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THE PRINCIPAL PIVOTING METHOD REVISITED

by Richard W. COTTLE

ABSTRACT

The Principal Pivoting Method (PPM) for the Linear Complementarity Prob-
lem (LCP) is shown to be applicable to the class of LCPs involving the newly
identified class of sufficient matrices.

1. Background

The classes of row sufficient and column sufficient matrices were recently introduced in a
paper by /Cottle, Pang, and Venkateswaran [6]. It was shown there that such matrices pro-
vide answers to natural theoretical questions concerning the linear complementarity prob-
lem (LCP). Further, on the algorithmic side, it was noted that Lemke’s Mcthod (Scheme
1) [9] for the LCP can “process” any problem in which the matrix is row sufficient. In fact.
by a theorem of Aganagié¢ and Cottle'[1], the latter is true for any Qp-matrix having non-
negative principal minors, and row sufficient matrices are of this sort. These observations
prompt one to ask whether the principal pivoting method (PPM)'{3], [7], [5], [3] is also
applicable to this class of LCPs. This question is especiaily relevant inasmuch as the kinds
of matrices that the principal pivoting method can handle have heretofore been limited
to P-matrices and positive semi-definite (PSD-) matrices, both of which types are row
sufficient as well as column sufficient. Thus, a demonstration that the PPM can process
LCPs with row sufficient matrices amounts to a unification of the existing theory of the
PP and an extension of its scope. Such is the main goal of the present paper.

Let us begin by fixing notation and reviewing some terminology. Given a column vector
q € R" and a matrix Ml € R**", the pair (g, M) specifies a linear complementarity problem
(of order n) through the system

g+ Mz
Vg + Mz2)
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An alternate formulation of (¢, M) is to find vectors w, = satisfving

w=gq+ M:, w=>0, >0, e =0,

This system involves n pairs of complementary variables w, and =, for i = 1..... n. The
members of a4 complementary pair of variables are said to be complements of each other.
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To process the linear complementarity problem (g, M) means to obtain a solution (i.e., a
vector ¢ satisfying (1) - (3)) or to demonstrate that the problem has no solution. Dis-
cussions of the processing capabilities of various linear complementarity algorithms usually
focus on properties of matrix classes. For instance, it is known that the principal pivoting
method will process any LCP (¢, M) when M is a P-matrix (i.e., has positive principal
minors) or when M is PSD, (i.e., zTMz > 0 for all z). In the former case, (¢, M) must
always have a unique solution—regardless of what ¢ equals—and the PPM will find it. In
the latter case, the LCP will always have a solution provided the constraints (1) and (2)
are consistent. (The matrices having this property form a class denoted Qg.) When M is
a positive semi-definite matrix, the PPM will find a solution of any LCP (¢, M) or detect
that the corresponding inequalities (1) and (2) are inconsistent.

The matrix classes P and PSD are complete in the sense that they contain all principal
submnatrices of all their members. Furthermore, the matrix classes P and PSD are distinct
but not disjoint. Consequently (by the completeness property), if M’ is a P-matrix that is
not positive semi-definite, and AM” is a positive semi-definite matrix that does not belong
to P, then their direct sum, the block matrix

M 0
M= ,
0 A "

belongs to neither of these classes, yet the PPM will process the LCP (¢, M) where

q - qll

because it decomposes into the problems (¢'. M’) and (¢”, M") each of which can be pro-
cessed by the PPM. So, in a sense, it is incorrect to think of the PPM as being limited to
LCPs (g. M) with Ml € P or M € PSD.

Although their basic definitions are quite different, the classes P and PSD are subclasses
of Py the elements of which are the matrices with nonnegative principal minors. Unfortu-
nately, the class Py is too large for purposes of LCP theory or algorithms. In this paper,
our attention will center on a class of matrices that contains P and PSD, yet is contained
in PoNQ,. (The subclass PyNQ, was characterized in [1].) This intermediate class consists
of the “row sufficient”™ atrices whose definition we recall in the next section---alonyg with
the definitions of two related matnx classcs.

