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1. INTRODUCTION

This workshop on “Quantum-Limited Imaging and Iimage Processing”
represents the eighth of a series of intensive academic/ government
interactions in the field of advanced electro-optics, as part of the Army
sponsored University Research Initiative. By documenting the associated
technology status and dialogue it is hoped that this baseline will serve all
interested parties towards providing a solution to high priority Army
requirements. Responsible for program and program execution are
Dr. Nicholas George, University of Rochester (ARO-URI) and Dr. Rudy Buser,
NVEOC.




2. SUMMARY AND FOLLOW-UP ACTIONS

Opening remarks were by Dr. Rudy Buser. In his introduction he summarized
the scientific and technology missions of NVEOC He indicated a strong
interest in exploring approaches to automatic target recognition (ATR),
particularly those wﬂich may be useful for automatic recognition of military
targets located in a cluttered environment.

Dr. Michael Morris followed withan overview of the work being done at the
Institude of Optics on quantum-limited imaging and image processing. He
discussed an approach to ATR in which a quatum-limited image, i.e.
consisting of only a few detected photoevents, is correlated with a reference
function located in computer memory. A key feature of the method is that it
provides a simple way to reduce the amount of information that must be
processed to make reliable recognition decisions.

Next, three graduate students, working with Dr. Marris at the University of
Rochester, described the main results obtained from their dissertation
research. Thomas Isberg discussed his work on rotation-invariant filtering
using circular-harmonic expansions, and two-staged template matching.
Miles Wernich presented work on maximum-likihood image classification,
stressing the importance of filter designs, which are insentive to intrinsic
object variations with a given class. Edward Watson described methods to
upconvert (both narrow and Broadband) infrared images to a visible-
wavelength range, in which focal-plane detector arrays are readily available.

Dr. David Singer presented an overview of the work at NVEOC on image
processing and ATR, with emphasis on model-based, multi-sensor algorithm
development.

The final presentation was given by Teresa Kipp, NVEOC, on laser radar
imaging. Effects of sampling, field of view, noise, ambiguity interval on laser
imagery were illustrated. Examples of the use of range data to for 3-d surface
profile images were also discussed.

From the workshop the following areas for continued interaction have been
identified:

a. Specialize the University of Rochester’s ATR scheme for the recognition
of laser radar imagery, and compare its performance with NVEOC
algorithums. NVEOC will provide the University of Rochester with laser
radar imagery.

b. Initiate interaction with NVEOC personnel on methods for generating
upconverted imagery, and identify specific military applications.

C. Model the manner in which speckle noise distorts a modulated laser
radar beam. in turn, on the basis of this work. NVEOC will model the
probability distribution of error in range measurements.
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IMAGE RECOGNITION AT LOW LIGHT LEVELS

IMPULSE
RESPONSE — C(x.y)

S(x+¢ ,y+1n)

VE.g) —

e —— e

INPUT SCENE: V(€.m) = D 8(€ -xi,m -yi)

i=1

STORED REFERENCE FUNCTION: S (¢ ,4)

CORRELATION SIGNAL:

C(xy) = ffde dny V(£ .7)S(x+§ y+q)
A

N
C(xy) = D S(x-xi,y-yi)

i=1




Reference-Function Window

Offsetr

Input Scene
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Distortion-Invariant Image Recagnition

Image variations

T

Geometrical Intrinsic
(Invariant filtering) (Classification)

Rotation Scale  Single object Intraclass
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Invariant Image Recognition
using
Quantum-Limited Images

Recognition of a Single Object within an
Input Scene

* Rotation Invariant Filtering: Circular-Harmonic
Filters

e Extraction of Rotation-, Position-, and Scale-
Invariant features: Radial Moments of Circular-
Harmonic Functions

Recognition of Multiple Objects within an
Input Scene

* Two-Stage Template Matching

* Two-Stage Invariant Filtering and Feature
Extraction

Future Applications
- Correlation Tracking
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Invariant Filtering

Input Reference Correlation
Function Output

g(x',y’) R(x,y;x’,y")

» C(x,y) remains unchanged when g(x',y')
is rotated, scaled, or shifted.

* C(x,y) attains its maximum value
when the reference object is input




Rotation-Invariance:
The Circular-Harmonic Expansion

« Expansion
f(r, 0) = Z Fm(r) exp(im0)
M=-00

where

27
F (r) = 51%- jof(r,e) exp(-im0)do

 Reference function: mth harmonic
F;(r,e) = F;(r) exp(-im0)

 Rotation-invariant correlation

output
|IC ()| =]( g(r,9+0t),F,:(r,9)) |

=le"" [G_(r)F: (r)rdr)
0
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Radial Moments of Circular-
Harmonhnic Functionst

27T 00 ,
M -j j s-1 -lmef o) drd
em = r e (zr,e+«) drds

O(ZTEOO ime
s Sen j jr e  f(r,e)drde
0 0

Invariant Feature ®gm :

Decision Criterion: Distance in
Feature Space, D

D= Z ((D(lnp) (D(ref) )

tRef: Sheng and Arsenault JOSA A 3, 771 (1986).




Photon-Limited Estimation of
Radial Moments of CHF's

. s-2 -imp
Ref. Function:r e

Choose s = 2
27T 00 ,
N [ [ #r,) e rdrde
<C> 0 o0

27T oo
j j f(r,©) rdrd®
0 0
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Two-Stage Template Matching

Ref. Window
Location: (x,y}

Before Implementation:

1. Specify required probabilites of detection
and false alarm.

2. Choose similarity criterion and number of photons
for each stage.

Stage One

« Move the location of the ref. window to
each point in the input scene.

