J-1,5))**2))
 MESH(PERND+I,1) = MESH(J-1,4) + TEMP1*(MESH(J,4)
C - MESH(J-1,4))
 MESH(PERND+I,2) = MESH(J-1,5) + TEMP1*(MESH(J,5)
C - MESH(J-1,5))
ENDIF
120 CONTINUE
ENDIF
RETURN
END

C
C SUBROUTINE NORMAL
C
C THIS ROUTINE COMPUTES THE X AND Y COMPONENTS
C OF THE OUTWARD UNIT NORMAL AT EACH SURFACE POINT.
C
REAL DR, DZ, DL, MESH(0:200,5)
INTEGER I, PERND, BIND
COMMON/BLK1/MESH
COMMON/BLK2/PERND,BIND
DO 10, I = 1, PERND
 IF(I .EQ. 1) THEN
 DR = MESH(2,1) - MESH(PERND,1)
 DZ = MESH(2,2) - MESH(PERND,2)
 DL = SQRT(DR**2 + DZ**2)
 MESH(1,3) = -DZ/DL
 MESH(1,4) = DR/DL
 ELSEIF(I .EQ. PERND) THEN
 DR = MESH(1,1) - MESH(PERND-1,1)
 DZ = MESH(1,2) - MESH(PERND-1,2)
 DL = SQRT(DR**2 + DZ**2)
 MESH(PERND,3) = -DZ/DL
 MESH(PERND,4) = DR/DL
 ELSE
 DR = MESH(I+1,1) - MESH(I-1,1)
 DZ = MESH(I+1,2) - MESH(I-1,2)
 DL = SQRT(DR**2 + DZ**2)
 MESH(I,3) = -DZ/DL
 MESH(I,4) = DR/DL
 ENDIF
10 CONTINUE
RETURN

87
SUBROUTINE NODSET(METHOD,NABC,NBNI,UNK)

THIS ROUTINE USES A TWO-SWEEP TECHNIQUE TO COMPUTE THE
NUMBER OF NODES ALONG EACH NODE ROW. IF A MESH
ORIENTATION ATTRIBUTE IS ALSO SET.

SET Z-AXIS SPACING AND ENDPOINT NODES

REAL D, ZZ, MESH(0:200,5), D, DIST, DISTB
INTEGER I, J, NODES(200), PERND, NOLD, NNEW, BIND
INTEGER L, METHOD, NABC(100,3), NBNI, UNK
CHARACTER*1 CHAR2, CHAR3, CHAR4
COMMON/BLK1/MESH
COMMON/BLK2/PERND,BIND
COMMON/BLK3/NODES
COMMON/BLK6/MOR
COMMON/BLK9/CHAR2,CHAR3,CHAR4

UNK = 0
NBNI = -99
IF((METHOD .EQ. 1).OR.(METHOD .EQ. 3)) THEN
 DZ = (SQRT((MESH(1,2) - MESH(BIND+2,2))**2 +
 (MESH(1,1) - MESH(BIND+2,1))**2))/(BIND + 1.0)
ELSE
 DISTB = 0.0
 DO 10, L = 1, BIND+1
 IF(L .EQ. 1) THEN
 DIST = SQRT((MESH(1,1) - MESH(PERND+1,1))**2 +
 (MESH(1,2) - MESH(PERND+1,2))**2)
 ELSEIF(L .EQ. BIND+1) THEN
 DIST = SQRT((MESH(PERND+BIND,1) - MESH(BIND+2,1))**2 +
 (MESH(PERND+BIND,2) - MESH(BIND+2,2))**2)
 ELSE
 DIST = SQRT((MESH(PERND+1-1,1) - MESH(PERND+1,1))**2)
 ENDIF
 NNEW = INT(0.1 + D/DZ) + 2
 NODES(I) = NNEW
 10 CONTINUE
 ENDIF
 DZ = DISTB/(BIND + 1.0)
END IF
WRITE(6,*) 'BISECTION SPACING = ', DZ
NODES(1) = 2
NODES(2) = 3
NODES(BIND+2) = 2
NODES(PERND+1) = 2
NODES(PERND) = 3

PERFORMING FORWARD-SWEEP

DO 20 I = 3, BIND+1
 NOLD = NODES(I-1)
 D = SQRT((MESH(I,1) - MESH(I+PERND-1,1))**2 +
 (MESH(I,2) - MESH(I+PERND-1,2))**2)
 NNEW = INT(0.1 + D/DZ) + 2
 NODES(I) = NNEW
20 CONTINUE
IF (NNEW GT NOLD+1) NODES(I) = NOLD + 1
IF (NNEW LT NOLD-1) NODES(I) = NOLD - 1
IF (NODES(I).LT.3) NODES(I) = 3

20 CONTINUE

C

J = PERND + 2
DO 30, I = PERND-1, BIND+3, -1
 NOLD = NODES(I+1)
 D = SQRT((MESH(I,1) - MESH(J,1))**2 +
 (MESH(I,2)-MESH(J,2))**2)
 NNEW = INT(0.1 + D/D2) + 2
 NODES(I) = NNEW
 IF (NNEW GT NOLD+1) NODES(I) = NOLD + 1
 IF (NNEW LT NOLD-1) NODES(I) = NOLD - 1
 IF (NODES(I).LT.3) NODES(I) = 3
 J = J + 1

30 CONTINUE

C

BACK-SWEEP TO RESET LAST NODES IF NEEDED

I = BIND + 2
DO 40, I = I - 1
 IF (I.EQ.2) GO TO 50
 IF (NODES(I).LE.NODES(I-1)+1) GO TO 60
 NODES(I) = NODES(I+1) + 1
 GO TO 40
40 CONTINUE

WRITE(6,*) ' PROGRAM ABORTED IN NODSET RIGHT SIDE BACKSWEEP ' STOP

50 CONTINUE

I = BIND + 2
DO 70, I = I + 1
 IF (I.EQ.PERND) GO TO 80
 IF (NODES(I).LE.NODES(I-1)+1) GO TO 90
 NODES(I) = NODES(I-1) + 1
 GO TO 70
70 CONTINUE

WRITE(6,*) ' PROGRAM ABORTED IN NODSET LEFT HALF BACKSWEEP ' STOP

80 CONTINUE

FORWARD SWEEP TO LOAD MESH ORIENTATION ARRAY, MOR

MOR(1) = 0
MOR(BIND+2) = 0
MOR(PERND+1) = 0

DO 100, I=2, BIND+1
 IF(NODES(I+1).GT.NODES(I)) THEN
 MOR(I) = 0
 ELSEIF(NODES(I+1).LT.NODES(I)) THEN
 MOR(I) = 1
 ELSE
 IF(NODES(I+2).GT.NODES(I)) THEN
 MOR(I) = 0
 100 CONTINUE
ELSEIF(NODES(I+2).LT.NODES(I)) THEN
 MOR(I) = 1
ELSE
 MOR(I) = MOR(I-1)
ENDIF

100 CONTINUE

C DO 110, I = PERND, BIND+3, -1
 IF(NODES(I-1).GT.NODES(I)) THEN
 MOR(I) = 0
 ELSEIF(NODES(I-1).LT.NODES(I)) THEN
 MOR(I) = 1
 ELSE
 IF(NODES(I-2).GT.NODES(I)) THEN
 MOR(I) = 0
 ELSEIF(NODES(I-2).LT.NODES(I)) THEN
 MOR(I) = 1
 ELSE
 MOR(I) = MOR(I+1)
 END IF
 END IF
110 CONTINUE

C DO 120, I = 1, BIND+2
 IF(I.EQ.1) THEN
 NABC(1,1) = 0
 NABC(1,2) = 1
 NABC(1,3) = 3
 ELSEIF(I.LE.BIND) THEN
 NABC(I,1) = NABC(I-1,2)
 NABC(I,2) = NABC(I-1,3)
 NABC(I,3) = NODES(PERND-I+1) + NODES(I+1) - 3
 ELSEIF(I.EQ.BIND+1) THEN
 NABC(I,1) = NABC(I-1,2)
 NABC(I,2) = NABC(I-1,3)
 NABC(I,3) = 1
 ELSE
 NABC(I,1) = NABC(I-1,2)
 NABC(I,2) = NABC(I-1,3)
 NABC(I,3) = 0
 END IF
120 CONTINUE

C DO 130, I = 1, BIND+2
 IF((CHAR2.EQ.'I').OR.(CHAR2.EQ.'i')) THEN
 WRITE(12,*) I,NABC(I,1),NABC(I,2),NABC(I,3)
 END IF
 UNK = UNK + NABC(I,2)
 IF(NABC(I,2).GE.NBMX) THEN
 NBMX = NABC(I,2)
 END IF
130 CONTINUE

C WRITE(*,*) 'MAXIMUM UNKNOWN WIDTH = ',NBMX
WRITE(*,*) 'TOTAL # OF UNKNOWNS = ',UNK
SUBROUTINE SORTER(I, LEL, LAND)

THIS SUBROUTINE GENERATES A MESH ROW FOR THE INPUT ROW I.
LOADING OF THE LOCAL NODE-ELEMENT CONNECTION MATRICES LAND AND
NDL FOR ELEMENTS BETWEEN I AND I+1 NODE ROWS. REFERENCE IS TO
THE LEFT SIDE OF THE Ith ROW OR VECTOR.

INTEGER NODES(200), MOR(200), LND(0:200,3), NDL(200,4), NCT(200)
INTEGER I, PERND, BIND, LEL, LAND, J, K, LL, JJ, NN, KK, N, N1, N2
INTEGER NDX, NDS1L, NDS2L, NDS1R, NDS2R, LNX
COMMON/BLK2/PERND, BIND
COMMON/BLK3/NODES
COMMON/BLK4/LND, NDL, NCT
COMMON/BLK6/MOR
IF(I.EQ.IND+2) THEN
WRITE(6,*) 'ERRORED OUT IN SUBROUTINE SORTER, YOU ATTEMPTED'
WRITE(6,*) 'TO CALL SORTER WITH I = BIND + 2!'
WRITE(6,*) 'THIS ROW HAS NO ELEMENTS'
RETURN
ENDIF
DO 20, J = 0, 200
 DO 10, K = 1, 3
 LND(J,K) = 0
 CONTINUE
20 CONTINUE
NDX = 200
NDS1L = NODES(PERND+2-I)
NDS2L = NODES(PERND+1-I)
NDS1R = NODES(I)
NDS2R = NODES(I+1)
LNX = NDS1L + NDS1R + NDS2L + NDS2R - 2

LEFTSIDE OF THE BISECTION SEGMENT

TOP ROW
IF(I.EQ.1) THEN
LND(1,1) = 4
LND(1,2) = 1
LND(1,3) = 3
LND(2,1) = 1
LND(2,2) = 4
LND(2,3) = 2
LND(3,1) = 5
LND(3,2) = 2
LND(3,3) = 4
LND(4,1) = 5
LND(4,2) = 2
LND(4,3) = 6
LND(5, 1) = 1
LND(5, 2) = 6
LND(5, 3) = 2
LND(6, 1) = 6
LND(6, 2) = 1
LND(6, 3) = 7
LEL = 6
LAND = 7

C

BOTTOM ROW

ELSEIF(I. EQ. BIND+1) THEN
LND(1, 1) = 2
LND(1, 2) = 6
LND(1, 3) = 1
LND(2, 1) = 6
LND(2, 2) = 2
LND(2, 3) = 7
LND(3, 1) = 3
LND(3, 2) = 7
LND(3, 3) = 2
LND(4, 1) = 3
LND(4, 2) = 7
LND(4, 3) = 4
LND(5, 1) = 6
LND(5, 2) = 4
LND(5, 3) = 7
LND(6, 1) = 4
LND(6, 2) = 6
LND(6, 3) = 5
LEL = 6
LAND = 7

C

EQUAL NODE NUMBERS

ELSEIF(NDS1L EQ. NDS2L) THEN
C FOR MOR = 0 (LH ORIENTATION)
IF(MOR(PERND+2-I).EQ.0) THEN
LND(1, 1) = 1
LND(1, 2) = NDS1L + NDS1R
LND(1, 3) = 2
LND(2, 1) = NDS1L + NDS1R + 1
LND(2, 2) = 2
LND(2, 3) = NDS1L + NDS1R
DO 40, N = 1, NDS1L-2
 N1 = 2*N + 1
 N2 = N1 + 1
DO 30, K = 1, 3
 LND(N1,K) = LND(1,K) + N
 LND(N2,K) = LND(2,K) + N
30 CONTINUE
40 CONTINUE
C FOR MOR = 1 (RH ORIENTATION)
ELSE
LND(1, 1) = NDS1L + NDS1R
LND(1, 2) = 1

92
LND(1, 3) = NDS1L + NDS1R + 1
LND(2, 1) = 2
LND(2, 2) = NDS1L + NDS1R + 1
LND(2, 3) = 1
DO 60, N = 1, NDS1L-2
 N1 = 2*N + 1
 N2 = N1 + 1
 DO 50, K = 1, 3
 LND(N1, K) = LND(1, K) + N
 LND(N2, K) = LND(2, K) + N
 50 CONTINUE
60 CONTINUE
ENDIF

LEFTHAND MESH ORIENTATION

ELSEIF(MOR(PERND+2-I).EQ.0) THEN
 LND(1, 1) = NDS1L + NDS1R + 1
 LND(1, 2) = 1
 LND(1, 3) = NDS1L + NDS1R
 LND(0, 1) = 0
 LND(0, 2) = NDS1L + NDS1R
 LND(0, 3) = 1
 DO 80, N = 1, NDS1L-1
 N1 = 2*N
 N2 = N1 + 1
 DO 70, K = 1, 3
 LND(N1, K) = LND(0, K) + N
 LND(N2, K) = LND(1, K) + N
 70 CONTINUE
80 CONTINUE

RIGHTHAND MESH ORIENTATION

ELSE
 LND(1, 1) = 2
 LND(1, 2) = NDS1L + NDS1R
 LND(1, 3) = 1
 LND(0, 1) = NDS1L + NDS1R - 1
 LND(0, 2) = 1
 LND(0, 3) = NDS1L + NDS1R
 DO 100, N = 1, NDS1L-2
 N1 = 2*N
 N2 = N1 + 1
 DO 90, K = 1, 3
 LND(N1, K) = LND(0, K) + N
 LND(N2, K) = LND(1, K) + N
 90 CONTINUE
100 CONTINUE
ENDIF

IF((I.EQ.1).OR.(I.EQ.BIND+1)) THEN
 GOTO 230
ENDIF

93
LEL = N2

RIGHTSIDE OF THE BISECTION SEGMENT

EQUAL NODE NUMBERS

IF(NDS1R.EQ.NDS2R) THEN
 MOR = 0 (LH ORIENTATION)
 IF(MOR(I).EQ.0) THEN
 LND(LEL+1,1) = NDS1L + NDS1R + NDS2L - 1
 LND(LEL+1,2) = NDS1L
 LND(LEL+1,3) = NDS1L + NDS1R + NDS2L
 LND(LEL+2,1) = NDS1L + 1
 LND(LEL+2,2) = NDS1L + NDS1R + NDS2L
 LND(LEL+2,3) = NDS1L
 DO 120, N = 1, NDS1R-2
 N1 = 2*N + 1 + LEL
 N2 = N1 + 1
 DO 110, K = 1, 3
 LND(N1,K) = LND(LEL+1,K) + N
 LND(N2,K) = LND(LEL+2,K) + N
 110 CONTINUE
 120 CONTINUE
 LEL = N2
 LAND = LMX
 ELSE
 LND(LEL+1,1) = NDS1L
 LND(LEL+1,2) = NDS1L + NDS1R + NDS2L - 1
 LND(LEL+1,3) = NDS1L + 1
 LND(LEL+2,1) = NDS1L + NDS1R + NDS2L
 LND(LEL+2,2) = NDS1L + 1
 LND(LEL+2,3) = NDS1L + NDS1R + NDS2L - 1
 DO 140, N = 1, NDS1R-2
 N1 = 2*N + 1 + LEL
 N2 = N1 + 1
 DO 130, K = 1, 3
 LND(N1,K) = LND(LEL+1,K) + N
 LND(N2,K) = LND(LEL+2,K) + N
 130 CONTINUE
 140 CONTINUE
 END IF