The plan for the remainder of this paper is as follows. Section 2 contains the definitions
of row and colimn suflicient matrices and an example  Sectinn R givec come € their
elementary properties. Section 4 focuses on the operation known as principal pivoting and
establishes some invariance theorems needed for the PPM. Section 5 presents the principal
pivoting method for LCPs with row sufficient matrices.
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2. Definitions and an example

For ease of reference, we recall what is meant by row (and column) sufficient matrices.
Definition. The matrix M € R™™" is

(i) row sufficient if

.r,-(x\ITx)iSOfor all:=1,....n = :c;(MT:z:),-=0foralli=1,...,n, (4)
(i1) column sufficient if
ri(Mz); <0Oforalli=1,....n == z(Mz);,=0foralli=1,...,n, (5)

(i11) sufficient if it is row and column sufficient.

In dealing with the above properties, it is sometimes handy to use the notion of the
Hadamard product of vectors (or matrices). If u € R® and v € R", their Hadamard product
is the vector u * v € R™ defined by

(u*v)i=u; vy 1t=1,...,n.

To apply this notion to the definition of a column sufficient matrix, we let v = z and v =
Mz. Then the defining condition is

r*x(Mz)<0 = z+x(Mz)=0.

In the case of a row sufficient matrix, the defining condition is

*(MTZ)<0 = =z+(MzZ)=0.

Example 1. The 3 x 3 matrix

o -1 2
M= 2 0 -2
-1 1 0

is not in the class P since it has zeros on its diagonal. These same zeros and the ponzera
ciements i their rows and columns prevent the matrix from being row or column adequate
(in the sense of Ingleton [8]). Furthermore, the matrix is not PSD, for whenever such a
positive sen.i-definite matrix has a zero (say, m,;) on its diagonal, the sum of corresponding
off-diagonal entries (m,; and m;;) must equal zero, which is not true in this case. It is clear
that the marrix M is not the direct sum of matrices of these three kinds, either.

The matrix if is sufficient, however. To see this, suppose r € R* is a vector such that
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z*(Mz)<0.

Then

—z122 + 22,23 <0

22125 — 22223 <0

—T,23 + To23 <0
These inequalities imply
22913 < 21123 < 172 £ 1273,
Hence
max{z,z,, 223,223} < 0.

Each of these three products being nonpositive, the variables must, pairwise, be of opposite
sign. But there are only two signs to share among three variables, so it follows that at least
one of z,,z,, 3 equals zero. It is now easy to verify that for i = 1,2,3

z;=0=>[[z;=0=z*(Mz)=0.
J#i
This shows that M is column sufficient. The same type of argument applied to M T can be
used to demonstrate that M is row suffictent. Accordingly, M is sufficient as asserted.

This example shows that sufficient matrices are different from P-matrices, adequate ma-
trices, and PSD-matrices. But could they be positively scaled versions of such things?
That is, do there exist diagonal matrices A and Q with positive diagonal elements such
that M := AMQ belongs to one of the aforementioned classes? The answer is clearly in
the negative for the classes of P-matrices and adequate matrices. We shall now show that
the PSD case can also be ruled out.

For the matrix M given above, suppose there exist positive definite diagonal matrices
A = Diag (A1, A2, A3) and Q = Diag(w;,w;,w3) such that M := AMQ € PSD. Then

0 —/\1LU2 2)\1w3
J\:I = 2/\2W1 0 —‘2)\2w3
—*)\3(.4)1 /\3&)2 0

The assumption that M is positive sewmi-definite implies its corresponding off-diagonal
clements must add to zero, so

2/\2(4)1 = Aﬂ.&)z
2A1W3 = /\3(.4)]

2) w3 = Agw,

4
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The product of the left-hand sides equals the product of the right-hand sides, so we have
82 2w w? = A A kwwl.
Dividing both sides by Aw; and factoring, we get
(2A2w3)(4dqws) = (Aawz)(Azwz).

Substituting via the necessary conditions of positive semi-definiteness (above) and can-
celling the left-hand factors, we obtain the contradiction

4/\2w3 = /\3&)2 = 2/\2&.}3.
Accordingly, M cannot be positively scaled to be positive-semi definite.

