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1.1 Introduction:

The RPI task has been concerned with the development of expert systems techniques
for automated photointerpretation. More specifically, our efforts have been directed toward
the development, implementation and demonstration of techniques which will mimic the
job of a trained photoanalyst in interpreting objects in monochrome, single-frame aerial
images. This is a difficult task which requires a combination of numerical and symbolic
image processing techniques.

During the course of this effort we have developed a novel hierarchical, region-based
approach to automated photointerpretation (cf. [1]). Basically, this approach proceeds
by first segmenting the input image into disjoint regions which differ in tonal or textural
properties. The spatial relationships between different regions are then expressed in terms
of the associated adjacency graph where nodes represent regions and the connectivity
indicates regions which are spatially contiguous. Based upon knowledge of the underlying
spatial adjacency graph, together with various self and mutual region attributes or features,
the problem is then that of assigning interpretations, or object categories, to each of the
nodes. This is generally a computationally explosive task. The novelty of our approach
is that we have been able to develop a computationally feasible approach to this symbolic
interpretation process.

The advantage of our approach is based upon two important properties: First, we
model the interpretation process as a Markov random field (MRF) defined on the adjacency
graph. Secondly, we make use of an efficient stochastic relaxation process to find the
most likely interpretation. The first assumption allows us to localize the search for good
interpretations while the second helps in avoiding the otherwise computationally explosive
nature of the search for optimum interpretations.

Our major effort during FY’'87 has been in refining this region hierarchical approach,
improving the initial segmentation process and, finally, demonstrating the approach on
real-world aerial photographs. The present report is an attempt to document this progress
of the last year.

This final report is organized as follows: In the remainder of this Section we provide

an overview of the current status of our hierarchical, region-based approach to automated
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photointerpretation. This is followed, in Section 4.2, by a detailed development of an un-
supervised tonal segmentation scheme under a Gaussian modeling assumption. In Section
4.3 we describe a corresponding texture segmentation technique based upon MRF’s. Sub-
sequently, in Section 4.4, we describe a novel approach, based upon information theoretic
concepts, for determination of the number of distinct image classes in an image. This latter
issue is crucial to any fully automated image interpretation scheme. Finally, in Section
4.5, we provide a summary and an outline of research directions for FY’88.

4.1.1 Image Interpretation Approach:

In this section we will describe the current status of our automated photointerpretation
system, review the pertinent details of the evolving testbed which will support it and
illustrate some typical results obtained so far.

A block diagram of the overall testbed structure is illustrated in Fig. 4.1-1. The main
funct’on of the preprocessor is to provide a segmentation of the irnage into disjoint regions
wihich are homogeneous within a region but differ in some sense from adjacent regions. In
the next several Sections, we describe various segmentation schemes investigated for this
purpose. For the time being then we assume that a segmentation has been obtained.

Once a segmentation is cbtained, however preliminary, the regions are indexed and re-
gion maps are stored in the image database. That is, the actual pixel values associated with
a region are stored separately for each region. In addition, various attributes associated
with each region are stored. This includes such parameters as area, perimeter, boundary,
elongation, etc. In addition, the spatial relationships between the various regions are main-
tained. This is most easily done by using an adjacency graph where the nodes correspond
to regions and the connectivity indicates spatial relationships. In particular, two nodes
are connected by an arc or edge if they are in some sense spatial neighbors. The values
associated with arcs can include mutual information corresponding to the connected nodes.
This information might include: mutual boundaries, spatial distances, strength of mutual
edges, etc. Image interpretations are provided by the inferencing mechanism which has
access to the region information stored in the image database, as well as the world knowl-
edge stored in the knowledge database. Feedback to the image preprocessor is through the

inferencing mechanism.