ELSEIF(MOR(I).EQ.0) THEN
 LND(LEL+1,1) = NDS1L + NDS1R + NDS2L - 1
 LND(LEL+1,2) = NDS1L
 LND(LEL+1,3) = NDS1L + NDS1R + NDS2L
 LND(LEL+2,1) = NDS1L + 1
 LND(LEL+2,2) = NDS1L + NDS1R + NDS2L

LEFT HAND MESH ORIENTATION

END
LND(LEL+2,3) = NDS1L

DO 160, N = 1, NDS1R-1
 N1 = 2*N + LEL + 1
 DO 150, K = 1, 3
 LND(N1,K) = LND(LEL+1,K) + N
 CONTINUE
150 CONTINUE
160 CONTINUE

C
DO 180, N = 1, NDS1R-2
 N2 = 2*N + LEL + 2
 DO 170, K = 1, 3
 LND(N2,K) = LND(LEL+2,K) + N
170 CONTINUE
180 CONTINUE
C
LEL = N1
LAND = LMX
C
RIGHT HAND MESH ORIENTATION
C
ELSE
 LND(LEL+1,1) = NDS1L
 LND(LEL+1,2) = NDS1L + NDS1R + NDS2L - 1
 LND(LEL+1,3) = NDS1L + 1
 LND(LEL+2,1) = NDS1L + NDS1R + NDS2L
 LND(LEL+2,2) = NDS1L + 1
 LND(LEL+2,3) = NDS1L + NDS1R + NDS2L - 1
C
DO 200, N = 1, NDS1R-2
 N1 = 2*N + LEL + 1
 DO 190, K = 1, 3
 LND(N1,K) = LND(LEL+1,K) + N
190 CONTINUE
200 CONTINUE
C
DO 220, N = 1, NDS1R-3
 N2 = 2*N + LEL + 2
 DO 210, K = 1, 3
 LND(N2,K) = LND(LEL+2,K) + N
210 CONTINUE
220 CONTINUE
C
LEL = N1
LAND = LMX
C
ENDIF

ZEROING NDL AND NCT PRIOR TO FILL
C
DO 250, N = 1, NDMX
 NCT(N) = 0
 DO 240, K = 1, 4
NDL(N,K) = 0

CONTINUE

CONTINUE

SCANNING LND ARRAY TO LOAD NDL

DO 270 LL = 1, LEL
 DO 260 JJ = 1, 3
 NN = LND(LL, JJ)
 NCT(NN) = NCT(NN) + 1
 KK = NCT(NN)
 NDL(NN, KK) = LL
 CONTINUE
 CONTINUE
260 CONTINUE
270 CONTINUE

END

SUBROUTINE FINDER(I, LAND, DIST)

THIS SUBROUTINE DETERMINES THE (X,Y) COORDINATES OF EACH
NODE IN THE CALLING Ith ROW OR VECTOR MESH.

INTEGER I, J, LAND, PERND, BIND, NODES(200)
REAL MESH(0:200,5), NDP(200,2), DIST
COMMON/BLK1/MESH
COMMON/BLK2/PERND,BIND
COMMON/BLK3/NODES
COMMON/BLK5/NDP

IF(I.EQ.1) THEN
 NDP(1,1) = MESH(1,1)+MESH(1,3)*DIST
 NDP(1,2) = MESH(1,2)+MESH(1,4)*DIST
 NDP(2,1) = MESH(1,1)
 NDP(2,2) = MESH(1,2)
 NDP(3,1) = MESH(PERND,1)+MESH(PERND,3)*DIST
 NDP(3,2) = MESH(PERND,2)+MESH(PERND,4)*DIST
 NDP(4,1) = MESH(PERND,1)
 NDP(4,2) = MESH(PERND,2)
 NDP(5,1) = MESH(PERND+1,1)
 NDP(5,2) = MESH(PERND+1,2)
 NDP(6,1) = MESH(2,1)
 NDP(6,2) = MESH(2,2)
 NDP(7,1) = MESH(2,1)+MESH(2,3)*DIST
 NDP(7,2) = MESH(2,2)+MESH(2,4)*DIST
ELSEIF(I.EQ. BIND+1) THEN
 NDP(1,1) = MESH(BIND+3,1)+MESH(BIND+3,3)*DIST
 NDP(1,2) = MESH(BIND+3,2)+MESH(BIND+3,4)*DIST
 NDP(2,1) = MESH(BIND+3,1)
 NDP(2,2) = MESH(BIND+3,2)
 NDP(3,1) = MESH(PERND+BIND,1)
 NDP(3,2) = MESH(PERND+BIND,2)
 NDP(4,1) = MESH(BIND+1,1)
 NDP(4,2) = MESH(BIND+1,2)
 NDP(5,1) = MESH(BIND+1,1)+MESH(BIND+1,3)*DIST
 NDP(5,2) = MESH(BIND+1,2)+MESH(BIND+1,4)*DIST
 NDP(6,1) = MESH(BIND+2,1)+MESH(BIND+2,3)*DIST
NDP(6,2) = MESH(BIND+2,2)+MESH(BIND+2,4)*DIST
NDP(7,1) = MESH(BIND+2,1)
NDP(7,2) = MESH(BIND+2,2)

ELSEIF(I. EQ. BIND+2) THEN
 WRITE(6,*), 'ERROR OUT IN SUBROUTINE FINDER, YOU ATTEMPTED'
 WRITE(6,*), 'TO CALL FINDER WITH I = BIND + 2'
 WRITE(6,*), 'THIS ROW HAS NO ELEMENTS AND NO COORDINATES'
ELSE
 C NODE 1
 NDP(1,1) = MESH(PERND-I+2,1)+MESH(PERND-I+2,3)*DIST
 NDP(1,2) = MESH(PERND-I+2,2)+MESH(PERND-I+2,4)*DIST
 C NODE 2 TO THE BISECTION SEGMENT
 DO 10, J = 2, NODES(PERND-I+2)
 NDP(J,1)=MESH(PERND-I+2,1)-(J-2)*(MESH(PERND-I+2,1)-
 C MESH(PERND+I-1,1))/(NODES(PERND-I+2)-2)
 NDP(J,2)=MESH(PERND-I+2,2)-(J-2)*(MESH(PERND-I+2,2)-
 C MESH(PERND+I-1,2))/(NODES(PERND-I+2)-2)
 10 CONTINUE
 C BISECTION SEGMENT TO THE RIGHTSIDE SURFACE
 DO 20, J = 3, NODES(I)
 NDP(NODES(PERND-I+2)+J-2,1)=MESH(PERND+I-1,1)+(J-2)*
 C (MESH(I,1)-MESH(PERND+I,1))/(NODES(I)-2)
 NDP(NODES(PERND-I+2)+J-2,2)=MESH(PERND+I-1,2)+(J-2)*
 C (MESH(I,2)-MESH(PERND+I,2))/(NODES(I)-2)
 20 CONTINUE
 C Ith ROWS LAST NODE
 NDP(NODES(PERND-I+2)+NODES(I)-1,1)=MESH(I,1)+MESH(I,3)*DIST
 NDP(NODES(PERND-I+2)+NODES(I)-1,2)=MESH(I,2)+MESH(I,4)*DIST
 C I+1th ROWS FIRST NODE
 NDP(NODES(PERND-I+2)+NODES(I),1)=MESH(PERND-I+1,1)+MESH
 C (PERND-I+1,3)*DIST
 NDP(NODES(PERND-I+2)+NODES(I),2)=MESH(PERND-I+1,2)+MESH
 C (PERND-I+1,4)*DIST
 C I+1th ROW (NODE 2) TO THE BISECTION SEGMENT
 DO 30, J = 2, NODES(PERND-I+1)
 NDP(J+NODES(PERND-I+2)+NODES(I)-1,1)=MESH(PERND-I+1,
 C 1)-(J-2)*((MESH(PERND-I+1,1)-MESH(PERND+I,1))/
 C (NODES(PERND-I+1)-2)
 NDP(J+NODES(PERND-I+2)+NODES(I)-1,2)=MESH(PERND-I+1,
 C 2)-(J-2)*((MESH(PERND-I+1,2)-MESH(PERND+I,2))/
 C (NODES(PERND-I+1)-2)
 30 CONTINUE
 C I+1th ROW BISECTION SEGMENT TO THE RIGHTSIDE SURFACE
 DO 40, J = 3, NODES(I+1)
 NDP(LAND-NODES(I+1)+J-1,1)=MESH(PERND+I+1,1)+(J-2)*
 C (MESH(I+1,1)-MESH(PERND+I,1))/(NODES(I+1)-2)
 NDP(LAND-NODES(I+1)+J-1,2)=MESH(PERND+I+1,2)+(J-2)*
 C (MESH(I+1,2)-MESH(PERND+I,2))/(NODES(I+1)-2)
 40 CONTINUE
 C LAST NODE
 NDP(LAND,1) = MESH(I+1,1)+MESH(I+1,3)*DIST
 NDP(LAND,2) = MESH(I+1,2)+MESH(I+1,4)*DIST

ENDIF
RETURN
SUBROUTINE VARINT(J,F,ALPHA,BETA,AREA,LND)

GENERATING VARIATIONAL FINITE ELEMENT AREA INTEGRATIONS OF THE
LINEAR BASIS FUNCTION LAGRANGIAN FOR THE HELMHOLTZ EQUATION.

These are returned in F(3,3). X(3) and Y(3) are the wavenumber
normalized cartesian coordinates of the triangle vertices.

X = Ko*x, Y = Ko*y

Alpha and Beta are complex
material parameters within the element.

For TM incidence: alpha = 1/ur; beta = er
For TE incidence: alpha = 1/er; beta = ur

Outputs: F(3,3) - finite element area integration
Area - area off a triangle

Complex Alpha, Beta, B12, F(3,3)
Real NDP(200,2), X(3), Y(3), T(3,3), AREA, DET
Integer L, K, J, LND(0:200,3)
Common/BLK5/NDP

X(1) = NDP(LND(J,1),1)
X(2) = NDP(LND(J,2),1)
X(3) = NDP(LND(J,3),1)
Y(1) = NDP(LND(J,1),2)
Y(2) = NDP(LND(J,2),2)
Y(3) = NDP(LND(J,3),2)
DET = X(2)*Y(3) + X(3)*Y(1) + X(1)*Y(2) - X(3)*Y(2) -
CX(1)*Y(3) - X(2)*Y(1)
AREA = ABS(0.5*DET)
B12 = Beta/12.
T(1,1) = (Y(2) - Y(3))/DET
T(1,2) = (Y(3) - Y(1))/DET
T(1,3) = (Y(1) - Y(2))/DET
T(2,1) = (X(3) - X(2))/DET
T(2,2) = (X(1) - X(3))/DET
T(2,3) = (X(2) - X(1))/DET
T(3,1) = (X(2)*Y(3) - X(3)*Y(2))/DET
T(3,2) = (X(3)*Y(1) - X(1)*Y(3))/DET
T(3,3) = (X(1)*Y(2) - X(2)*Y(1))/DET
DO 10 K = 1, 3
 DO 10 L = 1, 3
 F(K,L) = ALPHA*(T(1,K)*T(1,L) + T(2,K)*T(2,L)) - B12
 IF(K.EQ.L) F(K,L) = F(K,L) - B12
 10 F(K,L) = AREA*F(K,L)
RETURN
END

SUBROUTINE LOADER(BCOND,OFFSET,ALPHA,BETA,NABC,IMX,NBMX,LO,SURBC,
 CHAR1,LINEMODE,XORIGIN,YORIGIN,SVEC,CHAR5)

Complex A(50,50),B(50,50),C(50,50),P(50,100)
COMPLEX F(3,3), FROW(100,3,3), BCOND(100), LINE(50)

COMPLEX ALPHA, BETA, DETERM, SURBC(100), SVEC(50,100)

REAL OFFSET, MINAREA, MAXAREA, AREA, RATIO, E0, KJ, XORIGIN, YORIGIN

REAL UBCOND

INTEGER I, J, JD, K, L, NDTOP, NDBOT, NDTOT, NOD, KND, ND(3), LEL, LAND

INTEGER LND(0:*0,3), NDL(200,4), NCT(200), PERND, BIND, JJ

INTEGER NODES(200), MINROW, MINEL, MAXROW, MAXEL, TCALL, NL

INTEGER N, M, NBX, NBC(100,3), INORM, IMX, MODE

CHARACTER*1 CHAR1, CHAR2, CHAR3, CHAR4, CHAR5

COMMON/BLK2/PERND, BIND

COMMON/BLK3/NODES

COMMON/BLK4/LND, NDL, NCT

COMMON/BLK7/MINAREA, MINROW, MINEL, MAXAREA, MAXROW, MAXEL, AREA

COMMON/BLK8/A, B, C, P

COMMON/BLK9/CHAR2, CHAR3, CHAR4

UBCOND = 1.0

INORM = 0

IMX = BIND + 2

I = 1

TCALL = BIND + 1

IF((CHAR3.EQ.'D').OR.(CHAR3.EQ.'d')) THEN

WRITE(20,1030)

WRITE(20,1040)

WRITE(20,1050)

WRITE(20,1060)

WRITE(20,1070)

ENDIF

WRITE(*,1000) I, TCALL

CALL SORTER(I, LEL, LAND)

CALL FINDER(I, LAND, OFFSET)

IF(.NOT.((CHARS.EQ.'M').OR.(CHARS.EQ.'m'))) THEN

CALL BNDG(I, BCOND, E0, SURBC, CHAR1, ALPHA, BETA, LINE, MODE, XORIGIN, CYORIGIN, CHAR4)

ENDIF

CALL FILL(I, LEL, FROW, ALPHA, BETA)

IF(.NOT.((CHARS.EQ.'M').OR.(CHARS.EQ.'m'))) THEN

CALL ZERO

ENDIF

ESTABLISH THE NUMBER OF NODES IN THE I = 1 AND I = 2 ROWS

NDTOP = 2

NDBOT = 5

NDTOT = 7

B, C & P FOR I = 1 (TOP)

J = 1

DO 70, JD = 1, NCT(2)

L = NDL(2,JD)

DO 50, K = 1, 3

ND(K) = LND(L,K)