3. Elementary properties of row (and column) sufficient matrices

To avoid being overly tiresome, we state the proofs of the following simple propositions
rather tersely.

Proposition 1. Let u, v € R" be arbitrary and let P be an arbitrary n X n permutation
matrix. Then

P(u s v) = (PTu) » (PT).

Proof. This is obvious. I

Proposition 2. Let M € R"*" be arbitrary and let P be an arbitrary n x n permutation
matrix. Then, for all z € R*

PY(z + (Mz)) = (PTz) « (PTMP)(P"z)).

Proof. This follows at once from Proposition 1 and the fact that PPT=1. B

By a principal rearrangement of M € R**™ we mean a matrix of the form PTAf P where P
is a permutation matrix.

Proposition 3. Every principal rearrangement of a row (column) sufficient matrix is row
(column) sufficient.

Proof. This is cleatly a consequence of Proposition 2 and the definition of row (column)
sufficiency. W

Proposition 4. Let M € R™™" be arbitrary and let D = Diag(é;,...,é,) be any n x n
diagonal matrix. Then for all r € R®

r*((DMD)x) = (Dx)x(M(Dr)).
)
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Proof. We show that the i-th component of the vector on each side is the same. Indeed,
forall:=1,...,n

[z*(DMD)z)), = z(DMDz);

= T (6, im§j6j.’tj)

= () L mis(6iz,)
= [(Dz)* (M(Dz))];.
||

Proposition 5. If M € R"*" is row (column) sufficient, then so is DM D where D is a
conformable diagonal matrix.

Proof. This is immediate from Proposition 4 and the definitions.

Proposition 6. Each nonempty principal submatrix of a row (column) sufficient matrix
is row (column) sufficient.

Proof. Let M € R"*" be row (column) sufficient. If & = (ay,...,x) i1s an index set
contained in {1,...,n}, the corresponding principal submatrix of M is denoted M,,: it
consists of the rows and columns of M whose indices belong to a. Now suppose there exists a
vector y € R* such that y*(MJL y) < 0. Then define z € R" such that z, = y, and z5 = 0.
Then z » (M™z) < 0. Hence when M is row sufficient, it follows that z * (MTz) = 0, but

(:c * (MTx))a =y* (ML y).

The same sort of argument does the job for column sufficiency.

This proposition implies that the classes of row sufficient matrices and column sufficient
matrices (and hence sufficient matrices) are complete in the sense given above. The are
also subclasses of Pyg.

Proposition 7. Every row (column) sufficient matrix has nonnegative principal minors.

Proof. This was shown in [6]. B

Proposition 8. Let a and b denote arbitrary real numbers whose product is negative.

Then the 2 x 2 matrix
0 a
M=
b 0

is both row and coluinn sufficient. The matrix M does not belong to P and if a + b # 0,
then M is also not positive semi-definite.




Proof. The fact that M is both row and column sufficient is obvious from the definitions.
It is also obvious that M cannot be a P-matrix. If M were positive semi-definite, the
condition a + b = 0 would follow from the fact that it has a zero diagonal entry. B

Proposition 9. Let a and b be real numbers such that @ > 0 and b # 0. Then a matrix

of the form
a 0
M=
b 0

cannot be row sufficient. Its transpose cannot be column sufficient.

Proof. For such a matrix it is possible to find a vector z such that z « (M™z) < 0 and
12(MTr); < 0. Hence M cannot be row sufficient. By the same token, MT cannot be
column sufficient. Wl

The next proposition is noteworthy for algorithmic reasons.

Proposition 10. Let M € R™" be row sufficient. If, for some ¢, m;; = 0 and m;; > 0 for
all j=1,....,n,then m;; <0forall y=1,...,n.

L -

Proof. By Proposition 6, it suffices to prove this assertion for the case where n = 2. By
Proposition 3, it is not restrictive to assume that : = 1. The case where m,, = 0 1s ruled
out by Proposition 9. Thus, my > 0. By Proposition 7, the condition m;; > 0 cannot
hold. so the desired conclusion follows.