It should be noted from I'ig. 4.1-1 that the testbed allows operator intervention
through an interactive image processing and display terminal. More specifically, the op-
erator can manually extract regions using a joystick or trackball and, if desired, actually
provide interpretation of the various extracted regions. Once the disjoint regions are out-
lined by the operator, the various region attributes are automatically extracted and stored
in the image database in exactly the same format as if they were automatically extracted
by the image preprocessor. Furthermore, in cases where the operator provides region in-
terpretations, the relevant spatial relationships are provided to the knowledge database

allowing updating of our world knowledge.

Now suppose that an appropriate initial segmentation is obtained. Let the distinct
regions be labeled R, R,,..., Ry as, for example, in Fig. 4.1- 2 where N = 7. The corre-
sponding first-order adjacency graph associated with this segmented image then appears
as indicated in Fig. 4.1-3. By first-order adjacency we mean here that regions are adjacent,
or are neighbors, if and only if they are spatially contiguous. The problem is now: given
an intttal segmentation, to provide a global interpretation for each of the nodes given mea-
surement attributes associated with each node, context information associated with the
mutual relationships specified in the adjacency graph and world knowledge as prescribed
in the knowledge database. A detailed description of our approach to implementing this
interpretation function was provided previously in [1]. As a result, the following discussion
of the major characteristics of this approach will be abbreviated and will depend upon the

more extensive development in (1] for details.

Suppose then that the segmented regions within the image are labeled Ry, R5,..., Ry
and let I,,I.,...,In be the corresponding global interpretations given to each of these
regions where [;e{¢,1,2,...,K'}. Here, we have K specific object types whose labels
are to be assigned to each of the regions plus the ambiguous or irrelevant object type
represented by the label or symbol ¢. Suppose we define the region information as R =
(R,R,,....Ry) and the interpretation vector I = (I, I5,...,Iy). Note there are at
most (K + 1)V possible interpretation vectors although, in reality, there are many fewer
than this since a valid global interpretation should not allow neighboring, or adjacent,

regions to carry identical labels except for the uncertain symbol, ¢. The exact number
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of interpretation vectors will then depend specifically upon the spatiai arrangements of
regions and is thus a random variable.

Our criterion wili be to choose the estimated global interpretation I= I, iff

IO:argm?.xp{Ilﬂ,K,I} (1)

Here, R represents information describing the partitioning into regions, K represents in-
formation in the knowledge database and X represents the corresponding adjacency graph
which includes all measurement information, both for each region separately as well as
mutual measurement information between regions. The quantity p{I|R, K, X'} represents
the conditional probability of I given R, K and X. This quantity may be difficult to specify
theoretically, but the work in (1! prc -ided a nice theoretical framework for specifiying the
structure of this conditional probability. The optimization in (1) is then over all legitimate
interpretation vectors; the resulting estimate is called the maximum a posteriori (MAP)
estimate and is well-founded in statistical decision and estimation theory [2].

At this point we will make the assumption that, conditioned on R,K and X, the
interpretation vector I is a Markov random field (MRF) defined on the corresponding
adjacency graph. The concept of a MRF defined on a 2-D lattice has provided a useful
model for images. However, as pointed out in [3], the concept of a MRF need not be
restricted to lattices but can be defined on more general structures such as graphs. Thus,
it appears quite natural to define the interoretation vector, I, as a MRF defined on the
associated adjacency graph.

Under the assumption that I is then a conditional MRF, it’s well known through
the equivalence of MRF’s with Gibbs random fields (GRF’s), that the the conditional

probability must be of the form

e—U(I.R.K.I)

P{IR K, X} = ———, (2)

where U(I; K, K, X) is the associated Gibbs energy function and Z is the corresponding
partition function which serves the role of a normalization constant. More specifically, we

have
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7 Z:e—”(l.R.ﬁ(.Xl. (3)
I

where the summation is over all legitimate interpretation vectors. The energy function
must then be designed to take into account the information represented by R, K and X.