IF(ND(K).EQ.2) KND = K

50 CONTINUE
DO 60, K = 1, 3
NL = ND(K)
C BOUNDARY CONDITION
 IF(NL.EQ.1) THEN
 P(J,1) = -UBCOND*FROW(L,KND,K) + P(J,1)
 C UPPER ROW
 ELSEIF(NL.EQ.2) THEN
 B(J,1) = FROW(L,KND,K) + B(J,1)
 C LOWER ROW
 ELSEIF((NL.GT.3).AND.(NL.LT.7)) THEN
 C(J,NL-3) = FROW(L,KND,K) + C(J,NL-3)
 C ERROR
 ELSE
 WRITE(*,*) NL,'ERROR - INDEX EQUALS 3 OR 7'
 C ENDIF
60 CONTINUE
70 CONTINUE
C IF((CHAR2.EQ.'I').OR.(CHAR2.EQ.'i')) THEN
 WRITE(1,*) I
 DO 72, M = 1, NABC(I,2)
 WRITE(1,1020) (REAL(B(M,N)), N = 1, NABC(I,2))
 CONTINUE
72 CONTINUE
C I = 1, M = 1, NABC(I,2)
 WRITE(1,1020) (REAL(B(M,N)), N = 1, NABC(I,2))
C ENDIF
C IF(.NOT.((CHAR5.EQ.'M').OR.(CHAR5.EQ.'m')))) THEN
C BEGIN LOOPING
DO 900, I = 1, BIND
C DO 400, J = 1, NDBOT-2
 NOD = J + NDTOP + 1
 DO 300, JD = 1, NCT(NOD)
 L = NDL(NOD,JD)
 DO 100, K = 1, 3
 ND(K) = 1ND(L,K)
 CONTINUE
100 CONTINUE
 DO 200, K = 1, 3
 NL = ND(K)
C BOUNDARY CONDITION
 IF((I.EQ.1).AND.(NL.EQ.1)) THEN
P(J,NL) = -UBCOND*FROW(L,KND,K) + P(J,NL)
ELSEIF(NL.EQ.1) THEN
 P(J,PERND-I+2)=-UBCOND*FROW(L,KND,K)+P(J,PERND-I+2)
END IF

SPECIAL CASE FOR NODE #2 AND I = 1
ELSEIF((I.EQ.1).AND.(NL.EQ.2))THEN
 A(J,1) = FROW(L,KND,K) + A(J,1)
END IF
ELSEIF(NL.EQ.NDTOP) THEN
 P(J,I) = -UBCOND*FROW(L,KND,K) + P(J,I)
ELSEIF(NL.EQ.NDTOP+1) THEN
 P(J,PERND-I+1)=-UBCOND*FROW(L,KND,K)+P(J,PERND-I+1)
ELSEIF(NL.LT.NDTOP) THEN
 A(J,NL-1) = FROW(L,KND,K) + A(J,NL-1)
C UPPER ROW
ELSEIF(NL.LT.NDTOP) THEN
 A(J,NL-1) = FROW(L,KND,K) + A(J,NL-1)
C LOWER ROW
ELSEIF(NL.LT.NDTOP) THEN
 B(J,NL-NDTOP-1) = FROW(L,KND,K) + B(J,NL-NDTOP-1)
C ERROR
ELSE
 WRITE(*,*) NL,'ERROR - DUE TO INDEX GREATER THAN NODE TOTAL'
ENDIF

C 200 CONTINUE
C 300 CONTINUE
C 400 CONTINUE

INDEX FOR NEXT ROW AND COMPLETE B, C, P FILLS

JJ = I + 1
WRITE(6,1010) JJ,TCALL
CALL SORTER(JJ,LEL,LANL)
CALL FINDER(JJ,LANL,OFFSET)
IF(.NOT.((CHAR5.EQ.'M').OR.(CHAR5.EQ.'m'))) THEN
 CALL BNDC(JJ,BCOND,EO,SURBC,CHAR1,ALPHA,BETA,LINE,MODE,
 XORIGIN,YORIGIN,CHAR4)
ENDIF
CALL FILL(JJ,LEL,FROW,ALPHA,BETA)

ESTABLISH THE NUMBER OF NODES IN THE I+1th AND I+2th ROWS
IF(JJ.LE.(BIND+1)) THEN
 NDTOP = NODES(PERND+2-JJ) + NODES(JJ) - 1
 NDBOT = NODES(PERND+1-JJ) + NODES(JJ+1) - 1
 NDTOT = NDBOT + NDTOP
ELSE
 NDTOP = 5
 NDBOT = 2
 NDTOT = 7
ENDIF

DO 800, J = 1, NDTOP-2
 NOD = J + 1
 DO 700, JD = 1, NCT(NOD)
 L = NDL(NOD,JD)
 DO 500, K = 1, 3
 ND(K) = LND(L,K)
 700 CONTINUE
800 CONTINUE
C
IF(ND(K).EQ.NOD) KND = K

CONTINUE
DO 600, K = 1, 3
NL = ND(K)
C
BOUNDARY CONDITION
IF(NL.EQ.1) THEN
P(J,PERND-JJ+2) = -UBCOND*FROW(L,KND,K) + P(J,PERND-JJ+2)
ELSEIF(NL.EQ.NDTOP) THEN
P(J,JJ) = -UBCOND*FROW(L,KND,K) + P(J,JJ)
ELSEIF(NL.EQ.NDTOP+1) THEN
P(J,PERND-JJ+1) = -UBCOND*FROW(L,KND,K) + P(J,PERND-JJ+1)
ELSEIF((JJ.EQ.(BIND+1)).AND.(NL.EQ.NDTOT)) THEN
C(J,1) = FROW(L,KND,K) + C(J,1)
ELSEIF(NL.EQ.NDTOT) THEN
P(J,JJ+1) = -UBCOND*FROW(L,KND,K) + P(J,JJ+1)
END IF
C
UPPERROW
ELSEIF(NL.LT.NDTOP) THEN
B(J,NL-1) = FROW(L,KND,K) + B(J,NL-1)
C
LOWERROW
ELSEIF(NL.LT.NDTOT) THEN
C(J,NL-NDTOP-1) = FROW(L,KND,K) + C(J,NL-NDTOP-1)
C
ERROR
ELSE
WRITE(*,*), NL,'ERROR - DUE TO INDEX GREATER THAN NODE TOTAL'
ENDIF
C
600 CONTINUE
700 CONTINUE
800 CONTINUE
C
IF((CHAR2.EQ.'I').OR.(CHAR2.EQ.'i')) THEN
WRITE(1,*) JJ
DO 91, M = 1, NABC(JJ,2)
WRITE(1,1020) (REAL(A(M,N)), N = 1, NABC(JJ,1))
91 CONTINUE
WRITE(1,)*
DO 92, M = 1, NABC(JJ,2)
WRITE(1,1020) (REAL(B(M,N)), N = 1, NABC(JJ,2))
92 CONTINUE
WRITE(1,)*
DO 93, M = 1, NABC(JJ,2)
WRITE(1,1020) (REAL(C(M,N)), N = 1, NABC(JJ,3))
93 CONTINUE
WRITE(1,)*
DO 94, M = 1, NABC(JJ,2)
WRITE(1,1020) (REAL(P(M,N)), N = 1, PERND)
94 CONTINUE
C
WRITE(1,*)
WRITE(1,*)
WRITE(1,*)
ENDIF
C
IF(.NOT.((CHAR5.EQ.'M').OR.(CHAR5.EQ.'m'))) THEN
CALL MARCH(JJ,IMX,NBMX,NABC(JJ,1),NABC(JJ,2),NABC(JJ,3),INORM,CSVEC)
END
CALL ZERO
ENDIF
C
900 CONTINUE
C
LOAD A, B & P FOR I = BIND + 2 (BOTTOM)
C
J = 1
DO 30, JD = 1, NCT(7)
 L = NDL(7, JD)
 DO 10, K = 1, 3
 ND(K) = LND(L,K)
 IF(ND(K).EQ.7) KND = K
 CONTINUE
 DO 20, K = 1, 3
 NL = ND(K)
C
BOUNDARY CONDITION
IF(NL.EQ.6) THEN
 P(J, J+1) = -UBCOND*FROW(L, KND, K) + P(J, J+1)
C
UPPER ROW
ELSEIF((NL.GT.1).AND.(NL.LT.5)) THEN
 A(J, NL-1) = FROW(L, KND, K) + A(J, NL-1)
C
LOWER ROW
ELSEIF(NL.EQ.7) THEN
 B(J, 1) = FROW(L, KND, K) + B(J, 1)
C
ERROR ELSE
 WRITE(*,*) NL, 'ERROR - INDEX EQUAL TO 1 OR 5'
ENDIF
C
20 CONTINUE
30 CONTINUE
C
IF((CHAR2.EQ.'I').OR.(CHAR2.EQ.'i')) THEN
 WRITE(1,*);
 DO 61, Mi = 1, NABC(TCALL+1, 2)
 WRITE(1, 1020) (REAL(A(11, N)), N = 1, NABC(TCALL+1, 1))
 61 CONTINUE
 WRITE(1,*);
 DO 62, M = 1, NABC(TCALL+1, 2)
 WRITE(1, 1020) (REAL(B(MN)), N = 1, NABC(TCALL+1, 2))
 62 CONTINUE
 WRITE(1,*);
 DO 64, M1 = 1, NABC(TCALL+1, 2)
 WRITE(1, 1020) (REAL(P(11, N)), N = 1, PERND)
 64 CONTINUE
 WRITE(1,*);
 WRITE(1,*);
 WRITE(1,*);
ENDIF
C
WRITE(6,*); 'FINAL INVERSION'
IF(.NOT.((CHAR5.EQ.'M').OR.(CHAR5.EQ.'m'))) THEN
 CALL MARCH(JJ+1, IMX, NBMX, NABC(JJ+1,1), NABC(JJ+1,2), NABC(JJ+1,3),
 CINORM, SVEC)
END IF

ENDIF

WRITE(2,*) ' END END '
WRITE(6,*) ',
WRITE(6,*) 'MINIMUM AREA = ', MINAREA
WRITE(6,*) 'AT ROW ', MINROW, ' AND ELEMENT NUMBER ', MINEL
WRITE(6,*) 'MAXIMUM AREA = ', MAXAREA
WRITE(6,*) 'AT ROW ', MAXROW, ' AND ELEMENT NUMBER ', MAXEL
RATIO = MAXAREA/MINAREA
WRITE(6,*) 'AREA RATIO = ', RATIO

IF(RATIO.GT.2.5) THEN
 WRITE(6,*) 'YOU SHOULD CONSIDER ABORTING THIS RUN AND '
 WRITE(6,*) 'LOOKING AT THE MESH IN CURVE DIGITIZER'
 WRITE(6,*) 'A BETTER METHOD MAY BE AVAILABLE'
ENDIF

IF((CHAR3.EQ. 'D').OR.(CHAR3.EQ. 'd')) THEN
 WRITE(20,1080)
 WRITE(20,1090)
 WRITE(20,1100)
ENDIF

C
1000 FORMAT(I6, ' OUT OF ', I6, ' CALLS ')
1010 FORMAT(I6, ' OUT OF ', I6, ' CALLS ')
1020 FORMAT(20(E14.8,1X,E14.8,1X))
1030 FORMAT(6X, 'CALL COMPRS')
1040 FORMAT(6X, 'CALL NOBRDR')
1050 FORMAT(6X, 'CALL PAGE(8.0,10.0)')
1060 FORMAT(6X, 'CALL AREA2D(5.0,7.0)')
1070 FORMAT(6X, 'CALL FRAME')
1080 FORMAT(6X, 'CALL DONEPL')
1090 FORMAT(6X, 'STOP')
1100 FORMAT(6X, 'END')
C
RETURN
END

C

SUBROUTINE FILL(I,LEL,FROW,ALPHA,BETA)

