Prediction of Time-to-go for a Homing Missile Using Bang-Bang Control

DAVID G. HULL, RODNEY E. MACK

April 1989

The flight time required for a variable-speed homing missile to intercept a zero-acceleration target in two dimensions is determined by assuming that the missile normal acceleration is bang-bang, that is, maximum normal acceleration followed by zero normal acceleration where the switch time which gives intercept is to be determined. For those cases where intercept does not occur in a reasonable time, the flight time which minimizes the miss distance is used. A tangential acceleration profile is assumed for the missile, so that the velocity of the missile becomes a known function of time, and the equations of motion can be solved analytically. Then, an algebraic equation for the switch time for intercept or the final time for closest approach can be derived, but it must be solved numerically. Results show that this time-to-go algorithm improves the performance (miss distance) of the missile for several scenarios relative to the range-over-closing-speed algorithm.
PREDICTION OF TIME-TO-GO FOR A HOMING MISSILE USING BANG-BANG CONTROL

David G. Hull\(^1\) and Rodney E. Mack\(^2\)

Department of Aerospace Engineering and Engineering Mechanics
The University of Texas at Austin
Austin, Texas

Abstract

The flight time required for a variable-speed homing missile to intercept a zero-acceleration target in two-dimensions is determined by assuming that the missile normal acceleration is bang-bang, that is, maximum normal acceleration followed by zero normal acceleration where the switch time which gives intercept is to be determined. For those cases where intercept does not occur in a reasonable time, the flight time which minimizes the miss distance is used. A tangential acceleration profile is assumed for the missile, that is, constant positive acceleration when thrusting, constant negative acceleration when coasting, and a given engine burn-out time. In this way, the velocity of the missile becomes a known function of time, and the equations of motion can be solved analytically. Then, an algebraic equation for the switch time for intercept or the final time for closest approach can be derived, but it must be solved numerically.

The time-to-go algorithm is tested in a six-degree-of-freedom simulation of a homing missile with a linear-quadratic guidance law where the target performs two maximum normal acceleration maneuvers. At each sample point, the missile velocity vector is projected onto the plane of the line-of-sight vector and the target velocity vector, and the time-to-go is calculated for a planar intercept. This time-to-go is used to calculate the gains for the guidance law. Results show that this time-to-go algorithm improves the performance (miss distance) of the missile for several scenarios relative to the range-over-closing-speed algorithm.

List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Function defined in Eq. (14)</td>
</tr>
<tr>
<td>(a_n)</td>
<td>Missile normal acceleration (ft/sec(^2))</td>
</tr>
<tr>
<td>(a_t)</td>
<td>Missile tangential acceleration (ft/sec(^2))</td>
</tr>
<tr>
<td>(a_1, a_2, a_3)</td>
<td>Constants defining (V_M) for thrusting flight</td>
</tr>
<tr>
<td>(a_4, a_7)</td>
<td>Constants defining (V_M) for coasting flight</td>
</tr>
<tr>
<td>(B)</td>
<td>Function defined in Eq. (16)</td>
</tr>
<tr>
<td>(d)</td>
<td>Miss distance (ft)</td>
</tr>
<tr>
<td>(k)</td>
<td>Thrusting, (k = 1); coasting, (k = 2)</td>
</tr>
<tr>
<td>(t)</td>
<td>Time (sec)</td>
</tr>
<tr>
<td>(t_s)</td>
<td>Switch time between (a_n = a_{\text{max}}) and (a_n = 0) (sec)</td>
</tr>
<tr>
<td>(V_M)</td>
<td>Missile velocity (ft/sec)</td>
</tr>
<tr>
<td>(V_T)</td>
<td>Target velocity (ft/sec)</td>
</tr>
<tr>
<td>(X)</td>
<td>Inertial X coordinate (ft)</td>
</tr>
<tr>
<td>(x)</td>
<td>Relative X coordinate (ft)</td>
</tr>
<tr>
<td>(Y)</td>
<td>Inertial Y coordinate (ft)</td>
</tr>
<tr>
<td>(y)</td>
<td>Relative Y coordinate (ft)</td>
</tr>
<tr>
<td>(\theta)</td>
<td>Missile velocity orientation (deg)</td>
</tr>
<tr>
<td>(\phi)</td>
<td>Target velocity orientation (deg)</td>
</tr>
</tbody>
</table>

