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In: Dxnamic Patterns in Comolek Systama. J.AS. Keiso,

A.J. Mandell, & M.F. Shesinger, eds. World Scientific Pub.
1988, pp. 162-190 :

VARIABILITY AND CHAOS: NEUROINTEGRATIVE PRINCIPLES IN SELF-ORGANIZATION
OF MOTOR PATTERNS!

G. J. Mpitsos, H. C. Creech, C. S. Cohan2, and M. Mendelson3
Oregon State University
M.O. Hatfield Marine Science Center
Newport, OR 97365
USA

/ ABSTRACT AFOSR-TKR. 3 9-0705

In this chapte?\&le discuss the possibility that variability may be a central feature of self-
organizing protesses. We suggest that variability may be inherently part of the
mechanisms by which adaptive “neurocircuits™ emerge, and contrast such functional
neurocircuits against definitions involving anatomical or dynamical structures which the
self-organizational definition both contains and supercedes. The experimental work
focuses on an invertebrate animal, the sea slug, Pleurobranchaea californica, which has
a rich behavioral repertoire of buccal/oral behaviors, and a relatively simple nervous
system containing identifiable neurons. We present evidence from work on a set of 20
neurons, which we refer to as BCNs (buccal-cerebral neurons), that communicate
between the buccal ganglion and cerebral ganglion. These neurons are crucial for
generating all buccal/oral behaviors, and provide an advantageous source of
experimental material for inquiring into the self-organization of group activity. Variability
in the activity of the BCNs, and in the motoneurons that they drive, is attributable to low-
dimensional chaos, as shown by: 1) autocorrelation functions; 2) correlation analysis of
phase portrait dimensiens; 3) calculation of Lyapunov exponents; and 4) the structure
of 1D maps of Poincaré sectionsYhese findings indicate that some variability may arise
from the same mechanisms that generate the patterned activity: i.e., that the observed
variations are not noise that is superimposed on the code underlying a behavioriut

rather that they constitute the code itself.” We discuss the findings with respect to the
role of sensory feedback in the production of adaptive behavior of animais as they . .
interact with complex and often unpredictable environmentsy and we suggest tha* US> discus
chaotic neural activity provides a means for the nervous system to create nev. o
informational space rendering animals more stably adaptable in such changing
environments. ~ 1
A
INTRODUCTION L
Selt-organization represents the ability of ‘groups of individuals to act *cooperatively”
7.12,16,17,20,53]. These groups consist of relatively autonomous individuals, each acting
nonlinearly and usually having information of what only part of the group ns doing. Some
individuals may have more persuasive mwérs than others, but giveri the information
concerning a single individual, an observer could not determine the behavior nor future action
of the group. .
Hidden in the above account is the role that variability may have in establishihg cooperative
behavior. In neural systems, computer simulation studies have shown thai a network of

interconnected elements can produce different patterns of activity, depending of the

1This work was supported by grant AFOSR-86-0076.
2present address: Department of anatomy, SUNY, Buffalo, NY 14226.

3present address: Department of Family Medicine, University of Washington, Seattle, WA 98195,
and Tacoma Family Medicine.
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parametric state of the network (18,37,44]. In the same way, recent neurophysiological studies
on simple systems indicate that the same population of identifiable neurons can produce
different patterns of activity, depending on differences in sensory inputs or neurohumoral
tactors [11,13,31,42,47]. Because of the high degree of paralle! interconnections among
neurons in most nervous systems, it has become obvious that it is not possible to predict how
the system will work dynamically by simply looking at the architecture of the neurocircuit; i.e., to
determine the functional characteristics of any given neuron or of a group of neurons, it is
necessary to examine the system during its temporal expression.

However, while the attribute of being parallel implies dynamical, it does not necessarily
account for self-organization adequately. A functional neurocircuit arising from paralle! networks
may require dynamics in order to appear, but if the temporal characteristics and fina! result of the
dynamics are always the same, the definition of self-organization has not progressed much
beyond the original one in which the information for a motor pattern or a behavior resides in the
neuroanatomy itself. This is not to say that the framework of anatomical, physiological, and
neurohumoral factors are not essential. But while changes in these frameworks, such as
synaptic modifications arising from associative learning or changes in hormone levels, may lead
to different behaviors, they do not necessarily speak directly to the issue of self-organization.
The central issue, we believe, is to account for the process by which both similar and different
behaviors emerge from the same underlying framework, and how this framework can produce
the same behavior in different ways. Thus, at least conceptually, self-organization seems to be
tied to variability.

Observations of extensive variations in behavioral and neural responses have led us 10
suggest that variability may be an inseparable pan of the mechanisms generating motor patterns
rather than representing extraneous noise [38,39]. This is to say that variation is not noise riding
on the neuraf code, but rather that the varation resides within the code itself. One of the
simplest examples of this relationship between code and variation is the logistic equation,
Xne+1 = A(1-Xp) X, where each successive value Xp,.1 is generated from the previous value Xq
[32]. For values of the constant A just below 4, the equation gives unpredictable results:
although there is no noise in the equation, given a solution to the equation for a particular value
of X, the probability of predicting the solution at some future value quickly decreases. This
sensitivity to initial conditions is a characteristic feature of chaotic systems; the systems follow
deterministic laws such as the logistic equation, but the behavior of the systems is not
predictable into the future.