COMPLEX F(3,3), FROW(100,3,3), ALPHA, BETA, A, B
REAL AREA, MINAREA, MAXAREA
REAL NDP(200,2)
INTEGER I, J, K, L, LEL, LND(0:200,3), NDL(200,4), NCT(200)
INTEGER MINROW, MINEL, MAXROW, MAXEL, M
CHARACTER*1 CHAR2, CHAR3, CHAR4
COMMON/BLK4/LND,NDL,NCT
COMMON/BLK5/NDP
COMMON/BLK7/MINAREA,MINROW,MINEL,MAXAREA,MAXROW,MAXEL,AREA
COMMON/BLK9/CHAR2, CHAR3, CHAR4
C
IF((CHAR2.EQ. 'I').OR.(CHAR2.EQ. 'i')) THEN
 WRITE(11,*) 'ROW NUMBER = ', I
ENDIF
DO 30, J = 1, LEL
 IF((CHAR4.EQ. 'U').OR.(CHAR4.EQ. 'u')) THEN
 WRITE(11,*) 'OUT OF ', 16, ' CALLS '
 WRITE(11,1000)
 WRITEC 11,1010)
 WRITE(11,1020)
 WRITEC 11,1030)
 WRITE(11,1040)
 WRITEC 11,1050)
 WRITE(11,1060)
 WRITEC 11,1070)
 WRITE(11,1080)
 WRITEC 11,1090)
 WRITE(11,1100)
 ENDIF
A = ALPHA
B = BETA
ELSE
 IF((J. EQ. 1). OR. (J. EQ. 2). OR. (J. EQ. LEL-1). OR. (J. EQ. LEL))
 THEN
 A = (1.0,0.0)
 B = (1.0,0.0)
 ELSE
 A = ALPHA
 B = BETA
 ENDIF
ENDIF
CALL VARINT(J,F,A,B,AREA,LND)
IF((J.GT.2). AND. (J.LT.LEL-1)) THEN
 IF(AREA. LT. MINAREA) THEN
 MINAREA = AREA
 MINROW = I
 MINEL = J
 ELSEIF(AREA. GT. MAXAREA) THEN
 MAXAREA = AREA
 MAXROW = I
 MAXEL = J
 ENDIF
ENDIF
ENDIF
DO 20, K = 1, 3
 WRITE(2,*) NDP(LND(J,K),1), NDP(LND(J,K),2)
 DO 10, L = 1, 3
 FROW(J,K,L) = F(K,L)
 CONTINUE
 IF((CHAR2.EQ. 'I'). OR. (CHAR2.EQ. '1')) THEN
 WRITE(11,1000) J,K,(REAL(F(K,L)), L = 1,3)
 ENDIF
20 CONTINUE
IF((CHAR2.EQ. 'I'). OR. (CHAR2.EQ. '1')) THEN
 WRITE(11,*)
ENDIF
WRITE(2,*) NDP(LND(J,1),1), NDP(LND(J,1),2)
WRITE(2,*) ' 999990 999990
C DISSPLA PROGRAM GENERATION
IF((CHAR3.EQ. 'D'). OR. (CHAR3.EQ. 'd')) THEN
WRITE(20,1010) NDP(LND(J,1),1), NDP(LND(J,1),2)
WRITE(20,1020) NDP(LND(J,2),1), NDP(LND(J,2),2)
WRITE(20,1020) NDP(LND(J,3),1), NDP(LND(J,3),2)
WRITE(20,1020) NDP(LND(J,1),1), NDP(LND(J,1),2)
ENDIF
C 30 CONTINUE
C 1000 FORMAT(1X,2(I3,2X),3X,3(F8.5,2X))
1010 FORMAT(6X,'CALL STRPT(','F8.5,','F8.5,')')
1020 FORMAT(6X,'CALL CONNPT(','F8.5,','F8.5,')')
C RETURN
END
SUBROUTINE ZERO
C ZERO A, B, C, AND P MATRICES
COMPLEX A(50,50), B(50,50), C(50,50), P(50,100)
INTEGER J, K, L
C
COMMON/BLK8/A,B,C,P
C
DO 50, J = 1, 50
 DO 40, K = 1, 50
 A(J,K) = CMPLX(0.0,0.0)
 B(J,K) = CMPLX(0.0,0.0)
 C(J,K) = CMPLX(0.0,0.0)
 40 CONTINUE
 DO 60, L = 1, 100
 P(J,L) = CMPLX(0.0,0.0)
 60 CONTINUE
50 CONTINUE
RETURN
END
C
C SUBROUTINE BNDC(I,BCOND,EO,SURBC,CHAR1,ALPHA,BETA,LINE,MODE,
 CXORIGIN,YORIGIN,CHAR4)
C
BOUNDARY CONDITION FILL FOR A PLANE WAVE
C EO = FIELD STRENGTH
C KO = WAVE NUMBER (2*PI/WAVELENGTH)
C
BOUNDARY CONDITION FILL FOR A CYLINDRICAL BOUNDARY CONDITION
C EO = FIELD STRENGTH
C MODE = MODE NUMBER FOR CYLINDRICAL BOUNDARY CONDITIONS
C
COMPLEX SURBC(100), VALUE(50), BCOND(100), ALPHA, BETA, LINE(50)
COMPLEX K, RAK
REAL NDP(200,2), EO, KR, KI, XORIGIN, YORIGIN, RA, RB
INTEGER I, J, NDTOP, NDBOT, NDTOT, NODES(200), PERND, BIND, MODE
CHARACTER*I CHARI, CHAR4
C
COMMON/BLK2/PERND ,BIND
COMMON/BLK3/NODES
COM ION/BLK5/NDP
C
IF((CHAR1.EQ.'P').OR.(CHAR1.EQ.'p')) THEN
 IF((CHAR4.EQ.'U').OR.(CHAR4.EQ.'u')) THEN
 KR = REAL(CSQRT(BETA))
 KI = ABS(AIMAG(CSQRT(BETA)))
 ELSE
 KR = 1.0
 KI = 0.0
 ENDIF
C
CHECK ON WHETHER WE ARE USING ER = ALPHA OR BETA
C
IF(I.EQ.1) THEN
 BCOND(1) = EO*EXP(KI*NDP(1,2))*CMPLX(COS(KR*NDP(1,2)),
C
106
C \sin(KR*NDP(1,2))
BCOND(PERND) = \text{EO}^{*}\exp(KI*NDP(3,2))*\text{CMPLX}(\cos(KR*NDP(3,2)),
C \sin(KR*NDP(3,2))
BCOND(2) = \text{EO}^{*}\exp(KI*NDP(7,2))*\text{CMPLX}(\cos(KR*NDP(7,2)),
C \sin(KR*NDP(7,2))
VALUE(1) = \text{EO}^{*}\exp(KI*NDP(2,2))*\text{CMPLX}(\cos(KR*NDP(2,2)),
C \sin(KR*NDP(2,2))
WRITE(10,* BCOND(1)
WRITE(10,1000) VALUE(1)
WRITE(10,* ' ',
SURBC(1) = VALUE(1)
ELSEIF(I .LE. BIND) THEN
 NDTOP = NODES(I) + NODES(PERND-I+2) - 1
 NDBOT = NODES(I+1) + NODES(PERND-I+1) - 1
 NDTOT = NDTOP + NDBOT
 BCOND(PERND-I+1) = \text{EO}^{*}\exp(KI*NDP(NDTOP+1,2))*\text{CMPLX}(\cos(KR*
C NDTOP+1,2)), \sin(KR*NDP(NDTOP+1,2)))
 BCOND(I+1) = \text{EO}^{*}\exp(KI*NDP(NDTOT,2))*\text{CMPLX}(\cos(KR*NDP(NDTOT,
C 2)), \sin(KR*NDP(NDTOT,2)))
WRITE(10,* BCOND(PERND-I+2)
DO 10, J = 2, NDTOP-1
 VALUE(J) = \text{EO}^{*}\exp(KI*NDP(J,2))*\text{CMPLX}(\cos(KR*NDP(J,2)),
C \sin(KR*NDP(J,2))
 IF(J .EQ. 2) THEN
 SURBC(PERND-I+2) = VALUE(2)
 ELSEIF(J .EQ. NDTOP-1) THEN
 SURBC(I) = VALUE(NDTOP-1)
 END IF
10 CONTINUE
LINE(I) = VALUE((NDTOP+1)/2)
WRITE(10,1000) VALUE(J), J = 2, NDTOP-1
WRITE(10,* BCOND(I)
WRITE(10,* ' ',
ELSEIF(I .EQ. BIND+1) THEN
 BCOND(I+1) = \text{EO}^{*}\exp(KI*NDP(6,2))*\text{CMPLX}(\cos(KR*NDP(6,2)),
C \sin(KR*NDP(6,2))
 VALUE(2) = \text{EO}^{*}\exp(KI*NDP(2,2))*\text{CMPLX}(\cos(KR*NDP(2,2)),
C \sin(KR*NDP(2,2))
 VALUE(3) = \text{EO}^{*}\exp(KI*NDP(3,2))*\text{CMPLX}(\cos(KR*NDP(3,2)),
C \sin(KR*NDP(3,2))
 VALUE(4) = \text{EO}^{*}\exp(KI*NDP(4,2))*\text{CMPLX}(\cos(KR*NDP(4,2)),
C \sin(KR*NDP(4,2))
WRITE(10,* BCOND(I+2)
WRITE(10,1000) VALUE(2), VALUE(3), VALUE(4)
SURBC(BIND+3) = VALUE(2)
SURBC(BIND+1) = VALUE(4)
LINE(I) = VALUE(3)
WRITE(10,* BCOND(I)
WRITE(10,* ' ',
VALUE(2) = \text{EO}^{*}\exp(KI*NDP(7,2))*\text{CMPLX}(\cos(KR*NDP(7,2)),
C \sin(KR*NDP(7,2))
WRITE(10,1000) VALUE(2)
WRITE(10,* BCOND(I+1)
SURBC(BIND+2) = VALUE(2)

107
ELSEIF((CHAR1.EQ. 'C') .OR. (CHAR1.EQ. 'c')) THEN

IF(I.EQ.1) THEN
 RA = SQRT((NDP(2,1)-XORIGIN)**2+(NDP(2,2)-YORIGIN)**2)
 RB = SQRT((NDP(1,1)-XORIGIN)**2+(NDP(1,2)-YORIGIN)**2)
 WRITE(*,*) BETA
 K = CSQRT(BETA)
 RAK = RA*K
 CALL CYLBC(RA,RB,RAK,NDP(1,1),NDP(1,2),XORIGIN,YORIGIN,E0,
 BCOND(1),SURBC(1),K)
 CALL CYLBC(RA,RB,RAK,NDP(3,1),NDP(3,2),XORIGIN,YORIGIN,E0,
 BCOND(PERND),SURBC(PERND),K)
 CALL CYLBC(RA,RB,RAK,NDP(7,1),NDP(7,2),XORIGIN,YORIGIN,E0,
 BCOND(2),SURBC(2),K)
 WRITE(10,*) BCOND(1), SURBC(1)
 WRITE(10,*) ' '
ELSEIF(I.LE.BIND) THEN
 NDTOP = NODES(I) + NODES(PERND-I+2) - 1
 NDBOT = NODES(I+1) + NODES(PERND-I+1) - 1
 NDTOT = NDTOP + NDBOT
 CALL CYLBC(RA,RB,RAK,NDP(NDTOP+1,1),NDP(NDTOP+1,2),XORIGIN,
 YORIGIN,E0,BCOND(PERND-I+1),SURBC(PERND-I+1),K)
 CALL CYLBC(RA,RB,RAK,NDP(NDTOT,1),NDP(NDTOT,2),XORIGIN,
 YORIGIN,E0,BCOND(I+1),SURBC(I+1),K)
 WRITE(10,*) BCOND(PERND-I+2), SURBC(PERND-I+2)
 WRITE(10,*) BCOND(I), SURBC(I)
 WRITE(10,*) ' '
ELSEIF(I.EQ.BIND+1) THEN
 WRITE(10,*) BCOND(I+2), SURBC(I+2)
 WRITE(10,*) BCOND(I), SURBC(I)
 WRITE(10,*) ' '
 CALL CYLBC(RA,RB,RAK,NDP(6,1),NDP(6,2),XORIGIN,
 YORIGIN,E0,BCOND(I+1),SURBC(I+1),K)
 WRITE(10,*) BCOND(I+1), SURBC(I+1)
 WRITE(10,*) ' '
ENDIF

ELSE
 RETURN
ENDIF

FORMAT(1X,50(E14.8,2X,E14.8,2X))
RETURN
END

SUBROUTINE CYLBC(RA,RB,RAK,X,Y,XORIGIN,YORIGIN,E0,BC,PSI,K)

COMPLEX SQRTM1, JORB, JIRB, JORAK, JIRAK, HORA, HIRA, HORB, H1RB
Complex DELTAN, AN, PSI, JORA, JIRA, K, RAK, BC
REAL PI, XORIGIN, YORIGIN, X, Y, RA, RB, E0, PHI

PI = 4.0*ATAN(1.0)
SQRTM1 = CMPLX(0.0, 1.0)
PHI = ATAN2(X - XORIGIN, Y - YORIGIN)
CALL BES1(CMPLX(RA, 0.0), JORA, J1RA)
CALL BES1(CMPLX(RB, 0.0), JORB, J1RB)
CALL BES1(RAK, JORAK, JIRAK)
CALL HAN1(CMPLX(RA, 0.0), HORA, H1RA)
CALL HAN1(CMPLX(RB, 0.0), HORB, H1RB)

DELTAN = J1RB*(J1RAK*(HORA-H1RA/RA)-K*(JORAK-J1RAK/RAK)*H1RA)-
CH1RB*(J1RAK*(JORA-J1RA/RA)-K*(JORAK-J1RAK/RAK)*J1RA)
AN = -2.0*SQRTM1/(PI*RA*DELTAN)
BC = E0*COS(PHI)
PSI = AN*J1RAK*BC

RETURN
END

SUBROUTINE BES1(Z, J0, J1)

Computing Bessel Functions for n = 0, 1 with
Complex Argument Z. Direct Power Series Method for
CABS(Z) .LE. 6 and Hankel's Asymptotic Formula for
CABS(Z) .GT. 6.
Written 11/5/87 by M.A. Morgan

INTEGER M, M2
REAL C(34), DM, F(34), G0, P(34), P1, P2
COMPLEX Z, Z2, Z3, Z4, J0, J1, AM, CL, P0, P1, Q0, Q1, C0, C1, S0, S1
Pi = 3.1415927
P2 = 2.0/PI
IF(CABS(Z).LE.6.0) THEN

Utilizing the Direct Power Series Method

G0 = 1.781072
Z2 = 0.5*Z
CL = CLOG(G0*Z2)

Computing F(m) = m! and P(m) = 1 + 1/2 + 1/3 + ... + 1/m

F(1) = 1.0
P(1) = 1.0
DO 11 M = 2, 34
 F(M) = M*F(M-1)
 P(M) = P(M-1) + 1.0/M
11 CONTINUE

Computing Power Series Coefficients

DM = -1.0
DO 22 M = 1, 34
 C(M) = DM/(F(M)*F(M))
 DM = -DM
22 CONTINUE
Computing J_0 and J_1

\[
J_0 = (1, 0.0) \\
J_1 = (0, 0.0)
\]

\[
M = 0 \\
M = M + 1 \\
M_2 = 2^M \\
AM = C(M) * (Z2**M) \\
J_0 = J_0 + AM \\
J_1 = J_1 - M * AM
\]

IF((CABS(AM) .GT. 1.0E-10) .AND. (M .LT. 34)) GO TO 33

\[
J_1 = J_1 / Z2 \\
RETURN
\]

ELSE

Hankel's Asymptotic Formula (Abram. & Stegun p. 364)

\[
Z2 = Z * Z \\
Z3 = Z * Z^2 \\
Z4 = Z * Z^3 \\
P0 = 1.0 - 0.0703125 / Z^2 - 0.1121521 / Z^4 \\
Q0 = -0.125 / Z + 0.0732422 / Z^3 \\
P1 = 3.75 / Z - 0.10253906 / Z^3 \\
Q1 = -0.375 / Z + 0.10253906 / Z^3 \\
C0 = CCOS(Z - 0.25 * PI) \\
S0 = CSIN(Z - 0.25 * PI) \\
C1 = CCOS(Z - 0.75 * PI) \\
S1 = CSIN(Z - 0.75 * PI)
\]

AM = CSQRT(P2 / Z)

\[
J_0 = AM * (P0 * C0 - Q0 * S0) \\
J_1 = AM * (P1 * C1 - Q1 * S1)
\]

ENDIF

RETURN

END

SUBROUTINE HAN1(Z, HO, H1)

Computing Hankel Functions for $n = 0, 1$ with
Complex Argument, Z. Direct Power Series Method for
CABS(Z) .LE. 5 and Hankel's Asymptotic Formula for
CABS(Z) .GT. 5. Written 11/6/87 by M.A. Morgan

INTEGER M, M2
REAL C(34),DM,F(34),GO,P(34),P1,P2
COMPLEX Z,Z2,Z3,Z4,J0,J1,Y0,Y1,AM,CL,P0,P1,Q0,Q1
COMPLEX E0,E1,X0,X1,H0,H1,j
PI=3.1415927
P2=2.0/PI
j=(0.,1.)
IF(CABS(Z) .LE. 5.0) THEN

Direct Power Series Method

\[
GO = 1.78072 \\
Z2 = 0.5 * Z
\]
CL = CLOG(G0*Z2)

Computing \(F(m) = m! \) and \(P(m) = 1 + 1/2 + 1/3 + \ldots + 1/m \)

\[
F(1) = 1.0 \\
P(1) = 1.0 \\
\text{DO 11 } M = 2, 34 \\
\quad F(M) = M * F(M-1) \\
\quad P(M) = P(M-1) + 1.0 / M
\]

CONTINUE

Computing Power Series Coefficients

\[
DM = -1.0 \\
\text{DO 22 } M = 1, 34 \\
\quad C(M) = DM / (F(M) * F(M)) \\
\quad DM = -DM
\]

CONTINUE

Computing \(J_0 \) and \(J_1 \)

\[
J_0 = (1.0, 0.) \\
J_1 = (0.0, 0.) \\
M = 0 \\
M = M + 1 \\
M2 = 2^M \\
AM = C(M) * (Z2**M2) \\
J0 = J0 + AM \\
J1 = J1 - M * AM \\
\text{IF(ABS(AM) .GT. 1.0E-10) .AND. (M .LT. 34)) GO TO 33} \\
\quad J1 = J1 / Z2
\]

Computing \(Y_0 \) and \(Y_1 \)

\[
M = 0 \\
YO = CL * J0 \\
Y1 = Z2 * CL * J1 - 0.5 * J0 \\
M = M + 1 \\
M2 = 2^M \\
AM = C(M) * P(M) * (Z2**M2) \\
Y0 = Y0 - AM \\
Y1 = Y1 + M * AM \\
\text{IF(ABS(AM) .GT. 1.0E-10) .AND. (M .LT. 34)) GO TO 44} \\
\quad Y0 = P2 * Y0 \\
\quad Y1 = P2 * Y1 / Z2 \\
HO = J0 - j * Y0 \\
H1 = J1 - j * Y1 \\
\text{RETURN}
\]

ELSE

Hankel' Asymptotic Formula (Abram. & Stegun p. 364)

\[
Z2 = Z * Z \\
Z3 = Z * Z2 \\
Z4 = Z * Z3 \\
P0 = 1.0 - .0703125/Z2 + .1121521/Z4
\]

111
Q0=-.125/Z+.0732422/Z3
P1=1.6+.1171875/Z-.1441956/Z4
Q1=.375/Z-.10253906/Z3
X0=(Z-.25*PI)
X1=(Z-.75*PI)
E0=CEXP(-j*X0)
E1=CEXP(-j*X1)
AM=CSQRT(P2/Z)
H0=AM*(P0-j*Q0)*E0
H1=AM*(P1-j*Q1)*E1
ENDIF
RETURN
END

SUBROUTINE MARCH(I,IMX,NIMX,NA,NB,NC,INOR,NB,NC,INORM,SVEC)
THIS ROUTINE PERFORMS THE RICCATI TRANSFORM FIRST
SWEEP, GENERATING AND STORING ON DISK RMAT AND SVEC (FOR EACH MODE) AT EACH FORWARD STEP.