Subscripts

<table>
<thead>
<tr>
<th>Subscript</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>Engine cutoff</td>
</tr>
<tr>
<td>f</td>
<td>Final</td>
</tr>
<tr>
<td>o</td>
<td>Initial</td>
</tr>
<tr>
<td>p</td>
<td>Point</td>
</tr>
<tr>
<td>s</td>
<td>Switch</td>
</tr>
</tbody>
</table>

Introduction

A guidance law of current interest for bank-to-turn homing missiles is the linear-quadratic guidance law which contains proportional navigation as a particular case (see, for example, Ref. 1). In order to implement this guidance law, an algorithm for predicting time-to-to is needed. The simplest time-to-go formula is range divided by closing speed and is valid for a constant-velocity missile and target on a collision course. This formula has been improved in Ref. 2 by accounting for the missile longitudinal acceleration.

Unfortunately, the linear-quadratic guidance law tends to drive the missile and the target into a homing triangle in which range and closing speed become unobservable, In Ref. 1, a linear-quadratic guidance law for dual control (intercept and estimation enhancement) has been proposed. This guidance rule moves the missile away from the homing triangle improving estimation but making the time-to-go algorithm invalid.

The purpose of this study is to develop a time-to-go algorithm which is valid for intercept geometries which differ greatly from the intercept triangle, such as encountered with dual control. This is accomplished by assuming that the missile normal acceleration history is maximum normal acceleration followed by zero normal acceleration (bang-bang) and computing intercept trajectories. In addition, while the velocity of the target is assumed constant, the velocity of the missile is assumed to vary. Here, the tangential acceleration is assumed a positive constant while thrusting and a negative constant while coasting.
As a first step, the analysis is carried out in two dimensions with the hope that some insight in the three-dimensional problem will be achieved. The resulting time-to-go algorithm is tested in a six-degree-of-freedom simulation by projecting the current missile velocity vector onto the plane of the line of sight and the target velocity. The optimal intercept time is computed in this plane and used as the time-to-go for the linear-quadratic guidance law.

Optimal Intercept Problem

Shown in Fig. 1 is the geometry of the intercept problem. The XY coordinate system represents an inertial frame, and the X axis is along the line of sight at t = 0. The constant-velocity target, located at \(X_T = X_o\) at t = 0, is moving along a straight line which makes an angle \(\phi\) with respect to the X axis. The missile is launched at an angle \(\theta_o\), relative to the X axis, and the velocity direction \(\theta(t)\) is changed by controlling the normal acceleration \(a_n(t)\). If \(x = X_T - X_M\) and \(y = Y_T - Y_M\), the equations of motion of the engagement in relative coordinates are given by

\[
\begin{align*}
\dot{x} &= V_T \cos \phi - V_M \cos \theta \\
\dot{y} &= V_T \sin \phi - V_M \sin \theta \\
\dot{\theta} &= a_n / V_M.
\end{align*}
\]

The tangential acceleration history of the missile is assumed to be constant \(a_{\text{max}} > 0\) while thrusting, that is, for \(t \leq t_c\), where \(t_c\) is the known engine cutoff time, and a constant \(a_{\text{max}} < 0\) while coasting. As a consequence, the velocity of the missile while thrusting is given by

\[V_M = a_1 + b_1 t, \quad t \leq t_c\]

where

\[a_1 = V_{M0}, \quad b_1 = a_{\text{max}}.\]

Similarly, the velocity of the missile during the coasting phase is given by

\[V_M = a_2 + b_2 t, \quad t \geq t_c\]

where

\[a_2 = V_{M0} + (a_{\text{max}} - a_{\text{min}})t_c, \quad b_2 = a_{\text{min}}.\]