As can be seen from (1) and (2), the MAP estimate is obtained by minimizing the
energy function. This is a difficult combinatorial problem since, as we have noted previ-
ously, there are as many as (K - 1)V possible interpretation vectors, I. In {1’ we proposed
and described the use of a stochastic relaxation procedure, called simulated annealing, to
overcome these combinatorial problems. More specifically, simulated annealing was used
to obtain the maximum of p{I'R, K, X'}.

Now consider the choice of a Gibbs energy function. It’s well-known (cf. [8!) that this

must be  { the form

UL R K, X) = Y Vo(Li R, K. X), (4)

where V.(I.:R,K,X) is called a cligue function and the summation in (4) is over all
possible cliques with I, the restriction of I to the clique c. Cliques and clique functions
are described in more detail in [1]. In particular, we showed that the summation in [4] can

be rewritten as

N
UL R, K, X) =Y 3 V,(I;R,K, X). (5)

i=1eeC,

Here, the outer sum is over the individual nodes while the inner sum is over the set of
distinct cliques, C;, associated with ¢ = 1,2,..., N.

As pointed out in [1!, the outstanding problem at this point then is in the determina-
tion and specification of an aupropriate set of clique functions. At that time we suggested
some ways in which these clique functions could be chosen in some simple illustrative prob-
lems. During the past year we have studied several refinements in the selection of clique
functions and have applied this scheme to several sets of synthetic as well as real-world
itages. Our work here is incomplete and we expect to actively pursue these investigations

throughout FY'88,
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In the following Sections of this report we will describe in some detail the rather ex-
tensive work we have completed in FY’87 concerned with segmentation techniques. Again
it must be emphasized that, regardless of the image interpretation technique employed,
the results are highly dependent on having a good initial segmentation.

References for Section 4.1
1. J. W. Modestino, " A Hierarchial Region-Based Approach to Automated Photointer-
pretation™, NAIC Final Report for FY’86.
2. H. L. Van Trees, Detection, Estimation and Modulation Theory I, Wiley and Sons.

New York, 1968.

3. R. Kinderman and J. L. Snell, Markov Random Fields and Their Applications, Amer-

ican Mathematical Society, Providence, RI, 1980.
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Fig. 4.1-1 Automated Photointerpretation Testbed
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Fig. 4.1-2 An Initial Segmentation of an Image

1.1.8




r_—_——-_

Fig. 4.1-3 Adjacency Graph for Segmented Image
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4.2 Unsupervised Image Segmentation Using A Gaussian Model:

A Gaussian random field model-based maximum-likelihood (ML) approach to image
segmentation is described in this section. In this approach, the segmentation problem is
formulated as a statistical decision problem under a Gaussian modeling assumption for
different image classes. The model parameters are estimated directly from the observed
image, resulting in an unsupervised algorithm. The results of applying this algorithm to

the segmentation of aerial images are also described.

4.2.1 Background:

Image segmentation is a very important problem in many image processing applica-
tions. In an image segmentation problem, an observed image is separated into regions
of different properties. Two of the most important properties used are tone and terture
[1]. Tone is related to the average gray level of a region while texture corresponds to the
spatial distribution of different gray levels in a region. As pointed out in (1], different
regions in an image sometimes exhibit mainly one or the other of these two properties.
When the spatial variation of gray levels in a region is small and uncorrelated, the region
is dominated by tone. On the other hand, if the spatial variation of gray levels is large or
correlated, the region is dominated by texture. This domination is not only determined by
the particular image scene, but more often by the resolution of the image. In this paper,
we are mainly concerned with images whose regions are dominated by tonal properties.
Surveys of texture segmentation techniques can be found in {1], [12], [14]. Examples of
the type of image for which tonal properties dominate can be found in many aerial pho-
tographs. In these images, the regions correspond to roads and fields, which have little
texture originally, or vegetation regions which show little texture or gray level variation
because of the low resolution of the image.