This inseparable connection between signal and noise has led us 1o inquire into the
possibility that variability in our experimental system may aliso be chaotic. Our approach has
been to take advantage of the technical amenities of invertebrate animals in which it is possible




to identity specific neurons or smali groups of neurons repeatedly from one animal to another
[41]. In order to understand how adaptive behavior arises in whole animals, such groups of
neurons should have a central role in generating behaviors, but the number of neurons in the
group should be small enough to permit a quantitative analysis of all of their responses. In broad
terms, the experimental problem may best be viewed as an inquiry into the process by which an
individual affects the functioning group, and, in tumn, how the group atfects the individual. In the
present paper we begin to address this problem by examining the temporal characteristics of
activity in individual neurons during the production of repetitive activity arising from coordinated
interactions in the group of neurons to which the neuron in question belongs.

THE EXPERIMENTAL SYSTEM

The sea slug Pleurobranchaea californica, a marine gastropod mollusc, produces many
different buccal/oral behaviors that outwardly seem to have similar repetitive movements. Some
of the most interesting of these behaviors consist of: several components of feeding, such as
biting, ingestion, and swallowing movements; an obvious, active form of regurgitation; a food-
rejection behavior by which the animal sequentially expels unwanted substances from the
mouth in a fashion resembling a reverse of the bite-ingestion phases of feeding; and self- and
interanimal gilt grooming. An example of a feeding response appears in Fig. 1.

The nervous system of this animal consists of four major gangiia and several minor ones. Of
the major structures, there are two pedal ganglia, one for each of half of the foot; one buccal
ganglion which drives the opening and closing of the jaws and controis the movements of the
radula, a structure which is analogous to a tongue; and a cerebral ganglion (brain) which
innervates the mouth, lips, and the anterior regions of the head. Connectives (cables of nerve
axons) convey information between specific ganglia.

In Pleurobranchaea, as in many other invertebrate animals and in some vertebrates, many
neurons can be visually or physiologically identified either individually or in small groups
[8,13,24,41,42,4547]. Despite the relative simplicity of these animals, hundreds or
thousands of neurons may become active in the production of a given behavior. However,
although there are approximately 10,000 neurons in the nervous system of Pleurobranchaea, a
peculiarity in its neuroanatomy (and probably in the nervous systems of many of its cousins)
significantly reduces the number of neurons one needs to consider in order to inquire into self-
organization. For proper coordination to occur between the movements of the jaws and mouth
in Pleurobranchaea, it is necessary that the brain receive information about activity in the buccal
ganglion (Fig. 2). It so happens that there is only one group of 15-20 neurons in each buccal
hemiganglion that can perform this information-carrying capacity. We refer to them as BCNs
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(buccal-cerebral neurons), and they, along with one giant neuron, are the only neurons that
send axons from the buccal ganglion to the brain.

Figure 1: Photographs of the camivorous mollusc Pleurobranchaea (A) locomoting from left to
right. (B-D) increasing responses to food descending from a smail tube at the upper right. Note
progressive extension of the proboscis and opening of the mouth in (C). Response in (D)
occurred within a fraction of a second from a starting posture as in (A). Cowcatcher-like structure
lying over the proboscis is a sensory oral veil for detecting chemical and mechanical stimuli. Pair
of upwardly directed objects are rhinophores which perform chemosensory functions. The
unpaired gill is on the right side: best seen in (C) and (D). (from Mpitsos. Collins, and McClellan
[40)).

It is relatively easy to record intracellularly from individual neurons. and extracellularly from
the nerve bundies that communicate between the various ganglion. Because of the anatomical
separation of the ganglia. it is possible either to examine local effects arising from activity within a
group of neurons or within a single ganglion by severing the connectives, or to examine the
interactions between groups of neurons by leaving the connectives intact. Such work has
shown that the BCNs have a multiplicity of functions, but their most important feature is that the
functional attributes of a given neuron, or of the group as a whole, emerge from the




interrelationship or context of firing among all the coactive neurons [39]. Moreover, the firing of
individua! neurons and of the group is quite variable, as are the behaviors that these neurons
help to form and regulate {38]. The BCNs intercommunicate among themselves, converge and
diverge onto interneurons and motoneurons in the brain and buccal ganglion, they receive
feedback trom by the motoneurons that they drive [39], and they feed back onto the
interneurons that drive them [14]. As such findings show, the neuroanatomic architecture of
Pleurobranchaea is designed for a high degree of paralle! processing.

Figure 2: Brain (top panel; dorsal view); buccal ganglion (bottom panei. ventral view). Small dark
objects are neurons that have been filled with a black precipitate (cobalt sulfide) for better
visualization. Cells in the brain are motoneurons that innervate the mouth and lips. Cells in the
buccal ganglion are BCNs. many of which contact brain motoneurons either monosynaptically or
polysynaptically. Not shown is that each buccal hemiganglion connec's with the corresponding
half of the brain by means of a long cerebral-buccal nerve connective {CBC). Magnification: brain
(22X), buccal ganglion (32X).




As in most invertebrate animals, the Pleurobranchaea nervous system functions wel after
being removed from the rest of the animal. Such isolated nervous systems can generate two
characteristic types of motor patterns relating to different behaviors, one relating to the
swallowing phase of feeding, and the other relating to the active phase of regurpitation (see
Mpitsos and Cohan {38,39] for a critical discussion). In the following sections we examine first
the motor pattern relating to feeding and then discuss an example relating to regurgitation.

