
SUBSET COMPLEMENT ADDITION UPPER BOUNDS - AN IMPROVED

INCLUSION/EXCLUSION METHOD

BY

DONALD R. HOOVER

TECHNICAL REPORT NO. 416

APRIL 20, 1989

Prepared Under Contract
N00014-86-K-0156 (NR-042-267)

For the Office of Naval Research

Herbert Solomon, Project Director

Reproduction in Whole or in Part is Permitted

for any purpose of the United States Government

Approved for public release; distribution unlimited.

Accesion For

NTIS CRA&I
DTIC TAB 0

DEPARTMENT OF STATISTICS Unannourced ]
J stliCd11f 0 f

STANFORD UNIVERSITY

STANFORD, CALIFORNIA By
Oist'ibutionf

iAvalabiiity Codes
Avwl* d or

Dis



1. Introduction

In a number of statistical problems, it is desired to know the probability of a union

of n events : P{J Ai} where the Aj are undesirable events such as rejection of the
j=1

jth null hypothesis when it is true, or the jth confidence interval not covering the true
n

parameter. For many of these situations, it is impossible to calculate P{ U Ai} exactly
j=1

due to the numerical inability of integrating over n events or incomplete knowledge of the

entire union/intersection structure among these events. When this does occur, an attempt

is made to be conservative and obtain an upper bound for P{ U A 3 }.
j=l

It may be feasible to integrate over k or less events or otherwise determine P{A , U

Ai, U ... U Aji } or P{Aj, fn Aj, n ... n Ajo. } for ko < k. This information may then be
n

used in some fashion to derive the upper bound for P{ U Ai}. Many approaches for doing
j=1

this have previously appeared in the literature. The earliest was the inclusion-exclusion

formulas of Boole(1854) and Bonferroni(1936) stating

n ni

P{U A < EP{Aj} - P{Aj, n A3 I+
j=i j=1 it <j2

E P{Aj, nAi, n Aj,}
it < 32 <3

(1) -+'"+ . nP{A jnAA, n... n Aj
31 < .. < il.

where k is an odd positive interger. The most familiar of these, of course, is the Standard

Bonferroni Inequality where k = 1.

P{fU Ai} _ E P{Aj}
j=1 j=1

One problem with this approach is that the number of terms one must calculate tok

implement this formula is j(;)which becomes excessive as k becomes large. For
j=1

instance, when n = 10, if k 1 then 10 terms must be calculated, if k - 5 then 637 terms

must be calculated.
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Another problem is that the upper bound given by the inclusion-exclusion formula

does not necessarily become lower as k becomes larger. For example, consider 10 events

with the probability of any single event occuring equal to 0.08, the probability of any two

events both occuring equal to 0.04 and the probability of any three events all occuring
n

equal to 0.02; then the inclusion-exclusion upper bound with k = 1 for the P{U A,} is
j=1

0.80, while the inclusion-exclusion k = 3 upper bound for this probability is 1.40. Not only

is 1.40 > 0.80, but 1.40 > I - an upper bound for any probability.

A different approach was developed by Kounias and Marin(1976) and modified by
n1

Tydeman and Mitchell(1981). It formulates the upper bound of P{U A,) as a linear
j=1

k

program with 2" nonnegative variables and E ( ) equality constraints. Using this for-
j=O

mulation will produce the lowest possible linear upper bound for a given set of probability

information. However, even for moderate values of n and k, this linear program will be

too complicated to be conveniently evaluated. In fact, no attempt has been made to use
k (

this method with k larger than 2. This approach also requires knowledge of ()
j=1

probabilities which, as stated before, may be too many terms to calculate.

It is, therefore, of interest to find methods incorporating knowledge of k event inter-

section/union probabilities to produce easily calculatable upper bounds for n event union

probabilities which are lower than those upper bounds currently used. One q,ih formula

has been developed for k = 2 by Hunter(1976). It gives:

P{U AjZP:5E PAij - Z:PAj l,
j=1 j= l ej.T

where n is finite, T is any spanning tree with vertices A,, A2 ,..., A,; and Ai is connected

to A. in T by edge eij. Several articles, including those by Stoline(1983) and Bauer and

Hackel(1985), have been written evaluating and implementing this method. Hoppe(1985)

and Tomescu(1986) expanded on this procedure to develop lower bounds for probabilities

of unions. Tomescu(1986) also developed related inequalities which utilize probabilties

involving k > 2 events to give tipper bounds. These bounds, however, become very corn-

plicated as k becomes large, and like the inclusion-exclusion inequalities, do not necessarily
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decrease with k.