Section 1 contains an allusion to the fact that row sufficient matrices also belong to the class
Qo. This was proved in [6]. Although column sufficient matrices also enjoy an interesting
property with respect to the LCP, they do not form a subclass of Qp. This can be seen

01
M= .
01

[t is easy to see that this matrix is column sufficient (in fact, column adequate). But

from the example

the union of the corresponding complementary cones is not convex, and hence M ¢ Q.
This observation may explain why in this paper we devote more attention to row sufficient

matrices.,




4. Principal pivoting

As its name suggests, the principal pivoting method is based upon the algebraic process of
principal pivoting which we shall briefly review. (See also [5], [4].) Once this is done, we can
develop theorems on the invariance of row and column sufficiency under principal pivoting.
Such results are essential for the application of the PPM to linear complementarity problems
of this sort.

Consider an affine transformation of the form z — w = ¢ + M2z where M € R"*" and
q € R™. For this discussion, the only special property required of M is that for some index
set a C {1,...,n} the principal submatrix M,, be nonsingular. For notational ease, we also
assume that M, is a leading principal submatrix of M. This is not a restrictive assumption.
as it can be brought about by relabeling. Now consider the equation w = ¢ + M=z in
partitioned form:

Wa = g + Afaazu + M,s2s (6)
Ws = ¢a + Msazo + Msaza
In this represeutation, the z-variables are nonbasic (independent) and the w-variables are
basic (dependent).

Since M,, is nonsingular by hypothesis, we may exchange the roles of w, and z, thereby
obtaining a system of the form

2o =q0 + M, w, + M/ 24

(7)
Wsg = qg + A’Iéatﬂo + Méﬁz(—,
where
4, = ~M:lq Ml = M3 M= —M M .
q:s =45 — A’IdaMa_o}qa Alc;a = AI&OM(;OI Méé = Al&a - M[,aA/Ia_ol AI(,&

Definition. The system (7) is said to be obtained from (6) by a principal pivotal trans-
formation _n the matrix M,,. In this process, the matrix M,, is called the pivot block.

This terminology also applies to the matrices M and M’ alone. To indicate that A’ is
a principal pivotal transform of M with respect to the index set a (and the nonsingular
principal submatrix M,,), we write

M' = p,(M).
Another notion we shall need is that of a sign-changing matriz. Once again, let « and a de-
note complementary index setsin {1,...,n}. Let S, be the diagonal matrix Diag(o;.. ... o)
such that fort =1,...,n




These two notations come together in the following result.!

Theorem 1. Let Af € R™*™ have the nonsingular principal submatrix M,,. Then

(pa(M))T = Sa(pa(MT))Ss5. (9)

Proof. This formula follows from an essentially routine calculation that makes use of the
following facts:

1.

o

Pre- and postmultiplication by Ss changes the signs of the off-diagonal blocks but
not the diagonal blocks.

( -\IT)aa = (AIaa)T‘:: Alga'

(M-HT= (AT )1,

oy

(ML) = (M.,

We are mainly interested in the effect of principal transformation on row sufficient matrices,
but it is convenient to treat the column sufficient case first.

Theorem 2. Let M,, be a nonsingular principal submatrix of M € R**". If M is column
sufficient and M’ = p,(AM), then M’ is also coluinn sufficient.

Proof. As remarked earlier, it is not restrictive to assume that the pivot block is a leading
principal submatrix of M. Let y = M'. and suppose r * y < 0. We may write

Ya I\I;a AI(’NS Lo
ve |\ M., M., rs |

The condition r * y < 0 means

T Yo Ia* Yo Yo * T
* = <0.
T Ya Is* Ya Ta*Ya

Since M’ = ,( M), we have

( Iy "\Inn A[na Yo
\ Yo - A'[ua A[(,“ Tn .

"This 1y be known, but I don't recall a source for it

9




But M is cc'umn sufficient, ~o it follows that

() ()=

Accordingly, & * y = 0 which implies that M’ is column sufficient. B
We now come to the result we really want.

Theorem 3. Let M,, be a nonsingalar principal submatrix of M € R"**. If M is row
sufficient and ' = p4(M), then M’ is also row sufficient.