In many image analysis applications, image segmentation is the first stage of process-
ing and the quality of segmentation is crucial to the overall performance of the system
(2]. This is particularly the case in our application which is in automated photointerpre-
tation [13]. Because of its importance in a wide variety of applications, a large number
of image segmentation techniques have been proposed. These techniques can be classified

into two different approaches; a statistical approach, where tonal or textural properties
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are characterized in statistical terms, such as mean, variance, correlation functions and
probability distribution functions and a structural approach, where these imagc properties
are described by a properly defined formal language [1|. In this paper, we are interested
in a purely statistical approach for image segmentation where the image regions exhibit
mainly tonal properties.

Most of the previously proposed statistical techniques are heuristic or ad hoc in that
they are either based on some ad hoc arguments or derived from certain heuristics about
a specific set of images. The work of Haralick and Shapiro [3] provides a comprehensive
survey of most of the existing heuristic statistical image segmentation techniques, rang-
ing from the reasonably simple to the very complex. Although considerable success has
been achieved by a number of them in some specific and well-defined situations, they have
some unsatisfactory features. For example, it’s often difficult to precisely define or choose
the parameters involved in these algorithms, such as the valleys of histograms in vari-
ous histogram-guided thresholding techniques or thresholds for closeness in most region
growing algorithms. Many more sophisticated algorithms require an enormous amount
of computation. In addition, there is little known, in general, on how effective these al-
gorithms are and what type of images they can be applied to. More specifically, there
is no specific modeling assumption made for the image properties and, consequently, the
resulting solution cannot be optimal.

To overcome these difficulties, a number of stochastic model-based image segmenta-
tion techniques have been proposed [4]-[8], [14]. In a statistical model-based approach,
stochastic modeling assumptions are made for regions of different statistical properties, we
call elasses, in an image. Then the segmentation problem is formulated as a statistical
decision problem and an optimal solution is sought. As a result, the stochastic model-
based approach usually provides image segmentation techniques that are more generally
applicable and optimal according to some well-defined criterion.

Most of the stochastic model-based techniques, however, exploit textural properties
rather than tonal properties; hence these are texture segmentation techniques. One of the
few techniques which mainly makes use of tonal properties or, more precisely, attempts to

model tonal properties, is an algorithm proposed by Derin and Elliot (5]. In this technique,
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different image regions are modeled by a constant gray level with additive white Gaussian
noise which has the same mean and variance over the entire image while the distribu-
tion of different regions is modeled by a Markov random field (MRF), or Gibbs random
field (GRF). The segmentation problem is then formulated as a maximum a posteriori
(MAP) estimation problem. The maximization of the a posteriori probability functional is
performed using a~ approximate dynamic programming procedure. This algorithm is par-
tially unsupervisedin that the model parameters for the regions are estimated directly from
the observed image by the moment method of Gaussian mixture estimation although the
model parameters for the MRF model which generates the regions must be pre-specified.
The choice of underlying MRF parameters is made heuristically. While some successful
examples are shown in (5], this algorithm is computationally quite involved. Both dynamic
programming and the mixture estimation procedure require considerable computation. In
their approach, the image classes are modeled as having constant gray levels corrupted by
additive observation noise. This is a rather unrealistic assumption since many image re-
gions that appear to have uniform gray-levels have gray level variation in them in addition
to the additive observation noise. Finally, it’s not very clear how the model parameters for
the MRF of the region distribution should be selected. Recently, it has been shown that
the parameters for the MRF can be estimated through an EM (Expectation- Maximiza-
tion) type algorithm [12]. A disadvantage is that the amount of computation required is

quite large.

