Density of States in a Resonant Tunneling Structure
by
W. Trzeciakowski, D. Sahu and Thomas F. George

Prepared for Publication
in
Physical Review B

Departments of Chemistry and Physics
State University of New York at Buffalo
Buffalo, New York 14260

June 1989

Reproduction in whole or in part is permitted for any purpose of the
United States Government.

This document has been approved for public release and sale;
it's distribution is unlimited.

DTIC
S
D
&
D

89 6 20 232
The change in the density of states $\Delta N(E)$ brought about by the double-barrier structure is calculated. The positions and widths of narrow resonances coincide with those obtained from transmission $T(E)$, but in many cases $\Delta N(E)$ is a better quantity for characterizing the resonances than $T(E)$.
Density of States in a Resonant Tunneling Structure

W. Trzeciakowski*, D. Sahu and Thomas F. George
Department of Physics and Astronomy
Center for Electronic and Electro-optic Materials
239 Fronczak Hall
State University of New York at Buffalo
Buffalo, New York 14260

Abstract

The change in the density of states $\Delta N(E)$ brought about by the double-barrier structure is calculated. The positions and widths of narrow resonances coincide with those obtained from transmission $T(E)$, but in many cases $\Delta N(E)$ is a better quantity for characterizing the resonances than $T(E)$.

PACS Nos.: 79.80.+w, 73.20.Dx, 71.20.-b

* On leave from "UNIPRESS", Polish Academy of Sciences, 01-142 Warsaw, Poland
I. **Introduction**

Resonant tunneling structures (RTS) are exciting systems because of their potential applications, but also because of the basic physics they involve. In particular, the times related to the tunneling process have been the subject of theoretical disputes. The dwell times and transmission times can be extracted from optical or transport experiments. These times can be found from the study of wave-packet propagation from the time-dependent Schrödinger equation, but they can also be related to some static characteristics of the RTS (see, e.g., Ref. 2 and references therein). Most commonly the lifetime of the resonance state is determined from the halfwidth of the energy derivative of the phase shift or, equivalently, from the transmission coefficient $T(E)$. Here we would like to calculate another important static quantity characterizing the RTS, namely the change in the density of states $\Delta N(E)$ that it introduces. As shown for scattering resonances in three dimensions, the position and width of the narrow peaks in cross-sections are the same as in the density of states (see, e.g., the discussion for the short-range potentials in Ref. 3). Therefore, in our one-dimensional case we expect the resonances in $\Delta N(E)$ to coincide with those in $T(E)$. Of course, in the nonresonant regions the two quantities can be very different. There are cases, however, when the transmission cannot be used to describe resonant states. Two such examples are shown in Fig. 1 -- there is no transmission at the resonance energy. The density of states $\Delta N(E)$ could still be used to characterize such systems. Another possibility would be the analysis of the phase shifts in reflection or the study of wavefunctions in the complex energy plane, but we believe that $\Delta N(E)$ is the most basic physical quantity characterizing the continuous spectrum.
In the present paper we calculate $\Delta N(E)$ for an asymmetric double-barrier structure without bias, but the method can be generalized to other cases. The local density of states in the double-barrier structure has recently been obtained and analyzed for various limits. It can be defined as

$$N(E,x) = \sum_n \delta(E - E_n) |\psi_n(x)|^2$$

where E_n are the eigenvalues of the system and ψ_n are the corresponding eigenstates. Equation (1) has been integrated in Ref. 6 over the volume of the "well" in the RTS. Such quantity depends on the region of integration. It is modified by the RTS due to: (i) modification of the wavefunctions (ii) change of the position of energy levels E_n. In Ref. 6 the second modification has been neglected, i.e., their $\Delta N(E,x)$ would be identically zero if integrated over the total volume. Here we want to consider the global density of states

$$N(E) = \sum_n \delta(E - E_n) ,$$

which is modified by the RTS only through the change of spacing of the energy levels and does not involve any specific region in space.