In section 2, a general method is developed which expands Hunter's idea to k > 2 and

n possibly infinite. For a fixed value of n, the number of probabilities needed to apply this

new method is a decreasing function of k. It is also shown that when using this method, k

can be increased resulting in at worst no improvement in the upper bound. In section 3,

the new algorithm is applied to simultaneous confidence intervals and multiple hypothesis

testing involving multivariate normal (and t) distributions.

2. The New Upper Bounds

Consider the following representation of the probability for a union of n events (with

n possibly oc ).

n k

P{U AJ} P{U A,} +
j=1 j=1

. (2) E P{Aj n (A,-, U Aj- 2 U' U Aj)}
j=k+I

Define the set Sj to contain k - 1 elements from 1,2,... ,j - 1 for j > k + 1. Without loss

of generality, let these elements be i1 < i 2 < ... < ik-1. It is true that:

(Aj-1 U Aj-2 U ... U Al) D (Ai, U Ai, U ... U A ,

which implies that:

(A-i UAj-2 U ... UAI)c c (Ai, U Ai, U...UA ,) c

and thus that:

P{Aj n (Ai-, U A-2 U ... U A1 )c} < P{A, n (A,, u A, U..,,)}
i I< i2<'"..<ik - I
it ,i2,'",ik, - I G S)

from this it follows:

Theorem 1. Subset Complement Addition Upper Bound (SCAUB)
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P{U AjI = P{U A}+ E P{A.fn(Aj- uAi- 2 U'"U A
j=1 i=1 i=k+ I

k n

(3) <P{U Aj}+ E _ [P{A fl (Ai1 U A, U ... U A,
ijl i=k+ l il < i2 <'" .. if, -

it ,i2 --",iA_ - E S,

where k is any positive integer smaller than n and S is a set with k - 1 elements from

(1,2,... .,j - 1) for j > k + 1.

This bound is called a subset complement addition upper bound (SCAUB) since it is

created by adding probabilities of intersections of new events with complements of unions
of subsets of event., that have already been incorporated into the bound. The SCAUB can

be shown to be a distribution free analog of Gliaz and Johnson's(1984) product type bounds

for Multivariate Totally Positive Order Two (MTP2 ) distributions. See Glaz(1987) and
Hoover(1988). To obtain the upper bound of Theorem 1 requires only the calculation of

* n - k + 1 probabilities; each probability involving k events. For n = 10 and k = 5, this

is 6 terms as compared with 637 terms needed to use the inclusion-exclusion upper bound

with n= 10and k= 5.
n w0

When k is 1, the upper bound of Theorem 1 is P{A} +E P{Ajn(k)c} E P{Aj
j=2 j=1which is the Standard Bonferroni Upper Bound. When k is 2, the upper bound of Theorem

1 becomes:

P{A, U A 2} + E P{Aj n (Ai)C} where i E S, andj > 3

SP{A 1 } + P{A 2 } -P{A 1 n A 2 } +- [P{A.} - P{A, nAi}1 whereiE Siand j >3
ji=3

n nI

= ZP{Ai} -IP{AjnAi} wherei E Sjforj >3, and I ES 2
Sj=2

n

= EP{A}- E P 2 .4.,} wherel < jantde 1 C ETiffiE 5)
j= 1 ie, ET

which is Hunter's upper bound.
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An upper bound (Bk*) which gives the same value as the specific SCAUB inequality

with Sj containing j - 1,j -2,...,j - k + 1 for j > k was mentioned by Worsley(1985). The

form of this upper bound is only given for k = 3, but can, with some work, be extended

to all k. (Note that there are typographical errors in the above article which make the

result difficult to understand.) Besides being more restrictive than the SCAUB order k

inequality, BZ" also requires the calculation of 2 k - 1 + (n - k)2k - 1 terms to obtain a k

order upper bound on the probability of the union of n events. When n = 10 and k = 5,

this is 111 terms compared with only 6 terms needed for the bound of Theorem 1. Finally,

B * uses probabilities of intersections of various events which, in the normal simultaneous

confidence interval problem, are numerically much more difficult to calculate than are the

probabilities used by the SCAUB (unions of events and intersections ol single events with

complements of unions).