The prescribed initial conditions are

\[t_s = t_o, \quad x_o = x_o, \quad y_o = y_o, \quad \theta_o = \theta_o,\]

where the subscript \(s\) denotes a specific value. Intercept at the final point requires that

\[x_f = 0, \quad y_f = 0.\]

If \(\theta_o\) were free, the control for the minimum-time trajectory would be \(a_n = 0\), that is, a straight line. On the other hand, if \(\theta_o\) were prescribed, the minimum-time control would be infinite normal acceleration to rotate the velocity vector instantaneously to the above straight-line followed by zero normal acceleration. If a bound were applied to the normal acceleration, the optimal control would become maximum normal acceleration followed by zero normal acceleration, that is, a bang-bang control. The bang-bang control is used here to generate a minimum-time trajectory, and the flight time is used as a prediction of the time-to-go for linear-quadratic guidance rules.

In the solution of the problem, it is found that a direct intercept can be achieved for \(0_{ZA} < \theta_o < 0_{MA}\) (see Fig. 2) where \(0_{ZA}\) is the initial angle for the zero-normal-acceleration intercept and \(0_{MA}\) is the initial angle for the maximum-normal-acceleration intercept. For \(\theta_o > 0_{MA}\), the missile passes in front of the target during the maximum normal acceleration phase. Then, it performs a 360 deg turn before it goes for the intercept. When this happens the minimum time is taken as the time to the point of closest approach. A similar discussion holds for \(\theta_o < 0_{ZA}\).

In the development of the equations, there are four important times: the initial time \(t_s\), the final time \(t_f\), the engine cutoff time \(t_c\), and the switch time \(t_e\) between \(a_n = a_{\text{max}}\) and \(a_n = 0\). It is assumed that

\[t_0 \leq t_s \leq t_c \leq t_f\]

so that \(a_n = a_{\text{max}}\) all the way if \(t_t = t_f\) and \(a_n = 0\) all the way if \(t_t = t_c\). In the development of the equations, the engine cutoff time is assumed to satisfy the inequality

\[t_c \leq t_t \leq t_f\]

Then, if \(t_c < t_f\) (coasting all the way), the correct equations can be obtained by setting \(t_e = t_c\), and if \(t_c < t_f\) (thrusting all the way), \(t_e\) is set equal to \(t_f\).

Constant Normal Acceleration

The equations of motion (1) through (3) can be integrated for the case where \(a_n\) is constant. These solutions are valid for the cases where \(a_n = a_{\text{max}}\) or \(a_n = 0\).

Since the missile velocity has the general form \(V_M = a_k + b_k t\) where \(k = 1\) for thrusting and \(k = 2\) for coasting, Eq. (3) can be integrated as

\[\theta = \theta_0 + \frac{a_n}{b_k} \ln \left(\frac{a_k + b_k t}{a_k + b_k t_0}\right)\]

The subscript \(p\) denotes a generic starting point; it could be the initial point, the engine cutoff point, or the switch point.

Next, with Eq. (12), Eq. (1) can be integrated to yield

\[x = x_o + A(t, a_n, k, t_p, \theta_p) - A(t, a_n, k, t_p, \theta_p)\]

where

\[
A(t, a_n, k, t_p, \theta_p) = V_T \cos \phi \ t - \frac{2 b_k (a_k + b_k t_p)}{4 b_k + 2 a_k} \left[\cos \left[\theta_p + \frac{a_n}{b_k} \ln \left(\frac{a_k + b_k t_p}{a_k + b_k t_0}\right)\right]\right.
\]

\[+ \frac{a_n}{b_k} \sin \left[\theta_p + \frac{a_n}{b_k} \ln \left(\frac{a_k + b_k t_p}{a_k + b_k t_0}\right)\right]\]

Integration by parts is used to obtain the second term in Eq. (11).

