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I INTRODUCTION

The goal of this project is the development of optical signal processing architectures
and techniques that are suitable for processing information in two dimensions. We have ap-
plied our methods to synthetic aperture radar (SAR), image recognition, two dimensional
spectrum analysis of one dimensional signals and adaptive phased arrays. In previous
years we have developed several specific acoustooptic architectures for each application
area and we have experimentally demonstrated at least one architecture in each category.
In this report we describe our recent results in the areas of radar imaging, two dimensional
spectrum analysis of one dimensional signals, adaptive phased arrays, image correlation,
and integrated optical signal processing.

In the field of radar imaging we have begun to investigate methods for performing
inverse synthetic aperture radar (ISAR) imaging. In normal synthetic aperture radar,
radar platform motion is used to create a long synthetic aperture that allows high azimuth
resolutiun to be achieved. If there is any target motion during the synthesizing of the
aperture the resulting image will be degraded. Consequently SAR imaging is only appli-
cable to stationary targets. ISAR, however, exploits target motion to create a synthetic
aperture without the need for radar platform motion. Unfortunately the data recorded
by the synthetic aperture is determined not only by the nature of the target but also by
the target's motion. The effects of the target's motion on the recorded data must be com-
pensated for if a faithful image of the target is to be produced. Currently ISAR imaging
techniques make restrictive assumptions about the target's motion. We have developed an
iterative approach which is applicable to more general kinds of target motion than current
techniques. We discuss our approach to ISAR imaging in sections II and VI.

We have completed the experimental demonstration of the programmable acoustooptic
image correlator. In this system an input image is detected by a TV camera and applied
to the optical system as a video signal through an acoustooptic device. The reference is
stored in a digital memory and entered into the system through a one dimensional array of
LEDs. In section III we show that if the reference is stored with only one bit of accuracy,
the the performance degrades only marginally. The capacity of the correlator is reduced
by a factor of only pi/2. In addition the traditional training algorithms that exist for
programming the correlator can be readily modified to accommodate the binary format of
the. reference. In section III we present a binary version of the perceptron algorithm, the
significance of the above results is that the design of the electronic portion of the optical
correlator is simplified drastically. The experimental demonstration of the acoustooptic
correlator performing multiple targ

Two different acoustooptic architectures for performing two dimensional spectrum
analysis were demonstrated. The first is a Mach-Zender interferometer with two orthogo-
nally oriented acoustooptic devices in each of its arms. The two arms of the interferometer
interfere on a two dimensional CCD where the 2-D Fourier transform accumulates through
temporal integration. The description of the system aiid its experimental demonsiration
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has been published as a paper (reference 2 in section IV). The second architecture is a mul-
tiplicative one. This architecture is described in section IV and it is more insensitive to
mechanical vibrations than the interferometric approach. The interferometer however has
its own advantageous features which are better light efficiency and simpler demodulation
requirements at the output to separate the signal form the bias terms.

Section V reports our progress in the area of adaptive filters. In previous years we have
demonstrated single channel acoustooptic filters that utilized a combination of temporal
and spatial integration. This year we concentrated on broadband phased arrays. In this
case jammers may be present anywhere within a bandwidth as high as one gigahertz.
The adaptive processor must then place nulls in both the temporal frequency domain and
the direction of arrival of the jammer to effectively cancel the interference. Again this
is a problem that is extremely demanding computationally and analog optics provides a
uniquely effective solution.

VanderLugt correlators have been used for a long time for optical pattern recognition.
Recently there has been a great deal of interest in using VanderLugt correlators in pattern
classification systems. These systems determine whether an input image is a member of
one of two classes, with each class being composed of many images. Typically a reference
filter is formed from a linear combination of these images. When an image is input to this
filter the presence or absence of a correlation peak determines which of the two classes the
image belongs to. The capacity of a correlator is the maximum number of images that can
be stored in the reference filter without the system misclassifing an image. In section VII
we examine the capacity of VanderLugt correlators using both planar and volume optical
recording media. In addition we examine the capacity when the filter is binarized.

Vector-matrix multipliers are fundamental components of many signal processing sys-
tems such as neural networks and any system which must perform general linear trans-
formations. Implementing vector-matrix multipliers with bulk optics has proven quite
successful, especially where computational speed and low power consumption are of prime
importance. Despite this success integrated optical implementations offer certain advan-
tages over bulk systems such as smaller size, lighter weight, and ease of mass fabrication.
Additionally integrated optical vector-matrix multipliers are planar devices which allow
use of the third dimension for optical programming of the matrix. In section VIII we
present an architecture for an integrated optical vector matrix multiplier using a photore-
fractive medium for the matrix. We also discuss techniques for writing the matrix using
unguided light from out of the plane of the device.
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II ISAR IMAGING

I.0 Introduction

The theory and technology of producing synthetic aperture radar images of stationary
targets from moving platforms have been well developed and utilized'. As SAR imaging
requires precise knowledge of the relative motion between radar and target it is not possible
to directly produce SAR images of targets which themselves move beyond the control of
the imaging system. Inverse synthetic aperture radar (ISAR) is an attempt to overcome
this difficulty2 '3 .

II.1 SAR Imaging Fundamentals

Consider a three-dimensional rigid target whose reflectivity at any point in space is given,
in a coordinate system fixed on the target, by f(r) (That f(r) does not depend on time is
a statment of the constraint that the target is a rigid body). Any relative motion between
this target and an imaging radar will be described as seen in the target's coordinate system;
that is the radar moves along a trajectory, Rl(t), while the target remains fixed. It wi'] be
assumed that the change in fi(t) over the duration of a single pulse can be neglected

If the radar transmits a pure tone, g(t) - ej 2 ' vot, and the target consists of a small
volume d3r centered on F'with reflectivity f(r) the received signal will be given by

s(t) = d'3rf(rl ej 2  ,f(t- 2i - fil/')

If the target consists of a collection of such volumes, and if multiple reflections and shad-
owing effects are neglected, then the received signal will be given by

S() f d3r f (r)e j2,..... , 21,' hT:,,:)

If R >> r then the far-field approximation gives IF'- Ril ; R - 'R • r where *e/ is the unit
vector in the /R direction. Consequently the received signal is given by

s(t) ey2lr,,t AK/c) ] d3 r f(r)e27[r er,

__ ej2 ,,(t 2R/c)p(2 e).

In other words the radar receives the (spatial) Fourier transform of the object, at spatial
frequency 2,,, along the ray in Fourier space defined by FR. on a temporal carrier.

If the radar instead transmits a signal with a finite bandwidth,

gt W - 2 dv Ge
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it follows that the received signal will be given by

- e27r(t -2 R/c) jB/2 2 27tvts(t) = e B/2t - 2 n / c)  dvG(v)eF 2 I/cF(2 ) )e
B!/2 C

Mixing s(t) with e -i2 , v,(t - 2R/c). Fourier transforming and multipling the result by

H( ) e27v2e/c, -B/2 < v < B/2;Hiv) (( )l - ,I. ..
) =0, otherwise

will produce

W(v) = F(2(v + vo) R)rect( V)"
c B

If the radar does this for N different rays, eR, 0 < k < N - 1, it will produce samples
of the target's Fourier transform over some volume of Fourier space. These can then be
inverse transformed producing the function f(r) to within the resolution permitted by the
finite size of the volume. This is the basic principle of synthetic aperture radar.

11.2 Two-Dimensional Imaging

The special case of a two-dimensional geometry is considered in this paper because 1)
It has important practical applications; almost all work in the literature deals with this
case, and 2) it greatly reduces the complexity of the problem for analysis and computer
simulation, yet the results readily generalize to three-dimensions. For a two-dimensional
geometry eR - IcosOk,sinOk]. Consequently a two-dimensional target. f(x,y), gives rise
to a sequence of N Fourier samples described by

F(2(/ 4 V) [cosOk,sinOkl)rect(v/B)
C

rect(v/B) J dx J dy f(x,y)eJ 'ff - -<- (1cOS' A siii k), 0 < k < N 1.

A very important class of problems results when the small angle conditions,

cosOk Z 1, sin Ok Z Ok, (2-y) ,,- BYrna,.O,rtu/c < I
C

hold. Then the Fourier samples "decouple" into a cascade of one diniensional transforms

F( 2 v + c 1lekD0 f dye) 2 , 6  J dxrect(v/B)ef X1 y), 0 < k < N-

4



Resolution in x is achieved via "range compression" -

B12
I  

"^27 1, j21) 2 ' + O )

B/2 dve- f dce 2  c f (1, y) = f(X,y) * Bsinc(c/2 B ).

What is left are the samples

x

Fk (X) d ) * B sinc (-- --
c/2B

The quantity c/2B = Ax, the x resolution, defines the width of a "range bin". The rest of
the discussion will center on achieving y resolution within any given range bin (fixed x).

For clarity, therefore, explicit dependence on x will no longer be shown.

Resolution in y is thus achieved by inverting

Fk dy f(y)e 7 - '9, 0< k < N- 1,

which is done by simply inverse transforming via

f (I.2.1)
k

•dri f(rq) N

If the problem is well posed (if it is at all possible to form an image) then the quantity
in brackets will be a sinc-like fu nction with some main lobe width Ay. Since the actual

function depends on the Ok in a very cornplicated way, the following approximation will be
employed

I ej kJ 2, 6(/ - ).(11.2.2)
k

It should always be remerrbered that this is a "delta" function orly on a scale larger than
Ay (it really has a finite width). In view of (11.2.2) it follows that to within the finite

resolution Ay. f(y) ; f(y).

Notice the implicit assumption that P for each pulse Rk (needed for mixing
and filtering) and the Ok are known. This is the case in SAI? imaging. For ISAR imaging,

however, the trajectory is unknown a priori. What one has instead are estimates R k, 0k.
Since radar is a range measuring device, accurate "gross-range" estimates, J?k, are much
more straight forward to obtain than art the "aspect" angles, bk, through techniques such

as point-target refercncing or echo correlating. Therefore discussion below is confined to
estimating the aspect angl,:,.



The N aspect angle estimates, 0 = (io,. ,ON- t), define an N dimensional state space.
With each point in state space is associated an image -

For 0 -0 0, h is in general not a "delta" function, and consequently f(y) ; f(y). In its most
general form, then, the ISAR problem is to search state space for the point corresponding
to the "true" image. (Notice that, because of the small angle assumptions, h has a form

which is invariant under y --+ y/a, 0 - aO. Consequently all images associated with a given
ray in state space are scaled (in y only) versions of a single image. This fact is what makes
ISAR as it is currently described in the literature2' ,3 possible. One merely assumes that
Ok oc k; the actual constant of proportionality is not needed. Hence there is no need for
parameter estimation and the problem reduces to an inverse Fourier transform. However
this approach only works for trajectories consistent with this assumption.)

11.3 State Space Statistics

Assume the range bin consists of N point-targets located at positions y, -- nAy, i.e.

N- I

(Y) = fne""b(Y - nAy) (1[.3.l)
n=O

where f and 0 are the magnitude and phase of the reflectance. Then the returns are given
by

mk fne 2r Arke mez Ve o

where Ok _ A/2% k. If the target is reconstructed using trajectory estimates Ok - (k (k

then the image pixels are given by

I 1 ,fm 
e""" 3e ) i>frne) V", -el ( n) e -) n'N N

r k m k

and hence

I~ in 1 ~ 2 fmf1,ej'- eJ'(' -)k&e-)(1, n),he )fl(,kI)

rn p k I

If the (k are treated as independent, identically distributed, random variables with
density p(() then the expected value of If.I2 can be computed as

E~j~21 N2  fm >..frfpe~"" ) 5 e''" n)~e (
rn p k I

(11.3.2)
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The expected value of the random term is

E[e -j,,(k-) = If dc p(f)e-ijnf 2  IP(n)12, if k j I

or more compactly

E[e - j n (, - 'E) ] = IP(n) 2 + bkl(1 - IP(n)I 2 ). (4)

Substituting (4) into (11.3.2) it follows that

E[Ifn121 - IP(n)12  A ( > ej(m-n)Oke-j(-n)O (11.3.4)

m p k I

+(I -lP(n)12 ) jn po
N 2  E f("'-P) jmp¢

m p k

By (11.2.2),

I: ej(m-P)k Nbmp =t, d(-)kjpnO , N 26mn 6 pn.
k k I

Using this in equation (11.3.4) gives the final result -

E[Ifn12 l = f2P(n)12  (1 P(n)l2) f(.3.5)n N r.(135
rnl

Equation (11.3.5) says two things -- errors in the trajectory estimate: 1)degrade the
image pixels from an intensity of fn to f21P(n)12 (the first term), and 2)give rise to a noise
floor (the second term). As an example let

P W

the n
P(n) e-(na)2

and (11.3.5) becomes

2 1 - -e2 ( r ( n o ) "

E[tj' 2I fIe( i")n N >fA" (I 1.3.Sa)
m

The pixels farthest froin the y 0 axis (n large) have on average both a higher noiselevel and a lower reconstruction intensity. Thus the image deteriorates from the extremities

7



inward. This is as expected since a small error in aspect angle causes a phase error which
grows proportional to y. To make this statment quantitative a signal to noise ratio can be
defined as the ratio of the first term in (11.3.5) to the second -

SNR(n) n =P(n)1' (HI.3.6)
E. 1 - IP(n)12

where

Eav f,

For the p(c) used in the above example (11.3.6) becomes

SNR(n) n (I.3.6a)
Eav e(n) 2 - 1(

which clearly displays the pixel deterioration relative to the noise floor with increasing n.
Figures II.1 and 11.2 show computer simulation verification of (II.3.5a) with N = 16,a=
0.5, for a range bin with point-targets at pixels 0 and 7.

11.4 Energy Functions

ISAR imaging can be treated as an optimization problem with respect to the state pace
parameters ekk. The central task then becomes the formulation of an "energy" fun, tion
describing the quality of the reconstruction. Without some a priori assumptions al out
the nature of the image to be reconstructed it is impossible to say whether a given rec )I-
struction is "good" or "bad" since all images are equally likely. Thus image reconstructi .n
schemes generally contain a substantial amount of a priori assumptions as to the for 11
of the original image. The more specific the assumptions the more discerning an energ)
function that can be constructed.

Our research has so far concentrated on energy functions for an important class of
targets namely binary-random-phase targets. These targets have the property that f, is
0 or 1 while V, is arbitrary. Such a target model should be well suited to ISAR imaging
of aircraft in flight and ships at sea since such targets consist of a nearly uniform, highly
reflective object (metal) against a poorly reflective background (air or water). It can then
be stated a priori that a good reconstruction will have 1jl1 2 very nearly 1 or 0 with no
other values allowed. An energy function making use of this knowledge is

1N-1 ( -J , if 1 {2 12

NE , where E, = 1 (11.1
n=O I a if I fr I

where a and p are constants to be chosen. Clearly E is non-negative and assumes its
global minimum value of 0 when the binary irnage is faithfully reconstructed. E assumes

8



the value I when all pixel energies assume the value a. The normalization factors in the
denominators insure that E iE itinuous as IjI2 moves across the threshold.

Using (II.3.5a), choosing a to be Eav, and then substituting into (11.4.1) gives E, =

(1 - e-('c) 2 )P and hence
N-I (-)

E =-11:(1 - e- ( n ) 2

n=O

for the energy of the mean image. This function is monotonically increasing in a, and
hence has no local minima. It is also independent of the distribution of binary point-
targets, depending only on their total number through Ea,.

I1.5 Simulation Results

We have run computer simulations using the range bin model given in (11.3.1) with N = 16.

Starting with some trajectory, 0, we added noise to produce an initial estimate, 00, then
computed the corresponding initial image and its energy as given by (11.4.1). From there
an optimization algorithm (having no knowledge of the true trajectory) was used to search
state space for progressively "better" images. Figure 11.3 shows a range bin consisting of
8 point targets. Figure 11.4 is the image corresponding to an initial trajectory estimate
while the image in figure 11.5 corresponds to a point in state space eventually reached by
the algorithm.

While the above approach is completely general, it requires a search over a space
with N degrees of freedom. For large N this may not be practical. At the expense of
generality we can reduce the degrees of freedom by parameterizing the trajectory (e.g.
Ok = alk + a2 k2 + ... ) with M parameters where M < N. Our goal is then to obtain
faithful estimates - al,a 2 ... am. Figures 11.6 and 11.7 show results for the case N -

16, M = 2, where the target is that in figure 11.3; figure 11.6 corresponding to the initial
parameter estimates and figure 11.7 corresponding to the improved estimates obtained by
the optimization algorithm.

11.6 Optical Processing

nThe optical implementation of the matched filtering process described in equation
11.2.1 is straight forward. All we must do is to place the samples in the front focal plane of
a Fourier transforming lens such that the transverse position of fk is proportional to Ok.
That is we must produce a transmittance in this plane given by

k

where a is some constant. Due to the Fourier transforming property of the lens we get in
its back focal plane a field (x and y are the transverse coordinates in the front and back

9



focal planes respectively)

1(y) JdxT()e) 2 1y(x/A=j) f k

k

where A is the optical wavelength and f is the focal length of the lens. Comparing this
expression to the right hand side of equation 11.2.1 we see that they are identical except
for a different scale factor in the exponent. As we have already seen this merely scales the
image produced accordingly.

The transmittance T(x) can be produced by putting the samples on a carrier and
then feeding them into an acoustooptic device with sample Fk entering the device at a
time proportional to 0k which is our best current estimate of Ok. When all the samples
have entered the device a short laser diode pulse effectively freezes the position of the
samples and produces the image f(y).