The value of the upper bound from Theorem I with k > 2 will depend on the ordering

of events and choice of elements for the Sj. When k is two, it is always possible to determine

an ordering and choice of elements for the Sj that gives the lowest possible Theorem 1 tipper

bound by using the Minimal Spanning Tree Theorem of Kruskal(1956) with probabilities

of intersections as edge weights (see Hunter(1976)). Unfortunately, no method which will

always do this for k > 2 has been discovered. If the events A,, A2 ,* - , A, are exchangeable

(exchangeable means that P{A,, n A., n ... n A,,, }- C, regardless of choice of events),

then P{Aj n (Ai, U A,, U ... U Ai,,)c} will be constant regardless of events; therefore the

ordering of events and choice of elements for Sj will not matter. Also, when the events

have a natural ordering 1,2,..., n with the overlap between a fixed event and a preceeding

event being a monotonically decreasing function of the number of events in the sequence

seperating them, then using the natural ordering with Sj = {j - 1,j - 2,.. .,j - k + 1}

should give a good upper bound. This type of situation will occur in Markovian processes

and time series.

One nice property of the SCAUB which inclusion-exclusion bounds do not have is

that k can be made larger with the tipper bound at worst becoming no lower and, in many

cases, becoming much lower. In other words, as probabilities involving more events are

incorporated into deriving the bound, the bound becomes better.
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Theorem 2. Monotonicity of the SCAUB

Let W, be a Theorem 1 upper bound derived using a particular value of k : k <

n, ordering of events and choice of sets Sk+, Sk+ 2,'". , S, . It is possible to produce a

Theorem 1 upper bound W2 using the value k + 1, the same ordering of events and the
sets S + *, SS+ ,, S (the sets now contain k instead of k - 1 elements) with Sj C S7

k +2 <j <_ n such that:
n

(4) P U {Aj} 5 S2 :5 1
j=1

Proof

The first inequality in (4) follows from the SCAUB. To obtain the second inequality

in (4), first note that the following identity holds for the first term in W2:

k+1 

kP{U Ai} = P{U + P{Ak+l n Aj }.
j=1 j=1 _

Next, define the set S*, to be (1,2,... ,k) and j* to be the unique element such that

{Sj Uj*} = S; for j = k + 1,k + 2,.. ,n. Now look at the difference:

- = P{Aj n U Ail }- E P{An U Ai }
j=k+1 all ES3  ajll .

= 1 PA nA;n [ A U A}
j=k+l all i Es'"

> 0.

3. Application to Multivariate Normal Probabilities Within Rectangles

The SCA 13B may be used to produce upper bounds for the probability that the max-

imum absolute value from a vector of standardized normal (or t) variables is larger than a

given value c when the dependence structure (correlation matrix) of the variables is known.

Such bounds are of interest in simultaneous hypothesis testing and simultaneous confidence

intervals involving multivariate normal (or t) data. In this case, (XI, . 2,.., Y,) is a m1,1-

tivariate normal vector with mean zero and some known covariance. Event .j is that

variable X does not fall in tiie interval (-c 0",,,, c .a,,
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Examples of such bounds for c = 1.96 and 2.50 and n = 5, 8 and 10 are given

in Table 1. We allow k to be 2, 3 and 4 since there are programs by IMSL(1982) and

Schervish(1984) which can integrate multivariate normal probability over rectangles with

up to four dimensions. Finally, for simplicity, a,, is assumed to be I for all j, Corr(Xi, XN)

is assumed to be p and Corr(Xj,,Xj2 ) is assumed to be p for all i,il,i 2 E Sj. We allow

p to be .3, .5, .7, .9 and .99. As a comparison to these upper bounds, the Standard

Bonferroni Upper Bound and the Dunnett(1955) Exact Value under the assumption that

