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1. Introduction

In a number of statistical problems, it is desired to know the probability of a union

n

of n events : P{U A;} where the A; are undesirable events such as rejection of the
i=1

jth null hypothesis when it is true, or the jth confidence interval not covering the true

n

parameter. For many of these situations, it is impossible to calculate P{U A} exactly
~

due to the numerical inability of integrating over n events or incomplete kncwledge of the

entire union/intersection structure among these events. When this does occur, an attempt
n

is made to be conservative and obtain an upper bound for P{ U A}
=1
It may be feasible to integrate over k or less events or otherwise determine P{A4,, U

Aj, U---UAj }or P{4; N4, N---N A4, }for k, < k. This information may then be
used in some fashion to derive the upper bound for P{ U Aj}. Many approaches for doing

j=1
this have previously appeared in the literature. The earliest was the inclusion-exclusion

formulas of Boole(1854) and Bonferroni(1936) stating :

P{O Aj}SiP{AJ’} - 3 P{4;,n4;} +

J1<j2
>, P{4;n4;n4;)
J1<J2<js
(1) —4+ Y P{4;nA,N-N4;)
1<ja< <

where k is an odd positive interger. The most familiar of these, of course, is the Standard

Bonferroni Inequality where k = 1.

P{{J 4,} < Z P{A;}

i=1

One problem with this approach is that the number of terms one must calculate to
k

. . . n
implement this formula is Z(

. ] which becomes excessive as k& becomes large. For
, J
=1

instance, when n = 10, if k = 1 then 10 terms must be calculated, if £ = 5 then 637 terms

must be calculated.




Another problem is that the upper bound given by the inclusion-exclusion formula
does not necessarily become lower as k becomes larger. For example, consider 10 events
with the probability of any single event occuring equal to 0.08, the probability of any two

events both occuring equal to 0.04 and the probability of any three events all occuring

n

equal to 0.02; then the inclusion-exclusion upper bound with & = 1 for the P{U Aj} is
j=1

0.80, while the inclusion-exclusion k = 3 upper bound for this probability is 1.40. Not only

is 1.40 > 0.80, but 1.40 > 1 - an upper bound for any probability.
A different approach was developed by Kounias and Marin(1976) and modified by

Tydeman and Mitchell(1981). It formulates the upper bound of P{U A;} as a linear

=1

k
. . n . . . .
program with 2™ nonnegative variables and E ( ) equality constraints. Using this for-
; J
j=0
mulation will produce the lowest possible linear upper bound for a given set of probability

information. However, even for moderate values of n and k, this linear program will be

too complicated to be conveniently evaluated. In fact, no attempt has been made to use

k
this method with k larger than 2. This approach also requires knowledge of Z (n)
i=1
probabilities which, as stated before, may be too many terms to calculate.

It is, therefore, of interest to find methods incorporating knowledge of k event inter-
section/union probabilities to produce easily calculatable upper bounds for n event union
probabilities which are lower than those upper bounds currently used. One snuch formula

has been developed for k = 2 by Hunter(1976). It gives:

P{O Aj}SXn:P{Aj} - > P{Ain 4;}

et
where n is finite, T is any spanning tree with vertices 4;, A2, -+, An; and A; is connected
to 4; in T by edge e;;. Several articles, including those by Stoline(1983) and Bauer and
Hackel(1985), have been written evaluating and implementing this method. Hoppe(1985)
and Tomescu(1986) expanded on this procedure to develop lower bounds for probabilities
of unions. Tomescu(1986) also developed related inequalities which utilize probabiliies
involving k > 2 events to give upper bounds. These bounds, however, become very com-

plicated as k becomes large, and like the inclusion-exclusion inequalities, do not necessarily
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decrease with k.

In section 2, a general method is developed which expands Hunter’sidea to & > 2 and
n possibly infinite. For a fixed value of n, the number of probabilities needed to apply this
new method is a decreasing function of k. It is also shown that when using this method, k&
can be increased resulting in at worst no improvement in the upper bound. In section 3,
the new algorithm is applied to simultaneous confidence intervals and multiple hypothesis

testing involving multivariate normal (and t) distributions.