II. Determination of $\Delta N(E)$

In order to deal with finite densities of states, we must place our RTS in a large box extending, say, from 0 to L. In an empty box, the condition for the energy levels $(E = \frac{-\hbar^2 k^2}{2m})$ is
\[D_0(k) = \sin kL = 0 \quad , \quad (3) \]

which yields \(k_n = \frac{n\pi}{L} \), i.e., equally-spaced points in \(k \)-space. The density of states is the inverse of the spacing between the points,

\[N_0(k) = \frac{L}{\pi} \quad , \quad (4) \]

and is proportional to the size of the box. In the presence of the RTS, the condition for the energy levels is modified to

\[D(k) = 0 \quad , \quad (5) \]

where we use the same definition of \(k(E = \frac{p^2}{2m}) \) as before. The condition \(D(k) = 0 \) above is obtained by demanding that the wave function \(\psi(x) \) vanishes at the right edge \((x = L) \) of the box. We start with the solution \(\psi(x) = \sin kx \) near the left edge \((x = 0) \) of the box and require the usual continuity of this wave function and its first derivative across the first interface. This matching condition determines the two unknown coefficients of the solutions to the Schrödinger equation to the right of the first interface. We repeat the procedure until the most general solution on the right-hand side region of the last interface is obtained. Finally, imposing the boundary condition that at \(x = L \) the wave function must vanish gives the required condition. The function \(D(k) \) is given in the Appendix for the case of an asymmetric double-barrier structure, but it can be determined for any other potential profile.

Now the spacing between the points in \(k \)-space is altered, although only by an extremely small amount, because we expect \(\Delta N(E) \) to be finite while \(N_0(E) \) will
increase linearly with the box size. Thus, we expect, for instance, to find in some energy region 10001 states in the presence of the RTS and 10000 without it. This means that the spacing Δk_n will be almost identical to $\frac{\pi}{L}$ for large L,

$$\Delta k_n = \frac{\pi}{L} + x_n,$$

where $x_n \ll \frac{\pi}{L}$. The change in the density of states becomes

$$\Delta N(k_n) = N(k_n) - N_0(k_n) = \frac{1}{\Delta k_n} - \frac{L}{\pi} \approx -\left(\frac{L}{\pi}\right)^2 x_n.$$

We expect ΔN to tend to a constant with increasing box size, so that x_n should be of the order of $\left(\frac{L}{\pi}\right)^2$.

Now we have to determine x_n from Eq. (5). Suppose the box is large enough and we find the first eigenstate at $k = k_1$. The next root of $D(k)$ should occur at $k_2 = k_1 + \frac{\pi}{L} + x_1$. Due to the smallness of x_1, we get

$$x_1 = -\frac{D(k_1 + \frac{\pi}{L})}{D'(k_1 + \frac{\pi}{L})}.$$

The next root will be at $k_3 = k_2 + \frac{\pi}{L} + x_2$, and again

$$x_2 = -\frac{D(k_2 + \frac{\pi}{L})}{D'(k_2 + \frac{\pi}{L})}.$$
Here we notice that although \(x_1, x_2, \ldots \) are small, they may add up to something large, so that the shift of \(k_n \) with respect to \(k_n^0 = \frac{\pi}{L} \) may be substantial. The spacing of the levels \(\Delta k_n \) will be almost identical to \(\Delta k_n^0 = \frac{\pi}{L} \).

The above prescription for finding \(\Delta N(k) \), and therefore \(\Delta N(E) \),

\[
\Delta N(E) = \Delta N(k) \frac{m}{\hbar^2 k},
\]

(10)
is very simple. The only problem with it is that it does not work. If we look at the positions of the roots of \(D(k) \), we find very irregular spacing, different from \(\frac{\pi}{L} \) even for a very large box and strongly dependent on the positions of the RTS in the box. In other words, the shifts of the levels due to the RTS depend on the phase with which the wavefunction reaches the structure. This can be understood if we look at the problem differently. Suppose we have a single thin barrier in the middle of the box. With respect to the center of the box, all states are either symmetric or antisymmetric. It is obvious that the barrier affects each type differently. Therefore, we can expect to get two "subdensities" of states -- one corresponding to symmetric and the other to antisymmetric states. For each of these subdensities, the above described method for finding \(\Delta N(E) \) can be applied, but not to the total density of states. For other positions of the structure in the box, the number of subdensities will be higher: if the RTS is placed at \(\frac{L}{3} \), we get three subdensities, and if it is at 0.4 \(L \), we get five subdensities. The number of subdensities equals the number of possible phases with which the wavefunction can reach the RTS. The superposition of several equally-spaced subsets of points in \(k \)-space results in something that looks messy. But
applying our method to each subdensity and then adding them all up gives us \(\Delta N(E) \) independent of the position of RTS in the box, as could be expected.