COOPERATIVITY AND VARIABILITY IN SELF-ORGANIZING PROCESSES
Among their various functions, the BCNs generate the cyclical rhythm for opening and
closing the jaws. This rhythmic activity is shown in Fig. 3 as sequences of bursts in buccal
ganglion nerve root R3 which contains motoneurons that activate muscles for closing the jaws,

SOVN iR eaiimsashna il

MN

R3 H”———M

R1
M
BCN
20 mV(M)4
40 mV(BCN)

Eigure 3: Functional "cooperativity” following perturbation of patterned activity. Top four traces
are extracellular recordings from nerve roots, each containing activity of many motoneuron
axons. Bottom two traces are intraceliular recordings from a motoneuron (M) and a BCN.
Removal of the BCN by hyperpolarizing it (between arrows) caused cessation of all activity, but
the activity in the rest of nervous system eventually recovered despite the fact that the
hyperpolarization forced the BCN to remain quiescent. Activity here, as in all physiological
records shown below, was eficited by tonic electrical stimulation of a sensory root of the buccal
ganglion. SOVN: brain nerve root innervating the oral veil and anterior mouth. MN: brain nerve




root innervating the mouth; contains axon of M. R3: buccal ganglion nerve root conaining
motoneurons for closing jaws. R1: buccal ganglion root containing motoneurons for opening
jaws. (From Mpitsos and Cohan [39]).

and in root R1 which contains motoneurons that activate muscles for opening the jaws. As a |
group, the BCNs have heterogeneous effects on the generation of patterned activity. Figure 3
shows a BCN that initially had a strong eftect. Removal of this neuron from the circuit (by
passing hyperpolarizing current through the intracellular recording electrode) immediately
stopped all cyclical activity in motoneuron (M), in buccal roots R3 an R1, and in brain nerve roots
SOVN and MN. After about 60 sec, the pattern reestablished itself, despite the fact that the
BCN was still hyperpolarized. With each cycle in the reestblished pattern the membrane
potential of the BCN and MN exhibited smal! excitatory synaptic bumps originating from parallel
inputs from the BCNs and other newly activated neurons. Release of the BCN from
hyperpolarization (second arrow in Fig. 3) also released the motoneuron but had little effect on
the pattern of activity in the rest of the nervous system.

Another example ot changeable function in single neurons appears in Fig. 4 which shows
the effect ot the history of activity in the nervous system on subsequent activity in single
neurons. Sections A and B of Fig. 4 each contain a motor pattern relating to the swallowing
phase of feeding. However, in Fig. 4A the BCN and motoneuron fired most actively in phase
with the R1 portion of the buccal cycle, whereas in Fig. 4B they fired in phase with the R3
portion. The only difference between these two recording situations was that in Fig. 4A the
activity was recorded soon after the nervous system had generated a regurgitation motor
pattern, whereas in Fig. 4B the activity was recorded after the nervous system had been
generating the pattern relating to swallowing behavior.

The recordings in Figs. 3 and 4 illustrate two important interrelated features of cooperativity
and self-organization: 1) Patterns of responses can be established in different ways, and 2)
individual neurons can exhibit different functional properties within similar patterns. In Fig. 3 the
BCN initiafty had a strong effect in pattern generation, but then it lost this effect when other
BCNs reinstated the pattern. In Fig. 4 the BCN and motoneuron remained active throughout,
but completely changed their phase of activity as a consequence of the preceding activity.

Both of these examples are extreme cases of variability. Closer inspection of the traces in
Figs. 3 and 4 shows that there were many instances of relatively small variations. For example,
the number of action potentials in the bursts of R1 in Fig. 3, and the number of action potentials
in the BCN and motoneuron in Fig. 4, differed from one burst to another. We believe that the
more extreme forms of variability arise from the same nonfinear dynamics that produce the small
variations. Some of these smaller variations are examined quantitatively in the following section.




25 mV(M)
I 50 mV(BCN)

Eigure 4: History of activity in the nervous system affects the way in which activity among
neurons seli-organizes to produce similar motor pattems. Same captions as in Fig. 3; different
M and BCN. Note that the BCN and M were most active during the R1 phase of the buccal cycle
in (A) whereas they were most active during the R3 phase in (B). (From Mpitsos and Cohan
[39)).

DYNAMICS OF FIRING IN SINGLE NEURONS DURING PATTERNED ACTIVITY
Interpolation of Time Series
The time series of intracellular responses of BCNs and motoneurons (as in Figs. 3 and 4)
were first recorded on FM tape. Selected portions were then played back and digitized at 1K Hz
for computer analysis. The rate of digitization was adequate for analysis of the 10 to 15 msec
action potential durations that are typical of molluscan neurons. As in Figs. 3 and 4, the activity
described below was activated by electrically stimulating the stomatogastric nerve which
innervates the esophagus and carries chemosensory information to the buccal ganglion. The




stimuli were presented at 1 Hz, and at an electrical current strength near the thresholid for
generating the bite-swallow motor pattern [see also 34-36,39).

To illustrate the analysis, we selected the activity of a brain motoneuron which received
converging inputs from several BCNs. The motor pattern was about 168 sec long and
contained 548 action potentials. Bouts of feeding in whole animals varies from several seconds
1o several minutes, and, therefore, the selected record was within the range of typical behavior
in whole animals. At digitization rates of 1K Hz, the number of points in the 168 sec time series
was too long for analysis on a typical laboratory microcomputer. In order to reduce the amount of
data, we used the sequence of unequal intervals occurring between action potentiais instead of
the equally spaced samples in the digitized series. Longer patterns have been recorded from
other neurons, but we chose the present ones so as to examine situations that physiologists
may typically encounter in experimentation: i.e., the length of the data was representative of
adaptive responses in whole animals; the data required compression, but, once compressed,
the series was relatively short and contained few Cycles of structured activity.