Finally, Eq. (2) for \(y\) is integrated in the same way as Eq. (1) and leads to

\[y = y_o + B(t, a_n, k, t_p, \theta_p) - B(t, a_n, k, t_p, \theta_p)\]
where
\[
B(t, a, k t_p, \theta_p) = V_f \sin \phi t - \frac{V_f (a + b t_p)}{2} \ln \left(\frac{a + b t_p}{a + b t} \right) - \frac{V_f t_p \cos \phi}{2} \ln \left(\frac{a + b t_p}{a + b t} \right)
\]
\[
+ \left\{ \sin \left[\theta_p + \frac{V_f}{t_p} \ln \left(\frac{a + b t_p}{a + b t} \right) \right] \right\}
\]
\[\frac{\sin \left[\theta_p + \frac{V_f}{t_p} \ln \left(\frac{a + b t_p}{a + b t} \right) \right]}{\cos \left[\theta_p + \frac{V_f}{t_p} \ln \left(\frac{a + b t_p}{a + b t} \right) \right]} \right\} \right\}
\]

(16)

Zero-Normal-Acceleration Intercept

In this section, the zero-normal-acceleration intercept (straight-line intercept \(\theta = \theta_{ZA} \)) is derived. It is the dividing line between the intercepts \(a_n \geq 0 (\theta = \theta_{ZA}) \) and \(a_n \leq 0 (\theta \geq \theta_{ZA}) \). For the time being, the cutoff time, which is known, is assumed to satisfy the inequality
\[
0 < t_c = t_{c} < t_f
\]

(17)

Once \(t_c = t_{c0} \), Eqs. (12), (13) and (15) can be applied at \(t_c \) and \(t_f \), and the results combined to yield
\[
\theta_f = \theta_0
\]
\[
x_f = x_0 + A(t_c, a_n, 1, t_c, \theta_0) - A(t_c, a_n, 1, t_c, \theta_0)
\]
\[
y_f = y_0 + B(t_c, a_n, 1, t_c, \theta_0) - B(t_c, a_n, 1, t_c, \theta_0)
\]

(18)

(19)

For intercept, \(x_f = y_f = 0 \) so that Eqs. (17) through (19) involve two unknowns: \(t_f \) and \(\theta_0 \equiv \theta_{ZA} \). These equations can be solved for \(\cos \theta_{ZA} \) and \(\sin \theta_{ZA} \) as
\[
\cos \theta_{ZA} = \frac{V_f \cos \phi - \frac{V_f (a + b t_c)}{2} \ln \left(\frac{a + b t_c}{a + b t} \right) + \frac{V_f t_p \cos \phi}{2} \ln \left(\frac{a + b t_c}{a + b t} \right)}{\sqrt{1 + \frac{V_f \cos \phi}{2} \ln \left(\frac{a + b t_c}{a + b t} \right) + \frac{V_f t_p \cos \phi}{2} \ln \left(\frac{a + b t_c}{a + b t} \right)}}
\]
\[
\sin \theta_{ZA} = \frac{V_f \sin \phi - \frac{V_f (a + b t_c)}{2} \ln \left(\frac{a + b t_c}{a + b t} \right) - \frac{V_f t_p \cos \phi}{2} \ln \left(\frac{a + b t_c}{a + b t} \right)}{\sqrt{1 + \frac{V_f \cos \phi}{2} \ln \left(\frac{a + b t_c}{a + b t} \right) + \frac{V_f t_p \cos \phi}{2} \ln \left(\frac{a + b t_c}{a + b t} \right)}}
\]