Corr(Xi, Xj) - p for all ij are given. The numerical values in Table I were obtained using

the IMSL(1982) procedures DCADRE and MDNOR to integrate (with an accuracy of ±

0.000001) the Dunnet(1955) Exact Value Formula for equicorrelated multivariate normal

distributions.
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n

Table 1. Upper Bounds for P{LJV-il > c}
i=1

where (XI,X 2 , .. X -- N(O,Yj)

p Standard SCAUB SCAUB SCAUB Exact Value

Bonferroni k=2 k=3 k=4 Equicorrelation
or SCAUB

k=1

c = 1.96, n= 5

0.3 0.24997 0.23042 0.21846 0.21175 0.20891

0.5 0.24997 0.21297 0.19482 0.18621 0.18285

0.7 0.24997 0.18379 0.16072 0.15150 0.14839

0.9 0.24997 0.13141 0.11023 0.10354 0.10157

0.99 0.24997 0.07631 0.06739 0.06510 0.06449

c= 1.96, n= 8

0.3 0.39996 0.36576 0.34315 0.32472 0.29971

0.5 0.39996 0.33520 0.29890 0.27738 0.25013

0.7 0.39996 0.28414 0.23799 0.21495 0.19087

0.9 0.39996 0.19246 0.15011 0.13339 0.11904

0.99 0.39996 0.09605 0.07820 0.07248 0.06825

c= 1.96, n= 10

0.3 0.49996 0.45598 0.42628 0.400031 0.35122

0.5 0.49996 0.41669 0.39829 0.33816 0.28693

0.7 0.49996 0.35104 0.28951 0.25725 0.21306

0.9 0.49996 0.23317 0.17669 0.15329 0.12761

0.99 0.49996 0.10920 0.08541 0.07740 0.06998
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Table 1. (continued)

p Standard SCAUB SCAUB SCAUB Exact Value

Bonferroni k=2 k=:3 k=4 Equicorrelation
or SCAUB

k=1

c = 2.50, n= 5

0,3 0.06210 0.05999 0.05857 0.05773 0.05773

0.5 0.06210 0.05674 0.05375 0.05218 0.05154

0.7 0.06210 0.05021 0.04534 0.04341 0.04224

0.9 0.06210 0.03635 0.03083 0.02897 0.02840

0.99 0.06210 0.02030 0.01771 0.01703 0.01684

c = 2.50, n= 8

0.3 0.09936 0.09567 0.09284 0.09073 0.08712

0.5 0.09336 0.08998 0.08400 0.08008 0.07456

0.7 0.09336 0.07855 0.06882 0.06640 0.05735

0.9 0.09336 0.05430 0.04326 0.03860 0.03439

0.99 0.09936 0.02640 0.02102 0.01934 0.01803

c - 2.50, n = 10

0.3 0.12420 0.11945 0.11568 0.11273 0.10553

0.5 0.12420 0.11214 0.10416 0.09868 0.08805

0.7 0.12420 0.09745 0.08447 0.07838 0.06557

0.9 0.12420 0.06626 0.05155 0.04502 0.03742

0.99 0.12420 0.03014 0.02323 0.02088 0.01858
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The calculations for the entry in Table I with n = 8, k = 3, c = 1.96 and p = 0.9 are

now shown in detail. For the above case, P{A 1 U A2 U A3 } taken to six digits is 0.08364,

while the P{Aj n (Ai, U Aj 2 )c} taken to six digits is 0.013293 for all j larger than 3 and

il,12 E Sj. So the SCAUB upper bound is:

8 3 8

P1 U} P1jJ U I Z-EP{Aj n (A1 , U Ai,)c ii, 12 ESj
j=1 j=1 j=4

0.083644 + 5(0.013293)

0.15011(rounded to five digits)

The bounds in Table 1 do become significantly better as k becomes larger. The

improvement is quite dramatic for the higher correlations of 0.9 and 0.99. The biggest

improvements occur between k = 1 and k = 2. The improvements become monotonically

smaller as k increases, which is to be expected.

If variables are equicorrelated, then Dunnett's(1955) method produces the exact value

for the probability of a union. This exact value under the assumption of equicorrelation

is given is given in column 6 of Table 1 and can be compared to the numbers in columns

2,3,4 and 5 of the same row which are Theorem 1 upper bounds to the exact value. Under

equicorrelation, the upper bounds are close to the exact values for n and/or p small. It

seems reasonable to assume that for a given set of variables, even without equcorrelation,

the smaller the number of variables and the smaller the absolute values of the correlation

coefficients, the closer the SCAUB inequalities will be to the exact values.
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