If we let the image fall on a photodetector array we can read out the pixel intensities
serially, computing the energy E, in equation 11.4.1 as each pixel emerges and by keeping
a running sum we will have computed the total energy E when the last pixel emerges.
This energy value is then feed back to the circuitry which determines when the samples
will be feed into the acoustooptic device at the next iteration.

10
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III LED BIPOLAR CORRELATOR

III.0 Introduction

Ever since Vander Lugt demonstrated optical matched filtering in 19641, the main stream
of optical pattern recognition has been correlation type image recognition. In addition to
the ease of implementation by optics, matched filtering type correlator is also insensitive
to any shift in position of the input pattern. Besides using a Fourier transform filter,
matched filtering can also be implementated by using a correlation plane filter. The success
of either scheme, however, is limited by the availability of linear spatial light modulators
with sufficient dynamic range and accuracy. Subsequently, we resort to the use of a bipolar
spatial light modulator. In this report, we address the issues of the feasibility of using an
image plane bipolar filter for correlation and the performance of bipolar filters versus linear
filters in terms of output signal to noise ratio. We also investigate the possibility of using
a single bipolar filter for multiple patterns recognition; some algorithms of so doing; and
the storage capacity of the bipolar filters corresponding to those algorithms. In the last
four sections, we describe an optical system designed to implement the linear perceptron
classification procedure using a bipolar filter.

III.1 Bipolar correlators

We begin our investigation by first analysing the performance of thresholding the input
image 2 . The performance that we adopt here is SNR, the signal (correlation peak) to noise
(additive noise and side- lobe) ratio. Let f(i,j) be the image to be recognized. Assume
f(i,j) to be a discrete sequence of independent, identically distributed Gaussian random
variables with zero mean and variance ur. The input image to the correlator is the sum
of f(i,j), the image to be recognized, and n(ij), an additive noise image. Here, we also
assume n(ij) to be an independent, discrete sequence of Gaussian random variables with
zero mean and variance a2. The thresholded image is defined as

f(I~j) 1, if f(i,j) + n(i,j) > 0;
-1, if otherwise.

The reference image h(ij) is obtained by thresholding f(i,j):

h(j 7 l, if pij) > 0;(I .. 2

I 1, otherwise.

The correlation between the thresholded in pu t and reference images is then given by

N N

I -
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The signal to noise ratio, defined as

SNR'= E 2 [g(O'O)] i',' # 0 (111.1.4)
var[g(i',ji'],

can be shown to be

1 tan'(SNRjn) where SNRn .(1.1.5)

SNRI = N2 7 -taa-,=

In order to see the effect of thresholding the input image, we compare SNR' with the
signal to noise ratio that is obtained if the input image is not thresholded. It can be shown
that in this case

SNR- N 2 SNR(1

1 + SNR 2 "

The two SNRs are plotted in Figure III.1.1 as a function of SNR?,. As can readily be
observed from the plot, the correlator with input image thresholded is only marginally
degraded for high input SNR.

111.2 Bipolar rotation invariant filters

Mathematically, any pattern f(r, 0) can be decomposed into an infinite sum of its circular
harmonics 3,

f(r,0) = Z fn(r)e - n' (I!I.2.1a)
n= -00

where
fn (r) f f f(r, O)e nedO. (111.2.1b

Thus, if the pattern is correlated with any component of its circular harmonics f, (r)e-sJ",
the magnitude of the output is rotation invariant. Furthermore, if any component of
circular harmonics is recorded on a Fourier transform hologram, the resulting filter is also
shift invariant.

Computer generated bipolar filters were generated from the first two orders of cir-
cular harmonics of the letter A using the algorithm described by eq.(IlI.2.1). Numerical
correlations of the letters A,B,C,and D and the binary CGHs were evaluated. The result
is presented in Figure 111.2.1. The intra-class recognition using the zeroth order circular
harmonics is remarkable. However, the inter-class discrimination performance is barely
satisfactory. In order to obtain good discrimination performance, cross correlations using
bipolar filters generated from different circular harmonics have to be evaluated. A compro-
mise between the inter- and intra- class discrimination performance will determine which
bipolar filter to be used.
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11.3 Generalized bipolar filters

In this section, we examine the possibility of designing linear bipolar filters for recognizing
multiple objects. One immediate extension of such a design, if it can be done, is to
incoporate information corresponding to multiple versions of a certain object in a filter
to achieve invariance (e.g. rotation and/or scale). We investigate two schemes that may
accomplish this goal.

The first scheme is a derivative of the well known 2-category perceptron invented in
the 60's 4 . Basically, a 2-category linear perceptron is a machine consisting of a weight
pattern w trained by a certain algorithm utilizing the set of all input patterns {f,} such
that the output

N -2[gZ = isf Y)l=f1I+1 if f, belongs to %F';
Ig i Jm J =1 -1 otherwise.(113)

We confine our attention to one of the simplest perceptron training algorithm, which is
as follows: The set of input patterns is arranged as a repetitive sequence of patterns, i.e.
{f_f 2 ,f , fl .. }. The weight vector is trained by the elements from the sequence

one at each time,

Wk+i = Wk + a kfk W1 = some initial vector, (III.3.2a)

where
+1 if gk = sgn[w k .fkj and fIC % p;k  -1 if gk =+1 and fk V; (III.3.2b)
0 otherwise.

The algorithm has converged when the correct response is obtained for each input vector.

A bipolar perceptron can be defined by modifying the linear perceptron simply by
replacing w by a bipolar weight pattern. The training algorithm can also be modified to

W k Il = sgnwk + akfkj (111.3.3)

The result of the rate of convergence of a bipolar perceptron trained using the above
algorithm is shown in Figure 111.3.1. An ordinate reading of 10' iterations means the
binary perceptron did not converge within 10' steps. Even though a convergence proof
does not exist, preliminary computer simuations do indicate a bipolar solution weight
pattern can be obtained provided the dimensionality N is high enough. The statistical
capacity with N = 16 is shown in Figure 111.3.2. Note that the capacity curve starts to
roll off at approximately M, the number of stored vectors, equals to 2N/3, whereas the
capacity curve of a linear perceptron (not shown) does not roll off until M -- N. This can
be explained by the fact that the solution region of a linear perceptron may not contain a
bipolar point. In such case, a bipolar vector does not exist which classifies all input vectors
correctly.
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The second scheme that can be used to recognize multiple patterns is described below.
For ease of comparison, we first analyse the ordinary (non- bipolar) linear filter of the
second scheme designed for the desired purpose. Consider the following algorithm: the
operation to be performed is given as

N2 +1 if fm belongs to ';
g = I -1 otherwise, (111.3.4)

1,'

where %F is the class of objects to be recognized. The filter h(i,j) is generated by forming
a weighted sum of all the input patterns, i.e.

M
h (Z, j) = : an, fn,'(ij), (III.3.5a)

MI

where
f +1 if f,, belongs to %I'; (II.3.5b)
1. -1 otherwise.

To see that the above scheme is capable of recognizing multiple objects, rewrite equation
(II1.3.4) as

N
2 l

g sgn amN 2 f m(i,j) + I mfm(iJ)fmi(i j . (111.3.6)
L ,j m' #r

The RHS of the above equation is composed of two terms, namely, the signal (first) term
and the noise (second) term. Provided that the signal term is sufficiently large comparing
to the noise term, the correct response is expected.

Our next task is to obtain a theoretical estimate of the capacity of the filter. We define
the capacity to be the number of vectors M, that can be stored in a filter with vanishingly
small probability of error for sufficiently large dimensionality N. Assuming fm(1,j) to be
a discrete -equence of bipolar-valued independent random variable, i.e.

P[fm(i,j) 11 = P[fm(i,j) 1 = 1/2;
(111.3.7)

P~fm(i,j) I fm'(i',I')] = P~fm(ij),

it can be shown that
N

2
M, 8lnN " (1!I.3.8)

Shift invariance can be incoporated into this system by modifying the operation to be

go 1 =Sg nF\h (,J) fm(i' +i~ 1J 1 I if f, belong,. to '1';
g~i',j') ~ I -1 otherwise. (111.3.9)
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In such case, the capacity M, can be shown to be

N 2

M N 16IN (111.3.10)

The digitally computed correlations of random sequences (statistics given by eq.(III.3.7))
and the linear weighed-sum filter with different number of vectors stored are shown in
Figure 111.3.3. It can be seen from the simulated results that as the number of vectors
stored in a filter increases, so do the magnitudes of the sidelobes. This phenomenon
accounts for the limit of the number of vectors that can be stored in a weighed sum filter.
The histogram of capacity with dimensionality N equals 128 is also shown in Figure 111.3.4.
The mean of the histogram agrees with the theoretical result.

For the bipolar analog of the above scheme, consider the same operation given by
equation (111.3.4). In this case, the filter is generated by bipolarizing the filter given by
equation (111.3.5). It is given as follows,

h(i,j) = sgn [ amfm,(i,i) (1II.3.11)

ml

Using the same statistics for the stored vectors, it can be shown that the capacity of a
bipolar weighted sum filter is only reduced by a factor of 7r/2.Thus

2 N2

Mb :- 2 N (111.3.12)7r 16lnN '

for filters with shift invariance incoporated, and

2 N2

M b -- (111.3.13)
7r 8INN'

for filters without. Computer simulated correlations of random vectors arid the bipolar
filter formed by the above algorithm are shown in Figure 111.3.5. Note that the magnitude
of the peak decays as the number of vectors stored increases in this case. This phenomenon
is understandable, since as M increases, the relative information of each vector stored in
the filter decreases. The histogram of capacity of the corresponding bipolar filter is also
shown in Figure 111.3.6. The mean of the histogram agrees with the theoretical result.
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111.4 Optical System Implementation

Elsewhere we have described a two-dimensional incoherent acousto-optic image correlator 5

and have discussed various advantages associated with this form of processing. Here we
will describe the implementation of bipolar correlations using such a system. The basic
system architecture is shown in figure (111.4.1) and consists of a 16 element vertical LED
array in the reference plane, an acousto - optic device (AOD) in the input plane, and a
CCD camera in the output plane. An IBM PC is used to load reference image data into
the electronic memory shown. The data is read out to the LEDs, 32 bits at a time in such
a way as to modulate the intensity of the ith LED with consecutive pixel values of the Ith

reference image line. A 2 bit D-A converter preceeding each LED allows for representation
of up to 4 distinct intensity levels per pixel. In the applications reported here, three of
these levels are used to represent an unbiased bipolar signal (-1,0,1) as a biased unipolar
signal (0,1,2). The imaging optics and signal timings are such that the TDI output of the
CCD is proportional to the correlation between the bipolar input and reference images
plus some bias term. The jth LED is intensity modulated by the current

Ai(t) = [1 + aj(t)jrect(t/Ti)

where ai(t) represents the bipolar signal associated with the i t h line of the ret rence image,
and T, is the reference image width. The Jth line of the input image results ii. an intensity
modulation of the diffracted light after the AOD (assuming uniform incident intensity)
that is given by

2 -_//

B,(t - x/v) -[1 + bj(t - x/v)] rect(- -)
T2

where bj(t) is the bipolar signal associated with the jth line of the input image, and 7", is
the TV horizontal line time plus blanking interval. Using this we obtain the n" h line of
the CCD output as :

C(x) = I: 1 0 AnM-n(t)B,,(t + x/v)dt
n'=n-M+ I

n =n f T

E f I ]I - U+ -M-n(t)][1 b,(t x/v'')' 2 dt (I11..1.1)
n'=n-M+I

J -T

T= (x) + 2 1 / a,,+M_,(t)b,,(t *x'i)dt

n' ---n -M J -T

where T, (x) is the bias signal on the nth output line, ,I is the number of CCI) line., and
the correlation time T is given by T T -+ 772.

In order to obtain the true correlation a(x, n) b(x, n) we clearly must rerriove the bia.'
term from equation (111.4.1). It is important to note that under the condition•

< a,(t) >=< b3(t) -> 0 V i,j (111.4.2)
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where the symbol <> represents the expectation or average value, the bias signal T, (x) is
independent of the input and reference signals.

111.5 Correlation Results

We have implemented the above system and have obtained correlation results as shown
in figure (111.5.1). In our experiments, the three images shown in figure (III.5.1a) were
presented to the TV camera as the input scene. The input scene signal was first passed
through a DC block in order to remove any bias . After also removing the horizontal and
vertical sync pulses the signal was amplified and a constant level was added. This level
was adjusted so as to insure that the input signal was strictly positive. For a bipolar input
scene then , this unipolar signal is simply the [1 + b(t)] described earlier. This modified
signal was used to amplitude modulate a 50 MHz RF carrier which was then applied to
the AOD.

Various reference images were generated using an IBM PC. Each reference image was
16 lines high by 32 pixels wide however, by virtue of the bipolar encoding scheme employed,
a data array of 32 bits by 32 bits was necessary to represent one image. At the beginning
of each input image horizontal line time, the 32 lines of reference data were read out to
the LEDs. Preceeding each LED was a 2 bit resistive ladder network used to convert two
bits of digital data into one of the 3 appropriate analog levels. The output correlations
are shown in figures (III.5.1b,c,d) for various reference images. As can be seen from the
figures, the system exhibits good cross correlation suppression and strong autocorrelation
peaks.

111.6 Bias Considerations

In order to represent a bipolar signal in light intensity, a constant bias is added to the
signal before modulation. The presence of this bias term in A(t) and B(t) results in the
bias term T,,(x) in the system output. Removal of T,,(x) is therefore required before the
true correlation may be observed. Shown in figure (111.6.1) is a typical line of the bias
signal Tn(x). As expected, the bias signal is approximately triangular, characteristic of
the correlation between the two rectangular functions associated with A(t) and B(t).

Removal of the bias function Tn(x) is achieved by first generating a bias reference
image and a bias input image. A recording of the 2-D output correlation of these two
images is exactly Tn(x) assuming the conditions of eq. 1IlI.4.2]. Thereafter, in order to
retrieve the true correlation from the system output, T,(x) mav be subtracted from C,(x)
on a pixel by pixel basis. This will yield the desired signal

a(x, n) * b(x,n) =C() - T,(x)

If the condition of eq. 1I1.4.21 is not satisfied then the bias term 7,(x) becomes signal

dependent. In general, it is easily shown that the bias signal is given by :
n=n T t - /V

T, 1 T- 2 + 2[a,,+M.n(t) I b,,(t - X/v)}rect(t/T,)rect( - /)dt

n'-n-M+I T
(111.6.1)
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We see that the first term is the typical triangular bias ; however, the second term is in
fact signal dependent. Various schemes for removing the second term from eq. [111.6.1]
may be envisioned. One particularly straightforward method would be to simply record
the two signals :

signall =,I=jMl jT anI+M-n(t)rect(t/T)rect( t X/V )dt
nln l "-TT

signal 2 = E _ b,(t- x/v)rect(t/Tj)rect(t -  /v)dt
n'=n-M+l fT T2

and perform a pixel by pixel subtraction off line as we did with the signal independent
term. It is important to note that if the quantity of interest is the inner product of two
images rather than the entire 2-D correlation, then the condition of eq. [111.4.21 may be
relaxed somewhat. In this case it is necessary only to have equal numbers of is and -is
over the entire image to insure signal independent bias.

111.7 Implementation of a Linear Descriminant Function

The above system has been utilized in a pattern recognition scenario. Taking advantage
of the flexibility afforded by the computer generated reference images, it is possible to
form arbitrary linear combinations of these images to generate more powerful filters. A
LDF based on three images was generated using a bipolar perceptron type algorithm as
described in section 111.3. In our experiments the algorithm was initialized with the filter

w1= E IMG - E IMGj

where %PI and %P2 are the two classes and IMGj is one of the three images to be classified.
Since only three levels may be represented in our system, a threshold arithmetic must be
implemented. That is, when executing the above algorithm we have that 1 + 1 -- 1 and
that -1 - 1 = -1. Although there is no guarentee of convergence in the bipolar case, we
observed convergence for all three dichotomies. The LDF as found above was used as the
reference image while the three seed images were placed in the input plane. The results
for three different class assignments are shown in figure (111.7.1). We see that successful
classification was achieved for all three of the nontrivial dichotomies possible.

11.8 Conclusion

We have shown that the performance, in terms of output SNR and storage capacity, of
bipolar correlation filters does not severly degrade when compared to conventional cor-
relation filters. As a matter of fact, bipolar SLMs are free of the problems of limited
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dynamic range and non-linearity. We have also presented experimental results pertaining
to an incoherent acousto-optic correlation architecture. The particular system we describe
implements bipolar correlations between a TV scene and a computer generated reference
image. Good correlation results have been obtained. We have also successfully imple-
mented a two class decision machine using this correlator. Many issues still remain to be
researched. For instance, how a bipolar filter is optimized is one of them. How a bipolar
perceptron is trained to recognize multiple objects is another example. For a certain set of
data, a bipolar filter which will make the right decision in recognition may not exist at all.
It is, nevertheless, the authors' belief that the probability of having such a bipolar filter
approaches one for sufficiently high dimensionality.
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Figure 111.1.1. Output vs input SNRs for the binary and conventional correlators.
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Figure 111.2.1. (a) Zeroth order circular harmonic binary CGH. (b) Image of 4 A's ofdifferent orientations. (c) Computer simulated correlation result of (a) and (b).
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Figure II 2.1. (d) Image of of the letters A,B,C and D. (e) Computer simulated correlation
result of (a) and (d).
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Figure 111.3.3. The simulated correlations of the linear weighed-sum filters of different num-
ber of stored vectors and some of their stored vectors. The threshold level for recognition

is one half of the energy of each vector.

