This project will enhance and modernize the mechanical inspection capabilities of receiving inspection both to improve the productivity of the operation and to eliminate lost transport time in sample parts movement.

This project will implement a new mechanical inspection capability in receiving inspection - an automated coordinate measuring machine to coordinate measuring machine to a computer which would allow "x", "y" and "z" coordinate dimensional to be taken with accuracy and without the time expenditure to align the part on the machine table.
INDUSTRIAL TECHNOLOGY MODERNIZATION PROGRAM

FINAL TECHNICAL REPORT
CATEGORY 1 PROJECT
COORDINATE MEASURING SYSTEM

FEBRUARY 4, 1985
FINAL TECHNICAL REPORT
CATEGORY I PROJECT
COORDINATE MEASURING SYSTEM
FOR RECEIVING INSPECTION
TRACOR PROJECT 902

February 4, 1985

GENERAL DYNAMICS PURCHASE ORDER NO. 1005505
CDRL ITEM: ITM 004

SUBMITTED TO:
General Dynamics Corporation
Fort Worth Division
P. O. Box 748
Fort Worth, Texas 76101

PREPARED BY:
Tracor, Inc.
6500 Tracor Lane
Austin, Texas 78725
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>1.0 ORIGINAL PROCEDURES</td>
<td>3</td>
</tr>
<tr>
<td>2.0 TECHNICAL APPROACH FOLLOWED</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Feasibility Studies</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Proposal Improvements</td>
<td>4</td>
</tr>
<tr>
<td>2.3 Selection of Equipment</td>
<td>6</td>
</tr>
<tr>
<td>2.4 Implementation</td>
<td>6</td>
</tr>
<tr>
<td>3.0 PROJECT MANAGEMENT</td>
<td>11</td>
</tr>
<tr>
<td>4.0 COST BENEFIT ANALYSIS</td>
<td>16</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Metal Services/Fabrication Area - After</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Inspection Service Area with Boice 401 CMS</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Boice 401 CMS with Multiple Inspection Setups</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Receiving/Inspection</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Program Management</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>Project Master Schedule</td>
<td>13</td>
</tr>
</tbody>
</table>
COORDINATE MEASURING MACHINE

SUMMARY

The Coordinate Measuring project resulted from an analysis of the Receiving Inspection Area during Tracor's Phase I effort. It was observed during this period that an existing Boice coordinate measuring machine was servicing both Metal Services/Fabrication Inspection and Receiving Inspection. Receiving Inspection was currently performing approximately 2,250 mechanical lot inspections per year or sampling 15% of all lots received. With the machine's location in the Fabrication area, considerable time and energy was being expended in transporting lot samples to and from the Coordinate Measurement System (CMS). Furthermore, priority was given to the inspection of production parts. If Receiving Inspection had a need for the machine, the inspectors would be required to wait or perform their inspection on time-consuming surface plate setups. An analysis of the Receiving Inspection operation indicated that an additional Coordinate Measuring System would alleviate the congestion at the existing coordinate measuring machine while reducing Receiving Inspection cost and improving product quality.

The objective of the Phase II effort was to continue the analysis initiated during Phase I. This objective was accomplished by writing a set of equipment specifications and procurement and installation of a Boice Model B-401 Coordinate Measuring System. The final equipment arrangement relocated the existing CMS to Receiving Inspection and placed the new CMS in the Fabrication Shop. After installation, test, and debug, a post installation cost benefit analysis was performed on both improvements (i.e., Receiving Inspection and Fabrication). The cost analysis showed that the savings yielded internal rate of return of 2.752%. Because of the unfavorable return on
investment, Tracor management decided not to enter into a formal business agreement but instead pass the accruing benefits/savings to its customers. Total project cost was $105,028 with total savings of $122,028 over a 13-year period.
1.0 ORIGINAL PROCEDURES

The original goal of this project was to enhance and modernize the mechanical inspection capabilities of Receiving Inspection, both to improve the productivity of the operation and to eliminate lost transport time in sample parts movement.