2. The New Upper Bounds

Consider the following representation of the probability for a union of n events (with

n possibly oo ).

n k
P{lJ 4;} = P{U 4:} +
i=1 i=1
(2) > P{A4;N (4,1 UA; U~ U 4y)}
j=k+l
Define the set S; to contain k — 1 elements from 1,2,--,j ~ 1 for j > k + 1. Without loss
of generality, let these elements be {; <i3 < -- < #g_y. It is true that:
(Aj-1UA; U ---UA;) D(A;, UA;, U---U Ay, _,)
which implies that:
(Aj—1 UAj 2U---UA1) C(Ai, U4, U-- U4, )

and thus that:

P{A;N(4;_y Udj_ 2U---UA)} < P N (A Udg U4y )
) <ta< <y
tot2, ik -1 €S,

from this it follows:

Theorem 1. Subset Complement Addition Upper Bound (SCAUB)

5




n

n k
P{J 43 =P{J 41+ > [P{A,- N(4;-1 U4 U ---uA,)‘}}
j=1 i=1 =k

n

k
(3) <P{U43+ Y [P{A,- N (A, U4, U U Ai..-l)°}]

=1 j=k+1 11<i3 < <ig-y
31,43, k-1 €S

where k is any positive integer smaller than n and §; is a set with £k — 1 elements from
(1,2,--,j~1)forj >k +1.

This bound is called a subset complement addition upper bound (SCAUB) since it is
created by adding probabilities of intersections of new events with complements of unions
of subsets of events that have already been incorporated into the bound. The SCAUB can
be shown to be a distribution free analog of Glaz and Johnson’s(1984) product type bounds
for Multivariate Totally Positive Order Two (MTP,) distributions. See Glaz(1987) and
Hoover(1988). To obtain the upper bound of Theorem 1 requires only the calculation of
n — k + 1 probabilities; each probability involving k events. For n = 10 and k = 5, this
is 6 terms as compared with 637 terms needed to use the inclusion-exclusion upper bound
with n = 10 and k = 5. . .

Whea k is 1, the upper bound of Theorem 1 is P{A;}-{-Z P{A;n(¢)} = Z P{4;}

j=1

j=2 =
which is the Standard Bonferroni Upper Bound. When k is 2, the upper bound of Theorem

1 becomes:

n
P{A;UA;} + ) P{4;N(4:)°} wherei € Sjandj >3
Jj=3

= P{4,} + P{4;} - P{41n 4.} + Z [P{Aj} - P{A;N A;}| wherei€ S;and j >3

i=3

= ZP{Aj} - Z P{A; N 4;} wheret € Sjforj >3, and 1 € 5,

j:] j=2

= ZP{A,’} - Z P{d; " 4} wherei < jande, € Tiff i€ S,
=1 e, €T

which is Hunter’s upper bound.




An upper bound (B;*) which gives the same value as the specific SCAUB inequality
with S; containing j — 1,7 —2,...,j—k+1 for j > k was mentioned by Worsley(1985). The
form of this upper bound is only given for k = 3, but can, with some work, be extended
to all k. (Note that there are typographical errors in the above article which make the
result difficult to understand.) Besides being more restrictive than the SCAUB order k
inequality, B;* also requires the calculation of 2¥ 1 + (n — k)2*¥~! terms to obtain a k
order upper bound on the probability of the union of n events. When n = 10 and k = 5,
this is 111 terms compared with only 6 terms needed for the bound of Theorem 1. Finally,
B;™ uses probabilities of intersections of various events which, in the normal simultaneous
confidence interval problem, are numerically much more difficult to calculate than are the
probabilities used by the SCAUB (unions of events and intersections ot single events with

complements of unions).