CORRELATION OUTPUT (N=128. M=4) CORRELATION OUTPLUT (N=128. M=E)
3.22

1.2

1 1

.

.6 .6

-. 2

-. 8

- .I -I ..

64 

6A3

30



')

00

0
-o

'.b

CUU

C)i

U') CT) w

3ONYn33O.40AON~D30

31_



correlation with bipolar filter (M=I) correlation with bipolar filter 0t1=2)

. ..

.6 .

.2 .2

!I

.8 -
" .1 -

.2" .2

64 128 192 256 64 128 1 92 256

Figure 11I.3.5. Computer simulated correlations of bipolar weighed-sum filters of differ-
ent number of stored vectors and some of their stored vectors. The threshold level for
recognition is one half of the energy of each vector.
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Figure 111.4.1 Incoherent Correlator Architecture
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Figure 111.5.1 Correlation Results

(a) Input scene [top: 1MG I, middle: IMG2, bottom: IMCG3'
(b) Correlator output for reference image = 1MG I
(c) output for ref. = IMG2
(d) output for ref. = IMG3
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Figure 111.6.1 Typical Line of Correlator Bias
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Figure 111.7.1 Discriminant Function Implementation

(a) Correlator Output ior Class 1 IMG1+IMG2 / Class 2 =H

(b) Class 1 = IMGi+H /Class 2 IMG2
(c) Class 1 = IMG2+H /Class 2 =IMG1
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IV MULTIPLICATIVE TIME AND SPACE INTEGRATING

ACOUSTO-OPTIC SPECTRUM ANALYZER

IV.0 Introduction

In this section we will describe multiplicative time and space integrating (TSI) acousto-
optic architectures for spectrum analysis of images and of 1-D signals. The TSI approach
is used which combines the best features of 1-D space integrating and 1-D time integrating
spectrum analyzers1 . Wagner and Psaltis have previously demonstrated experimentally
an additive architecture for folded spectrum processing of 1-D signals 2 . In this section
we describe and experimentally demonstrate a multiplicative processor suitable for finding
the 2-D Fourier spectrum of images. The information signal is fed into a Bragg cell and a
lens takes the Fourier transform in the coarse frequency (x) direction of the image. In the
second Bragg cell, the DFT signal is entered which along with the time integrating CCD
calculates the Fourier transform in the fine frequency (y) direction of the image. We begin
the section by describing the principles of TSI processing. The space integrating spectrum
analyzer is described using 1-D time signals and 2-D video images as inputs. Then, the
Discrete Fourier transform (DFT) based time integrating spectrum analyzer is described
and experimental results are given. The possible TSI architectures are given and analysis
is carried out. Experimental data is presented and system performance issues such as bias
removal techniques are discussed. We end with a summary of the processor and its possible
applications.

IV.1 Principles of TSI Processing

Fig.IV.l.1 shows the basic setup for a TSI architecture for spectrum analysis. Bragg cells
are used as input SLMs because of their high bandwidth. The input signal s(t) is a long
1-D signal that cannot be enclosed in the time window of the Bragg cell. This leads to
representing s(t) as a space-time raster f(x,n) where n is the laser diode pulse number.
This raster then passes through a Fourier transforming lens with power in the x-direction
giving another space-time raster F, (u.n) which consists of spatial Fourier transforms of the
windowed signal s(t). Next, the raster F,(u,n) is spectrally resolved in temporal frequency
by using time integrating Fourier transform modules. The output of the system is a
folded spectrum of the input s(t). The motivation for dividing the 2-D Fourier transform
operation into a space integrating lens Fourier transform and N time integrating Fourier
transforms comes from the separability ot the 2-D Fourier kernel as noted in equation
(IV.1.1). Figure IV.1.2 shows the basic principle of folded spectrum systems originally
shown by Thomas3 . Possible inputs s(t) to a folded spectrum system can be a narrowband
highly coherent signal burried in white noise (SETI) or a video signal from a camera
pointed at an image f(x,y). 2 A video signal has a natural rastering mechanism,therfore the
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2-D folded spectrum output is the 2-D Fourier spectrum of the input video image.

n=N-1

F(u,v) = ifA f(xn)e- 2I uxdxie- 2 N (IV. 1.1)
n=O

IV.2 Space Integrating Spectrum Analyzer

Figure IV.2.1 shows the optical setup for the SI Spectrum Analyzer. The field amplitude
at the detector plane is

= A - -J 2,,r X- / -3w

(x',t) f (t - x)e 11" dxe-wt = [vS(uv)e 2wuvt • Asinc(Au)e - w't

where v is the acoustic signal velocity in the Bragg cell and i(t) is the complex diffracted
signal.

Using the reference signal r for hetrodyne detection, the intensity on the detector
plane is

I (x',t) = 11VSuV)e-j
2 7uut * B(u)J + rl2

For a single tone input
s(t) = acos(27rf't)

the intensity is

I(x',t) = -a) B Ir 2 + 21alrB(u - -)cos(27rf't + 11)
V V

Taking the pulsing action of the laser diode into account every T seconds, the intensity on
the nlth pulse is

I(x',n) = Ia1 B(u- ) + Ir1 + 21afrB(u - - )cos(27r6nT + fl) (IV.2.1)
V V

where B(u) is the general blurr spot taking into account the finite aperture of the Bragg
cell and acoustic apodization effects. Also,

f + b- f, + 6
-T

a - laie'o

Equation (Iv.2.1) shows that for a single tone input, the output of the processor con-
sists of a constant bias term, a signal dependent bias term positioned according to the
signal coarse frequency fc and a sampled temporal modulation at the signal fine fre-
quency. The third term contains the original input signal, except it has been heterodyned
to baseband by the pulsing action of the laser diode. It is this temporal modulation that
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allows us to use time domain spectral analysis schemes, such as the DFT algorithm to
resolve the signal into higher resolution spectral components. In order to avoid aliasing
effects between the bandlimited signals in each coarse frequency blurr spot,we need to
satisfy the Nyquist criteria .i.e

1 2

T Ta

where T is the sampling time of the laser diode and T is the aperture of the Bragg cell.
When s(t) is a video signal where fn represents the nth video line, the field amplitude
on the detector plane can be written as

E(u,n):K[Fn(u) * B(u)] (IV.2.2)

where K is a scaling factor. For a camera looking at a tilted grating image with a spatial
frequency u0 in the x coordinate direction (fast temporal variation) and frequency v0 in
the y (slow) direction,

fn(x) =cos(27ruo(x + no)1

1U 0 >- -

vT,
1

VO <
2vTv

V0

where T, is the video line time. In this mode of system operation, the laser diode pulsing
rate should be set equal to the video line rate.i.e. T = T, For example, if we have a
grating with variation only in the x direction, ( vO = 0), from equation (IV.2.2) we get

E(u,n) = K[B(u - uo) + B(u + uo)l (Iv.2.3)

and for a variation only in the y direction of the image,

E(u, n): KB(u)cos(27rvonX) (I V.2.4)

X = vT

From equation (IV.2.3) it is clear that the fast spatial frequency variations along the x
direction of an image can be resolved in the Fourier plane by using an acousto-optic device
as an input transducer and a Fourier transforming lens to spatially channelize these fast
frequencies into coarse frequency bins. Equation ([V.2.4) tells us that spatial variations
of frequency v0 along the y direction in the image are converted by the pulsing space
integrating acousto-optic spectrum analyzer to a sampled temporal variation of the same
frequency in a coarse frequency bin. This temporal variation can then be channelized
into its fine frequency bins along the y direction by using the DFT algorithm based spa-
tially distributed time integrating modules generated by using imaging optics and a CCD
detector array. Figure IV.2.4 shows the grating video images.
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[V.3 Time Integrating Spectrum Analyzer Experiment

We have used the DFT Algorithm approach to time spectrum processing4 . The DFT
algorithm is describeo by

n=N-1

S(k) = s (n)WNnk

n=O

WN = e-T

where S(k) is the 1-D Fourier spectrum of the input signal s(n).This operation can be
broken up into a summation over n of the products of the input signal samples with its
corressponding DFT matrix columns. As the DFT matrix is symmetric, we require only
half the terms in a DFT column. The analog nature of each column is sinusoidal with a
half cycle increase with each increasing DFT column. The DFT matrix represented as a
1-D signal is a stepped frequency chirp signal that can be written as

N-1 t -n
d(t) = E cos[nAw(t - nT)Irect[t TI V. 1

N- -I-T (IV.3.1)

n=O

We used a personal computer to generate the DFT signal. The DFT mask and the half cycle
step behavior are shown in Figure IV.3.1. This method calculates the Cosine transform
i.e. the real part of the Complex Fourier Spectrum. The spectrum analysis is performed
along the length of the DFT column which acts as a spatially distributed local oscillator
(DLO) in time. The frequency of the oscillators increases from the top (DC) of the column
to the bottom (half the Nyquist sampling frequency). If one of the input signal frequencies
coincides with one of the DLO beads, it beats with it to build up an interference peak
at the location of that DLO bead. In this way, the frequency components of the input
signal are resolved into the fine frequency bins along the DFT column (y) direction. Figure
IV.3.2 shows the optical system set up in the laboratory. The laser diode is pulsed at the
video line rate and the input signal s(t) into the Bragg cell is

s(t) = cos[(wo + 6)t] + d(t)coswot

where w0 is the center frequency of the Bragg cell. The signal s(t) is imaged on to the
CCD via the +1 diffracted order light from the Bragg cell with appropriate single sideband
filtering done in the Fourier plane of cylinderical lens C 2 . The light intensity integrated
on the CCD is

n=N-I
I (y) e e-j(w" b)(nT-" + e

n=O

l(y) .sC - cos( + Y 3)s(N)

V sifl&

where
a=I(T- -Wy)

2 v
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w, and f3 are signa dependent spatial frequency and phase terms and C is constant bias
term. Typical value for w8 is z 1.86 cycles per mm which gives only a few cycles on the
CCD surface giving a very low modulation. Therfore. we see peaks located at. the sinc
type function maximum position y = %JT corressponding to the signal fine frequency 6. In
our experiment, b is varied from DC to 7.8 KHz which corressponds to the bandwidth of a
video image along its vertical (y) or slower direction. Figure IV.3.3 shows the experimental
results without bias removal. The peak moves along the imaged DFT signal ridge with
changing fine frequency.

IV.4 Architectures for TSI Spectrum Analysis

Figures IV.4.1 and IV.4.2 show two possible TSI architectures for spectrum analysis
using crossed Bragg cells , imaging optics, a pulsing laser diode , CCD detector array
and supplementary electronics. The general signal chain for both systems is as follows.
The DFT signal d(t) added to a reference bias a is mixed up to the center frequency w0
of the Bragg cell before being used as input to the acousto-optic device. This composite
signal sl(t) is then imaged on to the CCD plane with appropriate single sideband spatial
filtering. In the other orthogonal Bragg cell,we enter the sum of a reference chirp c(t) with
the information signal v(t) (eg. video,tones) that has been mixed to the Bragg cell center
frequency. A lens takes the Fourier transform of the signal s 2 (t) in the AO device and this
spectrum is made to coincide with the detector plane. The electric field incident on the
CCD detector plane is

j2 yE = I (t - X)eI-lrudx][. (t + -)I
J A V V

where
s(t) =v(t) + c(t)]coswot

s 2 (t) = [a + d(t)jcoswot
n=N-1 

-nv(t) =N f(t - nT)rect( nT

for a video signal.

c(t) = -N-1 cos[b(t - nT) 2 rect( t - nZ

and d(t) is defined by IV.3.1. Taking into account the pulsing of the laser diode (b(t - nT))
and the single sideband filtering, we get the intensity on the nth pulse as

IE.I2  I[v(F (vu) I ( *)). AsincAul[a + e- J(V.4.1)

On expanding equation (IV.4.1) (see appendix A), and collecting similar terms, we get
the total time integrated interferomertically generated charge distribution recorded on the
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CCD after a frame time to be given by

n=N-1

I(u,y) = IRe[ E (Fn(u) * B(u))cos(n--y)] + Ki + K 2  (Iv.4.2)
n=O

where the first term gives the 2-D Cosine transform of the input signal and K 1 and K 2 rep-
resent constant bias and signal dependent bias terms respectively. K is a scaling constant
and we have assumed that the reference chirp spectrum is uniform over the bandwidth of
the -information signal. The general blurr spot B(u) has been used in the analysis. For
a continous time signal as input, the first term of equation (IV.4.1) represents the folded
spectrum of the input. On the other hand, for a video signal input, it gives the 2-D video
image spectrum. See appendix A for the impulse response of the system corressponding
to the two types of input. The architecture in figure IV.4.1 although analytically sound
has two important practical limitations. In order to achieve high spectral resolution using
present day hardware .i.e.AOD's, CCD's, the focal length of the imaging lenses runs into
meters. Secondly, for ideal operation the single sideband filtering has to be done in the
plane of the second Bragg cell which is not possible because of the thickness of the crystal
and its support casing. The architecture in figure IV.4.2 solves both these problems by
using crossed cylinders for imaging. This imaging method gives lens values that assure
overall short system length and desired demagnifications for compatibility with the CCD
detector specifications. In our case, we used 10 cm and 15 cm cylinderical lenses to achieve
the desired demagnifications.

Figure IV.4.3 shows the laboratory setup of the architecture in Figure IV.4.2. The
system timing is controlled by the CCD detector 7.16 MHz internal oscillator. The CCD
blanking signal is used to generate a 15.734 KHz laser diode trigger signal with a pulse
width of 100 nsec. This corressponds to a light flash every video line time. The anamorphic
gaussian beam profile of the laser diode is collimated by the spherical lens such that the
lcng axis is along the x direction of the SI AOD aperture. The Bragg diffracted light
from the first AOD is Fourier transformed by a spherical lens in the x direction and
recollimated in the y direction giving a slit of light positioned in the aperture of the second
AOD. The Bragg diffracted light from the second AOD is imaged on to the CCD using the
crossed cylinders. In the Fourier plane of the cylinder with power in the y direction, the
appropriate spatial single sideband filtering is done. The AOD's used in this experiment are
slow shear mode Telirium Oxide devices with an aperture time of 70 psec and bandwidth
of 40 MHz. A 60 MHz center frequency is used for the AOD's. The reference chirp is
stored in a digitally programmable read only memory (PROM) and read out each laser
diode trigger pulse using the CCD pixel clock and a digital-to-analog converter. Figure
IV.4.4 shows a reference chirp oscilloscope trace that was used in the experiments. The
chirp, being digitally generated is perfectly coherent at every laser diode pulse. The DFT
signal is generated by an IBM-PC image processing work station that is locked to the CCD
detector clock. For video signal inputs, the CCD camera is locked to the CCD detector
array by using special synchronizing circuitry. For folded spectrum processing of tones,
the laser diode trigger frequency is adjusted according to the Nyquist criteria.
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Experimental results from this processor are shown in figures IV.4.5 and IV.4.6 for a
fine frequency analysis bandwidth of 7.86 KHz. The processor is operated with a coarse
frequency resolution of 80 KHz per pixel. Data in figure IV.4.5 corressponds to a fine
frequency variation from DC to 7.8 KHz with a zero coarse frequency variation. We
see the interference peak move from left(DC) to right(7.86 KHz) along the DC coarse
frequency bin. Figure IV.4.6(a) shows the 2-D folded spectrum of a single tone input
where the position of the peak gives the coarse and fine frequencies. Coarse DC position
corressponds to the base of the picture. Figure IV.4.6(b) shows the 2-D video spectrum
of a tilted grating used as the video image. The DC of the fast (coarse) variation along
the x direction of the image corressponds to the central bin between the two peaks on the
picture. The slow (fine) variation along the y direction of the image corressponds to the
left to right movement of the peak along each fast frequency bin. We get two peaks instead
of one because the video signal is mixed with 60 MHz before entering the Bragg cell giving
an amplitude modulated signal whose spectrum has two sidebands located symmetricaliy
around the 60 MHz carrier frequency. The single tone experiments are carried out using a
signal generator whose frequency is varied around 60 MHz. The 2-D results corresspond
to spectrums after electronic bias subtraction.

IV.5 Bias Removal Techniques

Bias separation from the desired signal is always an important issue in interferometric
time integrating processors. We discuss three ways in which the bias can be removed.
Pixel by pixel electronic bias subtraction can be done by using two synchonously operated
CCD's, one to record the signal plus bias terms and the other for recording bias terms.
In our experiments, we used a PC based image processing work station with a frame
grabber to store the bias for subtraction. Another approach is to place the desired signal
on a spatial carrier which is converted to a temporal variation by the natural readout
mechanism of the CCD and then bandpass filtered by appropriate electronics. In the TSI
processor, the 2-D spectrum can be placed on a spatial carrier by mixing the DFT signal
by an frequency offsetted Bragg cell center frequency signal eg. 60.1 MHz and using a time
delayed reference chirp signal. The bias subtraction and carrier demodulation methods of
bias removal do not solve the problem of limited system dynamic range as processing is
done after the detection of the signal. The effective system dynamic range at the output
is SBR

DR, = DR[( 1 + SBR) 1

where DR is the dynamic range of the output detector (CCD) and SBR is the signal to
bias ratio on the detector. In most TI systems, SBR is much less than one. One way of
solving this dynamic range problem is using a photorefractive crystal for bias removal '5 .
The desired spectrum is generated on a spatial carrier along the crystal side and is read
out by a Bragg matched beam. The possible architecture for the TSI spectrum analyzer
using a photorefractive crystal is shown in figure IV.5.1. This architecture has definite
attractions such as higher light efficiency, better system dynamic range and no reference
chirp requirement in the signal chain. In addition, the single sideband filtering does not
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have to be done in the Bragg cell aperture and this system can process higher space-
bandwidth signals as the resolution of the photorefractive crystal is much greater than
that of the CCD detector. As this system is not common path, it is more sensitive to
jitter.