Analysis of time series composed of such unequally spaced spike intervals in BCNs and
motoneurons in Pleurobranchaea have yielded evidence for low-dimensional choas, as has
been described for spontaneous activity in cat cortex [46]. We believe, however, that it is
physiologically justifiable to convert the unequal time series into an equally spaced one by
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Eigure 5: Firing frequency of a brain motoneuron during a 168 sec bout of the bite-swallow
motor pattemn. Frequency representis the reciprocal of the time between a spike in the
motoneuron and the preceding spike. Data shown here is uninterpolated. For subsequent
analyses, a variety of interpolation rates were used. Major criterion for effective interpolation was
to reproduce all aspects of the shape in the uninterpolated series.




interpolation. First, it is a relatively sate assumption to make that the frequency of action
potentials arriving at a synapse carries the code of the information in the input neuron's activity.
Figure 5 shows the frequency series for the uninterpolated data obtained from the motoneuron
described in the preceding paragraph. This series has three components: a slow trend in which
the baseline frequency slowly increased throughout the series; 11 consecutive bursts of
activity; and a high-frequency component which is superimposed on both the slow trend and
the repeating bursts. Second, we propose that the shape or the envelope of such a trequency
series, including initially all the components, contains the essential elements for reconstructing
the information that one neuron conveys to another. Third, we propose that it is permissible to
sampie the series at equally spaced intervals as long as the interpolation rates retain the
characteristics of the uninterpolated frequency function. This transformation to equally-spaced
intervals allowed for the application of more analytical methods in examining the activity of single
neurons than are available for unequally spaced intervals.

Because interpotation distributes the density of points evenly throughout the series, too
low a rate underrepresented the high-frequency bursts. However, once we obtained good
congruence between the shapes of the uninterpolated and interpolated series, the analyzed
results remained stationary over a wide range of interpolation rates. In the present example,
similar results were obtained using interpolation rates between 0.05 and 0.25 sec.
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Eigure 6: Same patterned activity as in Fig. S, except that the activity was linearly interpolated at
0.10 sec intervals and passed through a filter having a high pass of 0.05 Hz, and a low-pass of
0.15 Hz.
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Eigure 7: Amplitude spectra. (A) interpolated, unfitered data. (B) interpolated and filtered data
using a band pass of 0.05 to 0.15 Hz.

The amplitude spectra of the unfiltered and filtered series are shown in Fig. 7. Interestingly,
the peaks are near but not exact multiples of one another. Examination of the data using
different digitization and interpolation rates showed that the characteristics of the filtered and
unfiltered spectra arose from the time series of the neuronat response rather than from the
manipulations performed on the data. Moreover, when the pattern of activity spontaneously
switched to another pattern representing the activity underlying regurgitation, the spectrum
also changed, but, again, many of the peaks appeared to be close multiples of one another.
Such spontaneous shifts in the pattem of neural activity are particularly interesting, and we shall
return to them later in this chapter.

Autocorrelation Function

We examined autocorrelation functions for two reasons: 1) To obtain an indication of
whether the activity was sensitive to initial conditions, i.e., whether the predictability of the
activity decreased with increasing lags into its evolution. 2) To determine the appropriate lag for
use in dimensional analysis.

The autocorrelation functions of the unfiltered time series slowly declined toward zero,
reflecting the slow trend in the baseline frequency of Fig. 5, whereas the autocorrelation
function of the filtered series quickly dropped 10 zero. Figure 8 shows that the autocorrelation
function of the filtered series in Fig. 7B first crossed zero at a lag of 3.7 sec, and within 60 sec
(approximately three cycles in the data of Fig. 6) the autocorrelation declined toward a more
stable value near zero. Given the fact that the times series was repetitive and of refatively shont
duration, it is not surprising that harmonics appear at 75 and 150 sec, but the overall
autocorrelation shows a consistent decline.
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Figure 8: Normalized autocorrelation function of activity shown in Fig. 6.

Phase Portrait

From a time series of a single variable representing the combined effects ot several
processes, it is possible to obtain an indication of the dynamics of the activity and of the number
of variables goveming it. Following the work of Packard, Crutchfield, Farmer, and Shaw [43] and
of Takens [54), we defined a multidimensional space by mapping the original frequency series
f(t) along the x axis, then mapping the same data on the y axis after shifting it by a lag (1), and on
the z axis after a shift of 2t. In d-dimensional space the procedure follows f(t+(d-1)1}, where t is
an integer multiple of the sampling interval. The evolution of the time series through successive
points in muRtidimensional space defines the trajectory of the activity, and the overall evolution
defines the phase portrait. A 3-D view of the first six cycles in the time series of Fig. 6 is shown
in Fig. 9. The trajectories begin at the upper right at the asterisk and progress clockwise and
outward until reaching the f(t+21) axis, then they swing in toward the origin and tum upward and
outward again. The phase portrait resembies a bent coil. Even with so few cycles it is possible to
see some divergence in the interrelationship of the trajectories, particularly at the sharp corner
near the f(t+21) axis. To construct this phase portrait and to conduct the analyses presented in
subsequent sections, we used t=3.7 sec, or multiples of it, as determined from the first lag
that generated a zero autocorrelation (Fig. 8). Kar! Eugen Graf (Department of Clinical and
Physiological Psychology, Tabingen) has obtained good congruence of results on EEGs using
this method of selecting 1 and one based on mutual information theory (personal
communication).




f(t+2 1)

Figure 9: Phase portrait of activity shown in Fig. 6; for clarity, only the first six cycles are shown.
The original series, f(t), was mapped on the x-axis, and then successively shifted by a lag ton

the y-axis and by 2 T on the z-axis. The 1 (3.7 sec) was selected from the first zero crossing of the
autocorrelation function.