- Sample using a.small number of detected
photons.

+ Compute correlation function or invariant
features.

» Apply threshold similarity criterion.

Stage Two

- Examine the locations that satisfied the
similarity criterion using a sufficient number of
photons to achieve the specified probabilities of
detection and faise alarm.




Two-Stage Template Matching

Ref. Window
Location: (x,y}

Determination of the number of photons and
similarity criterion for each stage:

« The number of photons in the first stage should be
as small as possible.

- The similarity criterion is chosen to achieve the
required probability of detection, while allowing as
few false alarms as possible.

« The number of photons and similarity criterion in the
second stage are chosen such that the false alarms
from the first stage are eliminated.

« For a given input scene, it is possible to optimize the
choice for the similarity criterion and number of
photons in each stage.
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- The ML approach

. Log-likelihood ratio

pln|H"]
infi} = n{ - ey )

« Decision 5u|e

In{i(n)} 20
d

2




Related strategies

* Minimize probability of error

d (2)
In{l(n)} 2 In{ [Hm] }
d2

e Minimize cost of decision

d (2)
Infi) %' In{ 12~ P T

d2 (c,, - c")p[H ]

) )

where p(H )= a priori,classj
c. = costofdeciding i
. when j is correct




"(9861) 6212 ‘€ ‘Y VSO «

suoljelieA ssejoeul j[jews awnssy
SOI)SIjelS Uossiod 10 jeiwoun|niy

[ ssejd 10} mmmE_ mem>m =W

E_ u N {@i}u)

+9M14 pooyljaxIT-wnwixep ayl







o\
Z ssejo Jo ueaw = (A°x) ‘w ﬁtﬁ xVFE Jup = (Ax)Y
L ssejo jo ueaw = (Ax) tw (Ax) w

uoneoyIsse|D pPooyld)IT-wnuwixep
10}
uoljound aoualdjay




Summary of resulits

(number of detected photoevents
to achieve 1/10000 error rate)

Tools

1

ML 43

Average

FK

]
0 50 100 150
Characters
| 1 |
ML
Average
FK 965
| |
0 500 1000
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Optical Implementation

Matched ML
filter filter

Input
image

Reference
function

Correlator
output
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Classification Results
(F vs. R)
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6
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Quantum-Limited Imaging of
Upconverted Infrared Radiation

Outline

Quantum-limited infrared detection
Upconversion methods

Narrow band imaging

Broadband imaging

Broadband upconversion
Upconversion systems

Summary




Infrared Detection

Current detector technology

Low number of pixels
Requires cooling

No mature methods for doing photon-counting

Visible images by IR upconversion

Allows use of well-developed visible detection
Large space-bandwidth product
Uncooled

Photon-counting capability




Upconversion Methods

Incoherent (Bloembergen, 1959)

v
5 visible - No coherence requirement
Output on pump.
Pump ! - Narrow band (limited to

bandwidth of IR transition)

Coherent (Armstrong et al, 1962)

Visible
; IR
-_—

Pump

Phase matching

- Only phased-matched IR
efficiently upconverts

- Limited bandwidth

Pump IR
P >

>
Visible

Energy matching




Narrow Band Imaging

Large D*

Active illumination is narrow band
Noise is broad band

Range extension/increased resolution
by photon-counting

Upconversion Cell

IR rr Visible
System

System

b - gy = o - - - C R P
e o - N T




Broadband Imaging

Classical intensity levels

Broadband imaging improves

performance
A =10.55 - 10.8 um
7.50008+1 + 7 = .0002
B=1Hz
6.0000e+1 +
4.5000e+1 +
-
<
dad
Z 3.0000e+1 T '
T = 300°
1.5000e+1 + T = 450°
T = 600°
0 } i ~} } 4
0 5.000e-8 1.000e-8  1.500e-7 2.000e-7  2.500e-7

spectral Bandwidth (m)




—\

\

Broadband Upconversion
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Incoherent Broadband Upconversion

Upconversion Cell

. ( ) Dispersive
Hol:graphlc Lens Visibi
. ens Svystem* sible

==

Dispersive element spreads image in upconversion cell

Each wavelength upconverts at different point in cell

Final dispersive lens system recombines visible light
into single image

*D. Faklis and G. M. Morris, "Broadband Imaging with Holographic
Lenses,” submitted to Applied Optics, in review.

B —




Coherent Broadband Upconversion

Upconversion Cell

Q"’ Dispersive
Lens
IR Imaging System*
Lens
Object _ Visible
— U Image
f— f —]

Second lens produces plane waves in cell
Each wavelength upconverts at different point,
producing a plane wave

Final dispersive element forms single image

G. M. Morris and D. A. Zweig, "White-Light Fourier Transformations,”

In Optical Signal Processing, (J. Horner ed.), pp 23-71,
Academic Press, New York (1987).




