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ABSTRACT

A new interp.etation is given, whicli provides another way of understanding
the structure of the species problem and sheds light on the properties of a general cover-
age problem. As an illustrative example, the popular Turing-Good-Robbins estimator is
“shown” to be a natural choice from this interpretation in the species problem. We set up
a general framework of various coverage problems in this paper. The new interpretation is
applied to this general situation which leads to many interesting applications in addition
to the species problem. The coverage problems considered in this paper include the species
problem, the problemn of estimating the volume of a convex set, and the missile-coverage
problem. It is pointed out that the genral estimators derived from this new interpreta-
tion usually estimate the probabilistic phenomenon involving only “n — 1” observations
which may not be appropriate. A general modified procedure is thus suggested to improve
the current estimators. To justify the interpretation theoretically, we present some limit
theorems in terms of species problem, even though the results are expected to hold more

generally.
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Summary. A new interpretation is given, which provides another way of understanding

the structure of the species problem and sheds light on the properties of a general cover-

_ age problem. As an illustrative example, the popular Turing-Good-Robbins estimator is

7“shown™ to be a natural choice from this interpretation in the species problem. We set up
a general framework of various coverage problems in this paper. The new interpretation is
applied to this general situation which leads to many interesting applications in addition
to the species problem. The coverage problems considered in this paper include the species
problem, the problem 61' estimating the volume of a convex sct, and the missile-coverage
problem. It is pointed out that the genral estimators derived from this new interpreta-
tion usually estimate the probabilistic phenomenon involving only/“n — 17 observations
which may not be appropriate. A general modified procedure is thus suggested to improve
the current estimators. To justify the interpretation theoretically, we present some limit
theorems in terms of species problem, even though the results are expected to hold more
generally. 4 Lo o
1. Introduction
The problem of estimating the total probability of unseen species goes back to A.M.
Turing according to Good (1953). To describe the problem comprehensively, we use the
notation of Robbins (1956, 1968). Let {e;,e2,€3...} be the possible distinct species with
probabilities p;,p,,..., being selected in a single experiment. In n independent trials
suppose that n, species appear r times, =1,2,..., and § rn,.=n. We also use ng to denote
the number of species which are not present in the sarr:jile. It is clear that n;,n,,..., are
observable, but ng is not. In fact ng is infinite if there are infinitely many species. Let
{X; = j} if and only if the i*! trial results in outcome e;.
For r > 0, let ¢;(r; n)=1if the number of {X; = j} is r and 0 otherwise. In particular,

the sum of the probabilities p; for those species which are not observed is

oo
(1.1) Co= Zp,wp,-(o;n) .
=1
More generally, the sum of the probabilities of all species that are each represented r(r > 0)

times in the sample is

By

[- -]
(1.2) C, = ijg),-(r;n) . ,_Distributtons L
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To estimate C,, Turing (see Good (1953)) suggested the formulas:

(r+1neyy

(1.3) -

forr>0.

Using a uniform prior, Good (1953) gave a decrivation of these estimators from a
Bayesian point of view. Since then several other interpretations of these estimators have
appeared in the literature. These include Good (1953), Robbins (1956, 1968), and Diaconis
and Stein (1983) among others. Various justifications of this type of cstitnator have been
given. It should be noted that Robbins (1968) constructed an “unbiased” estimator for
Co which is very similar to (1.3). However, Robbins’ estimator is justified through the
device of adding an additional trial to the original n observations. Here an estimator is
called “unbiased” for estimating a random variable if E(estimate) = E(random variable).
The problem continues to attract the attention of many researchers. To name a few: Starr
(1979), Clayton and Frees (1987), Estey (1986), Bickel and Yahav (1985), and Cohen and
Sackrowitz (1988). Most works concern the properties of the estimators of type (1.3); either
from asymptotic or decision theory points of view. As an important application, the species
problem is currently of great interest to researchers in automated speech identification
(Bahl et al (1983), Jelinek (1976), and Katz (1987) among others).

My object is to introduce another interpretation of these estimators which leads to
interesting applications other than the species problem. Later in this section we shall
outline my approach using the species problem as an illustrative example. Asa consequence
it will become quite clear why the estimators of type (1.3) are “natural choices” in the
species problem.

In Section 2 a framework for a general coverage problem is introduced. Some general
estimates and their properties are derived using my interpretation. It is pointed out that
the general estimates (including (1.3) in the species problem) derived from the interpre-
tation are usually “biased” slightly upward. A general modified procedure is suggested to
reduce the biases. The success of this procedure depends heavily upon the nature of the
underlying problems. Although the biases are relatively small for many applications, their
reduction seems to be interesting from a theoretical point of view.

Section 3 consists of three subsections, 3.1-3.3, which display three special examples
as direct applications of the general framework established in Section 2. It seems to this

author that the range of potentially useful applications is broader than presented here. The
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first example is a further discussion of the species problem. The second example concerns
the problem of estimating the volume of an arbitrary convex figurc in Euclidean space.
The connection between the interpretation and the problem of estimating the volume of
a convex polyhedron was pointed out to me by Diaconis in a conversation. Some new
results related to this problem on the plane are given, and the structure of the problem on
higher dimensions is sketched heuristically. The last example deals with a missile-coverage
problem:

“n missiles are delivered and landing at a certain target arca which is usually larger

than the ‘effective area’ caused by the explosion of a single missile. The typical

questions we are interested in are: (1) if the (n+1)*® missile is fired, what is the chance

that this additional missile would involve area which was not covered previously? (2)

How large is the newly covered area? (3) How many more missiles are needed to cover

90% of the target area?”