(20)

which, in turn, can be squared and added to obtain the single equation for \(t_f \)
\[
\left\{ \left[\frac{V_f \cos \phi - \frac{V_f (a + b t_c)}{2} \ln \left(\frac{a + b t_c}{a + b t} \right) + \frac{V_f t_p \cos \phi}{2} \ln \left(\frac{a + b t_c}{a + b t} \right)}{\sqrt{1 + \frac{V_f \cos \phi}{2} \ln \left(\frac{a + b t_c}{a + b t} \right) + \frac{V_f t_p \cos \phi}{2} \ln \left(\frac{a + b t_c}{a + b t} \right)}} \right]^2 + \left[\frac{V_f \sin \phi - \frac{V_f (a + b t_c)}{2} \ln \left(\frac{a + b t_c}{a + b t} \right) - \frac{V_f t_p \cos \phi}{2} \ln \left(\frac{a + b t_c}{a + b t} \right)}{\sqrt{1 + \frac{V_f \cos \phi}{2} \ln \left(\frac{a + b t_c}{a + b t} \right) + \frac{V_f t_p \cos \phi}{2} \ln \left(\frac{a + b t_c}{a + b t} \right)}} \right]^2 \right\} = 1
\]

(21)

Once \(t_f \) is known, \(\theta_{ZA} \) follows from Eqs. (20). If \(t_c \geq t_f \), the proper equations can be obtained from Eqs. (20) and (21) by setting \(t_c = t_f \). On the other hand, for \(t_c \leq t_f \), set \(t_c = t_c \).

Maximum-Normal-Acceleration Intercept

The maximum-normal-acceleration intercept is the dividing line between intercept trajectories and closest-point-of-approach trajectories. It is possible to determine this trajectory by applying Eqs. (12), (13), and (15). However, a system of two equations in two unknowns results, and while it can be solved efficiently with careful coding, a simpler approach is used to determine whether an intercept is possible.

Once \(\theta_{ZA} \) is known, the actual \(\theta_0 \) can be compared with \(\theta_{ZA} \) to determine the sign of \(a_n \); \(\theta_0 \leq \theta_{ZA} \) or \(\theta_0 > \theta_{ZA} \), depending on the time of the two unknowns.

Intercept Trajectories

For an intercept, the switch time is assumed to satisfy the inequality \(t_c < t_f \) because \(t_f \) is the zero-normal-acceleration intercept, and \(t_c \) is the maximum-normal-acceleration intercept. There are four possible configurations for an intercept trajectory depending on the value of the known engine cutoff time, that is, \(t_c \leq t_f \). If and the results obtained from those for \(t_c \leq t_f \), and the equations for \(t_c \geq t_f \) can be obtained from those for \(t_c \leq t_f \) by setting \(t_c = t_f \). Hence, only two sets of equations need to be derived.

(16)

\[t_0 \leq t_c \leq t_f \]

(22)

For this case, Eqs. (12), (13), and (15) can be applied at \(t_c \) and \(t_f \) and combined to yield
\[
\theta_0 = \theta_c + \frac{V_f}{t_p} \ln \left(\frac{a + b t_f}{a + b t_c} \right) \quad \theta_c = \theta_0 + \frac{V_f}{t_p} \ln \left(\frac{a + b t_f}{a + b t_c} \right)
\]
\[
x_f = x_0 + A(t_c, a_n, 1, t_c, \theta_0) - A(t_c, a_n, 1, t_c, \theta_0)
\]
\[
y_f = y_0 + B(t_c, a_n, 1, t_c, \theta_0) - B(t_c, a_n, 1, t_c, \theta_0)
\]

(23)

(24)

Along the straight-line part \((a_n = 0) \), Eqs. (12), (13), and (15) become
\[
\theta_f = \theta_c
\]
\[
x_f = x_0 + A(t_f, 0, 2, t_f, \theta_c)
\]
\[
y_f = y_0 + B(t_f, 0, 1, t_f, \theta_c)
\]

(25)

(26)

(27)

Because of Eqs. (14) and (16), the explicit forms of Eqs. (26) and (27) are given by
\[
x_f = x_0 + V_f \cos \phi - \frac{a_n + \frac{1}{2} b(t_f - t_c)}{a_n + \frac{1}{2} b(t_f - t_c)} \cos \theta_1(t_f - t_c)
\]
\[
y_f = y_0 + V_f \sin \phi - \frac{a_n + \frac{1}{2} b(t_f - t_c)}{a_n + \frac{1}{2} b(t_f - t_c)} \sin \theta_1(t_f - t_c)
\]