Summary

Advantages of upconversion

Larger number of pixels than direct IR imaging
Uncooled
Photon-counting capability

Active imaging uses narrow band,
photon-counting upconversion

Passive imaging requires broadband
upconversion
Dispersive optical elements

Alkali-metal vapor cells




Monte Carlo Image Compression
and Computing Systems

Low-Light-Level Implementation

Image Compression Image Analysis
Object -

ton-Limit t

Pattern Recognition
Algorithms

Optical Implementation of
Poisson Random Number
Generator

Electronic Implementation

Image Compression Image Analysis

Detector

Object Array

Electronics

| Poisson Pseudo-Random}
Number Generator

Pattern Recognition
Algorithms




Pattern Recognition using
Quantum-Limited Images

Features

® Data Reduction and Computation Speed
® Minimal Computing Hardware

® Intensity-Based System

Potential Applications

Machine and Robot Vision
Automatic Target Recognition
Low light levels (passive night vision)
Laser radar systems
Correlation Tracker for Vehicle Guidance
Recognition of Spectroscopic Signatures
Radiological and Nuclear Imaging
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Pattern Recognition using Photon-Limited Images
G. Michael Morris, Thomas A. Isberg, and Miles N. Wernick

The Institute of Optics, University of Rochester
Rochester, New York 14627

N p ARSTRACT

‘The spatial coordinates of detected photoevents and the number of detected photoevents in & given area convey information
sbout the classical irradiance of the input scene. In this paper the effectiveness of photon-counting techniques for image
recognition is discussed. A correlation signal is obained by cross correlating a photon-limited input scene with a classical
intensity reference function stored in computer memory. Laboratory experiments involving matched filtering, rotation- and
scale-invariant image recognition, and image classification are reparted. For many images it is found that only a sparse
sampling of the input is required to obtain accurate recognition decisions, and the digital processing of the data is extremely
efficient. Using available photon-counting detection systems, the total time required to detect, process, and make 2 recognition
decision is typically on the order of tens of milliseconds. This work has obvious applications in night vision, but it is also
relevant to areas such as process control, radiclogical, and nuclear imaging, spectroscopy, robot vision, and vehicle guidance.

Often input scenes contain a vast amount of information, which sends t0 make pattern-recognition decisions laborious and
time consuming. In traditional digital pattern recognition meihods, one digitizes the input scene using a two-dimensional
detector, e.g. & solid-state photodiode array, and a frame store. If the detector consists of, say, a 1000 x 1000 array of detection
elements, then one has 1o process a million points of data. This is too much information for even very large computers to
process in real time, so one generally transforms the input information into some sort of feature-space representation, e.g.
through the use of edge-enhanced images, and makes the recognition decision based on this reduced data set.

An altemnative approach to the pattem recognition problem is to0 process low-light-level (photon-limited) input images
uvsing photon-correlation methods. 1n this scheme photoevents are detected at the maximum rate the detection/computer
system can handle. One collects photoevents until there is enough information about the input scene to achieve an acceptable -
error rate for the given recognidon task. Cur studies indicate that in many cases only a sparse sampling (a small number of RAPESr -
detected photoevents) of the input image is needed for accurate image recognition; hence, the time needed to detect, process, and i
make a recognition decision can be quite short, typically a few tens of mil'iseconds. In effect one is letting nature randomly
: sample (digitize) the input scene,

The problem that a practical pattern-recognition system faces is Liat it must be highly sensitive to image features that will
separate a given reference object from the other possible inputs, ye! at the same time be insensitive to image distortions that
are not important for the recognition task. It is convenient to gror.p image distortions into two categories: geometrical and N
intrinsic. Geometrical distortions include variations such as rotation, scale, position, and aspect of an input image. As an RS
example, one might want o recognize a given set of images in which the angular orientation and/or scale size can vary over a
range of values. Intrinsic variations are fundamental deviatiorss, not attributable to simple changes in geometry. In this case, T
the pattern-recognition task is to identify the input image as a member of an image class, rather than a specific reference
image. :

In this paper, we review the research 1o date on photon-correlation systems in which an input photon-limited imag¢ is
carrelated with a fixed (or deterministic) reference function stored in computer memory. The principal application for these
correlation systems is automatic pattern recogni.ion. Basically, one is given a set of possible reference images and the goal is
to decide automatically (without human intervention) which of the reference objects is most like to input object. In Section 2, .
we briefly review the statistical properties of photon-limited imaging and photon correlation. Section 3 contains a brief i
description of two-dimensional, photon-counting detectors. In Section 4 and 5, correlation results obtained using an image of
the reference function (matched filter case), circular-harmonic filters (rotation invariance), Fourier-Mellin descriptors (scale and o
rotation invariance), and maximum-likelihood filters (image classification) are summarized. )




2. PHOTON STATISTICS AND PHOTON CORRELATION

‘At low levels of illumination, an input scene V1(r) can be represented as » two-dimensional collection of Dirac-delta
functions, i.e. ,

+ N
v (r)-z Sr-r), m
1

in which ry, denotes the spatial coordinates of the k-th detect>d photoevent and N is the total number of detected photoevents.
Of course, with an actual detector the photoelectric counts are not idealized points, but rather they occupy a finite area; the
eﬂ’eaunbehdudadblypmingvf(r)&mghtﬁmsys:mhwhichtheimukemiseqmlwmepommud
function of the detector’. Although one does not want to ignore the finite spread of the detected photoevents, it does lead o
belpful simplification in the notation.