The procedure is thus as follows: we place the RTS at a given point in the box, say, at \(\frac{L}{3} \). This means that we have three subdensities -- we start from some initial energy and find three subsequent roots of \(D(k) \). Each of these roots defines a subset of states with the spacings equal to \(\frac{\pi}{(3L) + x_n} \), where \(x_n \) is very small. We determine

\[
x_n = \frac{D(k + \frac{\pi}{n \cdot 3L})}{D'(k + \frac{\pi}{n \cdot 3L})}
\]

(11)

for each subdensity and then \(\Delta N(k_n) \) from Eq. (7) (with \(L \) replaced by \(3L \)). Adding up the three subdensities, we get the final result. The size of the RTS is usually of the order of 100 Å, while the box size must be \(10^4 \) - \(10^7 \) Å depending on how fine the structures are (narrow resonances) in \(\Delta N(E) \) which we want to consider.

III. Results and discussion

Let us start from the single-barrier case with \(D(k) \) given by Eq. (A2) in the Appendix. We assume \(m = 0.067 \, m_0 \) throughout the structure. In Figure 2 we show the transmission \(T(E) \) and the change in density of states \(\Delta N(E) \) for single barriers 100 meV high and 50 Å wide (Fig. 1a) or 100 Å wide (Fig. 1b). In the first case both \(T(E) \) and \(\Delta N(E) \) do not show any sharp structures; transmission increases almost monotonically from zero to one as expected. In the second case transmission oscillates before it reaches unity while \(\Delta N(E) \) exhibits a distinct (though broad) resonance. For low energies \(\Delta N(E) \) is
negative as if some levels were pushed up from below the barrier and "piled up" above its top.

Next we look at a double-barrier structure with $D(k)$ given by Eq. (A1) in the Appendix. First we consider a symmetric RTS with barriers 50 Å wide and 200 meV high, and the well being 100 Å wide. There are two quasi-bound states in the well and several resonances above the barriers. In Figure 3 we show three resonances having the same position and width in $T(E)$ and in $\Delta N(E)$. We note the different vertical scales for different resonance in $\Delta N(E)$. The transmission always varies between zero and one (it reaches one for a symmetric structure) while the peaks in $\Delta N(E)$ correspond to single bound states, i.e., $\int \Delta N(E) dE = 1$ for each peak. Therefore broader peaks in $\Delta N(E)$ are much lower than the narrow ones. Away from the resonances $\Delta N(E)$ often becomes negative -- the states are depleted from some regions and piled up in other regions. Transmission, of course, is always positive.

Figure 4 shows $T(E)$ and $\Delta N(E)$ for the same structure as in Fig. 3 but for higher energies. Again we can see wiggles in transmission and distinct resonances in $\Delta N(E)$. In Fig. 5 we give another example of the same behavior; this time we consider an asymmetric structure with 50 Å barriers and 50 Å well but the first barrier is 100 meV high while the second is 200 meV high. Around 200 meV there is a peak in $\Delta N(E)$ and only the inflection point in $T(E)$.

Concluding, we have found a simple method for calculating the global density of states (and its change $\Delta N(E)$) in a resonant tunnelling structure. We believe that $\Delta N(E)$ is a much better characteristics of resonant states than transmission and it can be applied to more general cases (see Fig. 1). In such cases our method should be modified - the unperturbed density of states in k-space $N_0(k)$ will not be uniform. For the structures in Fig. 1 the
unperturbed structure would include a potential step. The spacing of the levels would then be modified by the presence of RTS.