In this paper, we describe a novel stochastic model-based image segmentation ap-
proach which provides a simpler alternative and overcomes some of the unsatisfactory
features of Derin and Elliot’s technique. First of all, we model different image classes, or
region types, as independent Gaussian random fields with different spatially constant mean
and variances. The constant mean of a class is used to model the flat gray level, or tone, of
the region and the class-dependent variance is used to model the combined effects of varia-
tion of gray levels and additive observation noise which is assumed to be zero mean for that
class. Assuming the variation of gray level in a region is relatively small, our model is a
tonal model. Unlike Derin and Elliot’s algorithm, we do not make any assumptions on the

distribution of different regions in the image, since it is quite involved to estimate the MRF
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model parameters and perform the MAP operation. This results in a maximum-likelihood
(ML) approach. By using the independence assumption, the likelihood functional can be
maximized through a highly parallel operation; even using a raster scan, this can be quite
<imply done in one scan. Finally, the model parameters for different image classes can be
estimated by using a computationally efficient clustering technique operating directly on
the observed image. Hence this approach is entirely unsupervised. This algorithm has been
applied to a set of aerial photeographs and the results are shown to be quite promising.

4.2.2 The Gaussian Model and ML Segmentation:

In this paper, we consider an image as an array of gray levels defined on a two-

dimensional (2-D) lattice of finite extent. In particular, we denote an image by x where

x = {z(m,n),(m,n)eL}; L= {(m,n),1<m,n< N}. (1)

A random field is a family of random variables defined over the lattice L. In this paper,
we use capital letters for random fields and random variables, lower-case letters for real-
izations of random fields and sample values of random variables. A Gaussian random field

representing an observed image can then be defined as

X(m,n) = f(m,n) + W(m,n); (m,n)eL, (2)

where f(m,n) is the mean and W (m,n) is a zero-mean Gaussian random sequence, i.e.,
W(m,n) ~ N(0,0%2(m,n)). In particular, we assume f(m,n) and o%(m,n) are constant,
but unknown, for an image class and vary for different classes. In addition, we assume that
the X(m,n)’s are independent. The probability density function of the observed random

field is then simply

H _ (a:(m,n) - f(m,n))2 ) (3)

—_———ex
2no(m,n) P 202%(m, n)

(m.n)elL
Under a stochastic modeling assumption, the image segmentation problem can be
tormulated as a statistical decision problem. Here we take the basic formulation of the

segmentation problem as in (4], [7], (8]. Assume that there are K possible image classes

associated wich the K hypotheses, Hy, k = 1,2,..., K. Suppose that they are distributed
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in disjoint regions as shown in Fig. 4.2-1. Each of the image classes is modeled by an
independent Gaussian model corresponding to a particular hypothesis. That is, we have

the K hypothesis classes

Hy : X(m,n) = f(k) + W (m,n); k=12,...,K, (4)

where

Wkl (m,n) ~ N(0,0%(k)). (5)
A typical realization of the K-class Gaussian random field image is shown in Fig 4.2-2.,
with K = 3. Here, the regions are first generated by a 2-D MRF and then “colored” by
the appropriate Gaussian model. The model parameter vectors ax, k=1,2,3, are described
in the next section.

In essence, image segmentation is the process of assigning each pixel in the image
to a correct hypothesis class. According to statistical decision theory, an assignment rule
which minimizes the classification error, assuming equally likely hypothesis, is a threshold
test based on the ratios of the class-conditional likelihood functionalis, or some monotone
function of it [9]. More specifically, for each point (7, ) in the lattice L, we can construct
a window of size (2M+1)x(2M+1), centered at (¢,7) and denoted by W; ;. The data
contained in the window is denoted by X; ;. That is, X ; = {z(m,n}, (m,n)eW; ;}

where

Wij={mn),i-M<m<i+M,j-M<n<j+ M} (6)

with M << N and boundary effects are ignored. Define the class-conditional log likelihood

functional, given Hy, at (1,7) by

Li(X:.;) = log{p(X: ;i Hk)} (7)
Then a maximum-likelihood approach is to assign pixel position (1,;) tc image class ko if
ko = arg max Li(X; ;). (8)

1<k<K
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Notice here if we let M = 0, the window will contain only a single pixel which is a ML
estimation approach under an independence assumption on the pixels [7]. As will be shown
later, the segmentation result with M = 0 is somewhat “spotty”, and a proper choice of
M > 0 can smooth out most of the noise spots. Notice also that in this segmentation
algorithm, the decision on any pixel position is independent of those of the others, hence
it ~an be implemented in parallel. However, in our implementation we utilize » raster scan
processing approach which can be summarized as follows:

1.} Process all the pixels in a raster scan order.

