The research was principally in the following four areas--Finite fields in digital signal processing, transform decoders for correcting both errors and erasures of the Reed-Solomon code, xray 3-d reconstruction, and a fast two dimensional convolution by the polynomial transform.
In the past five years, the following four areas have been considered under the Grant AFOSR Grant AFOSR of the U.S. Air Force office of Scientific Research.

(1) **Use the Finite Field to Perform Digital Signal Processing**

(a) **Fast Fourier Transform over Finite Fields**

The fast Fourier transform over the finite field is developed to compute one-dimensional convolutions [1-27]. One advantage of such a transform over the usual discrete Fourier transform is that this new transform uses only integer arithmetic. In addition filtering operations or convolutions without round-off error can be obtained, using this transform. Such a transform is applied to compute the two-dimensional convolution for imaging, processing [6] and to compute the discrete Fourier transform [12,15].

(b) **Recursive Filters over Finite Fields**

Recursive filter design techniques are developed for finite impulse filters, using finite fields. Such recursive finite field filters do not have the accumulation of round-off or truncation error one expects in recursive computations [27,28].
(2) Transform Decoder for Correcting Both Errors and Erasures of the Reed-Solomon Code

A fast transform technique over a finite field is developed to encode and decode the Reed-Solomon code [29-44]. It is demonstrated that the transform decoder for decoding errors and erasures of the (255,223,33) Reed-Solomon code over GF(2^8) is between 3 and 7 times faster than the standard Reed-Solomon decoder, developed previously by NASA [39]. If such a Reed-Solomon code is concatenated with a Viterbi decoded convolutional code it can be used to reduce the signal-to-noise ratio required to meet the specified bit-error rate for deep space applications. It is shown [34,35] also that such transform decoder for Reed-Solomon codes can be used in multiple-user communication systems.

(3) X-Ray 3-D Reconstruction

In computer tomography, the convolution technique utilized the convolution of the cross-sectional projection of an |ω|-filter. The 2-D section of an object is then reconstructed by averaging these convolutions over all projections at all angles from 0 to π. [45-51].

A new class of band-pass |ω|-filters is developed to reduce X-ray dosage and to enhance the edge of reconstructed pictures [50,51]. Weiner Filtering is used to improve the image quality of an object in the 3-Dimensional reconstruction.
tion by a weighted average of successive overlapping two-dimensional sections of the object [49].

(5) **A Fast Two-Dimensional Convolution by the Polynomial Transform**

A fast algorithm is developed to compute two-dimensional convolutions of an array of $d_1 \times d_2$ complex number points, where $d_2 = 2^m$ and $d_1 = 2^{m-r+1}$ for some $1 \leq r \leq m$. This new algorithm requires fewer multiplications and about the same number of additions as the conventional FFT method for computing the two-dimensional convolution. It also has the advantage that the operation of transposing the matrix of data can be avoided. [53]
REFERENCES

The following references are articles and Ph.D dissertations written during this Five Year period:

25. S. W. Golomb, "Cyclotomic Polynomials and Factorization Theorems," \text{ American Mathematical Monthly}, \text{ Vol. 85, No. 9.}

39. I. S. Reed, R. L. Miller and T. K. Truong, "An Efficient Program for Decoding the (255,233) Reed-Solomon Code over GF(2^8) with both Errors and Erasures Using Transform Decoding," to be published in Proc. IEE.

44. R. L. Miller, I. S. Reed and T. K. Truong, "The Probability of Incorrectly Decoding Errors and Erasures of Reed-Solomon Code Words," Submitted to Proc. IEE.