In Eq. (1), the spatial coordinates ry of the k-th detected photoevent are random variables. The number of detected
photoevents, N, may or may not be a random varisble depending on how the experiments is performed. For example, N is not
random for the case when a fixed number of photoevents is collected. On the other hand, if photoevents are collected for a
fixed time interval <, then from the theory of photodetection2-6 the conditional probability distribution for detecting N
photwevents in the time interval {t, 1+1] from a detector of area A, given the classical image irradiance V(r,t), is an
inhomogeneous Poisson process given by _

.

t+1 N . t+T
[fdm‘ Id’ A - Idt' I dren N
PINV(r0) = A et A @
) aRlE
in which the rate function A(r,1) is i -
A = nV(rvhy &)

g o
where n denotes the quantum efficiency of the detector, h is Planck's constant, and v denotes the mean frequency of the incidént ...
quasi-monochromatic light ;o

In general, V(r,t) is a random process and the conditional distribution given in Eq. (2) must be ensemble averaged ©
obtain the observabie counting distribution. For example, if V(r,t) obeys negative exponential statistics, as in the case of
polarized quasi-monochromatic light emitted by a thermal source, then the observable counting distribution P(N) obeys Bose-
Einstein statistics when the integration time is small compared to the coherence time of the light, see e.g., Ref. §). However,
if V(r,1) does not fluctuate significantly, i.e., V(r,t) = V(r), as in the case of illumination provided by a well stabilized single- .

mode laser, then counting distribution is simply N
N _ R TR
P(N) -%e' N @ '
in which
- nt A
N-Wi dzr V(r) (5) .




is the average number of detected photoevents. One notes that the distribution in Eq. (4) is applicable also for polarized
wmmmmmmummﬁmmd In this case the fluctuations in the irradiance are
smoothed out in the time integration and V(r) represents the mean value of the imadiance.

In Eg. (1) the phowevent coordinates vy, are independent random variables. The probability density function for
phowevent coordinatesS is directly proportional to the classical intensity V(ry), Le.,

V() = g ®
L ¢ T, )} & ———
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A

2.2 Comelation with 2 Deterministic Ref Eunct

Our approach o the pattern-recognition problem is to calculate the correlation function formed by an input photon-limited ..
image and a reference function stored in computer memory, which describes the object of interest. Examples that illustrate the -~ -
performance of this method are given in Sections 4 and S. In this section we summarize the salient statistical properties of the
correlation signal. A detailed treatment of the statistical properties of the correlation signal is given in Ref. 7.

Consider the correlation signal :m‘

= Jar Vieyre +) "

’

obtained by cross correlating a photon-limited input scene Vf(r). given in Eq. (1), witha deteminisﬁc‘ref;ience functionR(r) -~ ';'
stored in computer memory. Using Eqs. (1) and (7) gives S

N
Cr)= Y Rir,+1) . ®
k=1 '

Hence, the photon-limited correlation signal C(r) is a random function since the event coordinates ry are independent random .
variables with the probability density function specified in Eq. (6). The reference function R(r) may be either real or complek.
In this section R(r) is taken to be 2 real-valued function. The results are readily extended to the case in which the reference  **
function is complex8, Also as noted above, N, the number of detected photoevents, may or may not be random depending oh

how the input image is sampled. Here, we take the number of detected photoevents to be fixed.

To calculate C(r), one uses the spatial coordinates of a given detected photoevent as an address. The offset coordinated r
defines the location of the reference-function window within the input scene. The procedure to calculate C(r) is to look up the -
value of the reference function stored at the address specified by r + ry, and place that value into an accumulator; this
operation is repeated for all N detected photoevents. The recognition decision is based on the resulting value of C(r). I

- In atypical pattern-recognition problem, one would generally expect that the number of detected photoevam neededto V7T
make an accurate recognition decision would be rather large, at least a few hundred to a few thousand photoevents. As N gets

large, the correlation signal in Eq. (8) tends to a Gaussian process. In the limit of large N, the probability density function
for C(r) is given by :

Cm - <yt
POl -—i—e 2%, ®

2n

in which the expected value of the correlation signal <C(r)> is =7
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and p{rV(r)) is given in Eq. (6). Notice that <C(r)> is directly proportional o the correlation function between the high-
light-level (or classical intensity) input scene and reference function R(r).

2.2.1 _ Prohability of Detection and False Alarm.  The detection problem can be formulated by using the statistical theory
of hypotheses testing®. On the basis of the correlation signal C(r), one must choose between two hypotheses: the null
bypothesis, H — the reference function R(r) is not present in the input scene V(r); or the positive hypothesis, Hj - the
reference function is contained in V(r).

Under hypothesis Hg, the probability density function of the carrelation signal is denoted by Po(C) =

PIC(rYV(r*) = N(r)], where N(r') represents a noise (or false) image. Under hypothesis Hy, the probability density function of - .=

the correlation signal is denoted by P1(C) = P{C(r)[V(r") = R(r")], where R(r") is the reference image.