COMPLEX RMAT(50,50),SVEC(50,100)
COMPLEX A(50,50),B(50,50),C(50,50),P(50,100)
COMPLEX D(50),SUM,DET
REAL COND,DMAG
INTEGER I,J,K,L,NA,NB,NC,PERND,BIND,IMX,INORM,NBMX
INTEGER NBMX
COMMON/BLK2/PERND,BIND
COMMON/BLK8/A,B,C,P
COMMON/BLK9/CHAR2,CHAR3,CHAR4

LOADING THEN INVERTING (B+A*RMAT) USING MINIMUM MEMORY SINGLE MATRIX TECHNIQUE DATE 1/29/80 FOR THIS CHANGE

SKIPPING FIRST A*R (WHEN A = 0, ZERO R MATRIX)
IF(I.EQ.1) THEN
DO 10, J = 1, NB
DO 10, K = 1, NB
RMAT(J,K) = (0.,0.)
10 CONTINUE
RMAT = A*R
ELSE
IF((CHAR2.EQ.'I').OR.(CHAR2.EQ.'i')) THEN
WRITE(19,*), OLD R MATRIX
DO 11, J = 1, 5
WRITE(19,1000) (REAL(RMAT(J,K)), K = 1, 5)
11 CONTINUE
WRITE(19,*), A MATRIX
DO 12, J = 1, 5
WRITE(19,1000) (REAL(A(J,K)), K = 1, 5)
12 CONTINUE
ENDIF

END
DO 30, K = 1, NB
 DO 20, J = 1, NB
 D(J) = (0., 0.)
 DO 20, L = 1, NA
 D(J) = D(J) + A(J, L)*RMAT(L, K)
 CONTINUE
 20 CONTINUE
 DO 30, J = 1, NB
 RMAT(J, K) = D(J)
 CONTINUE
 30 CONTINUE
C IF((CHAR2.EQ.'I').OR.(CHAR2.EQ.'i')) THEN
 WRITE(19,*), 'NEW R MATRIX'
 DO 13, J = 1, 5
 WRITE(19,1000) (REAL(RMAT(J, K)), K = 1, 5)
 13 CONTINUE
 WRITE(19,*)
ENDIF
C ENDIF
C IF((CHAR2.EQ.'I').OR.(CHAR2.EQ.'i')) THEN
 WRITE(19,*), 'B MATRIX'
 DO 14, J = 1, 5
 WRITE(19,1000) (REAL(B(J, K)), K = 1, 5)
 14 CONTINUE
 WRITE(19,*)
ENDIF
C RMAT = B + RMAT
 40 CONTINUE
C IF((CHAR2.EQ.'I').OR.(CHAR2.EQ.'i')) THEN
 WRITE(19,*), 'NEWEST R MATRIX'
 DO 15, J = 1, NB
 WRITE(9,1000) (REAL(RMAT(J, K)), K = 1, NB)
 WRITE(19,1000) (REAL(RMAT(J, K)), K = 1, NB)
 15 CONTINUE
 WRITE(9,*)
 WRITE(19,*)
ENDIF
C INVERTING THE MATRIX (B + A*R)
CALL CSMINV(RMAT, NBMX, NB, DET, COND, INORM)
C DMAG = CABS(DET)
WRITE(*,*) I, NBMX, NB, DMAG, COND
C COMPUTING THE NEW S-VECTORS
C SKIPPING FIRST A*S (A = 0)
IF (I.EQ.1) THEN
 CONTINUE
ELSE
 DO 70, K = 1, PERND
113
DO 60, J = 1, NB
D(J) = (0.0,0.0)
DO 60, L = 1, NA
D(J) = D(J) + A(J,L)*SVEC(L,K)
60 CONTINUE
DO 70, J = 1, NB
P(J,K) = P(J,K) - D(J)
70 CONTINUE
ENDIF
C FINAL SVEC MULTIPLICATION
DO 100, K = 1, PERND
DO 90, J = 1, NB
D(J) = (0.0,0.0)
DO 90, L = 1, NB
D(J) = D(J) + RMAT(J,L)*P(L,K)
90 CONTINUE
DO 100, J = 1, NB
SVEC(J,K) = D(J)
100 CONTINUE
C C STORING I+1 SVEC ON DISK 7
DO 110 J = 1, NB
WRITE(7) (SVEC(J,K), K = 1, PERND)
110 CONTINUE
C C FINAL RMAT MULTIPLICATION
IF(I.EQ.IMX) RETURN
DO 130, J = 1, NB
DO 120, K = 1, NC
D(K) = (0.0,0.0)
DO 120, L = 1, NB
D(K) = D(K) - RMAT(J,L)*C(L,K)
120 CONTINUE
DO 130, K = 1, NC
RMAT(J,K) = D(K)
130 CONTINUE
C C STORING I+1 RMAT ON DISK 7
DO 140, J = 1, NB
WRITE(7) (RMAT(J,K), K = 1, NC)
140 CONTINUE
C 1000 FORMAT(10(E9.3,1X))
C RETURN
END
C C SUBROUTINE SWEEP(IMX,NABC,SURBC,LINE,CHAR1,U,BCOND,PSI,ANS,CHAR5)
C THIS ROUTINE PERFORMS THE RICCATI TRANSFORM BACKSWEEP
C FROM I=IMX TO I=1, RECALLING RMAT AND
C SVEC FROM DISK 7 AT EACH BACKSTEP TO FORM
C THE NODE VECTORS PSI, THEN STORING THESE ON
C DISK 8 FOR EACH APPLIED DIRICHLET B.C.
C COMPLEX RMAT(50,100),PSI(50,100),SVEC(50,100),D(100),TEMP
C COMPLEX SURBC(100),ANS(100),LINE(50),ANSB(50),U(100,100)
COMPLEX BCOND(100)
REAL ERRORP, ERRORD, TERN, TERRD, ATSERR
INTEGER I, J, K, L, NABC(100, 3), IMX, PERND, BIND
CHARACTER*1 CHAR1, CHAR5

COMMON/BLK2/PERND, BIND

IF((CHAR5.EQ.'M').OR.(CHAR5.EQ.'m')) THEN
 RETURN
ENDIF

C INITIAL DISK READ AT IMX (R = 0, NOT WRITTEN, => S IS READ FIRST)
WRITE(*,*)
DO 90, I = IMX, 1, -1
 WRITE(*,1050) (IMX-I+1), IMX
 IF(I.EQ.IMX) THEN
 DO 10, J = NABC(I,2), 1, -1
 BACKSPACE 7
 READ(7) (PSI(J,K), K = 1, PERND)
 BACKSPACE 7
 10 CONTINUE
 DO 20, J = 1, NABC(I,2)
 DO 15, K = 1, PERND
 U(IMX,K) = PSI(J,K)
 15 CONTINUE
 20 CONTINUE
C SUBSEQUENT DISK READS
ELSE
 C READ R MATRIX
 DO 30, J = NABC(I,2), 1, -1
 BACKSPACE 7
 READ(7) (RMAT(J,K), K = 1, NABC(I,3))
 BACKSPACE 7
 30 CONTINUE
C READ S VECTOR
 DO 40, J = NABC(I,2), 1, -1
 BACKSPACE 7
 READ(7) (SVEC(J,K), K = 1, PERND)
 BACKSPACE 7
 40 CONTINUE
C MULTIPLY RMAT = RMAT*PSI
 DO 50, J = 1, NABC(I,2)
 DO 50, K = 1, PERND
 D(K) = (0.0,0.0)
 DO 50, L = 1, NABC(I,3)
 D(K) = D(K) + RMAT(J,L)*PSI(L,K)
 50 CONTINUE
 DO 60, K = 1, PERND
 RMAT(J,K) = D(K)
 60 CONTINUE
C PSI = RMAT + SVEC
 DO 70, J = 1, NABC(I,2)
 DO 70, K = 1, PERND
 PSI(J,K) = RMAT(J,K) + SVEC(J,K)
 70 CONTINUE
ANSB(I) = (0.0,0.0)
DO 80, J = 1, NABC(I,2)
 DO 75, K = 1, PERND
 IF((J.EQ.NABC(I,2)).OR.(I.EQ.1)) THEN
 U(I,K) = PSI(J,K)
 ELSEIF(J.EQ.1) THEN
 U(2*IMX-I,K) = PSI(J,K)
 ELSEIF(J.EQ.(NABC(I,2)+1)/2) THEN
 ANSB(I) = ANSB(I) + PSI(J,K)*BCOND(K)
 END IF
 CONTINUE
80 CONTINUE
END IF
90 CONTINUE
WRITE(8,*)
C
DO 98, J = 1, PERND
 ANS(J) = (0.0,0.0)
 DO 94, L = 1, PERND
 ANS(J) = ANS(J) + U(J,L)*BCOND(L)
 CONTINUE
94 CONTINUE
98 CONTINUE
C
TERRN = 0.0
TERRD = 0.0
DO 100, I = 1, PERND
 ERRORP = (CABS(ANS(I) - SURBC(I)))**2
 ERRORD = (CABS(SURBC(I)))**2
 TERRN = TERRN + ERRORP
 TERRD = TERRD + ERRORD
 WRITE(13,1020) I, BCOND(I), SURBC(I), ANS(I), ERRORP
100 CONTINUE
WRITE(13,*)
ATSERR = (TERRN/TERRD)**0.5
WRITE(13,1030) ATSERR
WRITE(*,*),'RMS ERROR (FOR THE PERIMETER) = ',ATSERR
C
IF((CHAR1.EQ.'C').OR.(CHAR1.EQ.'c')) THEN
 RETURN
ELSE
 TERRN = 0.0
 TERRD = 0.0
 DO 110, I = 2, BIND+1
 ERRORP = (CABS(ANSB(I) - LINE(I)))**2
 ERRORD = (CABS(LINE(I)))**2
 TERRN = TERRN + ERRORP
 TERRD = TERRD + ERRORD
 WRITE(13,1025) (I-1), LINE(I), ANSB(I), ERRORP
110 CONTINUE
WRITE(13,*)
ATSERR = (TERRN/TERRD)**0.5
WRITE(13,1040) ATSERR
WRITE(*,*),'RMS ERROR (FOR BISECTION SEGMENT) = ',ATSERR
ENDIF
C
DO 120, I = 1, PERND
WRITE(30,1060) (U(I,J), J = 1, PERND)
CONTINUE

1020 FORMAT(1X,I3,2X,3(E14.8,1X,E14.8,3X),F10.6)
1025 FORMAT(1X,I3,2X,4(E14.8,2X),F10.6)
1030 FORMAT(1X,' RMS ERROR (FOR THE PERIMETER) = ',F12.6)
1040 FORMAT(1X,' RMS ERROR (FOR BISECTION SEGMENT) = ',F12.6)
1050 FORMAT(1X,I3,' TOTAL BACKSWEEP ROWS OUT OF ',I3,' COMPLETED')
1060 FORMAT(1X,100(E8.2,E8.2,2X))
RETURN
END

SUBROUTINE CSMINV(A,NDIM,N,DETERM,COND,INORM)

INORM - FLAG TO NORMALIZE COLUMNS AND ROWS OF MATRIX A
MATRIX NORMALIZATION BY M.A. MORGAN
APRIL 24,1978

A - MATRIX TO INVERT - INPUT/OUTPUT
NDIM - - INPUT
N - - INPUT
DETERM - DETERMINATE OF A - OUTPUT
COND - CONDITION NUMBER OF A - OUTPUT
INORM - INTEGER NORMALIZATION FLAG - INPUT

COMPLEX A(50,50),PIVOT(50),AMAX,T,SWAP,DETERM,U
INTEGER I,J,K,L,IPIVOT(50),INDEX(50,2),IROW,ICOLUM,L1,JROW
INTEGER JCOLUM,N,INORM
REAL TEMP,ALPHA(50),COL(50),ROW(50),AJK,SUMAXA,SUMROW,SUMAXI

IF(NDIM.GT.50) THEN
WRITE(*,*).' ERROR IN INVERSION CALL... DIMENSION > 50'
STOP
ENDIF
IF(N.GT.NDIM) THEN
WRITE(*,*).' ERROR IN INVERSION CALL... N > MAX DIM.'
STOP
ENDIF
IF(INORM.NE.1) GO TO 7
DO 3 K = 1, N
 COL(K) = 0.0
 DO 1 J = 1,N
 AJK = CABS(A(J,K))
 IF(AJK.GT.COL(K)) COL(K) = AJK
 1 CONTINUE
 DO 2 J = 1, N
 A(J,K) = A(J,K)/COL(K)
 2 A(J,K) = A(J,K)/COL(K)
 3 CONTINUE
C ROW NORMALIZING
DO 6 J = 1, N
 ROW(J) = 0.0
 DO 4 K = 1, N
117
AJK = CABS(A(J,K))
IF(AJK.GT.ROW(J)) ROW(J) = AJK

CONTINUE
DO 5 K = 1, N
 A(J,K) = A(J,K)/ROW(J)
5 CONTINUE

DETERM = CMPLX(1.0,0.0)
SUMAXA = 0.0
DO 20 J = 1, N
 ALPHA(J) = 0.0
 SUMROW = 0.0
 DO 10 I = 1, N
 ALPHA(J) = ALPHA(J) + A(J,I)*CONJG(A(J,I))
 SUMROW = SUMROW + CABS(A(J,I))
 10 SUMROW = SUMROW/#+SUMAXA
 ALPHA(J) = SQRT(ALPHA(J))
 IF(SUMROW.GT.SUMAXA) SUMAXA = SUMROW
20 IPIVOT(J) = 0
DO 600 I = 1, N

AMAX = CMPLX(0.0,0.0)
DO 105 J = 1, N
 IF (IPIVOT(J)-1) 60, 105, 60
 DO 100 K = 1, N
 IF (IPIVOT(K)-1) 80, 100, 740
 TEMP = AMAX*CONJG(AMAX) - A(J,K)*CONJG(A(J,K))
 IF(TEMP)85,85,100
 80 TEMP = AMAX*CONJG(AMAX)
 85 IROW = J
 ICOLUM = K
 AMAX = A(J,K)
100 CONTINUE
105 CONTINUE
IPIVOT(ICOLUM) = IPIVOT(ICOLUM) + 1