2.} At each pixel position, a decision window centered at the pixel is constructed

{ignoring the boundary effects).

3.) The class-cenditional likelihood functional defined in expression (7) can then be

evaluaied for each hypothesis.

4.) Assign the pixel to image class kg, 1 < ko < K , if it maximizes the class-
conditional likelihood functional as in expression (8).
To carry out the computations in 3.) and 4.) above, the model parameters for each of the
image classes are needed. In the next section, we will describe a method for estimating
the model parameters directly from the image.

4.2.3 Model Parameter Estimation and Segmentation Results:

The parameter estimation technique used in the ML segmentation approach is similar
to those in our previous work (7],[8], which were quite successful in unsupervised texture

segmentation. More specifically, define the model vector for each class or hypothesis,

a, = (f(k),o(k)), k=12,... K. (9)

Then the ax’s are the model parameters to be estimated from the observed image. As in (7]
and [8], consider a sliding window of size M| x N|, where M| << N, N; << N, with each
step of the sliding window being displaced M, pixels vertically and N, pixels horizontally,
as shown in Fig. 4.2-3. At each position of the sliding window, a Gaussian model vector is
estimated by computing the sample mean and sample variance. This vector is then stored

as a sample vector. Finally, all the sample vectors obtained this way are then usea as input
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to a particular clustering algorithm known as the K-means algorithm [10;. The centroids
of the clusters found in the clustering process are then used as model parameter vectors
for the underlying image classes and used in the model-based windowed ML segmentation
algorithm described in the previous section.

A remaining question with this estimation approach is how K, the number of dif-
ferent image classes, is to be determined. In related work [11], we have proposed use of
an information-theoretic criterion, known as the Akaike Information Criterion (AIC), to
determine the number of classes from the observed image. This scheme has been shown
to provide correct results for synthetic mixture data and reasonable results for real-world
images that are in close agreement with subjective observations. This scheme is directly
applicable to the present situation. In this paper, however, our interest is to see how
effective the segmentation is under reasonable assumptions on the number of classes. By
reasonable, we mean the number of classes is approximately equal to the number of per-
ceptively different tone classes in the image. In the segmentation experiments to follow
then, we assign the number of classes by observing the images.

There are two other problems encountered when implementing the estimation algo-
rithm. The first is how the sliding window size should be selected for model parameter
estimation. Although it is not clear quantitatively how the window size effects the esti-
mation accuracy, we can make some qualitative observations. In general, if the window
is too large, it might contain a significant amount of data from different classes, resulting
in unreliable estimates. On the other hand, if the window is too small, the data might
not be enough to arrive at reasonably accurate estimates. At this point, we choose the
sliding window size heuristically. For example, we noticed in our experiments that most of
the regions have a size greater than 16x16. As a result, we choose the size of the sliding
window to be 16x16. Notice, however, as long as the window is not too large or too small,
the size is not very critical and the same size can be used for a number of images.

Secondly, even by proper selection of the window size, we still might come to a situa-
tion in which a window contains data from different classes in about equal amounts, i.e.,
the window is“sitting” on a boundary. The sample vectors arising from such situations will