IV.6 Processor Performance Issues

The Ca!tech processor shown in figure IV.4.3 achieved coarse and fine frequency res-
olutions of 80 KHz and 100 Hz respectively. The number of coarse and fine frequency
resolution bins corressponded to 384 and 491 respectively. The bandwidth of the system
is controlled by the bandwidth of the reference chirp which is programmed in a high speed
PROM to 5 MHz for video signal inputs. Modulation depths of 30 percent were obtained.
The Caltech processor performance is limited by nonuniformities in the reference chirp
spectrum due to inhouse electronics, the limited temporal coherence of the high power
hitachi laser diode and intermodulation product terms resulting from AOD and amplifier
nonlinearities. The coarse frequency resolution is limited by CCD pixel size, focal length
of Fourier transforming lens, AO cell aperture and apodization effects. For the video pro-
cessor, the ideal coarse frequency resolution of 15.7 KHz could be obtained by using a
larger focal length lens and smaller CCD pixels. The fine frequency resolution is limited
by integration time of the CCD which corressponds to 60 Hz. Note that using carrier
demodulation for bias removal reduces the number of frequency bins along the carrier di-
rection. For using a photorefractive crystal such as Bismuth Silicon Oxide (BSO) for bias
removal in our proposed architecture we need around 8 W pulsed or 16.3 mW continous
power to record gratings with an Argon laser beam 5. This high power requirement can
be reduced for test purposes if we wait a few video frames before reading the integrated
spectrum on the crystal using the Helium-Neon readout beam. The principle of operation
involves the coherent addition of the image spectrum over successive video frames to build
up enough charge density for recording gratings on the crystal. Another important issue to
note is that in a multi-tone signal input environment, the TSI processor will not introduce
crosstalk because each tone is spatially separated in the Fourier plane thus giving cross
terms that have negligible contributions.
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Appendix

This appendix gives the derivation of equation IV.4.2 starting with equatiQn IV.4.1
given earlier.For simplicity of the analysis, we have assumed the u - 0 axis to corresspond
to the position of the Bragg cell center frequency (w0 ) on the CCD plane. The intensity
on the nth pulse given in equation IV.4.1 can be written as

I = (S + C)(a + d)l (1)

where 'S' and 'C' are Fourier spectrums of the information signal and reference chirps
respectively taken by the space integrating Bragg cell spectrum analyzer and 'a' and 'd'
are the reference bias signal and the spatially filtered and hetrodyned to baseband DFT
signal respectively. 'a' is a real quantity and 'd' is given by

d = e- jn .W

Idl' = 1

Using the above relations and expanding equation (1) we get

I, = 2Re[aSCRe(d) + (1 + a2 )1C1 2 + 21C12 Re(ad)

+ (1 + a2 )1S12 + 21S12 Re(ad) - 2(1 + a2 )Re(SC ")

Note that the reference chirp is a perfectly coherent chirp with no dependence on n
as the same digital chirp is generated every laser diodc pulse. Re in equation (2) stands
for real value of a function. Equation (2) consists of 6 terms where the first term gives
the 2-D spectrum, the second and third terms give the constant bias term and finally the
fourth,fifth and sixth terms give the signal dependent bias term. Assuming the reference
chirp spectrum C is uniform over the information signal bandwidth and has an arbitary
fixed phase which can be taken to be zero for simplicity of analysis, we can write C = Co
where Co is a constant. Now taking the summation over all the N laser diode pulses to
find the charge distribution on the CCD , the first term in equation (2) gives

n=N-1

I = 2a.CoRe[ E SRe(d)j (3)
n=O

Substituting in equation (3) the value of S for a video signal and the value of d , we get
the desired 2-D spectrum

n=N-1 A
I,(u,y) -- KRe 1 (Fn(u) * B(u))cos(n--y)f ()

n -O

where K is a constant term involving the constant terms Co and a and the finite size of
the CCD detector array in the u and y directions. We have used the generalized blurr spot
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B(u) to account for the finite aperture of the Bragg cell in the SI direction. The second
and third terms of equation (2) on summation give the constant bias term K 1 to be

Ki = NCo2 (1 + a2 ) + 2aCo2 cos(ay) sin(Ny)szin(,3 )()

zAw
a (N - 1) 2v

2v
,3 Aw

2v

where the first term in equation (5) gives a constant bias level and the second term gives a
fine frequency DC ridge along y = 0 with a very slow spatial modulation undetectable by
the CCD. Now taking the summation over n of the fourth,fifth and sixth terms in equation
(2), we get the signal dependent bias term K 2 as

K 2 = N(1 + a 2)ISU1 2 + 2aIS(u)I2  in(N3y) + 2C 0 (1 + a2 )lS(u)1ai (6)

Note that the absolute value operation on S(u, n) in equation (2) removes the time depen-
dence in the spatial Fourier transform taken by the lens giving only the coarse frequency
bias ridge terms in equation (6). The first and third terms in equation (6) give bias terms
positioned at the signal coarse frequency ridges. The constant a, depends on the fine
frequency of the signal. The second term gives the coarse frequency ridge crossed with the
fine frequency DC ridge. Combining the results from equations (4), (5) and (6) we get the
total time integrated charge distribution on the CCD to be

n=N-1

t(u,y) = KRe[ E (F,(u) * B(u))cos(n-y)] + K, + K2  (7)
V

n=O

The impulse response of the system for a video image input with a spatial frequency u0 in
the x-direction and spatial frequency v0 in the y-direction of the image is

z sin [B(u - uo) + B(u + u,,)l (8)

s *n (-I)

77 = (N - 1)ytrvoX(N - 1)
Aw

" 7r vo X - -AW y
2vv0

where we used the fact that the modulation along y is slow. We will get two peaksXXv

positioned at the coordinates u = uO, y = 27rvoy and u uoy =27r v X

For a single tone input signal with f, and ff the coarse and fine frequencies respec-
tively, we get the impulse response of the system as

l -cos( ) sin(X ) B(u - fc) (9)
sin(-) v

= rf 7' , . Y
V

This time we get one peak located at u f ,y -- 7rff/7" where s is a fine frequency
dependent constant phase term.
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V. Adaptive Broadband Array Processing

V.0 Introduction

Adaptive signal processing techniques for processing broadband phased arrays are pre-
sented. After discussing the essential differences between narrowband arrays and broad-
band arrays, optimal forms for the broadband space-time filters are derived. Adaptive
processing systems which converge to the optimal forms are then presented. Acousto-optic
implementations using multi-channel acousto-optic devices are presented. One particu-
lar implementation makes use of a photorefractive crystal as a time-integrating detector
[11,12].

V.1 Narrowband Processors in Broadband Environments

The extension of adaptive filtering techniques to the space-time domain is applicable
for sonar and radar signal processing where the outputs from an array of sensors must be
weighted and summed to optimally estimate a signal in the presence of noise [1-3]. When
the array processor encounters only narrowband signals centered at a common carrier
frequency, f0, he filfer structure shown in Fig. V.1 is identical to that of the temporal
filter except that the input samples are the outputs of the sensors instead of a tapped
delay line. In such applications, only spatial discrimination of signals is required, and the
jammer nulling capabilities of such systems are quite good as long as the jammers are
narrowband. The output can be described by the following equation

N
z(t) - Z hnun (t),(.I

nl-l

where N is the number of elements in the array and h, is the adaptively controlled weight
for the nth sensor output un(t).

After suppressing the temporal carrier term exp{j27rfot}, the signal received by the
nth. element due to a narrowband signal arriving at an angle 0 from boresight can be
expressed as

Un(t) = a(t)exp{ j27rfrsin0nd/c}, (V.2)

where c is the speed of light, a(t) is the slowly varying envelope of the signal, and d is the
spacing between the array elements. The goal of the adaptation is the minimization of
the mean squared error between the actual output of the processor and a desired signal.
The scenario with which we will be concerned is the one where the desired signal is known
to be on boresight, and interference from directions other than this must be suppressed.
This is sometimes known as sidelobe cancellation [4]. An example of narrowband nulling
is shown in Fig. V.2, where the array gain pattern for a uniformly weighted array and the
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minimum mean-squared error gain pattern for receiving a signal on boresigh and rejecting
a jammer of the same frequency at a sidelobe angle are plotted.

Although the jammer is received at a sidelobe angle and is attenuated relative to the

signal, the power of the jamming interferences is typically much larger than that of the
signal, and so the summed output of the uniformly weighted processor will be dominated

by the interference. In this case, the optimum pattern to which the adaptive processor
converges places a perfect null precisely at the direction of the interference.

Given the size of the array (N = the number of receiving elements), an upper bound
on the number of spatial jammers of the same frequency fo that the array is able to reject
can be established. The rth jammer from a set of M jammers can be represented by an
N-element vector u(m) whose nh element is given by

u(m) = exp{-j2rfosinOmnd/c}. (V.3)

Simultaneous nulling of all of the M jammers leads to the system of equations
(1U )" u(1) ... u(N) ) h ,) 0"" h i

(VA4)
U(M) M.. (M) 0
U1  2 . UN

S1 2 ... SN) hN

where s represents the signal vector, and the last equation of the system arises from the

constraint that the signal be accepted. If the jammers are distributed spatially such that

the vectors {u(m)}M , and s are linearly independent, then in order for a solution h
to exist, there can be at most N equations in the system, yielding the upper bound of

M < N - 1. The linear independence condition is akin to that of general position in
pattern recognition [9] and assures that the jammers are irregularly distributed in space.

Since the narrowband arrays assign only one weight per sensor, no consideration of the

temporal content of the received signal is taken. The spatial distinction of a signal is judged
based on the observed differences in the phase of the signal as received by each element.
If a particular jammer contains many frequencies spread over a significant bandwidth,
each component will result in a unique relative phase difference from element to element
and hence will look like a multiplicity of jammers directed at different angles. Thus, if a
narrowband processor encounters a sufficiently wideband interference in some direction,
it will use up all of its degrees of freedom (the adjustable weights) to null this single

directional noise.
Two examples are shown in Figs. V.3 and V.4, where the minimum mean-squared

error array patterns are plotted for a boresight desired signal and a multi-frequency jammer

incident at 0 = 600. The element spacing in each case is j'o . The jamming frequencies are

fo, .85fo, and .7fo, with the signal power and the power in each jamming frequency being
equal. For each case (Fig. V.3, Fig. V.4), a gain pattern for each jamming frequency is
plotted, since the array response is frequency dependent. Fig. V.3 depicts the response of

a 2 element array, and it is clear that only the frequency .85fo is nulled perfectly, while Fig.

V.4, which corresponds to a 4 element array, shows perfect nulling for all three frequencies.
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Fig. V.1 Narrowbarid Array Processor
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V.2 Optimum Broadband Systems

In narrowband applications, bandpass filters are used to assure a narrowba.nd signal
and noise environment as shown in Fig. V.1, but where signals with large bandwidths

must be processed, such filters cannot be used. Even in broadband noise environments,
we would like the N element array to be capable of cancelling N - 1 jammers in general,
regardless of their respective bandwidths. This requires that more degrees of freedom
be available for the output of each sensor than the single weight that the narrowband
processor provides. Shown in Fig. V.5 is an N element array processor that satisfies
the requirements for operation in broadband environments by passing the output of each
sensor through a linear time-invariant filter, or equivalently, a tapped delay line [5-7].
While spatial discrimination is still made possible by the spatial sampling done by the
array of sensors, the additional capability of making distinctions based on the temporal
content of the received signals is offered by the array of filters.

An optimum choice of the linear filters based on the mean squared error criterion can
be made in the present scenario of a desired signal incident on boresight and broadband
jammers from other directions. Let s(t) represent the desired signal which is assumed
to derive from a stationary random process with zero mean and autocorrelation function
given by R(r) = E[s(t + r)s-(t)]. Since the desired portion of the received signal arrives
on boresight, there is no dispersion, and each element receives an identical desired signal
as(t). The interference that arrives from different directions will induce signals in each
element with different delays.

Let vn(t) be the interference component received by the nlth element, assumed also
to derive from a zero mean stationary random process with covariarice function given by

"1mn(r) = EIvm(t + r)v-(t)]. The total signal received by the nth element is therefore
given by un(t) = as(t) + v,(t). The output of the array processor is given by

N 00

z(t) = E. J h,(T)u,(t - r)dr. (V-5)

The problem is to minimize the mean-squared error

c[h,,(r)J = E[lz(t) - s(t)12], (V.6)

by varying the filter kernels hn(r). By using simple variational arguments, it is shown
in Appendix B that the minimizing solution for h,(r) must satisfy the system of linear
integral equations

> J hm(T) [aR(t - r) -,mn(t -7)] dr -- R (t), (V.7)

where n = 1,2,. . . , N. Transformation of the above system to the frequency domain yields

N

> Hm(f) [aS(f)+ I'lm,(f)] - S(f). (V.8a)
m-I
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Here S(f) is the spectral density function of the signal and rm,(f) is the cross-spectral
density matrix of the interference, given by the Fourier transforms of the corresponding
covariance functions, and Hm(f) is the frequency response of the mth filter of the array.
For comparison, the corresponding equation for a narrowband processor with a single
complex weight Wm for the mth receiving element is

N

Z Wm[a + Cmn] Z 1, for n = 1,2,...,N (V.8b)
m= 1

where a is the amplitude of the received signal component on boresight and Cmn =
E[vmv-], the covariance matrix of the noise components. A comparison of Eqs. V.8a
and V.8b shows that the optimal broadband strategy is to simply provide an optimum
narrowband weight for each frequency f. Thus, the optimum broadband system reduces
to a channelized system of optimum narrowband sub-systems.

If we now assume that the signal spectrum is approximately white (e.g., spread spec-
trum codes) with spectral density So and the received signal component is small compared
to the noise so that aSo < 1, then Eq. V.8 can be approximated by

N

E Hm(f)rmn(f) So. (V.9)

The frequency-dependent response of the individual filters can now be varied to compensate
for the spectral characteristics of the environment, whereas the narrowband processor
offered no such flexibility with its single, frequency-independent weight for each sensor.

V.3 Directional Cancellation of a Single Broadband Interference[2,4-6]

The example of a cancellation of a multi-frequency interference given in Fig. V.4
shows that a narrowband array processor suppresses a broadband jammer by placing the
null over a wide region near the interference direction. This is true in general for any nar-
rowband array processor with a number of elements sufficiently large to null a broadband
interference. A large number is needed because the array pattern shifts with frequency.
By solving Eq. V.9 explicitly for the case of a single broadband interference incident at an
angle 0, with respect to boresight, we will show analytically that the broadband system
suppresses the interference with a null that does not shift with frequency, placed precisely
at Oi.

Let a(t) be the broadband interference waveform incident at an angle 0, with respect
to boresight, so that the nth element receives the relatively delayed version a(t -nA), where
A :- dsinO,/c. Assume that the interference waveform is derived from a zero mean station-
ary random process with the autocorrelation function given by -Y(r) =- E a(t -i r)a' (t),,
the covariance between the interference received by the nth and mth elements is given by

-mn(r) E ja(t + T - m A )a (t nA )J (V.i1)
-+ (n m)A).
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The inclusion of sensor or receiver noise that is uncorrelated for each element and assumed
to be white with spectral density c0 yields

'Ymn(r) = -1(r + (n - m)A) + nmn62)0 (V.11)

as the covariance of the total noise present in the Muth and nth elements. The noise cross
spectral density matrix, required for the optimal solution, is the Fourier transform of the
above expression. It is given by

Fmn(f) = exp{ j2rf(n - m)A}S,(f) + bimnco. (V. 12)

The particularly simple form assumed by the noise cross spectral density matrix en-
ables the inversion of Eq. V.9 to be carried out explicitly. It can be shown that the solution
of Eq. V.9, which gives the optimum form for each filter, is given by

H(f) = (So/C){1 - exp{-jirfA(N + 1 - 2n)}
si~n(7r f N A ) 2(V. 13)
sin(7rfA) Sv(f)/(ro + NSt(f))}.

The gain pattern that results from this choice of filters can be determined by computing the
array response to a monochromatic plane wave signal at various frequencies and incidence
angles. Specifically, if we let 0 represent the incidence angle of this probe beam, the gain
pattern as a function of the probe frequency and angle is given by

g(f,0) (exp{-jirf(N + 1)A'}So/a2) sin(irfNA')1 0 1sin(7 f A1)

-exp{-jirf (A' - A)(N + 1 )}sin(7r fNA) (V.14)

sin(7rfA)

sin(7rfN(A' - A)) SV(f) ,

sin(rf(A' - A)) (c2 + NS,,(f))

where A' = dsinO/c. At incidence angles other than that of the interference, 0,, the second
term is small since A _ A' so that

siI 2 ,n(rf NA')(V15
g(f,O # 0i) (So/c)exp{-jirf(N + sin(7rfA') (V 15)

which is simply the array pattern with uniform weighting.
When we probe near the interference, however, so that 0 Z 0,, then the second term

becomes appreciably large and the gain becomes

sin(7rfNA)

g(f,0. Oi). (Su/u )exp{ jirf(N 1)A} sin(7rfA) (V. 16)
f1 IU S, (f)/(o2 US,(f))I.