IF (IPIVOT(ICOLUM) 140, 260, 140
140 DETERM = -DETERM
DO 200 L = 1, N
 SWAP = A(IROW,L)
 A(IROW,L) = A(ICOLUM,L)
200 A(ICOLUM,L) = SWAP
 SWAP = ALPHA(IROW)
 ALPHA(IROW) = ALPHA(ICOLUM)
 ALPHA(ICOLUM) = SWAP
260 INDEX(1,1) = IROW
 INDEX(1,2) = ICOLUM
 PIVOT(I) = A(ICOLUM,ICOLUM)
 U = PIVOT(I)
 DETERM = DETERM*U
 DETERM = DETERM/ALPHA(ICOLUM)
 TEMP = PIVOT(I)*CONJG(PIVOT(I))
 IF(TEMP)330,720,330
330 A(ICOLUM,ICOLUM) = CMPLX(1.0,0.0)
DO 350 L = 1, N
 U = PIVOT(I)
 A(ICOLUM,L) = A(ICOLUM,L)/U
C
C
DO 550 L1 = 1, N
 IF(L1-ICOLUM) 400, 550, 400
 T = A(L1,ICOLUM)
 A(L1,ICOLUM) = CMPLX(0.0,0.0)
 DO 450 L = 1, N
 U = A(ICOLUM,L)
 A(L1,L) = A(L1,L) - U*T
 CONTINUE
 450 CONTINUE
 CONTINUE
C
C
DO 710 I = 1, N
 L = N + 1 - I
 IF (INDEX(L,1) = INDEX(L,2)) 630, 710, 630
 JROW = INDEX(L,1)
 JCOLUMN = INDEX(L,2)
 DO 705 K = 1, N
 SWAP = A(K,JROW)
 A(K,JROW) = A(K,JCOLUMN)
 A(K,JCOLUMN) = SWAP
 705 CONTINUE
 CONTINUE
 SUMAXI = 0.0
 DO 910 I = 1, N
 SUMROW = 0.0
 DO 900 J = 1, N
 SUMROW = SUMROW + CABS(A(I,J))
 IF(SUMROW.GT.SUMAXI) SUMAXI = SUMROW
 900 CONTINUE
 CONTINUE
 COND = SUMAXA*SUMAXI
 IF(INORM.NE.1) GO TO 955
 DO 950 K = 1, N
 DO 950 J = 1, N
 A(J,K) = A(J,K)/(ROW(K)*COL(J))
 950 CONTINUE
 955 CONTINUE
RETURN
720 WRITE(*,730)
730 FORMAT(' MATRIX IS SINGULAR')
740 RETURN
END

SUBROUTINE SAVE(BCOND,ANS,U,OFFSET,PERND,CHAR5,DPER,K,XORG,YORG,
CNRES,MRES,GBIAS,MRES,MAXD)
C
C THIS SUBROUTINE SAVES THE ESSENCE OF THE FINITE ELEMENT PROBLEM
C TO A DATA FILE CALLED "F3.DAT". THIS DATA IS NECESSARY TO
C SOLVE THE FIELD FEEDBACK FORMULATION, (F3).
C
COMPLEX BCOND(100),ANS(100),U(100,100)
REAL OFFSET,MESH(0:200,5),DPER,K,XORG,YORG,MRES,MAXD
INTEGER PERND,I,J,NRES,GBIAS,MRES
CHARACTER*1 CHAR5

COMMON/BLK1/MESH

IF((CHAR5.EQ. 'M').OR.(CHAR5.EQ. 'm')) THEN
 RETURN
ENDIF

WRITE(40,*) PERND
WRITE(40,*) OFFSET
WRITE(40,*) DPER
WRITE(40,*) K
WRITE(40,*) XORG
WRITE(40,*) YORG
WRITE(40,*) NRES
WRITE(40,*) MRES
WRITE(40,*) LBIAS
WRITE(40,*) GBIAS
WRITE(40,*) MAXD

DO 10, I = 1, 4
 DO 10, J = 1, PERND
 WRITE(40,*) MESH(J,I)
10 CONTINUE

DO 20, J = 1, PERND
 WRITE(40,*) BCOND(J)
20 CONTINUE

DO 30, J = 1, PERND
 WRITE(40,*) ANS(J)
30 CONTINUE

DO 40, I = 1, PERND
 DO 40, J = 1, PERND
 WRITE(40,*) U(I,J)
40 CONTINUE

RETURN
END
APPENDIX D. VARINT CONVERGENCE PROGRAM

TEST OF VARINT CONVERGENCE

COMPLEX F(3,3), ALPHA, BETA, EXACT, CENTER, LEFT, RIGHT, TOP
COMPLEX BOTTOM, SUM, CALC
REAL X(3), Y(3), D, AREA, KR, PI, ERROR
INTEGER I

OPEN (UNIT = 1, FILE = 'C: MSFORT TEST.DAT', STATUS = 'UNKNOWN')
ALPHA = (1.0,0.0)
BETA = (1.0,0.0)
PI = 4.0*ATAN(1.0)

DO 5, I = 1, 100
 D = 2.0*PI*FLOAT(I)/100.0
 KR = REAL(CSQRT(BETA))
 X(1) = 0.0
 Y(1) = 0.0
 X(2) = D
 Y(2) = 0.0
 X(3) = 0.0
 Y(3) = D

 CALL VARINT(X,Y,F,ALPHA,BETA,AREA)

 EXACT = CMPLX(COS(KR*0.0),SIN(KR*0.0))
 CENTER = 4.0*F(1,1)
 RIGHT = -2.0*F(1,2)*CMPLX(COS(KR*Y(2)),SIN(KR*Y(2)))
 TOP = -2.0*F(1,2)*CMPLX(COS(KR*Y(3)),SIN(KR*Y(3)))
 LEFT = -2.0*F(1,2)*CMPLX(COS(KR*Y(2)),SIN(KR*Y(2)))
 BOTTOM = -2.0*F(1,2)*CMPLX(COS(-KR*Y(3)),SIN(-KR*Y(3)))
 SUM = TOP + BOTTOM + LEFT + RIGHT
 CALC = SUM/CENTER
 ERROR = (CALC-EXACT)/EXACT
 WRITE(1,1000) I,D,EXACT,CALC,ERROR

5 CONTINUE

CLOSE(1)

1000 FORMAT(1X,I3,1X,F8.5,1X,2(F8.5,1X,F8.5,1X),E13.6)

STOP
END

SUBROUTINE VARINT(X,Y,F,ALPHA,BETA,AREA)

GENERATING VARIATIONAL FINITE ELEMENT AREA INTEGRATIONS OF THE
LINEAR BASIS FUNCTION LAGRANGIAN FOR THE HELMHOLZ EQUATION.
 THESE ARE RETURNED IN F(3,3). X(3) AND Y(3) ARE THE WAVENUMBER
NORMALIZED CARTESIAN COORDINATES OF THE TRIANGLE VERTICES.
X = Ko*x, Y = Ko*y ALPHA AND BETA ARE COMPLEX
MATERIAL PARAMETERS WITHIN THE ELEMENT.

FOR TM INCIDENCE: ALPHA = 1/ur; BETA = er
FOR TE INCIDENCE: ALPHA = 1/er; BETA = ur

OUTPUTS:
F(3,3) - FINITE ELEMENT AREA INTEGRATION
AREA - AREA OF A TRIANGLE

COMPLEX ALPHA, BETA, B12, F(3,3)
REAL X(3), Y(3), T(3,3), AREA, DET
INTEGER L, K

DET = ABS(X(2)*Y(3) + X(3)*Y(1) + X(1)*Y(2) - X(3)*Y(2) - CX(1)*Y(3) - X(2)*Y(1))
AREA = ABS(0.5*DET)
B12 = BETA/12.
T(1,1) = (Y(2) - Y(3))/DET
T(1,2) = (Y(3) - Y(1))/DET
T(1,3) = (Y(1) - Y(2))/DET
T(2,1) = (X(3) - X(2))/DET
T(2,2) = (X(1) - X(3))/DET
T(2,3) = (X(2) - X(1))/DET
T(3,1) = (X(2)*Y(3) - X(3)*Y(2))/DET
T(3,2) = (X(3)*Y(1) - X(1)*Y(3))/DET
T(3,3) = (X(1)*Y(2) - X(2)*Y(1))/DET
DO 10, K = 1, 3
 DO 10 L = 1, 3
 F(K,L) = ALPHA*(T(1,K)*T(1,L) + T(2,K)*T(2,L)) - B12
 IF(K.EQ.L) F(K,L) = F(K,L) - B12
 10 F(K,L) = AREA*F(K,L)

RETURN
END
APPENDIX E. FIELD FEEDBACK PROGRAM

FIELD FEEDBACK FORMULATION PROGRAM
WRITTEN BY T. B. WELCH

w/ PROGRAMMING IDEAS FROM PROF M. A. MORGAN

BCOND - BOUNDARY CONDITIONS
OFFSET - OFFSET IN WAVELENGTHS (PERIMETER TO BOUNDARY)
ANS - CALCULATED PSI VALUES ON PERIMETER
DPER - DESIRED PERCENT ERROR SCALE FACTOR FOR GREEN'S
FUNCTION INTEGRAL PATCH STEPPING
LBIAS - BIAS THAT IS ADDED TO THE GFI STEP FOR < 1.0
GBIAS - BIAS THAT IS ADDED TO THE GFI STEP FOR > 1.0
MAXD - MAXIMUM DISTANCE BEYOND WHICH NO CONTRIBUTION IS MADE
TO THE GFI
K - WAVENUMBER
XORG - X ORIGIN
YORG - Y ORIGIN
NRES - NUMBER OF EVENLY SPACED POINTS DESIRED FOR THE FAR
FIELD CALCULATIONS (360/NRES = ANGULAR RESOLUTION)
U - MATRIX THAT RELATES EACH BOUNDARY NODE VALUE TO THE
UNKNOWN PERIMETER NODE VALUE. MULTIPLY U BY A DRIVING
VECTOR (ON BOUNDARY) TO FIND PERIMETER VALUES.
PERND - NUMBER OF PERIMETER NODES
MESH - GEOMETRY ARRAY CONTAINING:
1 - X POSITION OF PERIMETER NODES
2 - Y POSITION OF PERIMETER NODES
3 - X UNIT NORMAL OF PERIMETER NODES
4 - Y UNIT NORMAL OF PERIMETER NODES
5 - X POSITION OF GEOMETRIC CONTOUR NODES
6 - Y POSITION OF GEOMETRIC CONTOUR NODES
7 - X POSITION OF BOUNDARY NODES
8 - Y POSITION OF BOUNDARY NODES
T - MATRIX THAT RELATES PERIMETER VALUES BACK OUT
TO THE BOUNDARY VIA A GREEN'S FUNCTION INTEGRAL
CNVEC - VECTOR OF SCATTERED FIELD BACK ONTO THE BOUNDARY
MRES - MESH RESOLUTION

COMPLEX BCOND(100),ANS(100),U(100,100),T(100,100),CNVEC(100)
REAL OFFSET,MESH(100,8),DPER,K,XORG,YORG,MRES,MAXD
INTEGER PERND,I,J,NRES,LBIAS,GBIAS

OPEN (UNIT = 40, FILE = 'C: MSFORT F3.DAT',STATUS='UNKNOWN')
OPEN (UNIT = 50, FILE = 'C: MSFORT FFPAT.DAT',STATUS='UNKNOWN')

CALL INPUT(BCOND,ANS,U,OFFSET,PERND,MESH,DPER,K,XORG,YORG,MRES,LBIAS,GBIAS,MAXD)
CALL TMAT(U,PERND,MESH,T,OFFSET,DPER,BCOND,MRES,LBIAS,GBIAS,MAXD)
CALL CNSOLV(T,BCOND,CNVEC,PERND)

123
CALL FFLD(CNVEC,PERND,MESH,U,OFFSET,K,NRES,XORG,YORG)

CLOSE(40)
CLOSE(50)

STOP
END

SUBROUTINE INPUT(BCOND,ANS,U,OFFSET,PERND,MESH,DPER,K,NRES,XORG,
CYORG,MRES,LBIAS,GBIAS,MAXD)

THIS SUBROUTINE READS THE FINITE ELEMENT PROBLEM DATA FROM
THE DATA FILE CALLED "F3.DAT". THIS DATA IS NECESSARY TO
SOLVE THE FIELD FEEDBACK FORMULATION, (F3).

COMPLEX BCOND(100),ANS(100),U(100,100)
REAL OFFSET,MESH(100,8),DPER,K,XORG,YORG,MRES,MAXD
INTEGER PERND,I,J,NRES,LBIAS,GBIAS

WRITE(*,*) 'READING INPUT DATA'

READ(40,*) PERND
READ(40,*) OFFSET
READ(40,*) DPER
READ(40,*) K
READ(40,*) XORG
READ(40,*) YORG
READ(40,*) NRES
READ(40,*) MRES
READ(40,*) LBIAS
READ(40,*) GBIAS
READ(40,*) MAXD

WRITE(6,*), 'NUMBER OF PERIMETER NODES', PERND
WRITE(6,*), 'BOUNDARY CONTOUR OFFSET', OFFSET
WRITE(6,*), 'DESIRED GFI SCALE FACTOR', DPER
WRITE(6,*), 'GFI STEP BIAS FOR < 1.0', K
WRITE(6,*), 'GFI STEP BIAS FOR > 1.0', LBIAS
WRITE(6,*), 'MAX DIST > NO CONTRIBUTION TO GFI', GBIAS
WRITE(6,*), 'WAVENUMBER', MAXD
WRITE(6,*), 'X ORIGIN', XORG
WRITE(6,*), 'Y ORIGIN', YORG
WRITE(6,*), 'NUMBER OF NODES FOR SIGMA', NRES
WRITE(6,*), 'REQUESTED MESH RESOLUTION', MRES