affect the accuracy of the estimated class model vectors. As a result, the performance of
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the segmentation may ve Jdeeraded. For example, regions that should be well separated if
the class mode! vectors are reasciably accurate may be mixed together, or not separated at
all. However, we observed that when a sliding window contains data from different classes,
the estimated variance 1= usuallv quite large, especially when the difference in gray level
is large. Hence. to improve the estimation accuracy, we can reject those sample vectors
which have large variance ~omponents. For the simple scheme considered here, a threshold,
denoted T, s selected and if the square root of the variance component of a sample vector
exceeds the threshold. 7., it wiil be discarded from the clustering procedure. Currently.
this threshold is selected heuristically thrcugh observing the quality of corresponding seg-
men*zation resuits. Later in this section, we will show, through experimental results, this
simple scheme does improve the segmentation. For a completely automatic process. it has
to be selected according to a fixed rule or algorithm. Other more sophisticated techniques
can also be used to obtain reliable model parameter estimates. For example, a x* type
of test can be pertormed on the data contained in a number of subwindows of a sliding
window to see if they have the same distribution; that is, if the gray level in the sliding
window is “uniform”. If the data is uniform, an estimated sample model vector is stored.
Otherwise, it is rejected. In this approach, we still need to decide the size of the sliding
window, the number of subwindows, and the significance level of the test. Another ap-
proach is to use robust estimation techniques treating unreliable sample model vectors as

“outliers”. These approaches are currently under investigation [12].

We have applied the algorithm described in the previous sections to the segmentation
of aerial photographs. The images are of size 256x256 and digitized to 256 gray-levels.
The segmentation is performed for each image under different assumptions on the number

of classes. In the following we will present and discuss the experimental results.

First, we show that by rejecting sample model vectors with large estimated variance
component, using the simple scheme described previously, the seginentation results can
indeed be improved In Fig. 4.2-4, an image containing fields and oil tanks is segmented
under the assumption of 3 classes. The size of the decision window is 3 x 3; that is, M--1.
The segmentation results, along with the estimated model parameter vectors, are shown

in I'ig.4.2-4b and 4.2-4c, respectively, for the case of not rejecting any sample vector and
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rejecting sample vectors with large variance component. In the latter case we have taken
T,=15. It can be seen that the results are improved considerably. In the rest of the
experimental results, we reject the sample vectors which have large variance component
using 7, = 15.

Next, in Fig. 4.2-5, we show the effect of the window size M in the ML segmentation
approach. It can be seen that when the decision window size is selected properly, the
windowed approach smoothes out some noisy spots in the segmentation and significantly
improves the segmentation results. In the rest of the segmentation experiments, we used
decision windows with size 3 x 3, or M = 1.

Finally, in Fig.’s 4.2-6, 4.2-7, 4.2-8 we show some segmentation results for three differ-
ent aerial photographs under the assumptions of both 3 and 6 classes. In each case, different
regions of the image are separated reasonably well by a 3-class assumption. Buildings, roof,
roads, and vegetation areas, are well separated. Finer segmentation is obtained under a
6-class assumption. It should be pointed out, however, that the segmentations here are
still coarse in that different real world objects are assigned to the same class as long as
they are close in tonal properties. Differentiation of regions of the same class which are
really different objects could be achieved using other properties, for example, texture or
shape information.

1.2.4 Summary:

In this paper, we have described an unsupervised Gaussian model-based ML approach
to image segmentation. In this approach, different regions are modeled by independent
and spatially varying Gaussian random fields. The segmentation problem is formulated as
a statistical decision problem and an ML solution is proposed. The model parameters are
estimated directly using a clustering-estimation method. Experiments on the segmentation
of aerial photograph images are shown to be promising.

This work brings up a number of problems for future investigation. First, we need
to study methods to determine the threshold, T,, for rejecting erroneous sample model
vectors directly from the data. Possible solutions are outlined in the previous section
and experiments are needed to thoroughly investigate their eficacy. Another interesting

problem is the characierization of the image classes. The independent Gaussian model
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emneloved in this werk basically aimed at the tonal properties of the image classes, while
spatial variation or *exture is only reflected in the variance of the model. In addition,
“he independence assumption further limits the characterization of texture properties in
iLaze classes Op the other hand, a number of texture-based segmentation schemes do not
perform well when the image classes exhibit strong tonal differences [12]. What is needed

i~ 2 imnre robust approach that combines the merits of both tonal model-based and texture

modei-based aprroaches.
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Fig. 4.2-1 An Image Containing Multiple Regions
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An Initial Segmentation of an Image.