Proof. It is obvious from first principles that a matrix is row sufficient if and only if its
transpose is column sufficient. Thus, it suffices to prove that (M’)T is column sufficient.
Our hypothesis implies that AT must be sc. Theurem 2 implies that p,(M7T) is column
sufficient. By the definition of M’ an by equation (9) we have

(M) = (pa(M))T = Sa(pa(M™))Ss.
The result now follows from Proposition 5. B

In light of Theorems 2 and 3, we say that column and row sufficient matrices are invariant
under principal pivoting. In other words, when one performs a principal pivot operation
on a row (column) sufficient matrix the resulting matrix is again row (columu) sufficient.
These invariance theorems generalize early results on principal pivotal transforms of P-
matrices and PSD-matrices. (See {10], [3].) There is no counterpart for adequate matrices
since 1t is not true.

We close this section with a generalization of two technical results (4, Theorem 4 and
Theorem 4'] that have very important bearing on a version of the PPM.

Theorem 4. Let A be 2 x 2 matrix with the following properties:
(1) ap <0;

(1) aqy <0;

(113) ayy + ay < O

(v) if a;; < 0, then

1 —112 1
A) _ —
an 1G22 — Q12021 A2

is row sufhicient;

10




(v) if @y < 0, then

1 a1y a31202) — Q11Q22
A'z = -—

n \ 1 —ap

is column suificient.
Then A must have the following properties:
(v1) a2 2 05
(vu) ayp 2 0:

(l’iil) dy +az; > 0.
Proof. Suppose a;; < 0. Then as A, is row sufficient, a;2 > 0 and det 4; > 0. Hence

-1
(—a ) (—ajzaz + ay2a — anaz;) = az 2 0.
1

If @;;, = a,; =0, then A, has a zero column and hence cannot be row sufficient. a contra-
diction. Thus, aj; + a2 ~» 0. Now suppose a;; < 0. We may (and do) assume a;; = 0.
Since A4, is column sufficient, it follows that a; > 0 and det A; > 0. Thus,

(:1‘) (—ay2ay) 2 0.

an

This implies ay, 2 0. If a;3 = a3 =0, then A; cannot be column (or row) sufficient, again
a contradiction. This means that ayj; + a3 > 0. B

5. The Principal Pivoting Method

As matters presently stand, there are two versions of the principal pivoting method -
svimetric and asymmetric—both of which can be applied to linear complementarity prob-
lems (g, M) with either a PSD-matrix or a P-matrix. The latter case is much simpler than
the former because it does not require the use of certain precautions. These differences will
become apparent in due course.

Like numerous other algorithms, the PPM works with pivotal transfornis of the system
w=q+ M:. (10)

In the development below, we use the superscript v as an iteration counter. The nitial
value of v will be 0, and the system shown in (10) will be written as

w’ = ¢° + M°:°, (11)




In general, after v principal pivots, the system will be
w” =q" + M¥z". (12)

Generically, the vectors w” and z”, which represent the system’s basic and nonbasic vari-
ables, respectively, may each be composed of w and z variables. Principal rearrangements
can be used to make {wY,z¢} = {w;,2;}i=1,...,n.

The systems (12) can also be represented in the familiar tableau form

[ 4 v
1 21 bR Zn
v v v
Wy [ | My o0 My,
v v 14 v
wn qn mnl C mnn

This way of presenting the PPM is just an expository convenience. Tableaux are not
essential; the algorithm can make use of a “revised simplex approach,” analogous to what
has been done in an implementation Lemke’s method.

The symmetric version of the PPM uses principal pivotal transformations (of order
1 or 2) in order to achieve one of two possible terminal sign configurations in the tableau.
The first is a nonnegative “constant column”, that is, ¢ > O for all = 1,...,n. The other
is a row of the form

g, <0 and m!; <0 j;=1,...,n

The first sign configuration signals the discovery of a solution to (¢, M). The second sign
configuration indicates that the problem has no feasible solution. The PPM (as originally
conceived) does not actually check for this condition. It cannot occur when M is a P-
matrix. When M is PSD, it can be inferred from the condition

¢ <0, m/ =0 and mj, >0 Vi#r,

which s checked in the “minimum ratio test.” The key observation is that the same
inference can be made when M is (row) sufficient. (See Propositions 6,7, and 10 and
Theorem 3.)