We shall provide most of the answers to these questions in Section 3.3.

Section 4 is rather technical, where we shall give some limit theorems in terms of the
species problem. In order to present the idea simply and clearly, we have chosen to treat
special cases, even though the results are expected to hold more generally.

The main purpose of this paper is to set up a framework including various coverage
problems so that the relevant parameters can be estimated by estimators which are obvious
choices through the interpretations. Now we shall usc the species problem as an example
to give the flavor of the interpretation.

Suppose we are interested in the probability C, in the species problem. Let X, 4,
denote the additional observation. The random probability C, is identical to the following

conditional probability

(14) P{A’n.q.; € Sn(r)'Xl‘A’h-“vXn}

where Sn(r) = { j; ¢j(r;n) = 1}. Based on n observations, it is natural to estimate

(1.4') P{X; € Sp-1,j(r)lAn, )} forall1 < j<n

by Is,_,;n(X;),
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where "
Ang =X}, Sacislr) = {iipisrin=1) = 1)
i)
and @;j(r;n —1) = 1 if and only if i appear exactly r times in 4, ;.
With continuity property, it is expected that (1.4) and (1.4') are close to each other.

(A general discussion of this “closeness” is given in Section 2.) It is then natural to estimate

.
(1.5) = z;m,\j € Sn-1,i(r)l4n;} by
J=
1 .
(1.6) - > Isu s n(X5)
j=1
Since
(1.7) IS..-;,,-(")(XJ') =1 < X;€S(r+1),

the estimate (1.6) can thus be rewritten as

(15) (rtlnesy
n

which is exactly the formula suggested by Turing and studied by Good (1953, 1956).

By taking expectation, we obtain

(1.9) E(P{Xp41 € Sa(r)IX1,X2,...,X0n}) = P{Xo41 € Sa(r)}
(1.10) E(P{X; € Sn-1,5(r)}4n,;}) = P{Xn € Sa-1(r)},and
1 . (r+1)ne .
(1.11) E(~ ;IS,_,J(,)(A,)) = E (_;{"‘) = P{X, € Sn1(r)} -
Therefore, Qﬂ,).l'-*-l is an “unbiased” estimate of P{X, € Sn—1(r)|X1,X2,...,Xn-1}
in the sense that both random quantities have the same expectation. This is contrasted
with the Robbins’ arguments (1967) where “unbiasedness” was proved in the case r=0

through direct calculations. Here, the “unbiasedness” is shown more generally with po

calculation.




We saw that the estimator is the average of naive estimators based on samples of
size n — 1, and it estimates P(X,, € Sn-1(r)), @ probabilistic statement based on “n — 1"
observations. As an estimator of (1.4), (1.8) is biased. This bias is slight because (1.4)
changes little as n increases. In Section 3 we shall improve this estimator to reduce the

bias which could be substantial in other problems for which this approach applies.

The key idea of this approach is to create requred information by temporarily
deleting one observation from the sample one at a time, and the required information
is obtained by comparing the deleted observation with the remaining n — 1
observations. The final estimate is obtained by taking the average
over these n steps, and it is no surprise that the final estimator really estimates

the probabilistic phenomenon involving n — 1 observations. Even though the idea behind

the procedure is simple, it can be generalized to a fairly general model which is the subject
of the next section.
2. A General Coverage Problem

In this section we shall discuss a general coverage problem in which a random sample
X1,...,Xn of size n is observed from a certain probability space (2, F, P). Let Q dcnote
a collection of certain subsets of a fixed set A in ®*, & > 1, whereas F and P are an
appropriate é-field and a probability measure defined on F.

Typical sample outcomes of X;,..., X, are n subsets of A. Consider all possible finite
intersections among {X;}L, and 4, it is casy to check that these intersections result in
a finite partition m,={A;}?Z, of A with 2" disjoint subscts of A. Let g be a well-defined
function from ) to R*. Some of the problems we wish to solve are the following:

Given a specified subset S, =S(X},X2,...,.Xn; P) of A, possibly depending on both X,=
(X1,X2,...,X5) and P, estimate
(i) the probability that g(Xn+1) € Sn given S,. Furthermore, if all elements
in N are Lebesque-measureable, we are interested in estimating
(i) the expected volume of Sp N Xn4) given Sy, and
(iii) the expected volume of Sn41 N S, given Sy, if additional sample Xy, is
made.
We assume throughout this section that S, is defined for every n 2 1. The key idea can
best be described as a one-step “backward” procedure as follows. Let X; be randomly
removed from the sample {X}, X2,...,Xn}, and let A, ; denote the j** removed sample,

ie, 4, ;= 0 {X;). Let Sn—1,;=5(An,j; P) be the specified subset of A based on the sample
i#J




An,; of size n — 1. We further define an indicator function

Isu-l,ig(xj) = { 1 if g(X;) € Sa-1,j

0 otherwise.

As pointed out in the previous section, our procedure will lead to some estimators
which estimate the probabilistic statements involving “n—1" observations. For this reason,
we shall call them “(n — 1)-estimators” hereafter.

Instead of estimating the probability P(¢g(Xn41) € Sa[Sa) in (i), the “(n — 1)-
estimator” estimates P(g(Xyn) € Sn-1lSn~1). The construction can be described as follows:
(i') In order to estimate P(g(.Xyn) € Sn-1/Sn-1), note that the probability that ¢(X;) €
Sn-1,, can be estimated by Is, _, ;[9(X;)] empirically. In fact, this estimator is “unbiased”

in the sense that

E(Is,_,;[9(X;)]) = P{9(Xn) € Sn-1} = E(P(g(Xn) € Sn-1{5n-1)) .