Operstionally, the observer asually sets a threshold value C for the correlation signal. If C(r) > C, hypothesis H is
chosen. Similarly if C(r) < Ct, the observer chooses hypothesis Hg. However, because of the statistical nature of the signal,
the observer occasionally makes an error, regardless of the value of CT. The probability of choosing Hy when Hy is true is
called the probability of false alarm and is given by -

r,-[dacr . (12)

The probability of choosing H; when H is true is called the probability of detection,

P,-facr© . a3 ;

3_TWO-DIMENSIONAL, PHOTON-COUNTING DETECTORS

Almost all the two-dimensional photon-counting detectors that have been developed use a microchanne] image
intensifier10:11 in cascade with some type of anode assembly to record the position coordinates of the event. A number of
#node assemblies have been used including silicon-intensified-target television cameras12-14, self-scarmed (CCD) detector
#rrays15-20, crossed-wire-grid anodes2!, multi-anode arrays 2, resistive anodes23-27, wedge-and-strip anodes 2831, and gray-
coded masks used with a band of photomultipliers32,

A schematic of a resistive-anode-type detector is shown in Fig. 1. An incident photon ejects an electron from a
photocathode. The ejected photoelectron is directed into a stack of microcharmel plates (typically mrranged in a V- and/or Z-
stack to prevent ion feedback) to achieve an electron gain G of approximately 106 t0 108, The resulting charge pulse is
collected by the resistive-anode assembly. The resistive layer is terminated by electrodes at three or four Jocations around its
perimeter, when provide the signals for the centroiding algorithm. When coupled to position-computing electronics, the
detection system is generally capable of openﬁnf at count rates up to approximataly 100,000 counts per second with a spatial
resolution of approximately 400 x 400 elementsZ,
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Fig. 1. Schematic diagram of a resistive-anode, photon-counting detection system..

The choice of the anode assembly, of course, depends on the requirements imposed by the application. For example,
detection systems that operate with only one detected photoevent in the device at a time can be used to collect a specific
number of photoevents; hence, N in Eq. (1) can be fixed, inst=ad of random. Theses detectors can provide both the spatial
coordinates and time-of-arriva! information of the detected photoevents. On the other hand, detection systems that utilize a

detector arrays or a television tube to read out the position coordinates of detected photoevents are generally preferable in high ™~

speed applications that involve moving objects or puised light sources. In these systems many events can be detected in a

short time interval and then read out in a raster format, the time-of -arrival information of detected photoevents is not availaple, -

and the number of detected photoevents for a fixed time interval ¢ is 2 random variable. .
4, IMAGE CORRELATION AT LOW LIGHT LEVELS i

The results in Section 2 are applicable for general real-valued reference functions and input scenes33. The capabilities of
this low-light-level approach to pattern recognition can be predicted theoretically by studying the probability density functions
of the correlation signal when the input scene (1) matches the reference function stored in computer memory, and (2) is a
typical background image encountered in the given application. From these probability density function, one can determine
the number of detected photoevents that is required to achieve a given probability of detection and false alarm.

_- In this Section, we consider the correlation signal obtained when the input scene is correlated with a classical intensity
image of the reference object. In the case the correlation output, C(r) in Eq. (8), corresponds to that of a matched filter, When
N, the number of detected photoevents, is a fixed number, the mean value and variance of the carrelation signal are given by
Egs. (10) and (11), respectively.

As an example, let us consider the recognition of detailed images, such as the engraved portraits of George Washington,
Abraham Lincoin, and Andrew Jackson shown in Fig. 2. The photographs in Fig. 2 were obtained by imaging portraits from
U. S. currency onto a two-dimensional, photon-counting detector [Electro-Optical Products Div., ITT Corporation, Model -
F4146M). The detector was connected to position-computing electronics {Surface Science Labaratories, Model 2401] to
determine the spatial coordinates of detected photoevents. The spatial coordinates of the detected events were digitized to a
spatial resolution of 256 x 256 pixels and then sent to a microcomputer system for display. Mlumination was provided by
fluorescent room lights. Neutral density filters were inserted between the imaging lens and the detector to reduce the count rate
%0 approximately 50,000 counts per second. In each image a fixed number of detected photoevents was collected. The number
of detected even's for the images in a given row are indicated along the left-hand side.
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Fig. 2. Images of engraved portraits obtained using a two-dimensional, photon-counting detection system:
first column, portrait of George Washington; second column, Abraham Lincoln; third column, Andrew
Jackson. N is the number of detected photoevents over the entire image: top row, N = 20 million; middle :
row, N = 4,000; bottom row, N = 1,000. The spatial coordinates of each detected photoevent are digitized to o

8-bit accuracy.

The probability density functions of the carrelation signal in Eq. (8) are calculated using the images in the top row of Fig.
2. For detailed imagery one expects that the number of detected photoevents will need to be relatively large for reliable
recognition; hence, the approximation that the probability density function of the correlation is Gaussian distributed should be
fairly accurate.

Since the reference and input images have the same area A, we take the reference-window offset r = 0. The mean value and
variance of the Ganssian-distributed correlation signal is computed for each input object using Egs. (10) and (11), respectively.
By using the mean values and variances for the different input objects, one can calculate the probability of detection and
probability of false alarm versus N, the number of detected photoevents. Figure 3 contains ROC curves for the portraits of for <~
different values of N, The portrait of Washington was used as the reference function. From the ROC curves, one sees that
excellent discrimination can be obtained by using less than one thousand detected photoevents (see bottom row of Fig. 2). Itis
this extreme data reduction that enabies one to achieve real-time operation.
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Fig. 3. ROC curves for the portraits of Washington and Lincoln for different values of N.

In operation, the recognition decision is based on a single realization of the correlation signal. N photoevents from the
input image are detected, and the resulting correlation signal is compared with a threshold value C. If the value of the
correlation signal exceeds Cr, the reference image is said to be present in the input; if not, the reference object is said to be
absent Excellent agreement between theoretical predictions and laboratory experiments have been observed. Note that at a rate
of 50,000 counts/sec, the total time to detect, process, and make a recognition decision using 1000 detected photoevents is Al
approximately 20 milliseconds.