With the assumption that the interference power is large compared to that of the detector
noise so that NS,(f) >> a, the gain becornes zero near the interference direction. Note
also that this null in the array pattern remains fixed for all frequencies where there is
sufficient interference power to overcome the detector noise.
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V.4 Adaptive Array Processor

As in the strictly temporal case, the adaptive broadband sidelobe canceller.also uti-
lizes convolvers and correlators to accomplish the desired task. However, because of the
multi-dimensional nature of the signals (spatial and temporal), arrays of correlators and
convolvers must be employed. The basic system is shown in Fig. V.6.

The output of the processor is simply the sum of all of the signals from the array
elements and a feedback signal, which is derived from a cascade of multi-channel correlation
and convolution operations performed on the output and input signals. The output is fed
back to the first block, which calculates the correlation between the output signal and the
N input signals from the array elements. Each of the resulting correlation functions, given
by (u,,(t) *z(t)), n = 1,2,..., N, is then convolved with its corresponding input. The N
convolved results are summed to give

N

i = G ,U,(t) * (U,(t) * z(t)) (V.17)
n=1

as the feedback signal, where G is the feedback gain.
To show that the adaptive processor approximates the optimum response, however,

the output must first be expressed in the form of Eq. V.5, where the impulse response
for each array filter is explicitly shown. We will show that the equation describing the
filter impulse response functions, hn(t), n = 1,2,...,N, of the adaptive processor is
approximately equivalent to that of the minimum mean-squared error processor given by
Eq. V.9.

In order to clarify the analysis to follow, we redraw the schematic of Fig. V.6a as
shown in Fig. V.6b so that as in the Frost architecture (Fig. V.5)., the output from
individual filters can be identified and described. Here, the output of the nth filter is given
by 0.

y,(t) =- h,(t - r)u,(r)dr,

or equivalently, Yn(f) = H(f)U(f) where Y,(f) is the Fourier transform of yn(t). The
overall output is then given by z(t) n yn(t). Inspection of Fig. V.6b yields

Xn(t) =Un(t) - G[un(t) * z(t)] * un(t)

= b (t) - G [U nt) * Z N)]]I * un(t), (V. 18)

where b(t) is the Dirac delta function. Since x,(t) = hn(t) * u,(t), the impulse response

of the nth filter is described by

h,(t) =6(t) - Gu,(t) * z()

N

- (t) - Gun(t) * > um(t)* hm(t). 9)

m=1
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Taking the Fourier transform of the above equation and rearranging yields

E [6nm + GU(f)Um(f)] Hmf) = 1, (V.20)
m

where U,,(f) is the Fourier Transform of un(t). If the feedback gain G is sufficiently large
so as to leave the first term of Eq. V.19 negligible compared to the second, then Eq. V.20
becomes

GEU-(f)Um(f)Hm(f) - 1. (V.21)
m

This is of the same form as the optimum equation, Eq. V.9, provided that the input SNR
is sufficiently low so that we can identify u (f)um(f) as the estimate of the noise cross
spectral density matrix Fmn(f). The particularly simple form of Eq. V.20 can be inverted,
however, to give a closed form solution for the adapted filtering functions. The derivation
is analogous to that leading up to Eq. V.13 and yields

Hn(f) =1 - U,(f) --mV= I UM (f) n = 1,2,..,N. (V.22)
I+GE ,.-I U(f) 12'

Suppose that the total signal received by the array consists of a weak probe signal on
boresight represented by p(t) whose Fourier transform is P(f) and strong interference
signals incident in other directions, the noise received by the nth element represented
by vn(t) whose Fourier transform is Vn(f). Thus, the total input is given by u,'(t) =
p(t) + vn(t). The probe is sufficiently weak as to only negligibly affect the determination
of the filtering functions H,(f) so that approximately,

Hn(f) ,z, 1 V(f) Vm(f) 2,..,N. (V.23)

1 + GZ_,.= IVM(f)12'

The output is described by

N

Z(f) - Hn(f)Un(f)

n= N N (V.24)
N _ .(f =$ Vm(f)4fV.(f)]

n=1 1 + GEM =1 JVm(f) 2 J

Further expansion yields

~I EN:jVm/:f)12
I + G fVN[ 1 Vm(f) 2 I]P(f)

N M Nf (V.25)
+~ -,,fI- E i Yn(fll

+ V ) N iV,.(f) 2

n= _-M7
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As expected, the second term is effectively suppressed if the feedback gain can be made
large.

V.5 Optical Implementation

The optical implementation of the adaptive sidelobe canceller is a fairly straight-
forward extension of the optical techniques used for the temporal systems described in
Chapter 3. The extension is made simply by using arrays of convolvers and correlators
to handle the N input signals from the antenna array sensors. The input spatial light
modulators to be used are multi-channel and single channel acousto-optic devices that
offer large dynamic range and can operate on broadband signals. We concentrate first
on a space-time integrating system that involves the use of a photorefractive crystal to
perform the time integration. A strictly space integrating array processor is described in
Section V.6.

The basic task of the processor is to form the feedback signal given by Eq. V.17.
Note, however, that since correlation can be expressed as u,(t) * z(t) = u-(-t) * z(t), and
convolution is both an associative and commutative operation, the feedback signal can be
expressed equivalently as

N

fi(t) = Gz(t) * >j un(t) * u,'(-t). (V.26)

This rearrangement suggests that we can modify the system architecture somewhat by first
computing an autocorrelation function of each input signal, adding the autocorrelations
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and convolving the summed result with the output, z(t), to form the feedback signal as
illustrated in Fig. V.7.

For the purpose of discussion, however, we adhere to the strict interpretation of Eq.
V.17 as discussed in V.4. As shown in Fig. V.6a, the output is first correlated against
each of the N input waveforms, and each resulting correlation is then convolved with its
corresponding input. The N convolution-correlation signals thus produced are summed
to form the feedback signal. The multi-channel correlations are- performed using time
integration and the convolution with the output signal is achieved with space integration.

Shown in Fig. V.8 is the multi-channel correlator, where the output autocorrelations
are written as modulations of an index grating formed on the crystal by the photorefractive
effect. More specifically, AOD1 and AOD2 are arranged to operate in a coherent, additive
architecture. The single channel AOD1 diffracts a portion of its input light. This passes
through AOD2 without being affected because of Bragg mismatch and is imaged onto the
crystal to yield the amplitude z(t + x/v - T/2)exp{j27rfo(t + x/v)} in the crystal plane.
The multi-channel AOD2 diffracts the undiffracted beam from AOD1, which is aligned to
be well matched to its acoustic gratings to yield the optical amplitude

IU,(t - x/v - T/2)rn(y)exp{j27rfo(t - x/v)},

n

also imaged onto the crystal. Here rn(y) characterizes the vertical confinement of the
acoustic beam in each channel of the multi-channel AOD and can be approximated by

1 y- ( -N]+1 y 1
n(YJ 6 J n = 1,2,..,N, (V.27)

by being the acoustic beam width and yo the separation between neighboring channels,
where N is assumed to be odd.

These two amplitudes are incident at an angle with respect to each other. Since
both have the same Doppler-shift in frequency, an intensity grating is seen by the crystal.
In fact, an array of one-dimensional modulated index gratings, each confined vertically
by rn(y), is formed within the crystal. It can be shown that the modulation functions
are proportional to the desired correlation functions, and specifically, the diffracted light
due to the nth grating when the crystal is illuminated by a plane wave is given by 18]
En(X, y)exp{-j27rfo(2x/v)}. Here

I.t

En(x,y) c r, (y) I exp[(t' - t)/ru (t' - x/v - T/2)z-(t' + x/v - T/2)dt'
Jo (v.28)
t t-zv-T/2

cx rn(y) un(t')z (t' -±2 x/v)dt'.
J t-z/v-T/2-r

In this equation, the exponentially decaying window function has been approximated by a
rectangular window of temporal duration r. The resulting integral is proportional to the
correlation function of un(t) and z(t) with 2x/v as the shift variable.
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To complete the task of forming the feedback signal, we combine the previously de-
scribed correlators with a space integrating convolver, resulting in the system shown in
Fig. V.9. The added portions are the multi-channel AOD (AOD3) which is driven by
the system output z(t), some imaging optics, and a single photodetector. Since the auto-
correlations are available at a compressed horizontal spatial scale, 2x/v, a combination of
cylindrical and spherical lenses C1,L5,L6 is used to anamorphically image AOD3 onto the
crystal. This anamorphic imaging provides a 2:1 demagnification -ratio in the horizontal
direction and 1:1 in the vertical.

A portion of the He-Ne read beam is diffracted by AOD3 and passes through the
crystal unaffected since its propagation direction is not properly Bragg-matched to the
correlation gratings in the crystal. The DC beam from AOD3, however, is arranged to
be Bragg matched to the gratings and reads out the correlation functions. If the acoustic
velocity in AOD3 is v, the same as that of AOD1 and AOD2, and all of the AODs are
driven at the same frequency, fo, then the read beam diffracted by the crystal and that
diffracted by AOD3 are collinear and interfere temporally at fo because of the Doppler shift
induced by AOD3. The diffracted light amplitude just behind the crystal due to the crystal
gratings is proportional to E,, E,(x,y)exp{j27rfo(-2x/v)}, and the diffracted light from
AOD3 evaluated at the same plane is 1--, exp[j27rfo(t - 2x/v)]u,,(t - 2x/v - T/2)r"(y).

The sum of the above two amplitudes are Fourier transformed by lens L7, and the
resulting intensity distribution is integrated across the Fourier plane by a sufficiently large
photodetector. If w is the width of each AOD, the result is the output photocurrent

i(t) CX Re exp{j27rfot}Z fJ / 4  E,(x,y)u,(t - 2x/v - T/2)dydx

+ DCterms

oc Re0exp{j02r7r fot} E r(y)u-(t')z(t' + 2xlv)
n w/4 f00 t-x/-T/2-r (V.29)

u,(t - 2x/v - T/2)dt'dydx} + DCterms

c Refexp{j2rfot E T/4 t T/2 u(t')z(t' + 2x/v)
n f-T/4 t-_/v-T/2-r

Un(t- 2x/v - T/2)dt'dx} + DCterms.

The high frequency term centered at fo is approximately equal to the desired feedback
signal given by Eq. V.17. The output of the system z(t) is then formed by subtracting the
feedback signal from the sum of the input signals En un(t) to yield

z (t) Ejun(t) .G)T/4 [ u-;(t' + t 0 - T/2)z(t' + t + T/2)
S T T/4 r (V.30)

un(t - 2J3 - T/2)dt'd3},

where /3 x/v, T -w/v, and G is the feedback gain. Here we have assumed that the
signals received by the array are all ccnt,-red at fo and that they drive the AOlIs directly
after being amplified.
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By defining an equivalent impulse response, hn(a), for the system such that z(t)
E,, f-00 hn(ct)un(t - a)da, Eq. V.30 can be expanded further to give

ST/4 0 (t + t -0 - T/2)h(V.31)

Um(t' + t +,3 - T/2- a)un(t - 2,3 - T/2)dadtfd3}.

An equation that describes the impulse response can then be derived by noting that the
output appearing on the left side of the above equation can be expressed, using the impulse
response. With the assumption that the integration time, r, is long enough to warrant the
approximation sinc[fr z 6(f), the resulting impulse response equation is given by

h ;() ,() G )rect 1 1-TI f f0 exp{j2rf'(3 - a - T/2)} (V.32)

h,, (a) U,- (f ') Urn, (f ') df'da,

where Un(f) is the Fourier transform of the nth input signal un(t). TakiItg the Fourier
transform of the above equation gives

H(f') 1 -G exp{jir(f'- f)T}sinc[(f'-f)TJHm(f')U-(f')Um(f')df'. (V.33)

This is very similar to the optimal equation discussed in V.2 if we identify the product
U;(f)Um(f) as an approximation of the required cross spectral density matrix. In par-
ticular, the effect of the finite convolution time is to distort the spectral properties of
the input noise field. Thus, the optical implementation is expected to place a spectrally
broader null in comparison with the interference bandwidth, but the spatial characteristics
remain similar to the optimal case.

V.6 Adaptive Array Processor with Variable Look Direction

The array processor described thus far is a sidelobe-cancelling system where the max-
imum sensitivity (the "look direction") is always constrained to be in the direction of
boresight.* In this section, an acousto-optic processor is presented which is an extension
of the temporal active processor described in [ito the space-time domain. The optical archi-
tecture considered uses space integration as opposed to the photorefractive implementation
considered in the previous section. The optimizing criterion used is that of maximizing
the output SNR (signal detection) and the signal need not arrive on boresight.

The scenario considered is that where a signal waveform s(t) is incident on the array at,
a known angle 0 with respect to boresight, and noise (possibly broadband) fior directional

* The look direction can be changed by introducing appropriate delays in the signals

received by each element before they are processed.
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sources corrupt the received signal waveform. Let s,,(t) = s(t - n(dic)cosO) be the signal
waveform received by the nth element. The total signal received by the nth element is then
given by u,(t) = s(t) + v,(t), where v,,(t) is the sum of all noise terms. Here. d is the
array element spacing, and c is the speed of light.

The output of a general space-time filter can be expressed as

N 0

y(t) = j un(r)hn(t - r)dr, (V.34)
n=13-O

where u,(t) is the complex envelope of the total rf signal (centered at fo) received by the
nth array element, and hn(t) is the filtering function for each channel. A similar expression
is obtained for the optically implemented space-time filter using two multi-channel AODs
shown in Fig. V.10. This system is coherent, and the output can be shown to be given by

21 N fT/2
2cl /0 2

y(t) = T u,,(t - r - T/2)h,(t + r)dT, (V.35)

where the filtering function h,,(t) is used to drive the second AOD, and cl is a constant
that depends on laser power, AOD diffraction efficiencies, and the quantum efficiencies
of the detectors. The only differences from the general filter (Eq. V.34) are limited
accumulation time and the time compression of the output. This is of little consequence
since signal detection rather than estimation is considered here. The noise v,(t) present
in the received signal is modeled by a zero-mean random process with a covariance matrix
given by

'ymn(t) -Evm(t)v,-(t - r). (V.36)

It can be shown through variational arguments that the choice of h,(t), for which the SNR
of the AO space-time filter is maximum at a specified time to, must satisfy the following
system of integral equations:

/ J(T !3)hrn((3)d- As-( T), n - 1,.2 ....
Tnl I

The details of this derivation are given in Appendix 13.
For adaptivity, we need to calculate and continunously update the filter function to

drive the output to the optirnurm resu lt. As with the temporal active processor, the output

must be correlated with the input to produce the appropriate filter funiction. Since the
array processor has A, inpitis and one out pit, this reqiires that e correlate N sign als
with a corritor one. This can bh achieved with tOl arrarigerterit showt ini 1ig. V. II . That
figure showvs the use of a rnulti-chatmel AOD driveit by the .\ antenna cleewii outplits iII
conjtinion with ; single chiannel AO) driven by the processor mitipl .-,igild.

The cormp!ex envelope o the out put of the Pth deleclor elcttilew Igiv't tK
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where c2 is a constant that depends on the laser power, AOD diffraction efficiencies, and
the quantum efficiency of the detector. For proper correlation to appear at each output,
the signal driving the single channel AOD must be time-cornnre-sed by a factor of two.
This is indeed the case for the system described. Thus, the AOD implemented space-time
filter and the N channel correlator with a single reference are compatible.

Shown in Fig. V.12 is the array processor block diagram that shows the interconnec-
tions required; it is a direct extension of the temporal active processor to two dimensions.
The output from each antenna element is correlated with the processor output to produce
the filter function for that element. The "steering vector" si (-t) determines the look
direction of the array and also is the temporal reference signal used for the detection of
the desired signal s(t).

Fig. V.13 shows the optically implemented adaptive array processor with the AOD
implemented space-time filter in the upper branch and the N channel correlator in the
lower one. By combining Eqs. V.35 and V.38, the equation that determines the filter
function ha(t) is seen to be

h,,(t) sn(-t + to) - G 8 c j2 T/2 j u-(t + 2/beta - T/2)3T2 M T/4(V.39)

Um(t + - T - T/2)hm(t + 0 + 7")dfldr,

where G is the feedback gain. Under conditions of low input SNR and large feedback gain,
Eq. V.39 can be transformed to the frequency domain to yield

N
eXP( - j.27fo-t,,)-(f) G cIC2 Z Hm(f) U,(f')Um(f')

cM J) 00 n (V.40)

exp jir(f - f')T/4jsincj(f - f')T/4)sinc(f - f')T/21df,

where S,(f) is the Fourier transform of s,(t).
For comparison, consider the Fourier transform of Eq. V.36; the optimum filter equa-

tion is given by

> I'Mn(f)fM(f) - Aexp( j27rfto)S,(f), (V.41)

where F,,(f) is the spectral density matrix. Identifying the integral in Eq. V.40 as the
smoothed estimate of the cross spectral density matrix of the input noise vector, Eq. V.40
is approxirriately equivalent to Eq. V.4 1. However, the effect of the finite time integration
window is seen in the smoothing of the noise spectrum.
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Appendix

Optimum Broadband Array Processors

The optimum broadband array-processing systems discussed in Chapter V are derived
in this appendix. The two optimality criteria considered are the mean squared error and
the maximum output SNR conditions. Simple variational arguments are used to derive
the necessity conditions for these criteria. Since the costs to be minimized are quadratic
functionals of the impulse responses that are varied, these necessity conditions are sufficient
as well, and so describe the systems uniquely. Throughout this appendix, the noise received
by the nth array element is represented by vn (t) which is assumed to be a zero mean,
stationary, random process with covariance "Ymn(,r) = E[vm(t)v'(t - T)1.