(28)

(29)

The solution process is to vary \(t_f \) until \(x_f \) and \(y_f \) are both zero. This is accomplished by setting \(x_f = 0 \) and solving Eq. (28) analytically for \(t_f \). Eq. (27) is a quadratic equation and has two roots. The correct root is the smallest value of \(t_f \) which is larger than \(t_c \). Then, the solution for \(t_f \) is substituted into Eq. (29) where, because \(t_c \) is guessed, \(y_f = 0 \). Hence, \(t_f \) is varied until \(y_f = 0 \). In this way, it is only necessary to solve one equation in one unknown.
If the engine cutoff time is between the switch time and the final time, Eqs. (12), (13), and (15) lead to

\[
\theta_e = \theta_0 \gtrless 0, \quad \theta_e = \theta_0 + \frac{a_n}{b_1} \ln \left(\frac{a_1 + b_1 \tau^*}{a_1 + b_1 \tau} \right) \quad (30)
\]

\[
x_e = x_0 + A(t, a_n, 1, t, \theta_0) - A(t, a_n, 1, t, \theta_0) + A(t, 0, 1, t, \theta_0) - A(t, 0, 1, t, \theta_0) \quad (31)
\]

\[
y_e = y_0 + B(t, a_n, 1, t, \theta_0) - B(t, a_n, 1, t, \theta_0) + B(t, 0, 1, t, \theta_0) - B(t, 0, 1, t, \theta_0) \quad (32)
\]

For the coast, the corresponding equations are

\[
\theta_f = \theta_0 \quad (33)
\]

\[
x_f = x_0 + A(t_f, a_n, 1, t_f, \theta_0) - A(t_f, a_n, 1, t_f, \theta_0) + A(t_f, 0, 2, t_f, \theta_0) - A(t_f, 0, 2, t_f, \theta_0) \quad (34)
\]

\[
y_f = y_0 + B(t_f, a_n, 1, t_f, \theta_0) - B(t_f, a_n, 1, t_f, \theta_0) + B(t_f, 0, 2, t_f, \theta_0) - B(t_f, 0, 2, t_f, \theta_0) \quad (35)
\]

The explicit forms of Eqs. (34) and (35) are similar to those of Eqs. (28) and (29). Hence, the same solution process can be used.

Closest-Point-of-Approach Trajectories

For \(a_n = a_{\text{max}} \) over the entire trajectory and for \(t_e \leq t_f \), Eqs. (12), (13), and (15) can be applied at \(t_e \) and \(t_f \) combined to obtain

\[
\theta_e = \theta_0 + \frac{a_n}{b_1} \ln \left(\frac{s(t_e) + b_1 \tau_e}{s(t_f) + b_1 \tau_f} \right), \quad \theta_e = \theta_0 + \frac{a_n}{b_1} \ln \left(\frac{s(t_f) + b_1 \tau_f}{s(t_e) + b_1 \tau_e} \right) \quad (36)
\]

\[
x_e = x_0 + A(t_e, a_n, 1, t_e, \theta_0) - A(t_e, a_n, 1, t_e, \theta_0) + A(t_e, 0, 2, t_e, \theta_0) - A(t_e, 0, 2, t_e, \theta_0) \quad (37)
\]

\[
y_e = y_0 + B(t_e, a_n, 1, t_e, \theta_0) - B(t_e, a_n, 1, t_e, \theta_0) + B(t_e, 0, 2, t_e, \theta_0) - B(t_e, 0, 2, t_e, \theta_0) \quad (38)
\]

The equations for the case where \(t_e < t_f \) are obtained from Eqs. (36) through (38) by setting \(t_e = t_f \). Similarly, for \(t_e > t_f \), set \(t_e = t_f \).

The point of closest approach is obtained by minimizing the performance index

\[
d^2 = x_f^2 + y_f^2. \quad (39)
\]

This is accomplished by solving the algebraic equation

\[
\frac{\partial d^2}{\partial \theta} = 0 \quad (40)
\]

by bisection. The derivative in (40) can be taken analytically. To verify that the solution is a minimum, the second derivative \(\frac{\partial^2 d^2}{\partial \theta^2} \) is checked.