Since X is randomly removed from the sample, a final estimator ((n — 1)-estimator)

is thus

= I, lolN)]

i=1
which is also “unbiased.”

Likewise, instead of estimating (ii) we estimate

(ii') E(vol [Sn—1 N X,]ISu-1) -

Consider the sstimator vol [Sp~3,; N X;] V1< j < n. It is clear that
E (vol[Sn-1,; N X;])

E (VOl[S,,-) n .X,.])

= E (E (vol[Sac1 N Xn)|Sn-1)
V1<j<n,

the (n — 1)-estimator is thus

1 ¢ .
- z vol[Sn—y,; NX])

=




and is also “unbiased.”

For estimating

(iii') E (VOIIS'. N Sn-]]/s"—l) ’
we consider the estimator vol [Sn—y,; N Sa] V1 < j < n. Again, it is easy to see

E (vol[Sn1,; O Sn]) = E (vol[Su N Sn_y])
= E (E(vol[Sn N Sn—y)ISn-1))
Vi<j<n.

The final (n — 1)-estimator is

1 n
; Z vol[Sn—]'] n S"] .

j=1
Remark. The assumptions made above about the samipling plan can be further relaxed.
In fact, one can check that the only assumption we need (to guarantee the conclusion) is
L(Xy,..., Xa|P)=L(Xn1,Xn2,...,Xrn|P) for any permutation = on {1,2,...,n} for every
n. In particular, if (X;,...,X ) are exchangeable random elements, all the conclusions
discussed above still hold.

If Sp = S(X1,X3,...,AX; P) = S(P) does not depend on X,, = (X;,X7,...,X,), it
is easy to check that our interpretation will lead to an estimator which is the well known
estimator obtained by the empirical measure.

As estimators of (i), (ii), and (iii), these (n — 1)-estimators are all “biased.” In many
applications the biases are slight because (i), (ii), and (iii) changed little as n increases.
We shall refer to this property as continuity property. However, in our general framework,
this property is not automatically guaranteed. As a result, just how well these (n — 1)-
estimators estimate (i), (ii), and (iii) depends upon the forms of S, and Sp_;. The following
proposition tells us that the sucess of using (n — 1)-estimators to estimate (i), (ii), and (iii)

depends on the “closeness” of Sn—; to Sy.

Proposition 2.1. Assuming that X is randomly chosen from (§2, F, P) and is independent
of Sn-1(X1,X2,...,Xa=1; P), Su(X1,X2,...,Xn; P) and Sn41(X1,X2,... . Xn, X413 P).
Let g be a measurable function from (92, F, P) to R* such that g{tw) € w for all w € .
We further assume E vol(X)? < oo.




I
P{X N {SnUSnc1\SuNSni}]#¢) =6, 20foralln>1,

then
(1) |P{g(Xn+1) € Sn} ~ P{g(Xs) € Sn-1}| £ 6, and

(2) E (vol[Sn N Xps1)) ~ E (vol[Sny N X)) = 0(63) .
If we further assume vol (A) < oo, then (2) becomes
(2') E (vol[Sa N Xu41]) = E (vol[Su-1 NX,]) = 0(8,) .
Proof of (1)
It suffices to show
|[P{g(X) € Sn} - P{g(X) € Sn-1}| < b .

Since

P{g(X) €S.} = P{g(X) € Sn-1}
= P{g(k-) esn\sn—l} - P{g(‘\‘) € Sn—l\'sn]

it follows from assumptions that both terins above are smaller than

P{X N{[SnUSncs)\[Sn N Sna]}] # ¢} = 60,

and the proof of (1) follows immediately.

Proof of (2) One can write

|E (vol[Sn N Xa41]) = E (vol[Sn-1 N Xa])|
= |E (vol[Sa N X] = vol[Sn-1 N X))

= |E (vol[Sn N X)\(Sn-1 N X)] = E (vol[(Sa-1 N X)\(S. N X))
Both of the above terms are clearly bounded by

E (vol(X N [Sn U Sn-1]\[Sn N Sa-1]))

< E [vol(X) - Iis, us, -y )\[SaSa-1]) (X))
< E [vol(X)?)} - 64 = 0(61) .

9




This completes the proof of (2). If vol (A) < oo, then since vol (X) < vol(A) w.p.1.,
it follows that

E [vol(X)is,usa-s)\SanSa-1)(X)] £ vOI(B)- b = 0(6n) ,

which completes the proof of (2').

The “Biases” of (n — 1)-estimates

As we have shown, in (i), (ii), (iii), the proposed (n ~ 1)-estimates are “unbijased”

in estimating the probabilistic statements (involved only n — 1 observations), which are
different from those based on n observations. In other words, there would be some biases
if we use these (n — 1)-estimates.