{

It is important to note that in the thearetical predictions for the correlation signal, no corrections were make for additive
noise or dead-time effects; these effects are simply not important when the count rate is 50,000 counts/sec and N is a 2 few
thousand counts or less. In the experiments the dark-count rate is approximately 50 counts/sec at room temperature (a bi-alkali
photocathode is used in the detector). At a rate of 50,000 counts/sec, on average, there is only one detected photoevent out of a
thousand that is associated with additive noise; hence, the contribution due to additive noise is negligible.

4 _DISTORTION-INVARIANT FILTERS

" In most applications it is desirable to have an automatic recognition System that can tolerate certain variations in input
images, which are not important as far as a recognition decision is concemed. These variations can be divided into two basic
categories: geometrical distortions of the image (e.g., rotation, scale, and position) and intrinsic variations of the image (e.g.
changes in illumination, image clutter and object occlusions) . One could approach this probiem by using multipiexed filters
in which a separate reference function (filter) is used for each scale and orientation of the input object, but this leads to a
computational-intensive system design that is difficult to implement.

A more elegant approach to the problem of image distortion is to choose a reference function R(r) so that the correlation,
output is invariant 1o the distortion of the input image. Mellin transforms, which have scale- and position-invariant properties
have been used34. Circular-harmonic filters, initially suggested by Hsu et al.35: have proved useful for rotation-invariant
pattern recognition 8.36-38, Fourier-Meliin descriptors for rotation, scale and position invariance have also been rcpon:d”'
42t.ggt4her approaches to distortion-invariant filtering include: synthetic discrimnant filters43, and the "lock and tumbler”
fil
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clutter, variations in illumination, viewing angle, defects, occlusions, etc. Byuqanngnmoﬂnpguo a given obj
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circular-harmonic filters, Fourier-Mellin descriptors, snd maximum-likelihood image classifivation are given.

Any two-dimensional function f(r,8) can be represented in terms of its circular-harmonic components as follows:

f(r,O)-iF.(r) eimé (14)
Mu .
where e
., 2x 0
Ful) = 5 (j)' fr,0) eimO gp + (15)

In Eq. (14), Fpy,(1,8) = Fpy(r)exp(im8) is said to be the m-th circular-harmonic component of the funa;on £(r,0). Rotation-
invariant filtering can be achieved by taking the reference function R(r), in Eq. (8), to be the complex conjugate of a single (or
multiple) circular-harmonic component(s) of the reference object, e.g.,

PO

R()=Fa (.8) = Fo ) e'i™® a6)
When the offset coordinate r = 0, the correlation signal, C(r,q), is an inner product of an input function g(r,08+a) rotated by an
angle @ with respect 1o the reference function Fp *(1,6): LI
2ftoo {
C©.a) = [ g(r.8+0) Fy (r0) rarde . an
00

Using the expansion in Eq. (14) for g(r,6+a) and substimting into Eq. (17) yields
C(0,) = 2% eiMC j' Gu®) Fo (O rdr , (18)
0

in which the modulus of C(0,a) attains its maximum value when G, (r) = Fyy (), as given by the Schwartz inequality. Notice
that only the m-th circular-harmonic component of the input contributes to C(0,a) in Eq. (17) owing to the orthogonality of
the 6—integration, and that the rotaticn angle & appears only in the phase term exp(ima). Hence, the modulus of C(0,a) is
independent of the rotation angle of the input itnage. If the reference image is input, its orientation can be obtained from the
ratio of the real and imaginary parts of the correlation signal. The rotation angle a is given by ’
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which can be calculated easily when the correlation is implemented digitally. ‘The rotation angle & is far mare difficalt to
obmmnqﬁwhpwmmammmmwbm .
mmdmmmmmmmmmmnkmnmmfmmmn
mgnimdeofC(r.a)llsodependsonmeMmofﬂnepomnbmnwhichmcufmeobjectsexpmded;ﬂnslocauoms
referred 1o as the expansion center. mmagnimdcofC(r.a)winbemabsolnemxximmauywhenme‘pmpercm::r"is
Mnﬂnupanshncmcr”. Several investigations using the centroid of the image (rather than the proper center) as an
expansion center have been demonstrated to be effective fmmaﬁm-invarimtimagengﬁﬁon&m”.

Experiments to test the recognition capabilities of the photon-limited correlation scheme when a complex circular-
harmonic filter is used as the reference function R(r) were performed. In the experiments 35-mm-format input scenes,
illuminated by sn incoherent light source, were imaged onto an ITT Mode! F4146M photon-counting detector. Neutral density
filters were inserted to obtain a count rate of approximately 30,000 counts/sec. The (x,y)-spatial coordinates of the detected

were digitized to 8-bit accuracy and sent to 2 digital computer for processing. The number of detected
photoevents, N, (see Eq. (8)) was fixed. ’