The PPM consists of a sequence of major cycles, each of which begins with the selection of a
distinguished variable whose value is currently negative. That variable remains the one and
only distinguished variable throughout the major cycle. The object during the major cycle
is to make the value of the distinguished variable increase to zero. if possible. Each iteration
involves the increase of a nonbasic variable in an effort to drive the distinguished variable
up to zero. This increasing nonbasic variable is called the driving variable. According to
the rules of the method, all variables whose values are currently nonnegative must remain

12
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so. The initial trial solution is (w?, 2%) = (¢° 0), hence at least n of the variables must be
nonnegative. For those variables w? whose initial value is ¢° < 0, we impose a negative
lower bound A\ where
(o0
A< min {g'}
This artifice is used in all cases except where M € P. Then, in addition to requiring all
variables with currently nonnegative values to remain so, the PPM also demands that the
variables currently having a negative value remain at least as large as A\. To accommodate
this feature, we broaden the notion of basic solution by allowing the nonbasic variables to
have the value 0 or \. (See (2], [3], [4].) We also say that a solution of the system (10) is
nondegenerate if at most n of its 2n variables have the value 0 or A. Otherwise, the solution
is called degenerate.

In the interest of clarity, it will help to introduce the following notations. We want to
distinguish between the names of variables and their values. To this end, we use bars
over the generic variable names w! and z! to indicate definite values of these variables. At
the beginning of a major cycle in which negative lower bounds A are in use. we will have
¥ =0or :f =A1=1,...,n Next, we use the notation

WY(z¥) = ¢* + Mz".

The definition of the mapping V" is the same as that of w*, but it emphasizes the argument

~V

A simple example will help to motivate preceding ideas. especially the need for the negative
lower bounds, A. Consider the LCP of order 2 in which

-3 0 2
qg= and A[ =
-2 -1 1
The matrix M is sufficient, i.e., row and column sufficient. At the outsct we have (@9, 29) =

(—=3.-2.0.0). Suppose we choose w? as the initial distinguished variable. Then ¢ would

be used as the initial driving variable. If only nonnegative variables are required to remain
nonnegative, there would be no limit to the allowable increase of the driving variable. Under
ordinary circumstances, such an outcome would indicate that the problem is unsolvable (at
least by this method). But notice that this LCP has the solution (w, z) = (1,0.0.2). Hence
some sort of modification is needed.

If. at the outset of a major cycle, the selected distinguished variable is basie, the first driving
variable is the complement of the distinguished variable. Thus, if w? is the distinguished
variable for the current major cycle, then z¥ is the first driving variable. The distinguished
variable need not be a basic variable, however. Thus, with the broader definition of basic
solution (given above), the current solution (w*, z¥) may have :¥ = XA < 0 at the beginning
of a major cyele. In such circumstances, z¢ can be the distinguished variable as well as the

13




driving variable. In this event, the increase of the driving variable will always be blocked,
either when a basic variable reaches its (current) lower bound (0 or A) or when z! reaches
zero (in which case the major cycle ends).

The following is a formal statement of this algorithm.

Symmetric PPM with Nondegeneracy Assumption in Force

Step 0. Set v = 0; define (@°, 2°) = (¢°,0). Let A be any number less than min; ¢{.

Step 1. If ¢ > 0 or if (@", 2*) > (0,0), stop; (@, 2") := (¢*,0) is a solution. Otherwise?,
determine an index r such that z7 = X or (if none such exist) an index r such that
wy < 0.

Step 2. Let ¢ be the largest value of z¥ > z! satisfying the following conditions:
(1) 22 <0ifzr= A
(i) WH(Z,... 3,2 %, 2) < 0if @Y < 0.
(i) Wr(ey, ..., 28 20,2, 20) 2 00wy > 0.
(iv) WH(Z,..., 2% 2% 0, .., 2) 2 Nif @Y < 0.