Acknowledgments

We are grateful for fruitful discussions with Dr. Y. C. Lee. This research was supported by the Office of Naval Research, the National Science Foundation under Grant CHE-8620274 and the Air Force Office of Scientific Research (AFSC), United States Air Force, under Contract F49620-86-C-0009. The United State Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon.
Appendix: Energy levels in a box containing the RTS

Consider the double-barrier structure placed in a large box extending from 0 to L. The first barrier extends from x_1 to $x_1 + a_1$ with a height of V_1 and the second from $x_2 - x_1 + a_1 + d$ to $x_2 + a_2$ with a height of V_2. We assume a constant effective mass across the structure. The boundary conditions (continuity of the wavefunction and its first derivative) at four interfaces (and at the edges of the box) yield the following condition for the bound states:

$$D(k) = \cos(k a_2) \sinh(k_1 a_1) \left(\frac{k_1}{k} \sin(k x_1) \sin(k y + d) \right)$$

$$+ \frac{k}{k_1} \cos(k x_1) \cos(k(y + d)) \right) + \cosh(k a_1) \sin(k(x_1 + y + d)) \right]$$

$$+ \sinh(k a_2) \left(\sinh(k a_1) \left[\sinh(k d) \left(\frac{k_1 k_2}{k^2} \sin(k y) \sin(k x_1) \right) \right. \right. \right.$$

$$- \frac{k_1 k_2}{k_1} \cos(k y) \cos(k x_1) \right) \cos(k d) \left[\frac{k_1}{k} \sin(k y) \sin(k(x_1 + d)) \right. \right)$$

$$+ \frac{k_1}{k_1} \sin(k y) \cos(k(x_1 + d)) \right) \left. \right] = 0 \right.$$. \hspace{1cm} (A1)

where $\frac{k_1^2}{2m} = E_1 - E$, $\frac{k_2^2}{2m} = V_1 - E$, $\frac{k_3^2}{2m} = V_2 - E$, $y = L - a_2 - x_2$. For a single barrier extending from x_1 to $x_1 + b$, we get a simpler expression,

$$D(k) = \cosh(k b) \sin(k(L - b)) + \sinh(k b) \left(\frac{k}{k_1} \cos(k x_1) \cos(k(x_1 + b - L)) \right)$$
\[- \frac{\kappa}{k} \sin(kx_1) \sin(k(x_1 + b - L)) \right] = 0 \quad \text{(A2)}

The above formulas are valid for \(E < V_1 \) and \(E < V_2 \). If the energy is above any of the barriers, say \(E > V_1 \) we make the replacement

\[
\kappa_1 \to ik_1, \quad \sinh \kappa_1 a_1 \to i \sin k_1 a_1, \quad \cosh \kappa_1 a_1 \to \cos k_1 a_1 \quad \text{. (A3)}
\]

The expression for \(D(k) \) is always real, i.e., the imaginary constants cancel.
References

Figure Captions

1. Two examples of structures involving resonant states that could be studied in terms of $\Delta N(E)$ but not in terms of transmission $T(E)$: (a) strongly biased, wide double-barrier structure and (b) single well with finite width barrier on one side. The resonance is indicated by a shaded area.

2. Transmission $T(E)$ and density of states $\Delta N(E)$ for a single barrier 100 meV high and 50 Å wide (a) or 100 Å wide (b).

3. Transmission $T(E)$ and density of states $\Delta N(E)$ in various energy regions for a symmetric double-barrier structure. The barriers are 50 Å wide and 200 meV high, and the well is 100 Å wide.

4. Same as in Fig. 3 but for higher energies. Note the resonances in $\Delta N(E)$ and wiggles in $T(E)$.

5. Transmission $T(E)$ and density of states $\Delta N(E)$ in the energy region above the lower barrier for an asymmetric double-barrier structure. The barriers and the well are each 50 Å wide. The first barrier is 100 meV high, and the second is 200 meV high. Note the peak is $\Delta N(E)$ at about 200 meV and the corresponding "blob" in $T(E)$.
\section*{Fig. 2 (a)}

\begin{align*}
\Delta N(E) \left(10^{-3} \text{ meV}^{-1}\right) & \\
T(E) &
\end{align*}