Figure 4 shows the input images, the reference function, and results from the correlation experiments. The second (m=2)
circular-harmonic of the vise grips, computed about the centroid of the object, is taken as the reference function. The pliers and
the movable-jaw wrench are used ss false objects.
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Fig. 4. Rotation-invariant filtering using a circular-harmonic filter. (a) Images used in correlation
experiments, (b) the second-circular harmonic of the vise grips is used as the reference function; (c)
correlation results obtained using 3000 detected photoevents.
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images and the complex circular-harmonic reference function stored in computer memory were computed. Measurements we:
taken with the input reference object at various orientations (0, 90, 180 and 270 degrees with respect o the reference); the fal
objects were imaged onto the detector at the orientations shown in Fig. 4. Histograms of the correlation values obtained usi
3000 detected photoevents are shown in Fig. 4. mmlﬁmmﬁw&mﬁcdpeﬁeﬁmsadﬁewobabiﬁtydénﬁty
function for the squared modulus of the correlation signal. ICI2 = IC(0,a){2. For each input object, one thousand realizations
of the correlation signal were used t calculate the histogram. In accord with theory, the magnitude of the correlation signal
was found to be independent of the object-rotation angle a. :

. lnFig.s.ROCcmvesueplmedfonhevkegﬁps(mfmobject)mdthemovable-jawm:ch(falseobject). Note
MwiﬁnN-Mdeecwdpbmvem;.ghepmbahﬂityofmisexmlymu(appmximnelyonemin 100,000

realizations). Based on theoretical predictions, one finds that if the image of the vise grips were used as the reference functior -

(ie., the matched-filter case), the same discrimination capability can be achieved with approximately 1000 detected
photoevents. Hence, by increasing the number of detected events by only a factor of three, one can add rotational invariance
into the recognition system.

Probabliity of Detection

\

ol Q2 a3

Probabllity of False Alarm
Fig. S. ROC curves for the vise grips (reference object) and the movable-jaw wrench for different values of N.

- Rotation-, scale- and position-invariant image recognition can be accomplished through the use of Fourier-Mellin
descriptory (FMD's). In this method either the radial moments or the radial Mellin transform of dominant terms in the circular
harmonic expansion of a reference object are computed about the centroid of the image. The modulus of these descriptors is
used to define invariant features. The invariant features of an input scene are compared with the cormresponding features of the
reference object A recognition decision is based on the sum of the squared differences of the features, D2, If D2 is less than
some pre-determined threshold value, the input is said to be the same as the reference. If D2 exceeds the threshold, then the
input is said to be different than the reference. :

The invariant features &5, m Of the input image V(r) = V(r,8) are given by

M.l
- | 20)




where the Fourier-Mellin descriptors M; o are
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WMud%kmmemﬁmmmhp«iﬁmoﬁmmm. If the Mellin
gansform variable 3 is pure imaginary, the modulus of M m, is also scale invariant. On the other hand, if the transform
variable 3 is real (e.g. an integer), the normalization by the O-th order descriptor [Eq. (20)] provides scale invariance.

Invariant features can be estimated using quantum-limited images in the following manner. If one chooses the reference
fmdmwﬁchksmdhmmm.m.be
R(1,0) = 52 7m0 | @)

where the coordinates (r,0) are taken with respect to the centroid of the input image, the mean value of the subsequent i
limited correlation signal is given by photon
2% o - -
N[ [veorleimdase R
<C 00 Y
> = 2% o * (23) ’

I I V(z,8) rdrd® N
00

where N is the number of detected photoevents. Notice that <Cg 1> is directly proportional to the classical intensity
descriptor M m, in Eq. (21). Also,
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if different photoevents are used to compute <C(s)> and <C(0)>.

The recognition capabilities of the photon-limited estimates of the FMD's were tested in laboratory experiments. A set of
transparencies (35-mm format) were made using engraved portraits from U. S. currency, at relative magnifications of 1.0, 1.25,
1.5 and 1.75. These transparencies (input at various orientations) were imaged onto the two-dimensional, photon-counting
detector. Five thousand detected photoevents were used to determine the location of the centroid of the input object in each
case. The invariant features were computed using the refeyence function in Eq. (57) with s=2. The distance in feature space
was computed between the quantum-limited input image and the reference image (George Washington with a relative '
magnification of unity). To test the theoretical predictions, one thousand measurements of the feature-space distance D2, s e

2 input ref 2
D -gw Uit i @5

2,m ~2,m

were performed for each input image to provide accurate estimates for the mean values and standard deviations of D2.

It was found that radial moments of three circular harmonics (m = 1, 2, and 6) were sufficient to provide snerrorrate of 1
x 105 when 5000 detected photoevents were used to construct the estimates of the FMD for each value of m32. The ‘ :
probability density functions forDz,Imedonexpuimcnul values for the mean values and variances of D2 for the different P
input images, are shown in Fig. 6. In Fig. 6, a threshold valueDrz-0.0S provides the error rate of 1x10°3 stated above.
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Fig. 6. Probability density functions for D2, based on experimental measurements of the mean value and
variance of D2 for the images of Washington, Lincoin , and Jackson. The invariant features ¢3 m (m =1, 2,
and 6) of Washington were used as the reference.

$11 Classification -

In certain applications it may be desirable to ascertain the category or class of images to which an input image belongs. f
An image class may, for example, include images of a single scene in which variations in background content, illumination
angle, and other attributes are included. Printed characters in various fonts may likewise compose a class of images. In this
section photon-limited image correlation is applied to the problem of sorting two image classes. The high rate at which
images can be'identified arises from the efficiency of the photon-correlation calculation.