Comelation Dimension
Dimensional analyses provide an indication of two important features of time series: the
number of dimensions {(d ) that govern the phase space, and the topological dimension (n) of
the phase portrait, which denotes the dynamical nature of the time series. Following
Grassberger and Procaccia [15)], we defined an integral autocorrelation function:

1 N
C(r) = —5 2 O (r-IXi-Xjl) . (1)
NT s
i
This algorithm selects a point Xj and measures the number of points X lying within a prescribed
range of distances r until all N-1 points of the series are counted. The function 8 excludes
points lying outside each r. The process is then repeated by selecting another point as X; for all
N points. For small r, C(r) scales as . Thus, n may be obtained from the slopes of plots of
log C(r). = n log (r). The calculations are made for a series of embedding dimensions d: For
random noise n scales linearly with increasing d; i.e., noise fills all space as dimensions are

13




added, but in deterministic processes, the value of n levels off (saturates) after a certain d.
integer n values usually indicate predictable activity tending asymptotically foward some limit,
whereas noninteger (fractal) values indicate chaotic activity [30).
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Eigure 10: Integral autocomrelation functions of activity shown in Fig. 5 after interpolation at 0.1
sec intervals; unfiltered data. Calculations were conducted for embedding dimension d = 1
through 5.
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Eigure 11: Determination of regions along curves of Fig. 10 having lnear and saturating siopes.

The slopes along the plots of log C(r) versus log (r) curves often show variability (Fig. 10). In
order to estimate the appropriate regions at which the slopes are linear and saturate toward a
common value, we followed the example of Rapp at al. [46] and calculated the slope of the
curves between successive points. These siopes were then plotted against log C(r) in Fig. 11.
In the indicated range of Fig. 11, the points for d = 1,2 are easily distinguishable at the bottom
near the log C(r) axis, but those for d = 3,4,5 intermingle. The indicated regions along the log
C(r) dimension were then used to caiculate the siopes n along the same regions for each d in
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Fig. 10. Figure 12 shows the results of plotting n against d for the unfiltered activity of the
motoneuron. Also shown are the results for the filtered data of Fig. 6, and for random noise
having the same number of points, mean, and standard deviation as in the motoneuron series.
For random noise, n scaled inearly and equally with increasing d. The unfiltered data saturated
at a fractal dimension above 2 at d = 4, whereas the filtered date saturated at a fractal dimension
below 2 at d = 2. The error levels were Quite low, being smaller than the points in the graph.
Using selective filters, we found that it was the high-frequency components that produced the
difference between the filtered and unfiltered saturation levels in Fig. 12.
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0 L L ] ¥ L]
0 1 2 3 4 5 6

Eigure 12: Saturation of dimension n with increasing embedding dimension d. Unfiltered data
saturated at d = 4, whereas the filtered data saturated atd = 2. Random noise did not saturate.
Standard error for each caiculation was smalier than the size of the symbol in the illustration.
Curves are drawn through points in order to aid visualization. See Figs. 10 and 11.

The saturation values of n were quite stationary when examined with different scaling
factors. Similar saturation levels were obtained with interpolation rates of 0.25 and 0.05 sec as
with the 0.1 sec rate used above. In addition, as shown in Fig.13 for the filtered and 0.1
interpolated data, the saturation levels were relatively unaffected by changing <t in the
calculations of C(r). The average orbital period, as calculated from Poincaré sections of the
phase portrait (discussed below), was 15 sec, and, therefore, the series of T shown in Fig. 13
properly covered a large range of the orbit time.
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Eigure 13: Topological dimension n remained stationary with increasing t; d also remained
constant, but is not shown here. Calculations were conducted on the filtered series shown in
Fig. 6.

Lyapunov Exponents
Lyapunov exponents provide a means for determining the topological growth of the
attractor as the time éen'es evolves. We used the computer programs of Alan Wolf (personal
communication) and Wolf, Swift, Swinney, and Vastano [55] to calculate the first Lyapunov
exponent. Conceptually, the algorithm defines a d-dimensional sphere. Each dimension has a
Lyapunov exponent (1) indicating the rate of growth of the attractor in that dimension. The sum
of the exponents in a dissipative system is negative. Chaotic attractors have at least one
positive exponent denoting exponential divergence of nearby trajectories; i.e., streiching
occurs on the attractor in certain direction(s) of phase space (positive 1), while contraction
occurs in other directions (negative A). In systems having positive A, folding must occur in order

to keep the diverging trajectories within a bounded surface.