Previously, the Receiving Inspection operation performed inspections on about 15,000 material lots each year. Of the total lots received, 2,250 were mechanical lots requiring an average inspection time of 2.5 - 3 manhours per lot. Under the former arrangement both Metal Services/Fabrication Inspection and Receiving Inspection time-shared an existing Coordinate Measuring System. This resulted in Receiving Inspection personnel transporting the samples to and from the Coordinate Measuring System on the second floor some 150 yards away or preparing the samples on time-consuming surface plate setups. To alleviate time-sharing, transportation of parts, and/or surface plate inspection setups, Tracor proposed to investigate and if feasible install a second coordinate measuring machine.
2.0 TECHNICAL APPROACH FOLLOWED

2.1 Feasibility Studies

Feasibility studies were performed during the Phase II portion of the project with the following items accomplished:

- Evaluation of current procedures
- Identification of future inspection requirements of Receiving Inspection and Metal Services/Fabrication Shop
- Evaluation of possible alternatives
- Estimation of costs versus savings
- Identification of vendors and equipment

The studies showed that a modernized inspection capability for both Receiving Inspection and Metal Services/Fabrication Shops could be accomplished and should be located in a centralized area.

2.2 Proposal Improvements

Upon completion of the feasibility studies and analyses of current methods, new ideas were reviewed and presented to management with recommendations. The overall reviews considered present and future needs for work areas, capacity and inspection capabilities. The review established that a modernized inspection capability for both Receiving Inspection and Metal Services/Fabrication Shops should be pursued and meet the following requirements:

1) Purchase a new coordinate measuring machine (CMM). Capabilities should be compatible with the existing
Boice, thus minimizing part reprogramming and reducing the retrain of inspectors and maintenance personnel.

2) Increase the capability and flexibility of the new machine to inspect more complicated, tighter tolerance parts. Provide the CMM with computer data assist to permit ease of programming and retrieval of inspection results. Increase the work surface to permit multiple setups of smaller parts or inspection of large irregular parts.

3) Install the new machine in Fabrication where its larger work surface and state-of-the-art capabilities could be used to provide more timely inspection and support production's needs.

4) Refurbish the existing Boice and equip it with a new "Z" axis arm, thereby permitting the inspection of larger parts and extending its useful life.

5) Relocate the rebuilt Boice to Receiving Inspection. This would upgrade the department's inspection capability and eliminate the need to transport parts to perform Receiving Inspection operations.

With these requirements in mind, Tracor was expected to gain the following benefits:

- Eliminate the transportation time to and from Receiving Inspection - Metal Services/Fabrication Shop areas.

- Permit multiple inspection setups in the Metal Services/Fabrication Shop areas, thereby reducing setup time.
Tracor Aerospace

- Reduce rework in Metal Services/Fabrication Shop as a result of more timely inspection.
- Provide the Inspection organization with the availability of a backup system.

2.3 Selection of Equipment

During the feasibility studies, various CMM vendors were contacted to discuss equipment capability and availability. Discussions with the Boice representative revealed that a used Boice B-401 Coordinate Measuring System was on the market at a reduced cost of $67,000. While the price was higher than originally forecasted for the project, the machine possessed additional capabilities which were considered beneficial to long-term commitments. In addition, the Boice B-401 was quite compatible with its sister Model 301. These factors influenced Tracor's management to procure the Boice B-401 for the Coordinate Measuring System project.

2.4 Implementation

In order to implement the new Boice and relocate the existing CMM, some facilities rearrangements were required in Building II for both Receiving Inspection and Metal Services/Fabrication Shop (Figure 1).

Metal Services/Fabrication Shop -

1) In order to centrally locate the Boice 401 for servicing the Machine and Sheet Metal areas, a portion of the Metal Services/Fabrication Shop was cleared by moving 12 pieces of machine shop equipment.
FIGURE 1 METAL SERVICES/FABRICATION AREA—AFTER
2) The Boice 401 was installed in a 20-foot square environmentally controlled room. Two (2) additional pieces of inspection equipment, a comparator and a surface plate were relocated and also installed in this room, thereby creating a consolidated inspection service area.

3) The Inspection Services area with the Boice 401 installed and set up for multiple inspections is shown in Figures 2 and 3.