Minimum Mean Squared Error Sidelobe Canceller
We model the desired signal by a zero-mean stationary random process s(t) whose

autocorrelation function is given by R(r) = E[s(t)s-(t - r)}. Let the total signal (desired
signal plus noise) received by the nth element be represented by un(t) = s(t) + v,, (t). Since
the scenario of interest focuses on a signal arriving on boresight, each element receives the
same desired signal without dispersion.

The form of the processor is shown in Fig. V.5, where the parameters that must be
optimized are the N impulse response functions. The output signal is given by

Ntc

z(t) = E J h(7)u,(t - r)dr, (Al)

and the cost to be minimized is given by

C[h,(t)] = E[Iz(t) - s(t)121

=ZZh'((3 )h()[R(3 - r) + -nm(3 r)IdTd3
m nf f (A2)

n 00

where we have assumed the noise and sigital portions to be statistically independent.
Let hn(t) represent the optimum filter for the nth element, and let g,(t) represent any

other impulse response function. In order for h,,(t) to be the cost-minimizing solution,

the pertrbed cost function C~hn(t) i ag,(t)' must have a rninimunM value at the point.

a = aR + ja = 0, where au and a, are real. The two conditions that express this
mathematically are 0

- 9 chh()(,) , a,(- 0,
aa R (A3)

a
ac C 'h,(t) - a g (t)]ja - 0.
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Carrying out the above calculations leads to two equations which combine to yield

1 gn(r){ f h'(3)[R(3 - r) + ynr,(I 3 - r)]d3 - R'(r)}dT=O. (0)

Since gn(t) is an arbitrary function in Eq. A4, the terms within the braces must sum
identically to zero. This gives the following condition that the optimum filter must satisfy:

>3] h (3)[R( 3 - 7) + 'ynm( 3 - r)]d,3 - R-(r) = 0, (A5)

which is both necessary and sufficient because the cost functional is quadratic. This is the
generalization of Wiener's result to the space-time domain of broadband phased arrays.

Maximum Output SNR Array Processor
We now consider the task of signal detection, using the array processor of Fig. V.5.

The signal is a known waveform s(t), which arrives at an angle 0 with respect to boresight,
and the noise field is the same as that discussed for the MMSE (Minimum Mean-Squared-
Error) processor. The total signal received by the nth element is therefore given by

U,(t) - s,(t) + v,(t), (A6)

where s,,(t) = s(t - ndcosO/c) is the signal waveform as seen by the nth element.
The output is given by

(t) f 00 U,(t - T)h,(T)d7-. (A 7)

n 0

Since the processor is linear, the signal component can be readily identified from the noise
at the output. The output signal and noise are described, respcctively by

(1)nl - f3 00Sn(t -r)hn(7-)dT,

00 (A8)

enoisemt >3 00V,(t - T)hri(T)dT.

The goal is to maximize the output SNR given by

S N l I le ,9,la(i,) 2
SN?' (A 9)

at a prescribed time to.
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An equivalent problem is to minimize the output noise power while constraining all
admissible impulse responses to give the same output signal amplitude at to. In particular,
the functional expressed by Eq. A9 can be maximized by minimizing the cost given by

Q[h.(t)] E[lenoise(to)12 ] - A{E f s(to - r)h,,(7)dT - c}

ZZEJ h -(T hn()h'm(O)-nm (f- r)drd3 (A0)
n m

-A{1Z JO Sn(to - T)hn(7)dT - C}.
n

where the constraint esignal (to) = c has been included through the use of the Lagrangian
multiplier A.

Again, representing the optimum filter by hn(t) and an arbitrary function by g(t),
we apply the conditions given by Eq. A3 to obtain

] gn(r) {E nm( 3 - r)h*(l)d - A s(to - 7)}dr = O. (All)

Since g(t) is an arbitrary function, the terms within the braces must sum identically to
zero, yielding the condition

'z 0 mn(" - 3)hm(,3)dO = A's(tn r), (A 12)

which is the matched filter result generalized for phased-array processing. The Lagrangian
multiplier A is immaterial since it merely multiplies all N filters by a constant factor and
has no effect on the output SNR. Therefore, Eq. A12 describes the optimum result to
within a constant factor.
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VI

INVERSE SYNTHETIC APERUTURE RADAR:
IMAGING METHOD AND OPTICAL IMPLEMENTATION

VI.1 Introduction

Radar has proven over many years as an effective means of detecting and tracking targets.
A very desirable additional feature is the ability to identify the target being tracked. The
most straight-forward approach to target identification is to produce an image of the target
which can then be presented to a pattern recognition system. Unfortunately radars, due to
practical constraints on their physical apertures, are generally not able to obtain enough
information from a single radar echo to produce an image. Instead they must synthesize an
aperture by recording over time, as either the target or the radar moves, a series of echos
from the target until enough information is obtained to produce an image. The recorded
echos contain information not only about the target's reflectivity, which is what we wish
to compute in the imaging process, but also the about the relative motion between radar
and target. The effects of the latter can interfere with the imaging process and must be
compensated for if a well-focused image of the target is to be produced.

VI.2 Fundamentals of Radar Imaging

When viewed from a small range of angles a target can be characterized by a reflectivity
function f(r) such that if a field E(t) is incident from a radar onto a volume dr, centered
at a point F on the target, then a field f(r')E(t)d3 r is reflected back towards the radar (we
use a coordinate system centered and fixed on the target). Imaging a target is the process
of computing f-(f).

If the radar sits at the point j7 and transmits a field

e j27ru0 t

then the reflected field received at the radar is given by

ej 2 1rv'ot E(va) = ej 2 7rvot J f(r-)e- 2 o2Ij - 'I/c d3 r (VI.1

which is the sum of the reflected fields from all points on the target, each of which has a
phase shift due to the 21I- ri/c time it takes the signal to go from the radar to the point
F and back. If p p, the gross-range , is large enough to put the radar in the target's
far-field then the far-field approximation

r: p - 9 (VI.2)
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is valid, where 6,, - the aspect - is the unit vector in the radar's dir-'ction. Using (VI.2) in
(VI.1) and mixing out the temporal carrier exp(j21rvot), we have

E(vo) = e- 22 '2 °PIC J f(r-)e 2 ,v[2vo/c] dar. (VI.3)

Using the definition of the Fourier transform

f(U-) = J f(-)ej2 '" d3 r

(VI.3) can be written as
E(vo) = ei 2W2 P/c f(2v0 ;/c).

Thus, apart from a gross-range-induced phase distortion, the radar has obtained a sample
of the target's spatial spectrum. The location of the sample in the target's Fourier space
is determined by the radar's frequency and aspect. If instead of a pure sinusoid the radar
transmits a signal of bandwidth P around a center frequency vo then the target's spectrum
will be sampled along that portion of the ray F, from 2(vo - //2)/c to 2(vo + /3/2)/c in
magnitude. If additionally some relative motion between the target and radar causes p and
, to become functions of time - p(t) the gross-range history and F.(t) the aspect history

respectively - then

E(vo + v,t) = e - 21 2(L° +v)p(t)/c f(2(vo + v)C (t)/c) (VI.4)

for -,3/2 < v < 3/2. Hence by exploiting wide-band signals and radar/target motion
a region of the target's Fourier space can be recorded. This process is referred to as
synthesizing an aperture. Computing f(f) is then a matter of putting this data in a
suitable form and inverse Fourier transforming.

VI.3 Motion Compensation

If we know f(6T), the Fourier transform of f"(f), in a region of Fourier space we can inverse
transform and obtain f(r-) to within the resolution determined by the finite extent of the
region. Unfortunately the data E(vo + il, t) is not recorded as a function of the target's
spatial frequency, il, but as a function of radar frequency and time, vo + v and t respectively.
To figure out the value of f(67) at some position ill in Fourier space from the recorded data
we need to find v, and tj such that

2(vo + v,)eb(t,)/c = ill. (VI.5)

so that
E(vo + v,, ti) = e -j 2 2(o+L )p(t 1 )/c f(7,).

In addition we need to know the value of p(t1 ) so that we can eliminate the phase distortion
and arrive at

j(oi) = ej 2 2 (vo+&,j)p(t1 )/c E(vo + vi, ti).
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The frequency vi can be solved for easily from (VI.5)

1 _Ili!, 11 = 2(v0 + v,)/c =vi = cll11111- V0.

To find t from (VI.5) we need to solve

e',t)= i4,/llu, II

which requires knowledge of the aspect history -P (t) just as removal of the phase distortion
requires knowledge of the gross-range history p(t). Removing gross-range-induced phase
distortion and mapping from radar frequency and time to position in the target's Fourier
space are referred to as motion compensation. We will refer to the former as gross-range
compensation and to the latter as aspect compensation.

The term synthetic aperture radar (SAR) is used to describe situations in which the
target is stationary and relative motion between radar and target is due to radar motion
alone. Since the radar's motion is generally controllable and/or measurable both the gross-
range and aspect histories are known and hence motion compensation can be performed
and an image of the target produced.

Inverse synthetic aperture radar (ISAR) describes situations in which the target is
moving so relative motion is due, at least in part, to target motion. This is the kind
of imaging we will discuss in this paper. Since target motion is generally not controllable
and not measurable we lack the complete knowledge of the gross-range and aspect histories
needed to perform motion compensation. Thus ISAR imaging is not possible unless we can
measure p(t) and F, (t) or figure out some way to compute them during the imaging process.
Because radars are range measuring devices it is possible to measure p(t) and techniques
have been developed to perform gross-range compensation [1,2]. Therefore in what follows
we will assume this has been done and concentrate on the problem of performing aspcct
compensation.

VI.4 ISAR Imaging in Two Dimensions

We are going to examine the special case in which target motion is such that e,(t) is
confined to a single plane through the origin. This accurately describes a great many
cases of practical interest - e.g. targets moving in straight lines, targets rotating about
some fixed axis - and is the case commonly treated in the literature [1,2,3]. By the
choice of coordinate axes, we can always take this plane to be the x,y plane so that
ep = [cosO(t),sinO(t),O]. Then equation (VI.4) describing the reflected field becomes,
after gross-range compensation,

E(vo + v, t) p= J f(e j 2 7 2(Lo+ ) FP(t)' d3 r

= JJJ f(x,y, z)ej2,,2(vo+v)[. 'aO(t)+sin8(t)] dx dy dz
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SJ (x y)e j21r2(vo+ ')[xc°s8(t+ysin9(t] dx dy (VI.6)

where

f(x,y) f J f(x,y,z)dz.

Motion limited to a single plane results in a lack of information about the target in the
direction perpendicular to that plane; the radar "sees" a two-dimensional target f(x, y)
which is the projection of the real three-dimensional target onto the plane of motion. We
will assume that during the time the radar observes the target the following small angle
approximations are valid,

cosO(t) - 1

sinO( t) -_ O(t )

2vyO(t)/c < 1.

Using these in (VI.6) results in

E(vo + v, t) = I J f(x, y)ej2 1r2[(vo +v)rc+vO(')1cl dxdy.

Processing this recorded field into an image proceeds in two steps.

First we resolve in the x or range direction by inverse Fourier transforming over the
band of transmitted frequencies. We obtain

j 1l/ E(vo + v, t)e- j 2 r 2(v °o+v)x / c dv

- i/2

j 1/2 j i f('Y)e2f2[("O+")(--)/c+"°oe(t)/c] d dydv

-,3/2

f ( Y)ejvo(- sinc ( x d ) Ce,2 7r2Lo Ot)lc dy

Sf(x, y)eJ21r2&/Oo(')/c dy - L (x, 2vo(t)/c)= f, (x, 0(t))

where for convenience we define 0(t) = 2voO(t)lc. The function fL(x,0(t)) is the Fourier
transform with respect to y of f(x,y), evaluated at 0(t).

The second step is to achieve resolution in the y or cross-range direction. For each
value of x the function we are left with, fy (x, 0(t)), is the Fourier transform of the function
we seek to compute, f(x, y), but which has been distorted by a coordinate transformation,
0(t), due to the target's aspect history. In general, therefore, aspect compensation is
required before imaging (inverse Fourier transforming in y) is possible. If 0(t) was known
then aspect compensation could be performed by the inverse coordinate transformation

f (X, v)dt) dt= f (x, 0)6(0 - t) d = f. (x, 0.
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Following this with an inverse Fourier transform

J fy(x,v)e - j "2" dv= f(x,y)

would resolve the target in y for this value of x. Repeating this process for each value
of x would produce the full two-dimensional image. The coordinate transformation and
Fourier transform can be combined into a single linear transformation

fPx'y) =Jfy(x,v)e- 
2

7r Yv dv U ( fy( x,q$(t))b(q$(t) - v) d(t) dt) e 2 1ryv dv
dt

.. .de(t)e j ,(t

y (J , (t)) dt. (VI.7)
dt

The problem in ISAR imaging is that 0(t) is unknown and therefore this transformation

is unknown a priori.

VI.5 Effects of Neglecting Aspect Compensation

The problem of aspect compensation is generally avoided in ISAR imaging by assuming
that the target moved in such a smooth manner that 0(t) = Ot for some unknown constant
Q. In general 0(t) will actually be of the form 0(t) = Qt + c(t) where Qt is the linear part
of 0(t) and c(t) is the nonlinear part (due to, for instance, target acceleration). If we take

0,(t) = t as an estimate of the true 0(t) and use this to process the data via equation
(VI.7) the result is an estimate of f(x, y) given by

fe(x,y) =Jfy'(X'O(t))ei 27ryt dt U ( f(X, 7)e 2  77(t) dr7i) e- 2 7r Y dt

= J f(x, 7 )h(y, 77)dri

where

h(y, 77) - J e' 2r" ( t} e - j 2wt(y-on) dt, (V1.8)

represents the cross-range impulse response of the ISAR imaging system. That is h(y,77 )
is the cross-range image of a point scatterer at position 77 on the target. If the target
actually moved so that 0(t) = Qt then h(y, 77) cx sinc~t(y - Q71), where At is the length of
tir-e the radar observed the target, and so f,(x,y) - f(x, y/f ) and this approach works.
Diffraction limited resolution is achieved although there is an unknown scaling in y due to
the unknown constant fQ.
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On the other hand if there is any non-linearity in the aspect history (i.e. E(t) # 0)
then h(y,i7) will have a width greater than that of the diffraction limit. If 17E(t)I is small
then (VI.8) can be approximated by

h(y,77) ; j (1 + j27rqE(t)) e- j 2' t(1- n-7) dt

ox [sincLAtz + 2rq (z) * sincAtz]I,=y-n,

where i is the Fourier transform of c. The first term is the diffraction limited impulse re-
sponse. The second term produces blurring beyond the diffraction limit. It grows stronger
with larger Jil and has a width beyond the diffraction limit equal to the spectral width of
E(t). For large IqcI the width of h(y, q) is approximately 21771 -df/dtlma (twice the maxi-
mum instantaneous frequency of exp[j27ri (t)]) beyond the diffraction limit. In either case
the impulse response is blurred beyond the diffraction limit when there is any non-linearity
in the aspect history with the blurring being worst at the edges (largest I71) of the target.

VI.6 Learning Aspect Compensation

Computing f(x, y) from fy (x, 0(t)) is an underdetermined problem because we lack nec-
essary information, namely 0(t), needed to obtain the correct solution. For any guess we
might make at 0(t), say 0,(t), we can produce an image, call it f,(x,y), through the trans-
formation described in equation (VI.7). However fe (x, y) will faithfully represent f(x, y)
only if we somehow get 0,(t) - 0(t). What we need is some additional constraint on the
problem which when satisfied forces 0,(t) z 0(t).

Neglecting aspect compensation as discussed above (which is the common practice in
ISAR imaging) essentially puts a constraint on 0(t); in order to produce a well-focused
image it is required that 0(t) = [t. The problem with this approach is that we don't
have any control over 0(t), since we don't control the target's motion, and hence we can't
enforce this constraint. A better approach, we think, is to put a constraint on something
we do have control over, namely the image. We have some control over the image by
our choice of an aspect history estimate, ,(t). The obvious constraint is to require that
the image be as well-focused as possible. Therefore we loosen constraints on the target's
motion by adopting a parametric form for 0, (t) with degrees of freedom, such as

O¢a(t;a, ... , an) = alt + a2t2 + ... + an t '

while at the same time seeking to enforce the constraint that the image obtained by
processing with 0, (t) be focused. Below we describe a simple quantitative measure which
we can use to enforce this constraint.

With ,E(t; al,... ,a ) =€ (t; a1 ,...,a,) - O(t) denoting the error in the estimate of the
aspect history we get an image of the target through the linear transformation in (VI.7)
(we will no longer explicitly show the dependence of €, and E on a,..., an)

f.............) =I X, ) d4?e (t)0e- M92
dt
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f (x \ , ~,7e 2-70!( t] d o!( e- 27ryOe(t) dt

f f(X,r) (J e-3 2 -w~ e-32, (Y-')0- dtke) dri

= f f(x,77)h(y,r7;a,,...,an)d?7

where

h(y, 7; a, ... ,an) = J eJ 2r
i7 e - j2 (y - n)4 dOe

is the impulse response of our imaging system. The impulse response depends on a1, ... , an
because 0e(t) and f(t) do. It is easy to show that

fM(x,y;ciaj,...,aan) = afe(x, ay;a,,...,an)

so scaling e(t) by a constant factor scales the image in the y dimension but has no effect on
how well focused the image is. Assuming we have no a priori information about the target
which would allow us to choose the proper scaling we will always scale the parameters
al,... ,an so that A0, = 1, where A, = max[0,(t)] - min[oe(t)]. This insures that the
scale of the image remains constant.