From Woll et al. [55), the algorithm for determining Aq is:

1 L' (t
A, = — log (ty)
M- lo kat L(ty.y)

(2)

The total time for evolving through data consisting of M equally spaced points is tpm, and {g is the
initial time.  L(tk-1) is the distance separating a point on a fiducial trajectory of the attractor and a
nearest point in bhase space at time tk.1. L'(tk) is a new distance between the fiducial point and
another nearest replacement point after the trajectory has evolved a prescribed number of
steps to time tx. As a simple example, one might start by determining the distance between two
points lying in adjacent trajectories in Fig. 10. After evolving a number of time steps along-a




trajectory, the distance between the points may have increased. After a series of similar
iterations involving increasing replacement distances, the above equation yields a positive
change in A1 in bits per sec.

Two scaling factors critically influence the calculations of Aq: the number of time steps in the
evolution through the attractor before making the calculations, and the maximum distance
through the range of the data in searching for the replacement points at each calculation. To
determine the appropriate range for each of these scaling factors, we caiculated A4 for a series
of evolution times and maximum replacement distances: First, A1 was calculated for a given
evolution time (multiple of the 0.1 sampling interval) and a series of maximum allowable
replacement distances (percent of the range of the data). For each pair of evolution time and
replacement distance, the calculations generated reiatively stationary A4 values as the iterations
progressed through the time series (Fig. 14). Second, the stationary A1 obtained for the series
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Figure 14: First Lyapunov exponent (in bits/sec). Calculations were made at fixed intervals
(mutltiples of the sampling intervai) in the evolution through the attractor. Note that the
exponent reached a positive, stationary value. The embedding space was constructed using
t=3.7secandd=3.

1600

of calculations with each evolve step was plotted against a range of maximum aliowable
replacement distances (Fig. 15). The results show that replacement distance L'max Was a more

critical factor than evolution time EVOLVE. For small replacement distances, different evolution
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Eigure 15: The first Lyapunov exponent plotted as a function of EVOLVE (muttiples of the
sampling interval) and L'max. {the maximum prescribed scaling through the range of the data

before making each calculation). Embedding space here was constructed using t =3.7 sec
andd=3.

steps generated different A1, but for replacement distances of about 30% of the data range, all
evolution steps generated similar A1. Using an EVOLVE of 20 and a maximum replacement

distance of 30% of the data range, we also determined that A1 was reasonably stationary over a
wide range of t (Fig. 16).
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Eigure 16: First Lyapunov exponent remained relatively stationary when the calculations were
made in embedding space constructed with ditferent lags t.

1D Map
The trajectories representing the activity of the motoneuron that we have been analyzing
have an unpredictable yet deterministic interrelationship with one another. To demonstrate
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this, we first obtained a Poincaré cross section of the flow of the trajectories through phase
space, and then constructed a 1D map of the relative position of the trajectories within the
Poincaré section, much as Roux, Simoyi, and Swinney [49] have described in their analysis of
the Belousov-Zhabotinskii reaction.

The horizontal line in Fig. 17A shows the level at which we made a cut in the 2-D phase
portrait. The one-way crossings of the trajectories through this line yieided the average orbital
period and the interrelationship of one trajectory to another. Each trajectory crossed the line at
some parameter value and with an average period of 15 sec. We then normalized the parameter
positions ot the crossings and plotted them in Fig. 17B as a 1D map showing the relative
position of a particular crossing (tn. 1) with respect to the previous crossing (tn). The number
next to each point in Fig. 17B shows which ordered-pair of Poincaré crossings the point
represents.
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Eigure 17: (A) Poincaré section was taken at the horizontal line through a 2-D phase portrait.
(B) 1D map constructed by plotting the relative position of ordered pairs of trajectories passing
in the same direction through the horizontal ine. The numbers next to each point show the
succession of ordered-pairs.

We can extract two important features from the 1D map. First, the points are not randomly
scattered. In fact, they appear to fall on a relatively smooth curve having a positive siope above
the 1:1 ine and a very steep negative slope below the 1:1 line. Second, although there are not
enough Poincaré crossings to define the exact slope of a smooth curve as it crosses the 1:1
line, the steepness of the fall-off below the kne strongly suggests that the slope is greater
than -1. Both of these findings are consistent with the findings we presented in the previous
sections indicating that the activity of the motoneuron was chaotic: the nonrandom positions of
the points show that the activity was governed by a deterministic process, and the steep fall-oft
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shows that the activity was not a limit cycle, but rather that it was unpredictable (nonperiodic).
The shape of the series of points in Fig. 17B is similar to the 1D map in Chay's [9) computer
studies in which she found that spiking activity of simulation neurons bifrucated from periodic
activity into chaos through period doubling. One interesting difference, is that while both
Chay's simulation study and our study dealt with single neurons, the simulations dealt solely
with the generation of chaos in the interspike intervals, whereas our analyses dealt with the
cycle of high-frequency bursts that comprised the motor pattern. Moreover, because the
motoneuron was driven by BCNs, which generate the rhythmic pattern of activity [39], it seems
likely that our results apply not only to chaos in a single motoneuron neurons but also to chaos
reflecting the integrated activity of the group of coactive neurons. Examination of the activity in
individual BCNs has demonstrated similar evidence of low-dimensional chaos as in the
motoneurons.

MOTOR PATTERN HETEROGENEITY
In the above discussion we have examined variability occurring within a relatively
homogeneous motor pattern. However, even in response to constant stimulation, motor
patterns can be structurally nonhomogeneous. An example of this is shown in Fig. 18. The first
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Eigure 18: Heterogeneity of firing in a brain motoneuron. First half of the record is the same as
in Fig. 5. Second half or the record, representing regurgitation behavior, arose spontaneously.
The activating stimulus was the same throughout and consisted of brief (1 msec) electrical
pulses that were applied at a rate of 1 Hz to the stomatogastric nerve, an afferent root of the
buccal ganglion.