Receiving Inspection

1) The Boice 301 was removed from Metal Services/Fabrication Shop area, overhauled to incorporate a new "Z" axis and placed in the Receiving Inspection area. The area shaded in Figure 4 is the Receiving Inspection area where the overhauled Boice was installed.
Figure 2. INSPECTION SERVICE AREA WITH BOICE 401CMS

Figure 3. BOICE 401CMS WITH MULTIPLE INSPECTION SET-UPS
3.0 PROJECT MANAGEMENT

The Project Investigator for this project was Gordon Mills, Quality Engineer. He was supported by Facility Engineering, Quality Control, Mechanical Inspection, and Factory Representatives (manufacturer of Coordinate Measurement Machine). His responsibilities included project management, cost, schedule, and technical conformances. The organization of the project is depicted in Figure 5, and an example of the Project Master Schedule used in accomplishing the project is shown in Figure 6.
Project: Tech Mod, Cat I, Coordinate Measuring System for Receiving Inspection

TECH MOD PROGRAM MANAGER

PROJECT INVESTIGATOR G. Mills

FACILITY ENGINEERING

QUALITY CONTROL MECHANICAL INSPECTORS

FACTORY REPRESENTATIVE INSTALLATION

PROGRAM MANAGEMENT

Figure 5
TASK

<table>
<thead>
<tr>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANHOURS</td>
</tr>
<tr>
<td>BUDGET</td>
</tr>
<tr>
<td>---------</td>
</tr>
</tbody>
</table>

I. KICK OFF MEETING

II. DEFINE REQUIREMENTS

- Review Production Schedules
 - PI
 - QE

- Obtain New Work Cell Locations
 - PI

- Determine Part Transport Flow
 - PI

- Receive New In-process QC Plan
 - QC/QE

- Mechanical Inspection Gauges Equipment
 - QC/QE

- Determine Space Requirements
 - QC/QE

III. COLLECT SPECIFICATIONS AND PREPARE EQUIPMENT/SYSTEM SPECIFICATIONS

- Determine Temperature/Humidity and Air Flow Requirements
 - QC/QE

- Determine Power/Lighting Requirements
 - QC/QE

- Determine Regulated Air Supply Requirements
 - QC/QE

- Determine Temperature Stabilization Time for Parts
 - QE

- Determine Vibration Isolation Shielding Requirements
 - QE

- Housekeeping Requirements
 - QE

IV. DETERMINE OPTIMUM LOCATION

- PI/QC/QE/DPF

Legend:
- C = Cost Accounting
- GC = Contract Officer
- PE = Facilities Engr
- ME = Manufacturing Engr
- PI = Project Investigator
- QE = Quality Engr
- EC = Budget Control
- CR = Contract Rep
- FE = Factory Rep
- HS = Model Shop
- PD = Production Director
- RE = Reliability Engr
- US = Block Supervising
- DS = Design Sup
- FS = Facilities Service
- HC = HC Programmer
- TP = Tool Designer
- G = Consultant
- SE = Design Eng
- GC = General Accounting
- SM = Sr. Mgr. Engr
- PR = Programmer
- HTE = Hlg. Test Eng
- OPC = Mr. Primary Org.
- ME = Metrology
- FP = Proposals
- QC = Quality Control
- TM = Tech Mod Office

Figure 6. PROJECT MASTER SCHEDULE
V. DESIGN SYSTEM/FACILITY

A. Prepare Facility Layouts

<table>
<thead>
<tr>
<th>ACTION</th>
<th>MANHOURS</th>
<th>"D" FIELD</th>
</tr>
</thead>
<tbody>
<tr>
<td>FE/QC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VI. COST/BENEFIT ANALYSIS

A. Approved Production/Delivery Schedule

<table>
<thead>
<tr>
<th>ACTION</th>
<th>MANHOURS</th>
<th>"D" FIELD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO/PD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Cost Element Identification/Time Phase

<table>
<thead>
<tr>
<th>ACTION</th>
<th>MANHOURS</th>
<th>"D" FIELD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA/GA/P</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. Saving Elements (LRU/System/Hr)

<table>
<thead>
<tr>
<th>ACTION</th>
<th>MANHOURS</th>
<th>"D" FIELD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA/GA/P</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D. Financial Analysis

<table>
<thead>
<tr>
<th>ACTION</th>
<th>MANHOURS</th>
<th>"D" FIELD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA/GA/P</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VII. SUBMIT PHASE III PROPOSAL

<table>
<thead>
<tr>
<th>ACTION</th>
<th>"D" FIELD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO/P</td>
<td></td>
</tr>
</tbody>
</table>

VIII. PREPARE IMPLEMENTATION PLANS

A. Equipment Listing

<table>
<thead>
<tr>
<th>ACTION</th>
<th>"D" FIELD</th>
</tr>
</thead>
<tbody>
<tr>
<td>QC/QE</td>
<td></td>
</tr>
</tbody>
</table>