\begin{figure}[h]
\centering
\begin{subfigure}{0.8\textwidth}
\centering
\includegraphics[width=\textwidth]{fig2a}
\end{subfigure}
\end{figure}
<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>2</th>
<th>Dr. David Young</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 1113</td>
<td></td>
<td>Code 334</td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
<td>NORDA</td>
</tr>
<tr>
<td>Arlington, Virginia 22217-5000</td>
<td></td>
<td>NSTL, Mississippi 39529</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>Dr. Bernard Douda</td>
<td>1</td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td></td>
<td>Attn: Dr. Ron Atkins</td>
</tr>
<tr>
<td>Code 50C</td>
<td></td>
<td>Chemistry Division</td>
</tr>
<tr>
<td>Crane, Indiana 47522-5050</td>
<td></td>
<td>China Lake, California 93555</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
<td>Scientific Advisor</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko, Code L52</td>
<td></td>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
<td>Code RD-1</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12</td>
<td>U.S. Army Research Office</td>
</tr>
<tr>
<td>Attn: CRD-AA-IP Building 5, Cameron Station</td>
<td></td>
<td>Attn: CRD-AA-IP</td>
</tr>
<tr>
<td>Alexandria, Virginia 22314 high</td>
<td></td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Mr. John Boyle</td>
</tr>
<tr>
<td>Attn: Dr. H. Singerman</td>
<td></td>
<td>Materials Branch</td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
<td>Philadelphia, Pennsylvania 19112</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>1</td>
<td>Naval Ocean Systems Center</td>
</tr>
<tr>
<td>Superintendent</td>
<td></td>
<td>Attn: Dr. S. Yamamoto</td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td>San Diego, California 91232</td>
</tr>
<tr>
<td>Washington, D.C. 20375-5000</td>
<td></td>
<td>Dr. David L. Nelson</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td>1</td>
<td>Chemistry Division</td>
</tr>
<tr>
<td>Attn: Code 1113</td>
<td></td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td>800 North Quincy Street</td>
<td></td>
<td>800 North Quincy Street</td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
<td>Arlington, Virginia 22217</td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. J. E. Jensen
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. J. H. Weaver
Department of Chemical Engineering and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. A. Reisman
Microelectronics Center of North Carolina
Research Triangle Park, North Carolina 27709

Dr. M. Grunze
Laboratory for Surface Science and Technology
University of Maine
Orono, Maine 04469

Dr. J. Butler
Naval Research Laboratory
Code 6115
Washington D.C. 20375-5000

Dr. L. Interante
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Irvin Heard
Chemistry and Physics Department
Lincoln University
Lincoln University, Pennsylvania 19352

Dr. K. J. Klaubunde
Department of Chemistry
Kansas State University
Manhattan, Kansas 66506

Dr. C. B. Harris
Department of Chemistry
University of California
Berkeley, California 94720

Dr. F. Kutzler
Department of Chemistry
Box 5055
Tennessee Technological University
Cookeville, Tennessee 38501

Dr. D. DiLella
Chemistry Department
George Washington University
Washington D.C. 20052

Dr. R. Reeves
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Steven M. George
Stanford University
Department of Chemistry
Stanford, CA 94305

Dr. Mark Johnson
Yale University
Department of Chemistry
New Haven, CT 06511-8118

Dr. W. Knauer
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. G. A. Somorjai
Department of Chemistry
University of California
Berkeley, California 94720

Dr. R. L. Park
Director, Center of Materials Research
University of Maryland
College Park, Maryland 20742

Dr. J. Murday
Naval Research Laboratory
Code 6170
Washington, D.C. 20375-5000

Dr. W. T. Peria
Electrical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Dr. J. B. Hudson
Materials Division
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Keith H. Johnson
Department of Metallurgy and Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. Theodore E. Madey
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. Arnold Green
Quantum Surface Dynamics Branch
Code 3817
Naval Weapons Center
China Lake, California 93555

Dr. M. G. Lagally
Department of Metallurgical and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. A. Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. R. P. Van Duyne
Chemistry Department
Northwestern University
Evanston, Illinois 60637

Dr. S. L. Bernasek
Department of Chemistry
Princeton University
Princeton, New Jersey 08544