DO 10, I = 1, 4
 DO 10, J = 1, PERND
 READ(40,*) MESH(J,I)
 10 CONTINUE

DO 20, J = 1, PERND
 READ(40,*) BCOND(J)
20 CONTINUE

DO 30, J = 1, PERND

124
READ(40,*) ANS(J)

CONTINUE
C
DO 40, I = 1, PERND
 DO 40, J = 1, PERND
 READ(40,*) U(I,J)
 CONTINUE
C
DO 50, I = 1, PERND
 MESH(I,5) = MESH(I,1) + MESH(I,3)*OFFSET/2.0
 MESH(I,6) = MESH(I,2) + MESH(I,4)*OFFSET/2.0
 MESH(I,7) = MESH(I,1) + MESH(I,3)*OFFSET
 MESH(I,8) = MESH(I,2) + MESH(I,4)*OFFSET
 CONTINUE
C
RETURN
END
C
SUBROUTINE THAT(U,PERND,MESH,T,OFFSET,DPER,BCOND,MRES,LBIAS,GBIAS,
CMAXD)
C
THIS SUBROUTINE CALCULATES THE GREEN'S FUNCTION INTEGRAL
(ONLY FOR A SINGLE BASIS FUNCTION BOUNDARY CONDITION) GEOMETRIC
PERIMETER WITH RESPECT TO EACH OF THE OFFSET BOUNDARY NODES.
The integration is repeated until each boundary condition has been
individually applied and integrated with respect to each offset
boundary node. These values are returned in the "T" MATRIX
for use in the field feedback formulation. The matrix is
organized, T M,N.
C
COMPLEX U(100,100),T(100,100),PVEC(100),PDVEC(100)
COMPLEX J,HORP1,HORP2,H1RP1,SUM,TEMP(100),BCOND(100)
COMPLEX H1RP2,PSI,PSIRP,INTEGRAL,DPSIC
REAL RMRP,NORM11,NORM12,DOT,DPER,DISTM,MAXD
REAL OFFSET,MESH(100,8),DIST,R,DZ,DL,MRES
INTEGER IM,N,NN,STEP,FN,SN,PERND,MM,STEPMX,STEPMN,LBIAS,GBIAS
OPEN (UNIT = 2, FILE = 'C: MSFORT THAT.DAT',STATUS = 'UNKNOWN')
C
J = (0.0,1.0)
STEPMX = INT(DPER*(-48.0*OFFSET + 17.2) + LBIAS)
STEPMN = INT(DPER + GBIAS)
C
WRITE(*,*) ' LOADING T MATRIX '
WRITE(*,*) ' MAXIMUM STEP = ',STEPMX,' , MINIMUM STEP = ',STEPMN
WRITE(*,*) ' MAXIMUM DISTANCE FOR ANY CONTRIBUTION = ',MAXD
DO 40, M = 1, PERND
 DO 5, I = 1, PERND
 IF(M.EQ.I) THEN
 PVEC(I) = (1.0 + U(I,M))/2.0
 PDVEC(I) = (1.0 - U(I,M))/OFFSET
 ELSE
 PVEC(I) = U(I,M)/2.0
 PDVEC(I) = -U(I,M)/OFFSET
 END IF
 ...
C IF N = 1, PERND
C DO 30, N = 1, PERND
C WRITE(*,1000) M, N, PERND
C SUM = (0.0,0.0)
C DO 20, NN = 1, PERND
C FN = NN
C IF(NN.EQ.PERND) THEN
C SN = 1
C ELSE
C SN = NN + 1
C ENDIF
C DIST = SQRT((MESH(FN,5)-MESH(SN,5))**2+(MESH(FN,6)-MESH(SN,6))**2)
C INTEGRAL = (0.0,0.0)
C DISTM = SQRT((MESH(N,7)-MESH(FN,5))**2+(MESH(N,8)-MESH(FN,6))**2)
C R = MESH(SN,5) - MESH(FN,5)
C DZ = MESH(SN,6) - MESH(FN,6)
C DL = SQRT(R**2 + DZ**2)
C NORM11 = -DZ/DL
C NORM12 = R/DL
C IF(DISTM.GT.MAXD) THEN
GOTO 20
ELSEIF(DISTM.LE.1.0) THEN
STEP = STEPMX
ELSE
STEP = STEPMN
ENDIF
IF(STEP.LT.1) STEP = 1
C DO 10, I = 1, STEP+1
IF(I.EQ.1) THEN
RMRP = SQRT(((MESH(N,7)-(MESH(FN,5)+0.25*(MESH(SN,5)-MESH(FN,5)))/FLOAT(STEP))**2+(MESH(N,8)-(MESH(FN,6)+0.25*(MESH(SN,6)-MESH(FN,6)))/FLOAT(STEP))**2)
C DPSIC = PDVEC(FN) + 0.25*(PDVEC(SN)-PDVEC(FN))/STEP
C PSIRP = PVEC(FN) + 0.25*(PVEC(SN)-PVEC(FN))/STEP
C DOT = (NORM11*(MESH(N,7)-(MESH(FN,5)+0.25*(MESH(SN,5)-MESH(FN,5)))/STEP)+(NORM12*(MESH(N,8)-(MESH(FN,6)+0.25*(MESH(SN,6)-MESH(FN,6)))/STEP))/RMRP
ELSEIF(I.EQ.STEP+1) THEN
RMRP = SQRT(((MESH(N,7)-(MESH(FN,5))+(FLOAT(STEP)-0.25)*(MESH(SN,5)-MESH(FN,5)))/FLOAT(STEP))**2+(MESH(N,8)-(MESH(FN,6)+(FLOAT(STEP)-0.25)*(MESH(SN,6)-MESH(FN,6)))/FLOAT(STEP))**2)
C DPSIC = PDVEC(FN)+(FLOAT(STEP)-0.25)*(PDVEC(SN)-PDVEC(FN))/STEP
C PSIRP = PVEC(FN)+(FLOAT(STEP)-0.25)*(PVEC(SN)-PVEC(FN))/STEP
C DOT = (NORM11*(MESH(N,7)-(MESH(FN,5)+(FLOAT(STEP)-0.25)*(MESH(SN,5)-MESH(FN,5)))/STEP)+(NORM12*(MESH(N,8)-(MESH(FN,6)+(FLOAT(STEP)-0.25)*(MESH(SN,6)-MESH(FN,6)))/STEP))/RMRP
ELSE
ENDIF
C 126
```fortran
C )))/RMRP
ELSE
  RMRP = SQRT(((MESH(N,7)-(MESH(FN,5)+FLOAT(I-1)*(MESH(SN,
  5)-MESH(FN,5)))/FLOAT(STEP)))**2+(MESH(N,8)-(MESH(FN,6)+
  FLOAT(I-1)*(MESH(FN,6)-MESH(FN,8)))/FLOAT(STEP)))**2)**2
  DPSIC=PDVEC(FN)+((I-1)*(PDVEC(SN)-PDVEC(FN))/FLOAT(STEP))
  PSIRP = PVEC(FN)+(I-1)*((PVEC(SN)-PVEC(FN))/FLOAT(STEP))
  DOT = (NORM11*(MESH(N,7)+(MESH(FN,5)+FLOAT(I-1)*(MESH(SN,
  5)-MESH(FN,5)))/FLOAT(STEP))+(NORM12*(MESH(N,8)-(MESH(FN,6)+
  FLOAT(I-1)*(MESH(SN,6)-MESH(FN,6))/FLOAT(STEP)))))/RRP
ENDIF
CALL HAN1(CMPLX(RMRP,0.0),HORP1,HIRP1)
IF((I.EQ.1).OR.(I.EQ.STEP+1)) THEN
  PSI = (J/4.0)*((HORP1*DPSIC - PSIRP*DOT*HIRP1)/2)
ELSE
  PSI = (J/4.0)*((HORP1*DPSIC - PSIRP*DOT*HIRP1)
ENDIF
INTEGRAL = INTEGRAL + PSI*DIST/STEP
C 10 CONTINUE
  SUM = SUM + INTEGRAL
20 CONTINUE
  T(N,M) = SUM
30 CONTINUE
40 CONTINUE
C DO 55, I = 1, PERND
  TEMP(I) = (0.0,0.0)
DO 50, M = 1, PERND
  TEMP(I) = TEMP(I) + T(I,M)*BCOND(M)
50 CONTINUE
WRITE(2,*) (T(I,MM), MM = 1, PERND)
55 CONTINUE
C DO 60, I = 1, PERND
  WRITE(2,*) I, TEMP(I)
60 CONTINUE
C 1000 FORMAT(1X,'COLUMN ',I3,', ROW ',I3,' OUT OF ',I3)
C CLOSE(2)
C RETURN
END

SUBROUTINE CNSOLV(T,BCOND,CNVEC,PERND)
C THIS SUBROUTINE CALCULATES THE C VECTOR BY SOLVING:
C
-1
Cn = [I - T]  * BOUNDARY CONDITIONS (INCIDENT FIELDS)
C
COMPLEX BCOND(100),T(100,100),TEMP(100),CNVEC(100), DTERM
REAL COND, DMAG
```
INTEGER PERND, I, J, K, L, INORM, NMAX
C
INORM = 0
NMAX = 100
C
DO 10, I = 1, PERND
 DO 10, J = 1, PERND
 IF (I.EQ.J) THEN
 T(I, J) = 1 - T(I, J)
 ELSE
 T(I, J) = -T(I, J)
 ENDIF
10 CONTINUE

WRITE(*,*) 'INVERTING THE [I - T] MATRIX
C
CALL CSMINV(T, NMAX, PERND, DETERM, COND, INORM)
C
DMAG = CABS(DETERM)
WRITE(*,*) ' DETERMINANT = ', DMAG
WRITE(*,*) ' CONDITION NUMBER = ', COND
WRITE(*,*) ' MULTIPLYING MATRICES TO FORM THE SCATTERED FIELDS'
C
DO 30, I = 1, PERND
 CNVEC(I) = (0.0, 0.0)
 DO 30, J = 1, PERND
 CNVEC(I) = CNVEC(I) + T(I, J)*BCOND(J)
30 CONTINUE
C
RETURN
END
C
SUBROUTINE FFLD(CNVEC, PERND, MESH, U, OFFSET, K, NRES, XORG, YORG)
C
THIS SUBROUTINE CALCULATES THE FAR FIELDS DUE TO THE OFFSET
BOUNDARY SCATTERED FIELDS AND THE PERIMETER SCATTERED FIELDS.
ADDITIONAL GREEN'S FUNCTION INTEGRALS ARE ACCOMPLISHED.
C
COMPLEX CNVEC(100), U(100, 100), J, PSISP(100), TEMP, PSI, DPSI
COMPLEX DPSISP(100), INTEGRAL, DPSIM(100, 100), PSIM(100, 100)
REAL MESH(100, 8), OFFSET, K, DOT, DOT1, PI, ARES, XORG, YORG, DIST, SIGMA
REAL R, DZ, DL, NORM11, NORM12
INTEGER PERND, I, M, N, L, NRES, FN, SN, STEP, II
C
WRITE(*,*) ' CALCULATING THE SCATTERED FIELDS'
J = (0.0, 1.0)
PI = 4.0*ATAN(1.0)
ARES = 2.0*PI/FLOAT(NRES)
STEP = 5
C
DO 5, M = 1, PERND
 DO 5, I = 1, PERND
 IF (M.EQ.1) THEN
 PSIM(I, M) = (1.0 + U(I, M))/2.0
 DPSIM(I, M) = (1.0 - U(I, M))/OFFSET
 ELSE
 PSIM(I, M) = (1.0 + U(I, M))/2.0
 DPSIM(I, M) = (1.0 - U(I, M))/OFFSET
 ENDIF
5 CONTINUE
```fortran
PSIM(I,M) = U(I,M)/2.0
DPSIM(I,M) = -U(I,M)/OFFSET
ENDIF

DO 10, I = 1, PERMD
PSISP(I) = (0.0,0.0)
DPSISP(I) = (0.0,0.0)
DO 10, L = 1, PERND
PSISP(I) = PSISP(I) + PSIM(I,L)*CNVEC(L)
DPSISP(I) = DPSISP(I) + DPSIM(I,L)*CNVEC(L)
10 CONTINUE

DO 30, I = 0, NRES-1
WRITE(6,1000) I+1, NRES
INTEGRAL = (0.0,0.0)
DO 20, N = 1, PERMD
FN = N
IF(N.EQ.PERND) THEN
SN = 1
ELSE
SN = N + 1
ENDIF
R = MESH(SN,5) - MESH(FN,5)
DZ = MESH(SN,6) - MESH(FN,6)
DL = SQRT(R**2 + DZ**2)
NORM11 = -DZ/DL
NORM12 = R/DL
DO 15, II = 1, STEP+1
DIST = SQRT((MESH(FN,5)-MESH(SN,5))**2+(MESH(FN,6)-MESH(SN,6))**2)
IF(II.EQ.1) THEN
PSI = PSISP(FN)+(0.25*(PSISP(SN)-PSISP(FN)))/FLOAT(STEP)
C
DPSI = DPSISP(FN)+(0.25*(DPSISP(SN)-DPSISP(FN)))/FLOAT(STEP)
C
DOT = NORM11*SIN(I*ARES) + NORM12*COS(I*ARES)
DOT1 = (MESH(FN,5)+0.25*(MESH(SN,5)-MESH(FN,5)))/FLOAT(STEP)-XORG)*SIN(I*ARES)
C
+ (MESH(FN,6)+0.25*(MESH(SN,6)-MESH(FN,6)))/FLOAT(STEP)-YORG)*COS(I*ARES)
ELSEIF(II.EQ.STEP+1) THEN
PSI = PSISP(FN)+(FLOAT(STEP)-0.25)*(PSISP(SN)-PSISP(FN))/FLOAT(STEP)
C
DPSI = DPSISP(FN)+(FLOAT(STEP)-0.25)*(DPSISP(SN)-DPSISP(FN))/FLOAT(STEP)
C
DOT = NORM11*SIN(I*ARES) + NORM12*COS(I*ARES)
DOT1 = (MESH(FN,5)+(FLOAT(STEP)-0.25)*(MESH(SN,5)-MESH(FN,5)))/FLOAT(STEP)-XORG)*SIN(I*ARES)
C
+ (MESH(FN,6)+(FLOAT(STEP)-0.25)*(MESH(SN,6)-MESH(FN,6)))/FLOAT(STEP)-YORG)*COS(I*ARES)
ELSE
PSI = PSISP(FN)+(FLOAT(II-1)*(PSISP(SN)-PSISP(FN)))/FLOAT(STEP)
C
DPSI = DPSISP(FN)+(FLOAT(II-1)*(DPSISP(SN)-DPSISP(FN)))/FLOAT(STEP)
C
129
```


\[
\text{DOT} = \text{NORM11} \times \sin(I \times \text{ARES}) + \text{NORM12} \times \cos(I \times \text{ARES})
\]

\[
\text{DOT1} = (\text{MESH(FN,5)} + \text{FLOAT}(II-1) \times (\text{MESH(SN,5)} - \text{MESH(FN,5)}) / \text{FLOAT(STEP)} - \text{XORG}) \times \sin(I \times \text{ARES}) + (\text{MESH(FN,6)} + \text{FLOAT}(II-1) \times (\text{MESH(SN,6)} - \text{MESH(FN,6)}) / \text{FLOAT(STEP)} - \text{YORG}) \times \cos(I \times \text{ARES})
\]

ENDIF

IF((II.EQ.1).OR.(II.EQ.STEP+1)) THEN
 \[
 \text{TEMP} = (J \times \text{DPSI} + \text{DOT} \times \text{PSI}) \times (\exp(J \times \text{DOT1})) \times \text{DIST} / (2.0 \times \text{STEP})
 \]
ELSE
 \[
 \text{TEMP} = (J \times \text{DPSI} + \text{DOT} \times \text{PSI}) \times (\exp(J \times \text{DOT1})) \times \text{DIST} / (\text{STEP})
 \]
ENDIF

\[
\text{INTEGRAL} = \text{INTEGRAL} + \text{TEMP}
\]

15 CONTINUE
20 CONTINUE

SIGMA = ((\text{CABS(INTEGRAL)})**2.0) / (4.0*\text{K})
WRITE(50,1010) I+1, (I \times \text{ARES} \times 180.0 / \pi), SIGMA

30 CONTINUE

WRITE(6,*)
WRITE(6,*)' <<< FIELD PATTERN STORED IN FFPAT.DAT >>> '
WRITE(6,*)'

C
1000 FORMAT(1X,'INTEGRAL ','I3',' OUT OF ','I3',' COMPLETED')
1010 FORMAT(1X,I3,2X,F6.2,2XE14.8)
C
RETURN
END

C
SUBROUTINE HAN1(Z,H0,H1)