B. C.E. Justifications, Facilities improvement requests and P/R's

<table>
<thead>
<tr>
<th>ACTION</th>
<th>"D" FIELD</th>
</tr>
</thead>
<tbody>
<tr>
<td>B/QC/FE</td>
<td></td>
</tr>
</tbody>
</table>

C. Schedule on Facility Installation

<table>
<thead>
<tr>
<th>ACTION</th>
<th>"D" FIELD</th>
</tr>
</thead>
<tbody>
<tr>
<td>FE</td>
<td></td>
</tr>
</tbody>
</table>

D. Schedule on QM Installation

<table>
<thead>
<tr>
<th>ACTION</th>
<th>"D" FIELD</th>
</tr>
</thead>
<tbody>
<tr>
<td>FE/FS/QC/DFM</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- "D" - Budget
- "P" - Actual
- "D" - Field

Abbreviations:
- CA = Cost Accounting
- FE = Facilities Engg
- MFG = Manufacturing Engg
- PD = Project Investigator
- QC = Quality Engg
- BO = Contract Officer
- FS = Factory Sup
- HS = Model Shop
- QE = Quality Engg
- CS = Chief Engineer
- G = General Accounting
- GC = General Accounting
- SC = Sr. Mfg. Engg
- OE = Overhead Functions
- TR = Test Designer
- B = Budget Control
- P = Personnel
- D = Design Engg
- GS = General Services
- MP = Mfg. Primary Mfg.
- PE = Production Engg
IX. PROCURE AND INSTALL CAPITAL EQUIP.

<table>
<thead>
<tr>
<th>TASK</th>
<th>ACTION</th>
<th>MANHOURS</th>
<th>"D"</th>
<th>MONTHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Issue FIRs and P.R.'s</td>
<td>PI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Move new CHM</td>
<td>FE/FS/FR</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>C. Move old CHM</td>
<td>FE/FS/FR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Operator Training</td>
<td>QC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Receive and Install</td>
<td>FE/FS/FR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Debug CHM's and Calibration Coordination (Tracor Metrology & Factory Rep.)</td>
<td>FR/H</td>
<td></td>
<td></td>
<td>(To be accelerated, if possible)</td>
</tr>
</tbody>
</table>

X. RELEASE TO PA

<table>
<thead>
<tr>
<th>ACTION</th>
<th>MANHOURS</th>
<th>"D"</th>
<th>MONTHS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*SA = Buyer
BDC = Budget Control
CD = Contract Officer
FS = Facilities Service
DS = Draftsman
SE = Design Engr
GA = General Accounting
SM = Sr. Mfg. Engr
MG = Mfg. Engr. Fg.
FP = Production Planner
PG = Programmer
MTE = Mfg. Test Engr
TO = Tool Designer
TE = Tech Eng. Fg.
TF = Technical Fg.
TC = Test Control
TF = Technical Fg.
THO = Tech Mgr. Office
A detailed cost benefit analysis was made to document the anticipated savings to be accrued by implementing the Coordinate Measuring System project. Studies were conducted for each part that was projected across the Boice B-401 machine, and the savings were computed by comparing present and proposed times. Also, savings were realized in three (3) areas listed below:

1) Removed transportation time from Receiving Inspection to Metal Services/Fabrication Shop. This time, 15 minutes per lot of material, has been eliminated. With approximately 375 lots moved yearly, this results in a saving of 94 hours of inspectors time per year.

2) Use of multiple inspection setups in the Metal Services/Fabrication Shop. The larger work space now available on the Boice 401 permits as many as four (4) setups to be in place at one time. It is estimated that this will result in 360 hours of inspectors time per year.

3) Reduction in rework as a result of more timely inspection. The constant access to the CMS, while parts are being machined, will provide operators with more timely information on the quality of parts being made, preventing rework of parts already made. Currently 2200 hours of rework are being used per year. It is estimated that this time will be reduced by 15% or 329 hours per year.

Total project cost was $105,778. Total savings were $122,028, which were projected over a 13-year period. Inserting this information into Tracor's cash flow model, a project IRR of 2.752% was computed. Because of this unfavorable
return on investment, Tracor's management decided not to enter into a project business agreement, but to pass all savings to the customers, and terminate the project.