To calculate the biases, we pretend the additional observation, X 4, is taken. The
(n)-estimates obtianed by applying (i), (ii), and (iii) to this n + 1 observation should be
“unbiased.” Therefore, the biases of (n — 1)-estimates can be evaluated by comparing these

(n — 1)-estimates with (n)-estimates. For example, as in (i), the (n — 1)-estimate is

=Y I, lo(3,)],
=1

and the (n)-estimate is

n+1

1 .
e ; Is, ;[9(X;)] -
The “bias” of (n — 1)-estimate is thus
1 n 1 n+l
(21) E{- ?:; Is,os; 90X = — J‘_L_j Is, ;19(X;)]) -
where
n+l
Sn,j = S(An+1,j,p), and Apyy ;= U {Xi} .
iy

The bias term (2.1) can be calculated once the knowledge of “relationship” between
Sn-1 and S, is provided and this is possible only if the nature of the problems is specifically

given. In this case, as we shall sce in the next section, some better estimators are always

10




available. Here, “better” means smaller “biases.” The key idea of constructing these better
estimators is to estimate X, 4; by the current sample {X},..., X, ) first. The final estimate
is obtained as if we had "n + 1” observations. The idea is closely related to the idea of the
EM algorithm (see Dempster et al (1977)).

3. Examples
3.1 Species Problems

In this section we shall continue our discussion of species problems introduced in Sec-

tion 1. The problem of estimating the total probability of unsecn specics can be put in the
framework of general coverage problem as in the previous section. Let E={e;,ez,...} be
the possible distinct species with probabilities p;,ps,..., being sclected in a single experi-
ment. Let A denote the set of all positive integers. Let us make a natural correspondence
between the outcomes space E and set A by “c; « 1.” The correspondence allows us to
treat X; as random variable such that {X; =i} <= the j*" trial results an outcome ¢;.
It follows that in this case Q=A,F = 22 and P{X = i}=p, fori € A.

Having observed X, X;,...,Xn, the collection of unseen species can be expressed as

Sn=S(X1, X0, ., Xes PY= {555 € {X1,...,.Xn}} CA.

Let g denote an identity map from Q to Q, i.e., g(i) = i. The problem of estimating
the total probability of unseen species is thus equivalent to estimating the probability of

9(Xn41) € S, given S,,. More preciscly,

P{g(Xn41) € SnlSu} .

According to the previous section, the (n — 1)-estimate as in (i') is

1 ¢ . n
(3.1.1) = s ()=,

where
n
Sn-l.j = U{A'l} = A"-j -
12
Suppose we want to estimate the total probability of all species that appear r(r 2 1) times

in the sample. By a similar argument,

11




Sa(r) =5(Xy,X2,..., X0 Pyr)
={j;)_Ix.(j)=r,j € &)
i=1

and

Sn-1,;(r) = S(Anj; P.7) = {i; Z Ix,(iy=ri€A}.
XNi€EAn,j

Since

XJ e Sn_l'j(r) > -X’J' € Sn(r+ 1) ,

it follows from this fact that the (n — 1)-estimate in this case (as in (i') again) takes the

form

(7‘ + l)nr-i-l
1

1 o .
(3.1.2) ;zfs,.-,,,-(r)(-\j) =
7=1

which is formula (1.8).
he “Biases” of (n — 1)-estimates. From (2.1) and (3.1.1), the “bias” of (n — 1)-estimate

in estimating P{Xn41 € Sa|Sn} is
E {11_,_ _m+ 6} ’
n n+1

1 if X € {X1,..., A0}
where § = { 0 if X4 occurred at least twice among {X1, Xz, ... v Xn}
~1 if Xn41 occurred once among {X1,...,An}.

It follows trivially that

2 1
3 -— — 3 < ———— -— .
(3.1.3) | bias of (n — 1)—estimate| < —rE ) O(n)

The knowledge between the relationship of Sa-) to S. enables us to construct a “better”
estimate of which the bias is of order (Jy) contrast with the order of (1) provided by the

previous (n — 1)-estimate. The construction can be described heuristically as follows.

12




Let n} denote the number of specics appearing once in the sample {X, X2,..., X,
Xn+1}. Since Xp4) is missing, we cannot observe n), but instead we can estimate ny,
based on {X;,X,...,X,}. Let i} denote this estimate which is defined by

1)

) =my +1 with prob. 2
; =n, with prob. (1 ~ & — 22)
fiy =n; —1 with prob. 222

3

The expected value of 11} given (n;,n;,...) is

(3.14) E (A}](n1,na,... ) =n1+nn~! = 2n,n7t
The final estimate of estimating the total probability of unseen species in the sample

{X],...,Xn} is

E(#1l(n1,..-,)) _ (m1+mn~! = 2nyn7t)
n+1 - n<+1

(3.1.5)

The fact that the bias of this estimate is of order 0( ) can be seen by noting that

ny  2n, 1y 2112 7y 2n)
1. -2 -
(3.1.6) E( n 6) ( n n+4+ 1 n+ 1)

where nj is the number of species appearing twice among {X;, Xo,..., Xn, Xn41 }-
It 1s clear that |n; — nj| < 1 and |2n; — 2n}| < 2 with probability one. It follows from
(3.1.5) and (3.1.6) that the absolute bias of (3.1.5) is bounded by ;(—"37]—)-, which is of order
().

One can mimic the above idea to find an estimator which is “better” than (3.1.2) in
estimating the total probability of all species tht appear r(r 2> 1) times in the sample. The

improved estimator is

(3.1.7) [(r+ 1)nrsr + npyy ((" + Dnpga = (r + 2)nr+2)ﬂ'l](" +1)7!

which has smaller bias.