By an analysis of the impulse response similar to that used in section VI.5 above we
can show that image blurring increases as E grows larger and that for a given c(t) the
blurring is most severe at the edges of the image (large 17I). Since the width of a blurred
image is the width of the well-focused image plus the width of the blurring at the edges
we are led to construct an "energy" function w(x; a,, ... , an), defined by

w (x;,,, ..., a. )/2 00

w~x, aj...an/2 V!(xiy;aa, ,...,Ian) 2 dy = c 0 If-(Xjy;a ,_...,an )12dy,

as a measure of the width of our image and hence the amount of blurring. For a given
x, w is the number such that a fraction c, 0 < c < 1, of the total energy of this strip of
the image lies in the region x E [-w/2,w/2; we take c < 1 because due to noise and the
sidelobes of the impulse response all of the energy cannot be confined to a finite region but
only "most" of the energy. Our system can learn the necessary aspect compensation by
searching its state space (the parameters a, ... , an) until it minimizes this energy function
and hence the image blurring. At this point the output of the system is a well-focused
strip of the image (provided there are enough degrees of freedom in 0,(t) to allow a good
approximation to 0(t)). The constant scale constraint AO, = 1 is essential because it
insures that changes in w are due to changes in the amount of blurring in the image
and not merely to changes in the scale of the image. Since blurring is largest for largest
I7I aspect compensation can be learned most accurately by minimizing w(xo; a, ,..., a,)
where w(xo;a,,... ,an ) ,> w(x;a,,...an) for all x : x0 , that is by learning on that strip
of the image which is widest. The remainder of the image car then bc com.,put cd strip
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by strip through (VI.7), the kernel of which our system has just learned by minimizing
w(xo; a,,. a.).

To summarize, the algorithm is as follows. Initialize the parameters (we take a, =

1,ai,6 = 0). Find x0 such that w(xo;a 1,...,a,) > w(x;a1,...,an). Then minimize
w(xo; a,,... , a,) with respect to a, ... a, producing the one strip of the image, f(xo, y).
Finally use the aspect history estimate 0e (t; a,,.. . , a,) learned in the last step to compute
the rest of the image, f(x # xo, y), strip by strip.

Figures VI.la-VI.lc show the results of a simulation of this imaging technique. We
considered a target consisting of a collection of point scatterers arranged in a "V" shape
(figure VI.la) and simulated the radar returns corresponding to an aspect history of 0(t) =
t', 0 < t < 1. Figure VI.lb shows the image produced by the standard processing approach
which takes 0,(t) = t. We allowed our processor 2 degrees of freedom, 0,(t) = at + bt2,
which together with the scaling Lonstraint, A0, = 1 for 0 < t < 1 = a + b = 1, defined
a one-dimensional state space. By searching over this state space until w(xo; a, b) was
minimized (we took c = 0.95) our processor produced the image shown in figure VI.lc.

We also applied this technique in a simple acoustic imaging experiment. Figure VI.2a
is a picture of the target, a collection of ping-pong balls arranged in a "V" shape (each
row of balls is about 500mm long). While illuminating the target with acoustic pulses
and recording the reflected field we varied its position so that it had an aspect history
0(t) = 2.50 (t+t 2 ), 0 < t < 1. We then produced images using both the standard processing
approach and our algorithm (with 0, (t) = at + bt2 and a + b = 1 as above). The resulting
images are displayed in figures VI.2b and VI.2c respectively.

VI.7 Optical Implementation

The computation required to produce one strip of the image, given in equation (VI.7), is
a shift-variant linear transformation which optics is well suited to implement. Figure VI.3
shows an optical implementation of the iterative ISAR algorithm we described above. It
consists of a programmable optical matrix-vector multiplier with an electronic feedback
path from the output to the matrix. Given a matrix

dqS (t; a, ..., an) C j2,r.Oe(t;a , ... a)

dt

the optical section computes the linear transformation

fe(xo,y;ai,...,a,)= J f(Xo,4(t)) d~e (t;a,,...,an) e-j2,ry..(t;a,...a.) dt.
dt

The feedback circuitry varies the matrix at each iteration through the parameters a,,.. . a,,
and compute- 0- ,-rergy w(To; al- ... , an) from the output f, (x0 , y; a,,..., a,,). It contin-
ues to iterate until it finds the global energy minimum. At this point the output is a well
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focused image of a strip of the target around xo and the processor has learned the neces-
sary aspect compensation. With the matrix fixed the remaining data, A, (x, ¢(t))x -# X0,
is then fed through the processor allowing the full two-dimensional image to be produced
strip by strip.

We set up a preliminary version of this processor using a magneto-optic device (MOD)
for the programmable matrix, a 1D CCD array to detect the output jfe(x,y; a,,..., a,)l ,

and a PC to update the matrix. We did not implement the first half of the optical
matrix-vector multiplier, which spreads f(x, 0(t)) in the y direction to form the product
f(x,¢(t))K(t,y;aj,...,a,,) in the plane of the matrix. Instead we formed this product
digitally and fed the result into the MOD.

Figures VI.4a-VI.4c show the output of the optical processor in various stages of
learning to image a strip of the "V" shaped simulated target discussed above. The in-
put data was the same as that used in the simulation above. The initial output (with

!(t; a,,... , a,.) = t) is depicted in figure VI.4a. Here the error in the aspect history esti-
mate is large and the image is quite blurred. From this point the processor starts moving
through its state space, (a1 ,a 2 ), minimizing the energy w(xo; a1,a 2 ). Figure VI.4b shows
the output at an intermediate stage. Finally the processor settles at the output shown in
figure VI.4c which had the minimum width and in which the two point scatterers in this
strip of the image are well-focused.
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VII

CAPACITY OF OPTICAL CORRELATORS

VII.1 Introduction

Vander Lugt correlators have been used for a long time in optical pattern recogni-
tion[l]. In the typical implementation, shown in figure VII.1, the Fourier transform of an
input image is used to read out a hologram containing the Fourier transform of a reference
image. This diffracted beam is then inverse Fourier transformed to produce the correlation
between the input and reference images on the output plane. Vander Lugt correlators are
typically used as pattern recognition systems. Whether or not a peak is present at the
output of the correlator determines whether or not the input image is sufficiently close to
the stored reference . Recently much work has been done on the use of a Vander Lugt
correlator to pattern classification [2][3]. In this case, the correlator distinguishes whether
the input is a member of one of two classes with each class being composed of many im-
ages. Typically, a reference filter is formed as a linear combination of the images in both
classes and the presence or absence of a peak at the correlation plane determines which
class the input belongs to. In this paper, we discuss the capacity of the Vander Lugt cor-
relator. This is to say we estimate the maximum number of images that can be stored in
the reference filter before the system begins to misclassify images. This capacity has been
studied in great detail for systems without shift invariance (e.g. perceptrons). The classic
results from pattern recognition about the capacity of a linear discriminant function do
not directly apply in this case because the VanderLugt correlator is shift invariant. In this
paper, we will discuss the capacity of the system incorporating the shift invariance of the
Vander Lugt correlator. We will also discuss the effect on the capacity of binarizing the
reference filter and lastly we will demonstrate that by using a volume hologram to record
the filter, the capacity of the system is greatly increased, as well as be becoming capable
of multi-class classification.

VII.2 Capacity of Linear Filters

In the most common pattern classification scheme, the inner product is performed
between the input image O(x, y) composed of N pixels and a reference filter h(x, y).

0= I Z h(x',y')Oi(x',y') (VII.1)

Comparing the output 0 with a pre-set threshold, determines which of the two classes
the input belonged to. A standard method of forming the reference filter is as a linear
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combination of the images in both classes:

M

h(x,y) = wOi (x,y) (VII.2)
i= 1

The weights wi can be chosen through a variety of training algorithms such as the per-
ceptron learning algorithm. It is a well known result that the capacity of such a system is
[41

M=2N (VII.3)

where N is the number of pixels in each image. In this paper, we will consider the con-
struction of a simpler filter in which the weights are binary.

1 Iif €i E Class I
0 if qi E Class VII (VII4)

In other words, the filter is formed by simply summing the images belonging to class
1, while ignoring those in class 2. This is implemented in a Vander Lugt correlator, by
multiply exposing the hologram to the images in class 1 while doing nothing for the images
in class 2. Classification can then be performed by detecting and thresholding the output
at the center of the correlation plane. For the remainder of the paper, we will assume
that the images ¢(x,y) consist of binary N pixels, each pixel being a bipolar (ie 1 or -1),
independent random variable. Under these assumptions, the capacity of the VanderLugt
correlator using the peak-only detection scheme can by found be solving the following
transcendental equation[5]:

4log(M 3 /N)

As N --+ oo, the above expression asymptotically approaches

M = N (VII.6)
8logN

Thus the use of the simpler method for constructing the reference filter, results in a rela-
tively modest loss in capacity by a factor of 16logN

VII.3 Capacity of Shift Invariant Filters

Because Vander Lugt correlators are inherently shift invariant it is possible to classify
prescribed images and their shifted versions as well. In order to implement a shift invariant
classification scheme, detection at the output is done over the entire correlation plane. As
a result the detection of a peak anywhere in the output plane determines whether the
input is a member of class 1 or a shifted form of a member in class 1. Figure VII.2a
shows a cross section through the origin of the digital correlation of an input image with a
filter containing only one image. The resulting output shows a single correlation peak and
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relatively small sidelobes. When the reference is constructed by adding 3 images (figure
VII.2b, the sidelobe structures shows a significant rise in amplitude. However, since only
the single correlation peak lies above the threshold, classificatiui, of the input image is
still performed correctly. However, when the number of reference images is increase to 6
(Fig VII.2c), there are now two peaks which lie above the threshold level. As a result, the
system can no longer decide whether the input image is a member of class 1 or a shifted
version of a member of class 1. Therefore, we expect that the capacity of the shift invariant
system is smaller. For the relatively simple method of filter construction , we can readily
derive an analytic capacity for the shift invariant correlator. In the shift invariant case,
the-Vander Lugt system performs a correlation between one of the input image O(x, y) and
the reference filter h(x, y)

O(x,y) = E h(x',y')¢,(x' + x,y' + y). (VII.7)

For the case where the filter is constructed by simply summing the images in class 1 (mul-
tiple exposure) and assuming the same input statistics for each image, the capacity of the
shift invariant Vander Lugt system is given by the solution of the following transcendental
equation [5]

M N (VII.8)
4log(M 3 N)

Asymptotically, the capacity approaches

_N

M N (VII.9)161ogN

Thus, the capacity is decreased by only a factor of two from that of the non shift invariant
system. This result is important since there is to our knowledge no prior estimate for the
loss in capacity due to shift invariance. For the case considered here (the filter derived
as a simple sum), the loss is very small; a factor of 2. To verify the theoretical capacity
of the correlator, 100 computer trials were averaged to determine the capacity for various
N . For each trial, two random vectors were generated to form the initial reference filter.
Each image was correlated to determine whether classification was performed correctly. If
no error occurred, a new random image was added to the reference filter and correlation
with all the image was done. The number of images in the reference was increased until
a misclassification occurred. At this point, the capacity was said to be one less than the
number of images stored in the reference.

Figure VII.3 shows the capacity of both the peak only and shift invariant systems
as a function of the number of pixels, N, in the image. Experimental simulations show
good agreement with theoretical predictions. It is important to note that because the
simulations were performed in the regime of small N, the transcendental equations for the
capacity (eqs (VII.5) and (VII.8)) were used to plot the theoretical curves.
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VII.4 Capacity of Binary Filters

As demonstrated above, the capacity of the VanderLugt system can be very large. One
potential limitation that might prevent us from actually implementing such a large pattern
classification system is the accuracy with which the hologram can record the reference.
To get a feel for the susceptibility of the system to nonlinearities and inaccuracies, we
considered the capacity of the Vander Lugt correlator when the reference filter has been
binarized.

. In this case, the reference filter consists of a thresholded version of the filter generated
from the multiple exposure algorithm

M

h(x,y) = sgn[- w,,(x,y)] (VII.1O)
i=i

Again, assuming that the input pixels consists of bipolar independent random variables,
we find that the capacity of the binary Vander Lugt correlator is asymptotically

M - N (VII.11)
87rlogN

There is only a further 7r/2 rcduction in capacity from that of the non binarized shift
invariant filter. In figure VII.4, a comparison is made between the linear and a binary filters.
In both cases, the input images had 256 pixels and the reference filter contained 3 images.
As seen from the figure, the sidelobe level of the binary correlator is significantly larger
than that for the linear filter. As a result, as additional images are added to the reference
filter, the binary correlator will begin to misclassify sooner. This will correspondingly
lead t- a lower capacity (theoretical and experimental) for the binary correlator. In figurc
VII.5, the capacity of both the binarized and nonbinarized filters are plotted as a function
of the number of pixels in the image. Again, computer simulations demonstrate a good
agreement with theoretical predictions.

VII.5 Capacity of the Volume VanderLugt Correlator

In this section, we consider the use of a volume hologram to record the reference
filters in a Vander Lugt correlator[6]. We expect that because information is recorded
in three dimensions as opposed to the two dimensions for plane holograms, the storage
capacity of the volume VanderLugt correlator is increased. Let us first consider how a
volume Vander Lugt correlator operates (Fig VII.6). Consider the correlation between two

point sources. In the recording stage (Fig VII.6a), the point source generates a plane wave
which interferes with a reference wave to form a grating which is recorded in the volume
hologram. When an input point source at the same position is presented to the correlator
(Fig VII.6b), a new plane wave reads out the stored grating. The diffracted plane wave is
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then focussed to form the expected correlation peak at the output. If, however, the input
point source is shifted in the direction parallel to the plane of incidence (Fig VII.6c), the
plane wave that is generated will not be Bragg matched with the grating in the.volume
hologram. Consequently no diffracted wave will be produced and no correlation spot will
be formed. In the direction perpendicular to the plane of incidence, the volume hologram
exhibits very little Bragg sensitivity and a correlation can still be read out. As a result,
shifts of the input in a direction parallel to plane of incidence will not be recognized, while
in the perpendicular direction the correlator remains shift invariant.

For an arbitrary input,A(x, y) and reference image, R(x, y), it can be shown that the
output of the volume Vander Lugt correlator is [71

O(x, y) = [A(x, y) * R(x, y)) sinc(ax) (VII.12)

where a = TsinO/2AF and * is the correlation operator. T is the thickness of the hologram,
0 is the Bragg angle, and F is the focal length of the inverse Fourier transform lens. In
other words, the output of the correlator cons'3ts of the correlation between the input and
reference apodized by a sinc function whose width is determined by the thickness of the
volume hologram.

To experimentally demonstrate this apodizing effect, the auto correlation of an 0
was performed using the volume Vander Lugt correlator. Figure VII.7 shows a digitally
generated autocorrelation of an 0 which simulates a standard Vander Lugt correlator
with a reference 0 recorded on a plane hologram. In the volume Vander Lugt correlator,
the reference 0 was recorded on a lithium niobate crystal measuring 25x25x5mm. The
reference beam was situated such that the plane of incidence was in the horizontal direction.
Figure VII.8a shows the output of the volume Vander Lugt .orrelator when the input 0

is positicned at the same plane as the reference 0. The output consists of the standard
correlation of the two O's multiplied by the horizontal sinc function. When the input 0
is shifted in the direction parallel to plane of incidence (Fig VII.8b), the correlation shifts
and only correlation structure to one side of the peak is presented at the output. The
smaller spot lying to the right of the primary horizontal band corresponds to the very
strong correlation peak ying in the first sidelobe of the apodizing sinc function. Further
shifts of the input as shown in figure VII.8c, merely reads out the correlation structure
further from the peak.

The Bragg selectivity in the volume VanderLugt correlator ;llows one to perform
multi-class categorization of the input images[8]. In the recording stage (Fig VII.9a), a
set or reference filters is recorded by interfering each with a reference beam separated
by the angular bandwidth of the volume hologram. When an input image is presented
to the volume Vander Lugt correlator (Fig VII.9b), a set of correlations is performed
simultaneously and presented spatially distributed at the output. The Bragg selectivity of
the hologram guarantees that the correlation bands will not interfere with each other. As
a result, by detecting which band the correlation peak appear, detcrmines which of many
classes the input image belongs to.

We can consider each correlation band as a separate output channel performing a
simple pattern classification task independent of the other channels. By assuming the
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same input statistics for the images in each class, the capacity of each output channel
can be analytically derived. In this case, the maximum number of images that can be
stored was found to be equal to tha of the standard VanderLugt correlator (eq VII.5).
Asymptotically, the capacity of eich channel approaches

N
Ml - 16logN N -- cc (VII.13)

The number of output channels, K, that can be stored in th volume hologram is

TLsinO
K = ,AF (1 < K < N) (VII.14)

where L is tie actual dimension of the outut detector array in the direction parallel to
the plane of incidence. Hence the total capacity of the system is

KN
MTotal - 161ogN (N - oc; 1 < K < N) (VII.15)

Thus the effect of the using a volume hologram is that the capacity is increased by the
number of output channels the hologram can support and one to perform multi-class
classification. However, one drawback is the partial loss of shift invariance in one direction
that results from the use of a volume hologram.