Step 3. If ¢ = 400, stop. No feasible solution exists. If (¥ = 0, let z/*' =0, vt = v
for all 7 # r, and let

wu-{-l — Wu+l(-2-u+l) — W”(EWH).

Return to S:ep 1 with v replaced by v+ 1. If 0 < (¢ < 400, let s be the unique
index determined by the conditions (ii), (iii), and (iv) in Step 2.

Step 4. If m“F' > 0, performn the principal pivot (w},z}). Let
ot = W, .., 3,3, 28) and wtt = WUH(EVHY),

If s = r, return to Step 1 with v replaced v + 1. If s # r, return to Step 2 with
v replaced v + 1. If m¥, = 0, perform the principal pivot {(w?, 2!}, (w?,z})}. Put
w

. = 2:,11)';*" = :”E:"Fl = ;:-"’ for all 2 ¢ {7‘,3}, and then u‘);'+1 — W‘v+1(:—:u+1)

for all i ¢ {r,s}. Return to Step 2 with v replaced by v + 1 and r replaced by s.

Discussion

Here we wish to discuss what algorithm does and why it actually processes any LCP with
a row sufficient matrix, M.

2At the beginning of a major cycle, for each index r, at most one of w;,z} can be negative.

ryr
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All major cycles of the PPM begin at Step 1 were the algorithm checks whether it is possible
to terminate with a solution. This will be the case if (w¥, ") > (0,0) since (¥, z*) must
then be a nonnegative solution of (10) with z¥ = 0. As illustrated in Example 2 (below),
it can happen that the constant column ¢” becomes nonnegative before 2z does. In such a
case, resetting z” to zero yields a solution. If neither of these forms of termination occurs,
there is an index r such that 2 < 0 or w/ < 0 and it becomes the distinguished variable
for the current major cycle.

For a lincar complementarity problem (g, M) of order n, there are 2n variables in equation
(10). The number of negative components in a solution of (10) is called its inder of
infeastbility. The conditions imposed in Step 2 of the Symmetric PPM prevent this number
from increasing. Furthermore, with each return to Step 1, the algorithm produces a basic
solution having a smaller index of infeasibility than its predecessor. Since there are at most
a finite number of basic solutions, there can be at most finitely many returns to Step 1.
The proof of finiteness therefore boils down to showing that each major cycle consists of
at most a finite number of steps.

Termination can also occur in Step 3. In this event, {{ = +o0. For this to happen, the
distinguished variables must be w?; it must also be true that

m/,., =0 and m{, >0 Vi-r

From Proposition 10, it follows that m;; <0 j =1,...,n. Now, since <0 for all j and

n

e v v v

w, =q; + E m; 2’ <0,
=1

it follows that ¢¢ < 0, so that the r-th equation

n
Wl =gt + Y ms <0
j=1
has no nonnegative solution. Another outcome in Step 3 is that (¢ = 0 in which case
(by nondegeneracy) the distinguished variable and the driving variable must have been =¥
which increased to zero. This brings the major cycle to a close without necessitating a
pivot. The remaining possibility 0 < ¢/ < +00 means that some basic variable blocked the

increase of z¥.

The various alternatives that arise in the latter situation are addressed in Step 4. If m¥, > 0.
the indicated principal pivot is executable. If s = r, the distinguished variable must have
increased to (. This brings about a return to Step 1 and a reduction in the index of
infeasibility by at least one. If s # r, the principal pivot is made and the increase of the
driving variable continues in accordance with the rules of Step 2. If m¥, = 0, then s # r.
The fact that wy blocked 2¥ means m¥ < 0. The principal pivot of order 2 is executable
hecause the row sufficiency of

15




v v
( mfl‘ mra )
v v
mar mas

and the negativity of m!, implies that m?, > 0. (See Proposition 9.) The values of the
variables immediately after the pivot are those they had when blocking occurred. At the
return to Step 2, the variable w? becomes z¥*!; a principal rearrangement to restore the
natural order of subscripts would be possible.