200 sec of this activity is the same as shown in Fig. 5. After that point, the repeating bursts
increased rapidly and overiapped into a peak of high-frequency activity. Subsequently, as the
overall frequency decreased, the individual bouts o high-frequency firing again reappeared.
During instances of alterations in the pattem of firing, some neurons become more active
while others become more Quiescent. The new motor pattern usually has a shorter duration
than the one from which it emerges, and often has characteristics that resembie the motor
pattem relating to the active phase of regurgitation [34,35,38). Figure 19 shows a segment of a
motor pattern involving three neurons that can be reidentified in successive preparations: the

200mv
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Eigure 19, Heterogeneity of firing in many neurons. Note the spontaneous shift of activity, first,
from a low-frequency pattern, which relates to bite-swallow behavior, 1o a higher-frequency
pattern, which relates to regurgitation behavior, and then the return to the first. M3 is a
reidentifiable buccal gangion motoneuron, and I1 is a reidentifiable interneuron. SGN is the
stomatogastric nerve which innervates the salivary gland, and CBC is the cerebral-buccal
connective. Small-amphitude bursts in the CBC were primarily from the BCNs; large spike was
from the metacerebral giant neuron in the brain. Tonic electrical pulses were applied to the SGN
on the opposite side of the buccal ganglion. Other captions are the same as in Fig. 3.




metacerebral giant neuron (located in the brain) whose axon spike appears in the CBC trace of
Fig. 19: a buccal ganglion motoneuron (trace M3), and a buccal ganglion intemeuron (trace I11).
The illustrated segment was takan from a 10 min recording, during which the pattern switched
approximately every 90 sec. As in the case observed in recordings taken from relatively intact
ahfmals [38], some episodes of motor pattern switching were often composed of blends of the
two extremes shown in Figs. 18 and 19. As we shall discuss, such motor pattern variations pose
ditficult though interesting problems in the application of dynamical theories to behavior.

DISCUSSION

In order to focus explicitly on variability arising from processes within the central nervous
system, we used nervous systems that had been completely removed from sensory inputs and
motor effectors. Such isolated nervous systems have been characterized previously
[e 9..14.34-36.39]. In this chapter we have analyzed the activity of a motoneuron which
received inputs from several BCNs that are responsible for generating and controlling rhythmic
motor output underlying different behaviors. The neurophysiological records that we chose to
analyze had characteristics that posed problems, as presented above. that neurobioclogists
often face in experimental situations. Despite these problems, the results appear to be
relatively robust. In further work, we have analyzed the activity of other motoneurons and BCNs,
some of whose activity was considerably longer then the present example, and have obtained
similar results.

Chaotic Attractors in the Generation of Motor Pattems

Evidence tfor presence of chaotic attractors. The definition of attractors has been widely
discussed {e.g..1,12,15.30,53]. In relerence to neural networks, they may be considered
simply as energy states that form and constrain the integrated activity within a limited parameter
space defined by the phase portrait. The conclusion that the attractors in Pleurobranchaea may
be chaotic foliows from the findings that: 1) Autocorrelation functions quickly fall to zero.
2) Caiculation of correiation dimensions shows that the activity is governed by fractal topological
structures that are embedded in low-dimensional state space. 3) Trajectories in the phase
portraits appear to diverge from one another. This finding is supported by calkculations showing

that the first Lyapunov exponent is positive which indicates that the trajectories diverge
exponential, and that there must be folding of the attractor in order to keep the trajectories
within a bounded surface. 4) 1D maps taken from Poincaré sections show that the interrelated
positions of the trajectories are not random, but, rather, appear to follow some relatively simple
function whose structure is indicative of nonperiodic behavior. These findings indicate that the
pattern-generating mechanisms in Pleurobranchaea themselves generate unpredictable
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though deterministic activity in the same way that mathematical relationships such as the logistic
equation [32] or the Rossler attractor [48] generate chaotic or unpredictable activity.

Behavior-specific chaotic attractors. Previous analyses of repetitive behavior or oscillatory
brain function have fruitfully characterized the dynamics of repetitive behavior, or of the
underlying neural activity, as limit cycles [21-23,25,45). In rabbit oifactory EEGs, basal chaotic
activity provides a route for limit cycles to emerge that represent particular odors [12,53].
Similarly, “critical fluctuations” have been proposed as a means by which phase transitions occur
in human hand and finger movements [22]. Chaotic activity may also provide a route for pattern
switching in Pleurobranchaea. However, the predominance of evidence for chaos in our
records suggests that chaotic attractors themselves may be behavior-specific. Although chaos
has been proposed to occur in a variety of biological systems [3-5,12,27,33,50,53], to our
knowledge the work reported here constitutes the first evidence of chaos in patterned activity
that is retatable to adaptive behavior in whole animals.

Nonstationary Motor Patterns

Intrinsic vanation and adaptive stability. By being sensitive to initial conditions, a signal
exhibiting intrinsic variation, in contrast to a nonvarying signal or one on which extrinsic noise is
superimposed, can carry new information into the future. The intrinsic varations that we have
ascribed above to chaos, represent in etfect the attempt of the nervous system to generate
new informational space which, we propose, provides for stability in the animal's adaption to a
varying and often unpredictable environment.