Numerical Results

The algorithm followed in computing a trajectory is the following:

1. Given \(V_T, \phi, V_M, a_{\text{max}}, a_{\text{max}}, t_0, x_0, y_0 \), and \(t_e \), compute \(\theta_2 \). This determines whether \(a_n > 0 \) or \(a_n < 0 \).

2. Given \(a_{\text{max}} \) and \(\theta_0 \), determine whether or not an intercept can occur.

3. If an intercept is possible, calculate the switch time for \(x_f = y_f = 0 \).

4. If an intercept is not possible, calculate the final time for closest point of approach.

Some results have been obtained for the following conditions:

\[
V_T = 500 \text{ ft/sec}, \quad 0 \leq \phi \leq 180 \text{ deg}, \quad V_M = 1,000 \text{ ft/sec}
\]

\[
a_{\text{max}} = 25 \text{ g's}, \quad a_{\text{max}} = -70 \text{ g's}, \quad t_0 = 0 \text{ sec}, \quad x_0 = 5,000 \text{ ft}, \quad y_0 = 0 \text{ ft}, \quad t_e = 2.6 \text{ sec}, \quad a_{\text{max}} = 100 \text{ g's}, \quad -70 \leq \phi \leq 70 \text{ deg}
\]

which are typical of a conceptual bank-to-turn missile engagement. The limit on \(\theta_0 \) is representative of the field of view of a passive seeker. Trajectories are presented in Figs. 3 through 7 for different values of \(\phi \) primarily to illustrate that the computation process is valid.

The time-to-go algorithm has been tested in a six-degree-of-freedom simulation of a bank-to-turn missile. The missile velocity vector is projected onto the plane of the line of sight vector and the target velocity vector; the time-to-go is calculated in this plane; and the result used as the time-to-go for three-dimensional flight. Miss distance results are shown in Table 1 for a number of engagement scenarios. The results labeled Case I are for the case where time-to-go is calculated as range divided by closing speed. The results labeled Case II are for the case where bang-bang trajectories are used to calculate time-to-go. In six engagements, the bang-bang formula allows the missile to hit the target (within 10 ft) when the range-over-closing-speed formula allowed a miss. Only once does the reverse happen. In all other engagements both formulas generate a hit or a miss simultaneously. Overall, the bang-bang formula (Case II) provides better results.

Discussion and Conclusions

A method for predicting time-to-go for homing missiles using a linear-quadratic guidance rule has been developed. It is based on minimum-time trajectories for scenarios when intercepts are possible and on minimum-miss-distance trajectories when intercept trajectories are not possible in a reasonable time. The missile velocity is variable in that the tangential acceleration has a known positive value when thrusting and a known negative value when coasting and the engine cutoff time is known. On the other hand, the target velocity is assumed constant.

In general, the optimal trajectories are composed of constant normal acceleration segments. For an intercept trajectory the control is maximum normal acceleration followed by zero normal acceleration. For a minimum-miss trajectory, the control is maximum normal acceleration all the way. Numerical results for the time-to-go algorithm have been presented to verify the computational procedure. Also,
the time-to-go algorithm has been tested in a six-degree-of-freedom simulation. In general, the proposed time-to-go algorithm produces better miss distances than those obtained from the range-over-closing-speed method.

Acknowledgement

This research has been supported by the Air Force Armament Laboratory under Contract No. F08635-87-K-0417.