3.2 Estimatj Vi onvex Set in RE.

The problem of estimating the volume of a certain convex sct can be described as

follows:

13




Let V denote a certain unknown convex sct with finite volume in ®%. The data in this
problem consists of independent random samples X;, X3,...,X, uniformly distributed
over V. The first question we want to ask is: having obscrved X, X3,...,X,, how do we
estimate vol (V)? ’

To answer this question, we first write down the joint likelihood of X,,..., X, as

Al

(3.2.1) Lik (X1, X2,...,Xn|V) =[‘—olt—‘—5] I] 1v(x0)
=1

- [;;1%‘75]"1(1/.. cv).

where V,=V,,(X;, X;,...,X,) is the convex hull formed by {X;,X;,...,X,},and I(4 C
B) = 1if A C B, 0 otherwise.

It is easy to see from (3.2.1) that V;;, the convex hull formed by {X;,X,,...,X,},
is a sufficient statistic of V, according to Neyman's factorization theorem. This suggests
that a reasonable estimate of vol( V) should be a function of V,,, the sufficient statistic of
V.

To construct an estimate of vol( V), we first consider the problem of estimating the
conditional probability P(X,4, € V,|V,). As we shall see below, this problem can be
treated as a special case of our general coverage problem.

Let = V = A, and let F be the usual Borel field on V. Let P be the probability
measure uniformly distributed over V. Define g(uw) = w, the identity map from Vto V. If
we define S,=5(X},...,Xn; P)=Vo0(X),X2,...,X}), the (n — 1)-estimate of P(X, 4, €
ValVn) is

(3.2.2) -’1; > v (X5)

=1
where V,_, ; is the convex hull formed by |J {X;}. Since
i#)

_ vol(Vy)

i 1
P(An-}-l € anVn) = '/Vu (;—o-l-(‘—/_))dw - VOI(V) ’

it follows that

vol(V,)
P(Xp41 € ValVn)

(3.2.3) vol(V) =
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Substitute P(Xn41 € Va|Va) by (3.2.2), the (n — 1)-estimate of vol( V) is

(3.2.4) voly-1(V) = vol(V,) - [% DI, (X))
=1

Like Section (3.1), the estimates (3.2.2) and (3.2.4) can be further improved. From
(3.2.2), the (n ~ 1)-estimate of P(Xp4) € ValVa) is

# of vertices of V,
- .

(3.2.5) ;11- Y-y, (X)) =

J=1

Let vtx (U) denote the set of vertices of a convex polyhedron U in R*, applying the
similar idea of (3.1.4)-(3.1.7) to the current situation, we end up with a modified estimate
(of P(Xnt1 & ValVi))

#{vix(Va)) + L 3 [#{vtx(Va)} — # {vtx(Vaoy ;)]
J=1

n+1

(3.2.6)

)

where # {vtx (U)}= number of vtx(U) for a convex polyhedron U. The modified estimates
of P(Xp41 € V,|V,) and vol( V) are thus

(B27) 1= {#0(Va) + = SH ) - #txVaos )N+ D)
j=1

and

(3.2.8) vol(Va)- {1 - [#{vtx(Va)} + % Y [#vtx(Va)} = #{vtx(Vacr )] (n+ )71},

J=1
respectively.
It is not difficult to check that the “biases” of estimates (3.2.6) and (3.2.7) are of
smaller order (0(J; ), in fact) than those of (n-1)-estimates provided by (3.2.5) and (3.2.2).

Since the arguments to verify this fact are very similar to those given in Section 3.1, we

omit it.
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The problem of estimating the volume of newly covered arca if an additional observa-

tion Xn4) is taken can thus be estimated by the (n-1)-estimate.

vol(A,)

n

(3.2.9) %E vol[Va\Vao1,5] = (say)

=1
where

n

An = J{Va\Va-r,s}
i=1

A “better” estimate, using the similar idea of (3.1.4)-(3.1.7) again, can be expressed as

vol(An) + L 32 [vol(An) = vol(An—1,)]
=1

o !
(3.2.9") —

where

vol(Bn-1,j) = Z vol[ Vo o1 j\Va-2,551
i#)

and V,_, ;jr, is the convex hull formed by {J {X,}.
Aoty
A’
Before we move on to the next application, let us consider a simple example which

may add some heuristic feeling to what we have done so far.

Example 3.1. Suppose X;, X3,...,X, are iid from U(6,,6;), with unknown parameter 6,
and 6;. The “volume” (length, in fact) of the current convex set is 6; — 6;. Let X;) <
X(2) ..., < X(n) be the ordered values of {X;}.,. It follows from previous discussion, the
(n-1)-estimate of P (Xn41 € (X(1)y X(m))(X1)s X(n)) is

1 . n-2
(3.2.10) ;EIV,,_,.,.(A,-)= —=.

=1

In fact, from (i) of Section 2 this (r-1)-estimate is an unbiased estimate of P(X, €
(X(1), X(n-1))) based on n-1 observations {X; :',:,’. The “better” estimates of P(.\X, ) €
(X(1), X(my(X(1), X1ny)) and 6, — 6,, are (from (3.2.7)) thus

16




2 _n-1

3.2.11 1~ =
( ) n+l n+1
and

n+1
3.2.12 ey = Xy ) ———
( ) (X¢n) A(:))n_1 ,
respectively.

It is heuristically clear that the volume of V,, would tend to the volume of V as n goes
to infinity. It is desired to find the rate (and distribution, if possible) that how fast the
volume of V,, tends to that of V as n becomes large. As an application, we shall show in
the following that the problem can be solved in ®? via the interpretation together with a
recent result of Groeneboom (1988). Let N, be the number of vertices of V,,. If Vis a

convex polygon in R? with r edges, it was shown in Rényi and Sulanke (1963) that

EN, ~ %rlogn asn — 0o .