In the natural environment, animals are often confronted by many stimuli simultaneously
requining a “dbehavioral choice™ to respond selectively [10] or to exhibit a blend [6,28,29,38].
Considered from a classical perspective, there may be reflex interactions between separate
neurocircuits relating to the ditferent behaviors [26]. However, even given evidence of such
reflex interactions, a view of the “neurocircuit™ as arising from self-organizing cooperativity
among groups of neurons, as defined in the Introduction, may give some insight into the
spontaneous pattern switching and blending that we have presented above in reference to
Figs. 18 and 19.

Consider the following example: inverted animals exhibit siower righting behavior when
tood is present than when there is no food [10). In order to right themselves, animals usually
have to twist the anterior portion of the foot, but they aiso direct the foot toward the direction of
the food stimulus (Fig. 1) and may even try to "grasp” it. Thus, when animals are inverted and
presented food, the neurons governing the movement of the anterior regions of the foot may
receive instructions simultaneously for two different behaviors. Such influxes of mixed sensory
instructions may lead to the production of hybrid or blended behaviors, and thereby cause an
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increase in the execution time (or complete suppression} of one or both behaviors, not so0 much
by reflex inhibition of one behavior to another, but mo-e because of a lack of sufficient
"consensus” of information arising among the converging sensory inputs as they compete for
activation of target neurons. Because the buccal-oral system of Pleurobranchaea has a greater
range of multifunctional capabilities than the foot, and because the BCNs are key elements in
the generation and control of all of these behaviors [39], it is not surprising that blends of motor
patterns should be observed in the activity of the BCNs and in the neurons with which they
interact.

Adaptive attractors and blending. The present findings lead to two interrelated questions
that pose difficult experimental problems: 1) If neural output is so variable and unprediciable,
what determines the appropnate response? 2) Can the attractor concept account for blending?
in response to the first question, we propose that theré may be no appropriate centrally
programmed motor pattern or genetically established neurocircuit for a behavior [38.39).
Rather. the self-organizing process can lead to many types of motor patterns, some of which
may be nonadaptive for the particular conditions surrounding the animal. The correct motor
pattern and the effective "neurocircuil” arise from continual dialectic interactions between the
animal and the environment. Variability occurring naturally in thePleurobranchaea nervous
system gives these emerging "neurocircuits™ a fluid quality. The interaction of the animal with
the environment further accentuates such fluidity. it is necessary, therefore, to consider the
combined effects of two sources of influence, one intrinsic and the other extrinsic, in the
process by which functional neurocircuits emerge during the production of adaptive behavior.

In response 1o the second question, the adavantage of state space analyses and attractor
formulations is that many quantitative features of dynamical processes may be obtained without
having to determine the equations of motion. However, the apparent fluidity of neural activity
poses difficulties in applying dynamical theories. For example, honhomogeneous attractors
that have topological features representing different types ot motor patterns may be appropriate
when the patterns represent different aspects of the same behavior, but are more ditficult to
invoke in order to account for the appearance of different behaviors. It is probably more useful
to consider motor pattern switching (Figs. 18 and 19) as bifrucations from an attractor to another,
with each attractor representing a different behavior or motor pattern. Since the entire phase
space represents the possible dynamical combinations of the group of coactive neurons, it is
not unreasonable that intermediate areas between the attractors, or the basins of individual
attractors, could have mixtures of several motor patterns. An interesting possibility is that the
afttractors themselves may not be stationary and that together the different attractors are part of a
larger, "hyper” attractor having its own dynamics.
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Unlike known mathematical and physical attractors that have stationary qualities, neural
systems are subject to many temporal changes that alter the undertying framework from which
the patterns emerge. There may be long-term effects relating to leaming or hormone levels,
but short-term effects are probably more common. Examples of shont-term effects were shown
in Figs. 3 and 4 regarding the eftect of history on the generation of motor patters. Given a
quiescent nervous system or a recent startup ot a particular motor pattern, the activity may
appear as shown for the first sections of Fig. 18 and 19. As the activity progresses, the
underlying context of group activity may change because individual neurons are affected by the
preceding activity in which they take part. As each neuron changes, its parametric effect on the
group can also change. Depending on the extent of such parametric changes, the activity of
the group may show reversible temporai fluctuations and graded shifts into new types of activity.

CONCLUSION

We have attempted to illustrate in this chapter that tunctional "neurocircuits® leading to
adaptive behavior have a fluid quality. In order for concepts such as attractors to be usefut they
must be able to account for these fiuid qualities. While these constructs, which havé arisen
primarily from studies in the dynamics of idealized physical and mathematical models, have been
usefu! in the study of variability in our experimental system, the experimental system in turn
seems to pose questions for further development of dynamical theory. Although we have
examined the possibility that there may be chaos in neural processing, our central question has
not so much to do with chaos per se, but rather with the role of variation and of the types of
variations that become involved in the emergence of self-organization. Moreover, inasmuch as
nervous systems {as most biologica! systems) are distributed, parallel, variable, self-organizing,
and dialectical, it is essentiai. as discussed with regard to the neural basis of learning {40,41], to
develop a conceptuai language for addressing these issues more effectively than present
theory allows. Inasmuch as our experimental system is not unique in its essential characteristics,
comparative analyses of such relatively "simple” systems may help to uncover general principles
underlying the seli-organization of activity in cooperative groups.
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