The value of the upper bound from Theorem I with & > 2 will depend on the ordering
of events and choice of elements for the §;. When k is two, it is always possible to determine
an ordering and choice of elements for the §; that gives the lowest possible Theorem 1 upper
bound by using the Minimal Spanning Tree Theorem of Kruskal(1956) with probabilities
of intersections as edge weights (see Hunter(1976)). Unfortunately, no method which will
always do this for k > 2 has been discovered. If the events 4,, A5,---, 4, are exchangeable
(exchangeable means that P{A4;, N 4;;, N---N A;_} = C,n regardless of choice of events),
then P{A; N (A4;, UA;, U---U 4;,_ )} will be constant regardless of events; therefore the
ordering of events and choice of elements for §; will not matter. Also, when the events
have a natural ordering 1,2, --,n with the overlap between a fixed event and a preceeding
event being a monotonically decreasing function of the number of events in the sequence
seperating them, then using the natural ordering with §; = {; - 1,7 —-2,---,j — k + 1}
should give a good upper bound. This type of situation will occur in Markovian processes
and time series.

One nice property of the SCAUB which inclusion-exclusion bounds do not have is
that k can be made larger with the upper bound at worst hecoming no lower and, in many
cases, becoming much lower. [n other words. as probabilities involving more events are

incorporated into deriving the bound, the bound becomes better.
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Theorem 2. Monotonicity of the SCAUB

Let ¢, be a Theorem 1 upper bound derived using a particular value of k : k <
n, ordering of events and choice of scts Sg41,Sk+2,--+,Sn. It is possible to produce a
Theorem 1 upper bound g, using the value k¥ + 1, the same ordering of events and the
sets Sy, 2,553, S (the sets now contain k instead of k — | elements) with §; C 57} :
k +2 < j < n such that:
n
(4) P U{Aj} <2 S

=1

Proof
The first inequality in (4) follows from the SCAUB. To obtain the second inequality

in (4), first note that the following identity holds for the first term in 3:

k+1 k

k c
P{U Ai}=P{U}+P{Ak+ln [U Ai] 1

Next, define the set S; , to be (1,2,:--,k) and j* to be the unique element such that
{S;Uj*}=8;forj=k+1,k+2,---,n. Now look at the difference:

01— P2 = i P{A,-ﬂ[ U Ai]c}— 2": P{Ajﬁ[ U A,-}C}

j=k+1 all i €5; j=k+1 alli €S}
n <
=y P{AjﬂA;ﬂ[ U Ai]}
j=k+1 all i €5,
> 0.

3. Application to Multivariate Normal Probabilities Within Rectangles

The SCAUB may be used to produce upper bounds for the probability that the max-
imum absolute value from a vector of standardized normal (or t) variables is larger than a
given value ¢ when the dependence structure (correlation matrix) of the variables is known.
Such bounds are of interest in simultaneous hypothesis testing and simultaneous confidence
intervals involving multivariate normal (or ¢) data. In this case, (.Y;,.Xz.---,.Y) is a mul-
tivariate normal vector with mean zero and some known covariance. Event .d; is that

variable X; does not fall in tne interval (-c -0, ,c-0.,).

8




Examples of such bounds for ¢ = 1.96 and 2.50 ; and n = 5, 8 and 10 are given
in Table 1. We allow k to be 2, 3 and 4 since there are programs by IMSL(1982) and
Schervish(1984) which can integrate multivariate normal probability over rectangles with
up to four dimensions. Finally, for simplicity, o, is assumed to be 1 for all j, Corr(X};,.Y;)
is assumed to be p and Corr(X; ,X;,) is assumed to be p for all i,7;,i; € §;. We allow
p to be .3, .5, .7, .9 and .99. As a comparison to these upper bounds, the Standard
Bonferroni Upper Bound and the Dunnett(1955) Exact Value under the assumption that
Corr(X,;,X;) = pforallij are given. The numerical values in Table 1 were obtained using
the IMSL(1982) procedures DCADRE and MDNOR to integrate (with an accuracy of +
0.000001) the Dunnet(1955) Exact Value Formula for equicorrelated multivariate normal

distributions .
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Table 1. Upper Bounds for P{| J || > ¢}

=1
where (X, X5,---, Xn) ~ N(O,Y)