It was also shown in the same paper that E"—"g“ — constant if V has a smooth boundary in
R2. Since then much work has been done in this direction: Efron (1965), Geffroy (1959,
1961), Raynaud (1970), Eddy and Gale (1981), Buchta (1984), and Schneider (1987) among
others.

In his recent paper, Groeneboom (1988) obtained some interesting results which will

be stated as a proposition.

Proposition 3.1. (Groeneboom (1988))
(1) f Vs a convex polygon with r vertices, then, as n — oo,
(N, - g1'logn)/ -l—grlogn LN (©,1)
3 27
(2) {_Vis the unit disk on the plane, then, as n — oo,

(Nn = 22Cind)/\/2rC13 SLN(0,1),

wher are two positive constants between zero and one.
From (3.2.5), the (n-1)-estimate &2 is an unbiased estimate of

n
» v H{ Vo~ .
P(Xp ¢ Vnor)=1-E0200510) that is,

17




n{vol(V) — E(vol(V,_1))] .

E(Nn) = vol(V)

It follows that

nfvol(V) — E(vol(V,_;))]

(3.2.13) E(N,) = )

_ { 2rlogn + o((logn)*'/?) if V is a polygon with r vertices
=l 27Cynd + o(n*1/8) if V is the unit disk.

Combining (3.2.13), Proposition 3.1, and the fact that E'f- is an unbiased estimatc of
P(X, ¢ Va-i1), we have proved the following result.

Theorem 3.1

(1) If Vis a convex polygon with r (r > 3) vertices, then, as n — oo,

(3.2.14) n[-li— —P(X. ¢ V,._,)] / ,ngrlogn LN(0,1)

(3.2.15) n[% ~P(Xny1 ¢ Vs )]/,/,-1)-(7’,‘ Jogn SN(0,1)

(3.2.16) n[l\;:l vol(V,) ~ E[vol(V\v,,_,)]] /[\/égrlogn : vol(V)]-f-»N(O,l)

and

(2) If_V.is the unit disk in the plane, then, as n — oo, we have

P(Xp ¢ Vacy) = 0(nT)

and

(3.2.17) n®/® [ﬁn'l - P(Xn ¢ v,,_,)] /\/27C; SN(0,1)

18




(3.2.18) 516{—- vol(Va) = E[vol(V\Va)]}/v27C; vol(V)SN(0,1) .

Note that (3.2.16) follows from the fact that

E(vo(V\Va_,)) = vol(V)P(X, & Va_;)

and
N, 1
T["OI(Vn) —-vol(V)] = Op(;) '
since
N, _  logn \ol( n—1) logn , , logn
— 0 - )=>1- 1(‘,) = 0p(——) = vol(Va) — vol(V) = 0,( ).

Remark. In the case that Vis a gencral convex set with smooth boundary, the results in
(2) still hold, but with C, replaced by

C, = Cg(r/x'ol(l’))l/:’/ k(s)3ds/2n |
oV

where 9V is the boundary of V, k(s) is the curvature function of arc length. For detail,
see Rényi and Sulanke (1963), and Groeneboom (1988).

Some implications descrve further discussion here. From (3.2.5), the probability of
new observation X,4; will fall outside the convex hull formed by the sample {X},...,X,}
is determined by the knowledge about the number of vertices of the conves hull. This
result (i.e., (3.2.5)) holds for any distribution on R* and any k > 1. However, to estimate
the volume of a convex body, the uniform distribution is used to create the relation like
(3.2.3).

We don’t have a general theorem like Theorem 3.1 in ®* when & > 3 simply becausc
a more general version of Proposition 3.1 is not available at the moment. However, from
an applied point of view, we can always estimate the volume of a convex figure by Formula
(3.2.4), and the vertices of V,, will provide us with information about V \ V,. It seems to
this author that almost all relevant information about V' \ V, is within the set of vertices

of V,.. This point will be further justified in Section 4 in terms of species problem.
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The following problem is of interest:

Let V be a smooth convex figure. We know that 'Lmﬁ;‘fl ~0(n=1)in R!, and 0(n~ %) in
R? (from (2) of Theorem 3.1). What are the ratios in R* when & > 3. A less ambitious
problem is to find the increasing rate -'—";ﬂ of these ratios {r;,r2,...}, where r; stands for

&
the ratio in R*.

3.3 The Missile Problems

n missiles are delivered and landing at a certain target area which is usually much
larger than the “effcctive area” caused by the explosion of a single missile. The “effcctive
arca” here can be referred to as a “covered arca” in the present terminology. The problems
we are interested in are: (1) if the n + 1** missile is fired, what is the chance that this
addilional missile would involve arca which was not covered previously? (2) How large is
the newly covered area? (3) How many more missiles need to be fired in order to cover
90% of the target area?

To answer these types of questions, we introduce a simple model which seems to reflect
the real situation reasonably close.

Let A denote the target area where the missiles would fall. Assuming that the locations
of landing for all missiles are independent of each other and follow a certain unknown
distribution G over A, let ¥3,Y5,...,Y, denote these n landing points. For each landing
point Y;, there is a covered area B(};,r;) associated with Y;, where B(Y;,r;) denotes the
intersection of A and the disk with center }; and random radius r;. Note that each r;
may depend upon Y;, but r; and r, are independent for different 1,5 since Y; and Y; are
independent. If we let X; = B(};,r;) and g(X;) = }j for all 1 < i < n, it is clear that
the current model is within the framework of our gencral coverage problem described in
Section 2.