Computing Hankel Functions for n=0,1 with Complex Argument, Z. Direct Power Series Method for \text{CABS(Z)} \leq 5 \text{ and Hankel's Asymptotic Formula for } \text{CABS(Z)} > 5. \text{ Written 11/6/87 by M.A. Morgan}

INTEGER M,M2
REAL C(34),DM,F(34),GO,P(34),Pi,P2
COMPLEX Z,Z2,Z3,Z4,J0,J1,Y0,Y1,AM,CL,PO,P1,Q0,QI
COMPLEX EO,E1,XO,XI,HO,H1,j
PI=3.1415927
P2=2.0/PI
j=(0.,1.)
IF(\text{CABS(Z)} \leq 5.0) THEN

\text{Direct Power Series Method}

GO= 1.78072
Z2=0.5*Z
CL=CLOG(GO*Z2)

\text{Computing } F(m) = m! \text{ and } P(m) = 1 + 1/2 + 1/3 + \ldots + 1/m

F(1)=1.0
P(1)=1.0
DO 11 M=2,34
 F(M)=M*F(M-1)
 P(M)=P(M-1)+1.0/M
11 CONTINUE

C Computing Power Series Coefficients

DM=-1.0
DO 22 M=1,34
 C(M)=DM/(F(M)*F(M))
 DM=-DM
22 CONTINUE

C Computing J0 and J1

JO=1.0
J1=0.0
M=0
33 M=M+1
 M2=2*M
 AM=C(M)*(Z2**M2)
 JO=JO+AM
 J1=J1+M*AM
 IF((CABS(AM).GT.1.0E-10).AND.((M.LT.34))) GO TO 33
 J1=J1/Z2

C Computing Y0 and Y1

M=0
 Y0=CL*JO
 Y1=Z2*CL*J1-0.5*JO
44 M=M+1
 M2=2*M
 AM=C(M)*P(M)*(Z2**M2)
 Y0=Y0-AM
 Y1=Y1+M*AM
 IF((CABS(AM).GT.1.0E-10).AND.((M.LT.34))) GO TO 44
 Y0=P2*Y0
 Y1=P2*Y1/Z2
 H0=J0-J*Y0
 H1=J1-J*Y1
 RETURN
ELSE

C Hankel' Asymptotic Formula (Abram. & Stegun p. 364)

Z2=Z+Z
Z3=Z+Z2
Z4=Z+Z3
P0=1.0-.0703125/Z2+.1121521/Z4
Q0=-.125/Z+.0732422/Z3
P1=1.0+.1171875/Z2-.1441956/Z4
Q1=.375/Z-.10253906/Z3
X0=(Z-.25*PI)
X1=(Z-.75*PI)
EO = CEXP(-j*X0)
E1 = CEXP(-j*X1)
AM = CSQRT(P2/Z)
H0 = AM*(P0-j*Q0)*EO
H1 = AM*(P1-j*Q1)*E1

ENDIF
C
RETURN
END
C
SUBROUTINE CSMINV(A, NDIM, N, DETERM, COND, INORM)
C
INORM - FLAG TO NORMALIZE COLUMNS AND ROWS OF MATRIX A
MATRIX NORMALIZATION BY M. A. MORGAN
APRIL 24, 1978
C
A - MATRIX TO INVERT - INPUT/OUTPUT
NDIM - INPUT
N - INPUT
DETERM - DETERMINATE OF A - OUTPUT
COND - CONDITION NUMBER OF A - OUTPUT
INORM - INTEGER NORMALIZATION FLAG - INPUT
C
COMPLEX A(100,100), PIVOT(100), AMAX, T, SWAP, DETERM, U
INTEGER I, J, K, L, IPIVOT(100), INDEX(100,2), IROW, ICOLUMN, L1, JROW
INTEGER JCOLUMN, N, INORM
REAL TEMP, ALPHA(100), COL(100), ROW(100), AJK, SUMAXA, SUMROW, SUMAXI
C
IF(NDIM GT 100) THEN
 WRITE(*,*) ' ERROR IN INVERSION CALL... DIMENSION > 100 '
 STOP
ENDIF
IF(N GT NDIM) THEN
 WRITE(*,*) ' ERROR IN INVERSION CALL... N > MAX DIM. '
 STOP
ENDIF
IF(INORM NE 1) GO TO 7
DO 3 K = 1, N
 COL(K) = 0.0
 DO 1 J = 1, N
 AJK = CABS(A(J,K))
 IF(AJK .GT. COL(K)) COL(K) = AJK
 1 CONTINUE
 DO 2 J = 1, N
 A(J,K) = A(J,K)/COL(K)
 2 CONTINUE
C ROW NORMALIZING
DO 6 J = 1, N
 ROW(J) = 0.0
 DO 4 K = 1, N
 AJK = CABS(A(J,K))
 IF(AJK .GT. ROW(J)) ROW(J) = AJK
 4 CONTINUE
 6 CONTINUE
DO 5 K = 1, N
 A(J,K) = A(J,K)/ROW(J)
 5 CONTINUE
 6 CONTINUE
DETERM = CMPLX(1.0,0.0)
SUMAXA = 0.0
DO 20 J = 1, N
 ALPHA(J) = 0.0
 SUMROW = 0.0
 DO 10 I = 1, N
 ALPHA(J) = ALPHA(J) + A(J,I)*CONJG(A(J,I))
 10 SUMROW = SUMROW + CABS(A(J,I))
 ALPHA(J) = SQRT(ALPHA(J))
 IF(SUMROW.GT.SUMAXA) SUMAXA = SUMROW
20 IPIVOT(J) = 0
 200 IPIVOT(J) = 0
 200 DO 600 I = 1, N

C AMAX = CMPLX(0.0,0.0)
 60 DO 100 K = 1, N
 IF (IPIVOT(J)-1) 60, 105, 60
 60 DO 100 K = 1, N
 IF (IPIVOT(K)-1) 80, 100, 740
 80 TEMP = AMAX*CONJG(AMAX) - A(J,K)*CONJG(A(J,K))
 85 IF(TEMP)85,85,100
 85 IROW = J
 85 ICOLUM = K
 AMAX = A(J,K)
100 CONTINUE
 105 CONTINUE
 105 IPIVOT(ICOLUM) = IPIVOT(ICOLUM) + 1
C IF (IROW-ICOLUM) 140, 260, 140
 140 DETERM = -DETERM
 200 DO 600 L = 1, N
 SWAP = A(IROW,L)
 A(IROW,L) = A(ICOLUM,L)
 200 A(ICOLUM,L) = SWAP
 SWAP = ALPHA(IROW)
 ALPHA(IROW) = ALPHA(ICOLUM)
 ALPHA(ICOLUM) = SWAP
 260 INDEX(I,1) = IROW
 INDEX(I,2) = ICOLUM
 PIVOT(I) = A(ICOLUM,ICOLUM)
 U = PIVOT(I)
 DETERM = DETERM*U
 DETERM = DETERM/ALPHA(ICOLUM)
 TEMP = PIVOT(I)*CONJG(PIVOT(I))
 330 IF(TEMP)330,720,330
 330 A(ICOLUM,ICOLUM) = CMPLX(1.0,0.0)
 350 DO 350 L = 1, N
 U = PIVOT(I)
 350 A(ICOLUM,L) = A(ICOLUM,L)/U
 350 IF (IROW-ICOLUM) 140, 260, 140
C IF (IROW-ICOLUM) 140, 260, 140
C
C
C
380 DO 550 L1 = 1, N
400 IF(L1-ICOLUM) 400, 550, 400
 T = A(L1,ICOLUM)
 A(L1,ICOLUM) = CMPLX(0.0,0.0)
 DO 450 L = 1, N
 U = A(ICOLUM,L)
 A(L1,L) = A(L1,L) - U*T
 CONTINUE
550 CONTINUE
600 CONTINUE
C
C
620 DO 710 I = 1, N
 L = N + 1 - I
 IF (INDEX(L,1) - INDEX(L,2)) 630, 710, 630
 JROW = INDEX(L,1)
 JCOLUMN = INDEX(L,2)
 DO 705 K = 1, N
 SWAP = A(K,JROW)
 A(K,JROW) = A(K,JCOLUMN)
 A(K,JCOLUMN) = SWAP
 CONTINUE
705 CONTINUE
710 CONTINUE
SUMAXI = 0.0
DO 910 I = 1, N
 SUMROW = 0.0
 DO 900 J = 1, N
 SUMROW = SUMROW + CABS(A(I,J))
 CONTINUE
 IF(SUMROW.GT.SUMAXI) SUMAXI = SUMROW
910 CONTINUE
COND = SUMAXA*SUMAXI
IF(INORM.NE.1) GO TO 955
 DO 950 K = 1, N
 A(J,K) = A(J,K)/(ROW(K)*COL(J))
950 CONTINUE
CONTINUE
RETURN
720 WRITE(*,730)
730 FORMAT('MATRIX IS SINGULAR'
740 RETURN
END
APPENDIX F. DIELECTRIC CYLINDER SCATTERING PROGRAM

```
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C PLANEWAVE SCATTERING BY A DIELECTRIC CYLINDER
C
C E - WAVE (TM CASE)
C
C H - WAVE (TE CASE)
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
COMPLEX GAMMA(0: 200,2),SIGMA(2),ER,MU,KR,YR,ZR
COMPLEX*16 JA(0: 200),DJA(0: 200),KRRA
COMPLEX*16 J(0: 200),DJ(0: 200)
REAL*8 Y(0:200),DY(0:200),YA(0:200),DYA(0:200),JB(0:200)
REAL*8 DJB(O: 200),RA,KORA
REAL KO,PI,SIGMAN(2),A,B
INTEGER I,II,MODE,ARES,N
C
OPEN(3,FILE='C: MSFORTEC DETEM. DAT')
PI = 3.1415927
C
WRITE(*,*), 'PERMITTIVITY FORMAT IS " a + jb, " '
WRITE(*,*), 'Enter Dielectric Constant (REAL PART, a)' 
READ(*,*), A
WRITE(*,*), 'Enter Dielectric Constant (IMAGINARY PART, b)' 
READ(*,*), B
ER = CMPLX(A,B)
C
WRITE(*,*), 'PERMEABILITY FORMAT IS " a + jb, " '
WRITE(*,*), 'Enter Permeability Constant (REAL PART, a)' 
READ(*,*), A
WRITE(*,*), 'Enter Permeability Constant (IMAGINARY PART, b)' 
READ(*,*), B
MU = CMPLX(A,B)
C
WRITE(*,*), 'Enter the wave number (ko)' 
READ(*,*), KO
C
WRITE(*,*), 'Enter Cylinder Radius (IN WAVENUMBER UNITS) ' 
WRITE(*,*), 'WARNING: Do Not Enter Zero! ' 
READ(*,*), KORA
C
KR = CSQRT(MU*ER)
YR = CSQRT(ER/MU)
ZR = CSQRT(MU/ER)
RA = KORA/KO
KRRA = KR*RA
C
WRITE(*,*), 'Enter No. of Modes: ' 
READ(*,*), MODE
WRITE(*,*), 'Enter the angular resolution ' 
READ(*,*), ARES
```

135
WRITE(3,*) 'Cylinder Scattering vs. angle'
WRITE(3,11O) ER,MU,RA,MODE,KO,KRRA
WRITE(3,*) 'RETURNED FROM FINAL BESSEL CALL'

CALCULATING GAMMAS
DO 10, N = 0, MODE
 GAMMA(N,1) = (JA(N)*DJ(N)-YR*DJ(A(N))*J(N))/(JA(N)*CMPLX(DJ(N)
 , -DY(N)) - YR*DJ(A(N))*CMPLX(J(N),-Y(N)))
 GAMMA(N,2) = (JA(N)*DJ(N)-ZR*DJ(A(N))*J(N))/(JA(N)*CMPLX(DJ(N)
 , -DY(N)) - ZR*DJ(A(N))*CMPLX(J(N),-Y(N)))
WRITE(*,1000) N,GAMMA(N,1),GAMMA(N,2)
10 CONTINUE

CALCULATING SIGMAs
DO 30, I = 180, -180, -ARIES
 SIGMA(I) = (0.0,0.0)
 DO 20, N = 1, MODE
 SIGMA(I) = SIGMA(I) + 2.0*GAMMA(N,I)*COS(N*PI*I/180.0)
 20 CONTINUE
 SIGMA(I) = SIGMA(I) + GAMMA(0,I)
 SIGMAN(I) = (((4.0/KO)*(CABS(SIGMA(I)))**2)
30 CONTINUE

FORMAT(1X,'Er Mu RADIUS (Meters) Max Mode Ko KrRa')
110 FORMAT(1X,'Er',F6.4,1X,F6.4,/,
120 FORMAT(1X,I4,2(3X,E14.4))
1000 FORMAT(1X,I3,3X,2(E12.4,1X,E12.4,4X))
STOP
APPENDIX G. SOFTWARE SOURCES

1. DISSPLA
 Integrated Software Systems Corporation
 10505 Sorrento Valley Road
 San Diego, CA 92121

2. CURVE-DIGITIZER
 West Coast Consultants
 4202 Genesee Avenue, Suite 309
 San Diego, CA 92117

3. Microsoft FORTRAN
 16011 NE 36th Way
 BOX 97017
 Redmond, WA 98073

4. Microway NDP FORTRAN
 POB 79
 Kingston, MA 02364

5. Prof. M.A. Morgan, Code 62Mw
 Naval Postgraduate School
 Monterey, CA 93943

6. LT T.B. Welch III
 c/o T.B. Welch Jr.
 1318 Walthour Road
 Savannah, GA 31410
LIST OF REFERENCES

<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>Distribution List</th>
</tr>
</thead>
</table>
| 1. | 2 | Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145 |
| 2. | 2 | Library, Code 0142
Naval Postgraduate School
Monterey, CA 93943-5002 |
| 3. | 1 | Professor John P. Powers, Chairman
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000 |
| 4. | 10 | Professor Michael A. Morgan
Code 62 Mw
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000 |
| 5. | 1 | Professor Ramakrishna Janaswamy
Code 62 Js
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000 |
| 6. | 1 | Professor Richard W. Adler
Code 62 Ab
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000 |
| 7. | 1 | Dr. Arthur Jordan
Code 1114SE
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217 |
| 8. | 1 | Dr. Bill Pala
Code 5316
Naval Research Laboratory
4555 Overlook Avenue, South West
Washington, DC 20375 |
9. Mr. Peter Hoag
 Code 25D
 Office of Naval Technology
 800 North Quincy Street
 Arlington, VA 22217

10. Mr. Charles Heber
 AST Office
 Defense Advanced Research Projects Agency
 1400 Wilson Boulevard
 Arlington, VA 22209

11. Mr. Daniel Carpenter
 TRW Military Electronics and Aviation Division
 One Rancho Carmel
 San Diego, CA 92128

12. Dr. David Lewis
 AST Office
 Defense Advanced Research Projects Agency
 1400 Wilson Boulevard
 Arlington, VA 22209

13. Mr. Joseph Mosko
 Code 35203
 Naval Weapons Center
 China Lake, CA 93555

14. Ms. Pamela Overfelt
 Code 3814
 Naval Weapons Center
 China Lake, CA 93555

15. LT Thaddeus B. Welch III
 1318 Walthour Road
 Savannah, GA 31410