VII.6 Conclusion

In conclusion, we have demonstrated that the capacity of a Vander Lugt correlator
without shift invariance is N/81ogN for the si-nple additive filter. By incorporating the
shift invariance inherent in an optical correlator, the capacity is only decreased by a factor
2. Furthermore, by binarizing the reference filter, there is a further loss by a factor of 7r/2.
However, by utilizing a volume hologram to record the referencc filter, the capacity of the
correlator is increased by a factor that can be as high as N with a proportional loss in shift
invariance.
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Fig VII. 6 Recording and readout of a volume hologram.

Fig VII.7 Digal autocorrelation of an "0".
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Fig VII1. 8 Experimental outputs of volume Vander Lugt correlator
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VIII

PHOTOREFRACTVE INTEGRATED OPTICAL
VECTOR MATRIX MULTIPLIER

VIII.1 Introduction

Vector matrix multiplication is central to a wide range of signal processing systems,
including neural networks, large scale interconnection networks, and linear transforma-
tions. Bulk optical implementations of vector matrix multiplication are well developed
and quite successful [10]. The classical optical vector matrix multiplier uses a cylindrical
lens to expand a one dimensional array of light sources across a two dimensional spatial
light modulator on which the matrix is recorded. A second, orthogonal, cylindrical lens
focuses light from the SLM onto an array of detectors. Each element of this array receives
light from each element in the input vector, modulated by the appropriate matrix element.
This method of implementing vector matrix multiplication has been applied in a number
of signal processing architectures.

Despite the success of these devices, the implementation of vector matrix multipli-
ers in integrated optics offers certain advantages which are difficult to achieve in bulk.
Integrated devices are typically much smaller and lighter than their bulk counterparts.
Fabrication of a large number of identical integrated devices is relatively easy due to the
advanced state of photolithography. In addition, integration leaves the dimension out of
the integrated plane free for optical control of the matrix interconnecting vectors in the

guided plane. In bulk devices dynamic control of this matrix may be relatively difficult. In
this paper we propose implementing a vector matrix multiplier in integrated optics using
photorefractive holography in the volume of the waveguide. A schematic architecture for
this device is shown in figure VIII.1. A vector is input through a channel waveguide array
integrated on a suitable substrate. Light from these channels is collimated by an integrated
lens [7] before reading out a matrix of holographic gratings formed in a slab waveguiding
region. The diffracted vector is refocused into an output channel waveguide array. This
architecture performs vector matrix multiplication with as many degrees of freedom as the
bulk architecture by utilizing the Bragg selectivity of volume holograms to substitute for
one dimension of the bulk spatial light modulator.

VIII.2 Matrix Implementation via Integrated Volume Holograms

Vector matrix multiplication using diffraction gratings may be described via coupled
wave equations in Fourier space. The electric field vector E(r may be described at any
plane along the optical axis of the system in terms of a complete set of guided and unguided
modes of the slab waveguide. Letting A,,(k) represent the component of 9(f) in the mode

110



v at spatial frequency k we may express E9(r-) as

= JJ kj ( (VII1
V

, (k, F) is the field distribution for the mode v at spatial frequency k. The effect on E(r-) of
the hologram recorded in the volume of the slab may be described bysubstituting (VIII.1)
into the Helmholtz equation and applying the slowly varying envelope approximation.
From this approach we obtain

8 4 (k~f~dkZ z~2(kffJ Jjk, K.,,j A, (k)E(k,Fdk

(VIII.2)
where Ak 2 (K., r) is proportional to the holographic perturbation to the dielectric constant

at spatial frequency Kg. By applying the orthogonality condition

J F) r-)d ( =,bd,= 6~k - (VIII.3)

Equation (VIII.2) may be reduced to

aA, (k ) K =k, A,(k2 (V IIlA )

49ZR

where
SI - k2= (VIII.5)

and

JJJAk(_,r)(p Kg , r-., (kp, r)df (VIII.6)

In deriving equation (VIII.4) we have ignored the finite nature of the hologram. Equation
(VIII.4) may be expressed

8 H(VIII.7)

Each A,(kl) with k, satisfying equation (VIII.5) forms a component of A. The components
H are given by

The solution to equation (VIII.7) is A = exp(fz)Ao. If all of the eigenvalues of H satisfy
IAIL < 1 where L is the length of the holographic interaction region then we find that

A = (I + -IL)A, (V11.9)
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Thus a Fourier hologram written in the slab waveguide may perform a vector matrix
multiplication taking each Fourier component of the incident field to each component of
the output field. Under suitable conditions of mutual incoherence of the stored gratings
and the fields vector matrix multiplication may also be shown to occur between the incident
and output intensities.

In the architecture of figure VIII.1 each Fourier component of the field incident on
the the volume hologram corresponds to the field in a single channel of the input waveg-
uide array. Similarly, each Fourier component of the field diffracted from the hologram
corresponds to the field in a single channel of the output waveguide array. Since the holo-
gram performs vector matrix multiplication between the incident and diffracted fields, the
system as a whole performs vector matrix multiplication between the vector of field am-
plitudes in each input channel and the matrix of Fourier grating amplitudes in the volume
hologram. Each component of the output vector is represented by a field amplitude in an
output channel. Crosstalk, i.e. diffraction of one input channel by a grating corresponding
to another input channel, and second order diffraction, are avoided by the Bragg wavevec-
tor matching condition given in equation (VIII.5). As mentioned above, K is the grating
wavevector. ki and k2 are constrained to lie on the normal surface. Since in an integrated
geometry k and k2 are further constrained to the integrated plane, wavevectors satisfying
the Bragg condition for a given K, are unique for an integrated hologram. Figure VIII.2
shows graphically the relationship between the input vector, the output vector and the
interconnection matrix. Each component of the input vector corresponds to a wavevector
with an end point on the normal surface at the lower right. Each component of the output
wavevector corresponds to a wavevector with and endpoint on the normal surface at the
upper right. Each component of the interconnection matrix corresponds to a vector joining
the endpoints of an input component and an output component on the normal surface. As
long as each input and output wavevector differs by more than a vector of magnitude I
from the nearest neighboring wavevector, the input and the output vectors may be fully
interconnected without crosstalk.

The requirement that the components of the input and output vectors be separated
by -I arises from ambiguity in the grating wavevectors due to the finite volume of the
hologram. This ambiguity limits the number, S, of independent interconnections which
can be stored in a bulk volume hologram is limited to the number of resolvable spots in
the volume, i.e.

S V (VIII.1O)
3

where V is the volume of the recording medium and A is the wavelength of the readout light.
Psaltis et.al.11 have shown that this limitation on the number of interconnections between
two image planes limits the spots used for complete and independent interconnection of
two planes to fractal grids of dimension 1. In the case of the integrated volume holograms
limitations of this sort on the input and output vectors due not arise. It can be shown
that the number, S', of interconnections which can be stored in an integrated hologram is

112



limited by ambiguity in Fourier space to

A
S = - ('VIII.11)

A2

where A is the area of the interaction region. There are of course further limits on S'
arising from the finite bandwidth of the photorefractive response and the finite apertures
of the optical system, but these limitations contribute only a scaling factor independent
of A and A. It is interesting to note that the integrated volume holographic vector matrix
multiplier implements linear transformations with the same number of degrees of freedom
as the bulk device using a two dimensional mask.

VIII.3 Recording the Matrix

We now turn to the question of how the hologram representing H may be recorded.
Photorefractive effects offer a particularly simple and flexible approach. The photore-
fractive effect is a mechanism by which volume gratings may be created in waveguiding
crystals such as LiNbO3 , GaAs and SBN 2'3'4 '5 . Photorefractive gratings arise from the
electrooptical modulation of the refractive index by the space charge field arising from
the inhomogeneous charge distribution induced by the intensity distribution of the write

beams. The amplitude of the photorefractive perturbation is proportional to the modula-
tion depth, M, of the optical intensity. The diffraction efficiency of the resulting hologram
is proportional to the square of the perturbation, i.e. to M 2 , and to the length of the
interaction region. While the amplitude of the index perturbation which may be achieved
in this way is small, the diffraction efficiency of photorefractive holograms is often large be-
cause of the volume nature of the perturbation region. The advantages of photorefractive
gratings in the application described here are that they can be written with high resolution
in real time with no substrate preparation or development steps, that they are erasable
and modifiable, that writing photorefractive gratings does not add a bias to the mean
index of refraction, and that the high sensitivity of the photorefractive effect to changes in
wavelength allows the gratings to be written optically with short wavelengths and readout
at longer wavelengths beyond the threshold for writing.

In order to have full independent control of the interconnection matrix it is necessary
to separate the process of writing the hologram from the read-out process. This may be
done by utilizing the rotational degeneracy of volume holograms. Since the right hand side
of equation (VIII.5) is unchanged by rotations about Kg, an infinite set of coupled pairs

k, and k2 may be generated by rotating the normal surface about the grating wavevector.
This degeneracy in the Bragg condition allows us to write gratings in integrated waveguides
with unguided light (radiation modes) which may be readout by guided beams. If we
include in our analysis a change of the magnitudes of the optical wavevectors due the
transition from guided to unguided beams and a difference in the wavelengths of the
write and read beams, then it may be shown that guided beams at wavelengths beyond

the threshold of the photorefractive response may be diffracted by holograms written by
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unguided light at a shorter wavelength. This arrangement allows us to take advantage of
the long interaction lengths, high beam intensities, and compact construction of integrated
devices while avoiding optical damage and photorefractive scattering due to the readout
beams. Since we have all the degrees of freedom of bulk optics in positioning the write
beams, we will be able to describe below a simple method for writing with a single exposure
a hologram which completely and independently interconnects every resolvable spot at the
input to the waveguide with every resolvable spot at the output.

Vector matrix multiplication is performed in the architecture we are proposing by using
n 1 n 2 gratings to map n, input frequencies to n2 output frequencies. Each grating may be
associated with a pair of radiation modes by rotating the input and output beams about
the grating vector. Figure VIII.3(a) is a wave matching diagram which graphically shows
the Bragg matching condition as a requirement that the end points on the normal surface
of coupled optical wavevectors be joined by the grating wavevector. Figure VIII.3(b) shows
a pair of unguided optical beams which may be associated with this wavevector. Figure
VIII.3(c) shows a second pair of optical beams generated upon rotation about a second
wavevector coupling one of the original guided beams with a third guided beam. As can be
seen in figure VIII.3(d) the unguided wavevectors into which the guided beam is rotated are
different for the two different grating wavevectors. This simple graphical demonstration
points out a problem which can be shown to hold in general in the architecture we are
proposing, which is that as many as 2n 1n2 distinct radiation modes must be available
to write the n1 n2 gratings coupling n, + n2 guided modes. One means of presenting all
these radiation modes simultaneously in each write cycle might be to use a second volume
hologram to store the 2n1 n 2 beams.

The amplitude of a photorefractive index perturbation is proportional to the modula-
tion depth of the writing beams. For the case of writing with n, n2 beams of approximately
equal intensities, the modulation depth of each grating will be proportional to (nn 2 )- 1 .
The modulation depths of the individual gratings are also proportional to (nin2 ) - 1 for
sequential writing if the asymmetry between the erase and write times is not large. By
using the architecture of figure VIII.4 it is possible to reduce this factor to ( /77in)- 1 by
writing all the gratings with a single reference beam. In this geometry the modulation
depth of the (ij) t h grating is

M J =IR + N( 
(VIII.12)

Where Iij and IR are the intensities of the (ij) t h write beam and of the reference respec-
tively. (Iij) is the mean value of the write beam intensities. The expected value of Mij
has a maxima of (2V/(nln 2 )) - 1 when (Iij) = 1/(,m,, m.

A problem with the architecture shown in figure VIII.4 arises from the fact that it
is not possible to write an interconnection matrix in the plane using a single reference
while still satisfying the Bragg condition for each interconnection. This problem may be
overcome by taking advantage of the fact that the interaction region of the hologram is
very thin out of the plane of the waveguide. If the modes coupled by a given grating
are well guided then the coupling efficiency is insensitive to Bragg mismatch out of the
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waveguiding plane if the phase of the grating remains constant within the coupling region.
This fact allows us to have a Bragg mismatch out of the plane of the waveguide. This
concept is illustrated in figure VIII.5. In figure VIII.5(a) we show a set of fringes for a

grating written with K_ confined to the surface of the waveguide. Note that the phase of

the grating is constant along the vertical direction. In figure VIII.5(b) 1. is not confined
to the waveguiding plane and the phase of the grating is not constant along the vertical
direction. However, since the interaction region for well confined modes includes only the
waveguide itself, high diffraction efficiencies may be achieved between guided modes if the
phase of the grating is constant in the vertical direction in a region approximately limited
to the waveguide itself. This condition may be expressed in the form

(1g).d < 1 (VIII.13)

where d is the thickness of the interaction region. Since d may be very small for a optical
waveguide, we find that our architecture will tolerate a fairly large Bragg mismatch out
of the waveguiding plane. This allows us to write the full interconnection matrix with a
single reference as shown in figure VIII.4.

It is still necessary to fabricate the mask T in such a way that Bragg matching in the
plane of the waveguide is achieved for each interconnection. The Fourier lens L1 is aligned
so that a pixel on its optical axis is collimated such that

KooX = Kz; Koo = Ky = O;Kooz = -Kz (VIII.14)

where goo and R are the wavevectors of the collimated beam and of the reference respec-
tively. The requirement that the grating produced by the reference and the light from pixel
ij be the grating that connects the ith input channel and the jth output may be expressed
Rij = K - kij. Since k/1 has no component out of the plane of the waveguide, the i,
component of this equation is satisfied if, as we saw above,

(K - i (VIII.15)

In the paraxial approximation this requirement becomes f < where p is the greatest

distance from the optical axis of a pixel on T. Having satisfied this constraint, the , and
6z components of the phase matching equation may be satisfied by properly placing the
pixels on the mask. An example of a suitable mask for a four by four device with a 400
pm separation between channels is shown in figure VIII.6 We have assumed a lens of focal
length 25cm between the mask and the waveguide and integrated lenses of focal length
1cm. The angle between the writing beams is assumed to be three degrees.

VIII.4 Experimental Results and Discussion

We have written photorefractive gratings in single mode titanium indiffused slab
waveguides on nominally pure y cut LiNbO3 . The gratings were written using unguided
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light at 488 nm from an Ar + laser. The red HeNe line was used for readout. The grating
wave vectors were nearly parallel to the c axis to make use of the r 3 3 electrooptic coef-
ficient and the photovoltaic field. Optical propagation was along e, for the write beams
and along 4, for the guided read beams. The effective index for the guided HeNe mode
was 2.248, while the extraordinary index of the substrate at 488 nm is about 2.6. Thus,
between the write and read beams there was an expansion of the angle between the beams
Bragg matched to a particular grating by a factor of about 1.5. Small angles were used
be'ause our waveguide was not guiding along 64. We have obtained coupling efficiencies
ut up to 4.5% between guided modes of interaction lengths of about 1 cm. We have also
been successful at coupling a single guided mode into two two diffracted modes, though we
have not yet implemented the mask scheme described above to achieve multibeam coupling
with high efficiency. Photographs of zero and first order spots diffracted from the end of
the waveguide in the one and two grating cases are shown in figure VIII.7. In two grating
case both gratings were written with a single reference beam. Both are slightly Bragg
mismatched for readout.

Various problems arise in the implementation of the architecture we have proposed.
Two specific problems concern the depletion of the pump beams and the implementation
of the matrix in grating amplitudes. Since the interaction region for integrated volume
holograms may be very long, the coupling efficiency of these holograms may be quite high.
In the depleted pumps regime the accuracy to which the device represents a true vector
matrix multiplier will be compromised. The extent to which this is a problem depends
upon the application envisioned. Since the amplitude of each grating is linear in modulation
depth, which is a nonlinear function of the total background intensity, it is only possible in
a statistical sense to associate a given grating amplitude with a specific transmittance in
the writing mask. For small scale applications both of these problems may be surmounted
by considering the expected signals from each channel. For larger scale applications, the
application must be tolerant to these nonlinearities. Optical neural computers8 are one
such application.

A third problem arises from the effect of titanium on the photorefractive properties
of LiNbO. Glass et. al. found that Ti doping increases the dark conductivity of LiNbO 3 ,
thereby reducing the grating storage time'. In our waveguides we found grating lifetimes
of several days under continuous guided readout with about 50 PW. One method of
increasing this lifetime might be to use proton exchanged waveguides9 . In applications
where storage time is not a concern, GaAs or SBN might be used as a substrate.

VIII.5 conclusion

In conclusion, we have proposed an architecture using coupling from a set of input
channel waveguides to a set of output channels using multiwave photorefractive mixing in
a slab waveguide to implement vector matrix multiplication. We have demonstrated the
feasibility of out of plane photorefractive deflection of guided beams. By using out of plane
beams to address the nonlinearity we are able to combine the holographic capabilities of
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photorefractive crystals with the capabilities of integrated optics.
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Fig VIII. 1 Integrated optical matrix vector architecture.

OUTPUT
WAVEVECTORS

INPUT
CWAVEVECTORS

Fig VIII. 2 Wavematching between the input, the output,
and the interconnection matrix.

.(4b)
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Fig VIII. 3 Rotational degeneracies of Bragg matched holograms.
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Fig VII 1.4 Recording with unguided light and a single reference.
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Fig VIII. 5 Bragg mismatch out of the guiding plane.
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Fig VII .6 Mask for recording a 4 x 4 matrix.

Fig VIII. 7 Diffracted and undiffracted beams in LiNbO 3
One grating. Two gratings.
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