The chance that the (n + 1)'* missile would land at “uncovered area” can be written

as
(3.3.1) P(9(Xn41) € SalSa) ,Where S = Sa(X1,... Xa; P) = | J{Xi} .
=1

From Section 2, the (n-1)-estimate is

#of {1;:; ¢ U{X:))
1%

n

(33.2) 2yl Is () =

y=1
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where

Sn_j,j = U{.Y,} .
i#)
Let us define n)(S,)=# of {¥;;Y; ¢ Sa-i,;} for brevity, and the (n-1)-estimate in
(3.3.2) can thus be written as 1’-‘%‘1 Applying the similar idea of (3.1.4)-(3.1.7) to the

current case, we come up with a “better estimate”

n1(Sa) + % il(nl(sn) ~n1(Sn-1,5)]
j=
n+1

(3.3.2")

To estimate the size of newly covered area by the (n + 1)'* missile, it is easy to deduce

from (i) in Section 2 that the (n-1)-estimate is

(3.3.3) %Z vol[Xj\Sn-1,j] = -til(’—li"l (say)
=]

where

n

vi(Sn) =) vollX,\Snor 5] -

=1

Similarly, one can deduce a “better estimate” which is

v(Sa)+ 1 illvl(sn) ~ v3(Sp-1,5)]
)=

’
(3.3.3) e
where
v,(S,._;.,-) = z vol[X.v\Sn_g,,-;] for 1 S] S n,
i#J
and

Sn-25i = [J (¥4} -
Aot
LY ]
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4. Some limit theorems in species problem

In this section we shall present some large sample results for the various e;timators
derived from our interpretation in the species problem. The material of this section is
somewhat technical. The idea used and the results obtained in this section are not limited
to the species problem alone. With additional effort, it is expected to extend the idea to a
more general situation which may cover all cases discusses in Section 3. However, in order
to present the results simply and clearly we shall focus on the species problem.

Recall from Section 3.1 that {X; = i} <= the j'" trial results on outcomic ¢; €
{e1,€2,...}= outcome space. If for each outcome e; there is a real value y; (or a real vector
y:) associated with it, then we may ask the question: “Can one estimate the parameter
associated with the unobserved species?” The general solution to this question will become
apparent after we consider the following two simple examples.

Let Y; = y; if X; = i. The observed data are thus {(\X},Y]), 1 £ j < n}. The outcome
space is {(e;,yi)}.
Example 4.1. The mean.

In this case we are interested in the conditional mean of unobserved outcomes given

{(-’Yh }’!)}:‘:1 ’ i-ew

(4-1) /ydP(le,,) , where Y, = (1},Y5,...,}%),
(4.2) PE[Yn)= Y pies(0in)/ D pje;(0in)
y; €E =1

and E is any Borel set in R (or in ®* if y is a vector in ®*). The conditional distribution
of P(E|Y,) can thus be written as

F(len) = P((_wo y]lYn)

if {y;} are real-valued.
To estimate (4.1), we appeal to the interpretation. It is clear (from the interpretation)

that the (n-1)-estimates of

o0
Y pivi(0;n)y; and ) pje;(0in)
v €E Jj=1

~
(3%




are
1 « . s
o Z Is, ;i (X;)Y;
Ve
and
1 - , n
;J;IS..-,,,(A:') =

respectively. Recall that Sa-; j=|J {Xi}=A.ij. A natural (n-1)-estimate of P(E|Y,) is

i#;
(43) PEIYa) =[2 3 Is..., (X105 € B)]/(2)
=1
= [ 2oy ()10 € B)) /.
)=1

The final (n-1)-estimate of conditional mean (4.1) is thus

(44) [vdP@IYa) = 3 T, (X005 /m
)=l

This simply tells us that, to estimate the conditional mean of unscen species one should
use sample mean of the corresponding observations which occur only once in the sample.
Example 4.2. The median.

In this case we are interested in the median of {y,;j ¢ {X,....,Xn}}. From the
interpretation again, it is easy to check that the (n-1)-estimate is simply the sample median
of Y; of which the corresponding X; occurs only once in the sample.

From these two examples it is not difficult to answer a more general question. If we are
interested in a parameter §=6(P(:|Yn)), which is a smooth function of P(:|Y,) as defined
in (4.2), the naive (n-1)-estimate is thus §=8(P(-[Y,)). Just how well is § as an estimate
of 87 The success of estimating 8(P(-]Y,)) by 8(P(:|Y,)) depends upon the magnitudc of
'ix P;jp;(0;n), the total unobserved probability, which is estimated by 2t. The following
=

propositions provide some theorctical justification of this estimate.
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EY? <oo,n™# (3 P(1-P)"1) 7 = o(1),

=]

and

[vepaiva)

stays bounded in probability. then

| / ydP(u[Y ) ~ / ydP(y|Y )| — 0

in_probability as n — oo.
Let

Faly) = F(yIYn) = Y pjo,(0in)/ Y pjeo;(0;m) .

v; Sy J=1

The estimate F,,(y) = F(y|Yn) can be written as

1 1 & # of {¢;;1 € A and y; < y}
. - i 4y £ - inm = —
(4.5) n;:x‘l’,, I(y ._U)/n .E_l:‘l’. -

where

. = { 1 if 1 appears exactly once in {\X}, X5,...,A,}
hn 0 otherwise

and

A = {X.';\I‘x..'n = 1} .