As noted above, the argument that the algorithm will process any nondegenerate LCP
with a row sufficient matrix comes down to showing that there can be at most finitely
many returns to Step 2. But this is clear from the fact that there are only finitely many
principal transformations of the system and finitely many ways to evaluate the nonbasic
variables z? (i # r). As for z,, its value and that of its complement w? increase monotoni-
cally and their sum increases strictly throughout the major cycle. Hence the definition of
¢¥ and ¢¥*" (k > 0) make it impossible to have z¥ = 2!** (i = 1,...,n) and z¥ = z/** (i #
r) as would have to be the case with infinitely many steps within a major cycle.

Example 2. Consider the LCP (¢, M) where

-3 0 -1 2
q= 6 and M = 2 0 -2
-1 -1 1 0

The PPM applies to this problem because the matrix M is sufficient (as shown in Example
1). It is easy to verify that (¢, M) has the solution (w; %) = (2,0,0;0,1, 3). The discussion
below illustrates how this solution can be obtained by the symmetric version of the PPM.
The reader is advised that, for simplicity, the superscripts (iteration counters) and bars
(denoting fixed values of variables) are omitted.

For this choice of data, the problem (¢, M) has the tabular form

1 zy 23 2z3
w, | =3 0 -1 2
wy 6 2 0 -2
wy | -1 -1 1 0

The number A = —4 will serve as the negative lower bound for the initial negative basic
variables w; and wy. Choose w, as the distinguished variable and its complement z, as
the driving variable. The blocking variable is w3 which decreases and reaches its lower
bound —4 when z; increases to 3. Since the corresponding diagonal entry mgj; equals 0, it
is necessary to perform a principal pivot of order 2: (ws, z;) and (w,, z3). The new tablcau
is
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1 w3 2 wy
z| 5] 0 3 3|0
wo 11-2 1 -1{12
21 |-1(1-1 1 0| 3
-4 0 -3

Now the distinguished variable w; is nonbasic and can be increased directly as the driving
variable. In this case, the driving variable blocks itself. Thus, the first major cycle ends
with the tableau

1 ws 2z, w
» [T 0 1 13
w2 1)-2 1 =119
z71 |-11-1 1 013
-4 0 0

For the next major cycle, the only possible distinguished variable is w3 which is nonbasic
at value —4. This becomes the driving variable and is blocked when it reaches —1 and z,
decreases to 0. Once again a principal pivot of order 2 is needed. It leads to

1 z1 23 23
wy | —3 0 -1 2 0
wa 6 2 0 -2 3
wy | —-11{ -1 1 0} -1
0 0 3

Here the driving variable is the z3 which starts from the value %; it is blocked when it
reaches 3 and w; decreases to 0. This time the algorithm performs a different principal
pivot of order 2: (wz, z3) and (w3, z2). This yields

1 2, ws w,
wy 2|1 -1 -113
3311 0 =113
r4) 1 1 1 00
0 -1 0

The distinguished variable is still w; whose current value is —1. If used as the driving
variable, it will block itself and a solution will be obtained. Another option is to obscrve
that the “constant column” is positive. In such a case the negative basic variable(s) can
be set equal to zero. Either way, the solution found is (w; 2) = (2,0,0;0, 1, 3).

The asymmetric version of the PPM also consists of a major cycles. Instead of
executing only principal pivots of order 1 or 2, each major cycle involves a sequence of
“simple pivots” whose effect may be a principal pivot of larger order. The rules governing
blocking are the same as those in the Symmetric PPM (nonnegative variables are bounded
below by 0, and negative variables are bounded below by A. A negative driving variable
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is bounded above by 0.) The main difference between the two versions of the algorithm
1s that in the asymmetric one entails pivotal exchanges between the driving variable and
the driving variable and then takes the new driving variable to be the complement of the
blocking variable. Just as in the positive semi-definite case [4], the distinguished variable
and the driving variable increase monotonically and their sum increases strictly. This
assertion is can be proved by using Theorem 4. We omit further details and simply point
out th..t the argument used to justify the aysmmetric version of the PPM for PSD matrices
carries over mutatis mutandis to the row sufficient case.
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