References

<table>
<thead>
<tr>
<th>Off-Boreight Angle (deg)</th>
<th>Launch Range (ft)</th>
<th>Aspect-Angle (deg)</th>
<th>Case I Miss Distance (ft)</th>
<th>Case II Miss Distance (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7000</td>
<td>0</td>
<td>0.156</td>
<td>0.219</td>
</tr>
<tr>
<td>0</td>
<td>7000</td>
<td>30</td>
<td>0.695</td>
<td>0.266</td>
</tr>
<tr>
<td>0</td>
<td>7000</td>
<td>60</td>
<td>1.205</td>
<td>0.532</td>
</tr>
<tr>
<td>0</td>
<td>7000</td>
<td>90</td>
<td>1.318</td>
<td>0.823</td>
</tr>
<tr>
<td>0</td>
<td>7000</td>
<td>120</td>
<td>2.560</td>
<td>0.342</td>
</tr>
<tr>
<td>0</td>
<td>7000</td>
<td>150</td>
<td>0.734</td>
<td>3.199</td>
</tr>
<tr>
<td>0</td>
<td>7000</td>
<td>180</td>
<td>0.352</td>
<td>1.521</td>
</tr>
<tr>
<td>0</td>
<td>3000</td>
<td>0</td>
<td>0.995</td>
<td>0.218</td>
</tr>
<tr>
<td>0</td>
<td>3000</td>
<td>30</td>
<td>1.685</td>
<td>0.306</td>
</tr>
<tr>
<td>0</td>
<td>3000</td>
<td>60</td>
<td>1.401</td>
<td>1.497</td>
</tr>
<tr>
<td>0</td>
<td>3000</td>
<td>90</td>
<td>2.524</td>
<td>2.563</td>
</tr>
<tr>
<td>0</td>
<td>3000</td>
<td>120</td>
<td>13.32</td>
<td>5.354</td>
</tr>
<tr>
<td>0</td>
<td>3000</td>
<td>150</td>
<td>4.219</td>
<td>11.82</td>
</tr>
<tr>
<td>0</td>
<td>3000</td>
<td>180</td>
<td>0.585</td>
<td>4.562</td>
</tr>
<tr>
<td>0</td>
<td>3000</td>
<td>0</td>
<td>359.2</td>
<td>1159.0</td>
</tr>
<tr>
<td>0</td>
<td>7000</td>
<td>30</td>
<td>259.7</td>
<td>1112.1</td>
</tr>
<tr>
<td>0</td>
<td>7000</td>
<td>60</td>
<td>0.922</td>
<td>0.532</td>
</tr>
<tr>
<td>0</td>
<td>7000</td>
<td>90</td>
<td>1.944</td>
<td>0.758</td>
</tr>
<tr>
<td>0</td>
<td>7000</td>
<td>120</td>
<td>1.016</td>
<td>0.672</td>
</tr>
<tr>
<td>0</td>
<td>7000</td>
<td>150</td>
<td>0.358</td>
<td>1.609</td>
</tr>
<tr>
<td>0</td>
<td>3000</td>
<td>0</td>
<td>2104.0</td>
<td>4.084</td>
</tr>
<tr>
<td>0</td>
<td>3000</td>
<td>30</td>
<td>2695.0</td>
<td>0.640</td>
</tr>
<tr>
<td>0</td>
<td>3000</td>
<td>60</td>
<td>2899.0</td>
<td>0.198</td>
</tr>
<tr>
<td>0</td>
<td>3000</td>
<td>90</td>
<td>2519.0</td>
<td>0.347</td>
</tr>
<tr>
<td>0</td>
<td>3000</td>
<td>120</td>
<td>1867.0</td>
<td>0.490</td>
</tr>
<tr>
<td>0</td>
<td>3000</td>
<td>150</td>
<td>687.3</td>
<td>787.5</td>
</tr>
<tr>
<td>0</td>
<td>3000</td>
<td>180</td>
<td>224.5</td>
<td>396.0</td>
</tr>
</tbody>
</table>

Fig. 1 Intercept geometry

Fig. 2 Typical Trajectories

Fig. 3 Trajectories for $\phi = 0$ deg
Fig. 4 Trajectories for $\phi = 45$ deg

Fig. 5 Trajectories for $\phi = 90$ deg

Fig. 6 Trajectories for $\phi = 135$ deg

Fig. 7 Trajectories for $\phi = 180$ deg