P Standard SCAUB SCAUB SCAUB Exact Value
Bonferroni k=2 k=3 k=4 Equicorrelation
or SCAUB

k=1

c=196,n=5

0.3 0.24997 0.23042 0.21846 0.21175 0.20891
0.5 0.24997 0.21297 0.19482 0.18621 0.18285
0.7 0.24997 0.18379 0.16072 0.15150 0.14839
0.9 0.24997 0.13141 0.11023 0.10354 0.10157
0.99 0.24997 0.07631 0.06739 0.06510 0.06449

c=196,n=28

0.3 0.39996 0.36576 0.34315 0.32472 0.29971
0.5 0.39996 0.33520 0.29890 0.27738 0.25013
0.7 0.39996 0.28414 0.23799 0.21495 0.19087
0.9 0.39996 0.19246 0.15011 0.13339 0.11904
0.99 0.39996 0.09605 0.07820 0.07248 0.06825

c=196,n=10

0.3 0.49996 0.45598 0.42628 0.40003 0.35122
0.5 0.49996 0.4166° 0.39829 0.33816 0.28693
0.7 0.49996 0.35104 0.28951 0.25725 0.21300
0.9 0.49996 0.23317 0.17669 0.15329 0.12761
0.99 0.49996 0.10920 0.08541 0.07740 0.06998
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P Standard
Bonferroni
or SCAUB

k=1
c=250,n=5
0.3 0.06210
0.5 0.06210
0.7 0.06210
0.9 0.06210
0.99 0.06210
c=250,n=28
0.3 0.09936
0.5 0.09336
0.7 0.09336
0.9 0.09336
0.99 0.09936
c=250,n=10
0.3 0.12420
0.5 0.12420
0.7 0.12420
0.9 0.12420
0.99 0.12420

SCAUB
k=2

0.05999
0.05674
0.05021
0.03635
0.02030

0.09567
0.08998
0.07855
0.05430
0.02640

0.11945
0.11214
0.09745
0.06626
0.03014

Table 1. (continued)

0.05857
0.05375
0.04534
0.03083
0.01771

0.09284
0.08400
0.06882
0.04326
0.02102

0.11568
0.10416
0.08447
0.05155
0.02323

SCAUB
k=4

0.05773
0.05218
0.04341
0.02897
0.01703

0.09073
0.08008
0.06640
0.03860
0.01934

0.11273
0.09868
0.07838
0.04502
0.02088

Exact Value
Equicorrelation

0.05773
0.05154
0.04224
0.02840
0.01684

0.08712
0.07456
0.05735
0.03439
0.01803

0.10553
0.08805
0.06557
0.03742
0.01858




The calculations for the entry in Table 1 withn =8, k=3, ¢ = 1.96 and p = 0.9 are
now shown in detail. For the above case, P{A; U A, U A3} taken to six digitsis 0.0836.14,
while the P{A4; N (A4;, U 4,,)°} taken to six digits is 0.013293 for all j larger than 3 and
11,13 € 5. So the SCAUB upper bound is:

P{UY< P{UY + D P{4,n (4, UAL) Y in, iz €S,

0.083644 + 5(0.013293)

Il

Il

0.15011(rounded to five digits)

The bounds in Table 1 do become significantly better as k becomes larger. The
improvement is quite dramatic for the higher correlations of 0.9 and 0.99. The biggest
improvements occur between £ = 1 and k& = 2. The improvements become monotonically
smaller as k increases, which is to be expected.

If variables are equicorrelated, then Dunnett’s(1955) method produces the exact value
for the probability of a union. This exact value under the assumption of equicorrelation
is given is given in column 6 of Table 1 and can be compared to the numbers in columns
2,3,4 and 5 of the same row which are Theorem 1 upper bounds to the exact value. Under
equicorrelation, the upper bounds are close to the exact values for n and/or p small. It
seems reasonable to assume that for a given set of variables, even without equcorrelation,
the smaller the number of variables and the smaller the absolute values of the correlation

coeflicients, the closer the SCAUB inequalities will be to the exact values.
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