The photon-limited image consists of a histogram of the spatial coordinates of detected photoevents. Hence, 2 digitized
photon-limited image takes the form of a two-dimensional array n. At zero offset, the cross correlation between of a photon-
limited input image n and a reference function R(r) is given by

C- z nR(r) , ' 6)
i

where r; represents the coordinates of the i-th pixel of the reference image and n; is the number of detected photoevents in that
pixel. In practice, most of the n;'s are zero; hence, the calculation consists simply of a summation of the values of the .
reference function R(r) sampled at the spatial coordinates of the detected photoevents. :

Our goal is to construct a reference function R(r) that, when applied according to Eq. (26), yields usefu! information for
class discrimination. The maximum-likelihood approach is found to be particularly well suited to the problem of sorting two
classes of photon-limited imagesS1.
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The maximum-likelihood decision criterion’2 is 1o choose the hypothesis corresponding to the state that was most likely
to have given rise to the observed daua. The central quantity in the theory is the likelihood ratio J, given by
(1)
‘(n).;'{.m_(z)l » m)
ploH '}
where  represents the photon-limited i e and hypothesis HU) (j=1,2) indicates that the input image is 2 member of
cmi.mmwnmﬁnmmgtd:'ﬁmhwthagehsfonom.Whenap!m-ﬁnﬁedimagenumt.&e
ratio Xn) is calculated. To select the most probable source of the detected photoevents, ciass 1 is chosen when &n) >1 and
2 class 2 is chosen when 2{n) < 1.

Frequently, for convenience, the log-likelihood ratio In{(n)} replaces the likelihood ratio X(n) as the decision parameter.
Wemick and MorrisS ! have shown that In{¥n)} is given approximately by

{m,).
h{kn))zZn,ln(ﬁ) + 3 lm,) - [m ]} @s) .
1 1 1 -
where
M ’ .
1 v5,0 .
"M ik @

suﬁ) denotes the irradiance of the i-th pixel of the k-th training image in classj.Mj is the number of training images in class
jrand (mj]i is the irradiance in the i-th pixel of the average image from class j.

Comparing Eqgs. (26) and (28), it is seen that the natural logarithm term serves as the reference function for maximum-
likelihood image classification at low light levels. The term involving the difference of class means is a bias, which is
independent of the input image; it simply changes the threshold value of In{Z(n}} that is used to decide between the two A
classes. Therefore, in operation, evaluation of the log-likelihood ratio reduces 10 the table-lookup-and-addition procedure that |
we seek,

Experiments to compare the performance of various image-classification methods at low light levels have been

performedS! using images of characters and tools. Representative members of the training sets used in the character-
recognition experiments are shown in Fig. 7. Reference functions were constructed for maximum-likelihood classification, the
Fuhmagt}x_oo:tz transform, and average filtering. The reference function for maximum-likelihood image classification is
shown in Fig. 8.

ToevalweduepexfommceofmevaxiwnlgmimmswenseasaﬁzunofmuitN-unenumbaofdaecwdphomvems
required to reduce the probability of error (ie., the fraction of decisions that are incorrect) to 104. The results obtained for the
various classification methods are as follows: maximum likelihood, N = 146; difference of means, N = 246; Fukunags-

Koontz, N = 965. Note that the maximum-likelihood solution, Eg. (28), yields the best results. )

The classification techaiques illustrated above are designed for sorting of two image classes. The generalization to
multiple classes is most readily obtained through application of a pairwise-voting logic, in which pairs of image classes are
successively compared. On each pairwise decision, one class is eliminated. Thus, if K classes are to considered, then (K-1)
correlations must be performed. In 8 hard-wired system, many reference function may be spplied in parallel to the incoming
photoevent data.  The resulting correlation values may be passed to & system that implements the voting logic.
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f Fig. 7. Examples of images used in the experiments on image classification. In all, seven fonts were used
! fanhingmdﬁvefonswmlescrvedastestobjm.

Fig. 8. Reference function for

maximum-likelihood classification of F's and R's. The function contains both
positive and negative values; a bias has been added for display purposes.
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can operate at a rate of one detected photoevent every 10 microseconds, the total time needed to make a recognition decision is
only 10 milliseconds. :

mnﬁsﬁcﬂwmﬁsofmemelaﬁmdﬁﬂmmmnmdin&cﬁonz The system to compute the correlation
sipdar).faundbylphommﬁmindhputmemda&minhﬁcnfmfmﬁmismnplymopﬁcﬂ
imphmnnﬁonohMoncCsrloschmwmdefmieimgnh.

Sevenl reference functions for pattem recognition are examined. Examples of scene matching when the input image is
mehndwiﬂmﬁnagedudmobjeam;ivmh&cdm4(seeFigs.an!). In Section 5, distorton-invariant
filters are considered. Expaimalrsnlsﬁumummemddmuhr-hmicﬁlmfamﬁm invariance (Figs. 4
and 5), rotation, scale and position invariance (Fig. 6) and image classification (Figs. 7, 8 and Table 1) are given.

mmmwmmsmmmmmmmm“m The detection system (see Section
3)Mdamdhmﬁmdpbmmﬁngdemﬂmdpaﬁm@mdngd&muwhkhhmﬁma .
microcomputer. The reference function is stored in computer memory. Since the photon-correlation system is intensity-based,
it can operate with either spatially coherent ar noncoherent radiation. N

There are a number of potential applications for the methods discussed in this paper. These include: machine and robot
vision, target recognition from video monitors, correlation tracking for vehicle guidance, active or passive night vision,
automatic recognition of spectral signatures, radiological imaging, and range extension for laser radars.
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