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. W. Kohn
Department of Physics
University of California, San Diego
La Jolla, California 92037

Dr. D. E. Harrison
Department of Physics
Naval Postgraduate School
Monterey, California 93940

Dr. O. E. Harrison
Department of Physics
Naval Postgraduate School
Monterey, California 93940
<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. F. Carter</td>
<td>6170</td>
<td>Naval Research Laboratory, Washington, D.C. 20375-5000</td>
</tr>
<tr>
<td>Dr. Richard Colton</td>
<td>6170</td>
<td>Naval Research Laboratory, Washington, D.C. 20375-5000</td>
</tr>
<tr>
<td>Dr. Dan Pierce</td>
<td></td>
<td>National Bureau of Standards, Optical Physics Division, Washington, D.C. 20234</td>
</tr>
<tr>
<td>Dr. R. Stanley Williams</td>
<td></td>
<td>Department of Chemistry, University of California, Los Angeles, California 90024</td>
</tr>
<tr>
<td>Dr. R. P. Messmer</td>
<td></td>
<td>Materials Characterization Lab., General Electric Company, Schenectady, New York 22217</td>
</tr>
<tr>
<td>Dr. Robert Gomer</td>
<td></td>
<td>Department of Chemistry, James Franck Institute, Chicago, Illinois 60637</td>
</tr>
<tr>
<td>Dr. Ronald Lee</td>
<td>R301</td>
<td>Naval Surface Weapons Center, White Oak, Silver Spring, Maryland 20910</td>
</tr>
<tr>
<td>Dr. Paul Schoen</td>
<td>6190</td>
<td>Naval Research Laboratory, Washington, D.C. 20375-5000</td>
</tr>
<tr>
<td>Dr. John T. Yates</td>
<td></td>
<td>Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260</td>
</tr>
<tr>
<td>Dr. Richard Greene</td>
<td>5230</td>
<td>Naval Research Laboratory, Washington, D.C. 20375-5000</td>
</tr>
<tr>
<td>Dr. L. Kesmodel</td>
<td></td>
<td>Department of Physics, Indiana University, Bloomington, Indiana 47403</td>
</tr>
<tr>
<td>Dr. K. C. Janda</td>
<td></td>
<td>University of Pittsburgh, Chemistry Building, Pittsburg, PA 15260</td>
</tr>
<tr>
<td>Dr. E. A. Irene</td>
<td></td>
<td>Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27514</td>
</tr>
<tr>
<td>Dr. Adam Heller</td>
<td></td>
<td>Bell Laboratories, Murray Hill, New Jersey 07974</td>
</tr>
<tr>
<td>Dr. Martin Fleischmann</td>
<td></td>
<td>Department of Chemistry, University of Southampton, Southampton 509 5NH UNITED KINGDOM</td>
</tr>
<tr>
<td>Dr. H. Tachikawa</td>
<td></td>
<td>Chemistry Department, Jackson State University, Jackson, Mississippi 39217</td>
</tr>
<tr>
<td>Dr. John W. Wilkins</td>
<td></td>
<td>Cornell University, Laboratory of Atomic and Solid State Physics, Ithaca, New York 14853</td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. R. G. Wallis
Department of Physics
University of California
Irvine, California 92664

Dr. J. T. Keiser
Department of Chemistry
University of Richmond
Richmond, Virginia 23173

Dr. D. Ramaker
Chemistry Department
George Washington University
Washington, D.C. 20052

Dr. R. W. Plummer
Department of Physics
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. J. C. Hemminger
Chemistry Department
University of California
Irvine, California 92717

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 41106

Dr. T. F. George
Chemistry Department
University of Rochester
Rochester, New York 14627

Dr. N. Winograd
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. G. Rubloff
IBM
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. Roald Hoffmann
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. Horia Metiu
Chemistry Department
University of California
Santa Barbara, California 93106

Dr. A. Steckl
Department of Electrical and Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. W. Goddard
Department of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125

Dr. G.H. Morrison
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. P. Hansma
Department of Physics
University of California
Santa Barbara, California 93106

Dr. J. Baldeschwieler
Department of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125