The following proposition shows that as an estimate of F,(. Fn(y) is uniformly

consistent.

Proposition 4.2. Assuming that

w(Ept-pr ) o),




suprE‘,,(y) - F(y){—0

in probability.
We need some lemmas to prove these two propositions.

Lemma 1. Assuming that k > 2, then
— k n __ 1
> P -p)n = 0(==7) -
=1
Proof. Since
n -1 k= A
(L—l) lzpu‘(l'—})l)"

=Z[P.ﬁ_'(1 -p,)‘:—‘(%%%)]‘M

SZ[]’.Tﬁ(l -p)TT(1+ : ~ ip.')]k" :

< Z[p:'_’hc_ﬂ"”‘ -ci'"'-;‘l"']k—x sinccl—r<e”*
1

=Z[p.r£—’c—r’}7]k_]
)

=Ep;e—"' <1.

This completes the proof of Leinma 1.
Lemma l'. HE|Y| < oo and k 2 2, then

S el -pi)yi = O(H—kl:;) :

=1

Proof. Since

G2 Tt -prtul € ) ph - p"luil

the rest of the proof follows the same argument as that of Lemma 1.
Iemma 2. Assuming that n=#(Z pi(1 - p)")™" = o(1), then
3
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(1) [%1~Zpa(l—p.')"]/z:n(l-?i)“ = 0p(1)

2) [me(O;n) - Zpa(l - pa)"]/zpa(l = pi)" = 0,(1)

Proof of (1). It suffices to show

).

3

(4.6) E %‘ -2 »( =p)") =0

To sce this, it is easy to check that under the assumption, the LHS of (4.6) is bounded by

(4.7) Y pips(1=~pi=p)" ' =Y pip(1—p)" (1 - py)" + 0(;1;)
i#) i#)

<Y pipi(1=pi = p)" i+ 1) + 0(;1;)

i#)
- 1
<2y P ) p(~p)" +0(=)
i J#i

1

n— 1
<2 Zp?(l -p)" '+ 0('-1-) = 0(;) (by Lemma 1) .
i

This completes the proof of (1). Since the proof of (2) is quite similar, we omit it.

Lemma 3. Under the assumptions n*%(zp.-(l - pi)")"'=0(1) and EY? < o0, we have
[

B A T, 000 - Spwomu]” =0d)

J=1 =1

Proof. It is easy to see
1o -
¢ ;;Is.-x.; (X;5)(35)

can be written as
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-Z‘P.ny. .

=1

Now,

E{% Z: \I’."ny.’}z ='nl2' {an.'(l -p)" My}

+n(n=1) Y pips(1 = pi = ;)" " vivs)
i)

1 n- "
=; E.I)i(l - I)l) l 2 + _—1—1_ }:P 1)1(1 I pJ) 2y'y1
: i#)

and

(Zp-sﬁ(On ) ZP.(I -p)"y

+ ZP:‘PJ‘(l - pi —P;)"Vivj »
i#)

it follows that

1 2
4. - inYi — iPilY; i
(4.8) nE [ngm.. y Zw(o n)yi)

=3 pi(1 - pi) MR + (= 1) Yo pipi(1= i = P3) W)
: i#)

-2 npipi(1 —pi - P!

i)

+n ZP?(l -p)"yi+n EP.’P;‘(I —pi —pa)"Wiy; + 0(%) (by Lemma 1')
i)

= }:P-(l — M1+ npi(1 - PR = Y pips(1 = pi— )" 2495 + 0(1)

t#)

(This follows from Lemma 1, EY? < oo, and similar argument in (4.7).)
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(Note that an.-p,-(l -pi—p)" (pi— Pj)ly-'yjl\
i#)

<n ZP?(I - Pl)n-l [yl [zpjlyj l]
¢ J

<nEJY|- 0(%) (by Lemma 1')
\ )

1t follows that (4.8) is

<Y puyi+0(1) < oo

This completes the proof of the lemma.

Proof of proposition 4.1

Rewrite
[ vapiva) - [ vipwiya)
as
b" n b"
(4.9) D, = ——+—6— -
an + EN all
where

an =Y pioi(0;n), b = > pipiloin)ui
1 _ ny
én =;Zﬁ:‘l’i.nyi - brn Epn = ‘;" —Qn .
D, can be further written as

0"6'. - bnen - 6" - bﬂell
(a,. + Cn)an - Anp +E€n (an + en)an )

(4.10)

By Lemma 2, n"*(%)”:o,,(l). Since 6,,=o,.(é=) by Leinma 3, and £,=0p(a,) by
Lemma 2, it follows that
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4.1] =
( *) an + €, Op(l) )
and
n bn . .
(4.12) £ — = 0,(1) .(since bya;;! = o0,(1) by assumption)

(an + en) . an
The proposition follows immediately from (4.11) and (4.12).

Proof of proposition 4.2
It is easy to check that

(4.13) E (3 Wunllu S9)) = 3 p1 = )" H(wi <)

and

(4.14) E () pieiln) = pill=p)"I(y;i Sv) .
visy i

From Lemma 1, it is easy to see

supy| Zpi(l ~p)" T (i Sy) - ZP:‘(l -p) I(yi Syl = 0(;1;) .

Furthermore, with a similar argument as in Lemma 3, one can show that

@15) B [L Y Vil S0 - Y pwi0mIn $v)] <M<oo

for some positive M, independent of y. Proposition 4.2 is an immediate consequence of
(4.12).
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