Fig. 4.2-2 A Realization of a 3-Class Gaussian Random Field

a.) MRF Generated Region Map.
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b.) 3-Class Image;
a1=(70,8.9),
22=(100, 14.1),
22=(150, 10.9).




Fig. 4.2-3 A Sliding Window on the Image Plane
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Fig. 4.2-4 Performance Improvement by rejecting large variance components

b.) Segmentation 1, 3-classes, c.) Segmentation 2, 3-classes,

without rejecting model vectors rejecting model vectors with
with large variance term; M=1, large variance term; T,=15M=1,
21=(150, 57), 2:=(158.1, 11.5),

22=(203.4, 7.5), 2,=(208.7,3.4),

22=(135.2, 9.0) 4.2.16 25=(131.0, 5.0)




Fig. 4.2-5 Improvement by decision window of size greater than one, T, = 15

b.) Decision Window 1x1 c.) Decision Window 3x3
(M=0) (M=1)
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Fig. 4.2-6 Segmentation of Aerial Photo ,To, =15,M =1

7

il

a.) Original Image

b.) 3-Class Segmentation c.) 6-Class Segmentation
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Fig. 4.2-7 Segmentation of Aerial Photo 2, T, = 15, M =1

b.) 3-Class Segmentation c.) 6-Class Segmentation
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Fig. 4.2-8 Segmentation of Aerial Photo 3, T, = 15, M = 1

.

b.) 3-Class Segmentation
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4.3 Texture Classification and Discrimination Using the Markov Random Field Model:

Over the last ten years, texture analysis has become a very important area in image
processing applications and many techniques have been proposed and investigated. These
techniques can be classified as either statistical or structural. In a statistical approach.
texture is characterized in terms of its statistical properties such as mean, variance, or
probability distribution. In a structural approach [1-3], texture is described as a formal
language which contains specified primitives as elements and uses a placement rule as its
graimnmar. In this paper, we will be only interested in a purely statistical approach.

Most of the existing statistical techniques, as summarized by Haralick in ‘1, are ad
hoc in that no stochastic modeling assumptions are made for the texture classes. Textures
are described in terms of some lower-level features such as mean, variance and correla-
tion functions. Although these features provide some useful information about the texture
classes, they are quite limited. As a result, while considerable success has been achieved
for some special applications, there is little known in general as to how good these tech-
niques are and what type of texture classes they can be applied to. In response to this
shortcoming, Modestino, et al. [4-5] introduced a particular random field model, called the
random tessellation process, for texture. Under this modeling assumption, texture anal-
ysis applications, such as classification and discrimination, can be formulated as classical
statistical decision problems. More generally applicable and optimal solutions can then be
obtained. However, as pointed out in [4-5], there are some unsatisfactory features of their
model.

The recent developments in Markov random field (MRF) theory provide a powerful
alternative texture model and have resulted in intensive research activity in MRF model-
based texture analysis techniques {6-9]. Comparing to the previously proposed techniques,
the MRF model-based approach has several distinguishing features.

First of all, the MRF, also known as the Gibbs Random Field (GRYF). is characterized
by the joint probability distribution function of the random variables on the entire lattice
over which the MRF is defined. This provides complete information about the statistical
properties of the random field. Secondly, the joint probability of the random field can be

specified in terms of a few parameters, which makes the model mathematically tractable.
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Finally, synthetic textures that closely resemble real-world textures can be generated by
properly selecting a specific MRF model. In this paper, we describe a novel MRF model-
based maximum-likelihood (ML) approach to texture classification and discrimination.

In a texture classsfication problem, an observed image is to be assigned to one of a
finite number of classes according to its texture. Abend, et al. [10] proposed a Markov
mesh model-based approach for texture classification. As an extension of the Markov
chain to two dimensions, it has a causal structure and recently has been shown [11] to be
a subclass of the 1.4RF which is non-causal in general. Chellappa, et al. [12] have shown
some success on texture classification using a non-causal Gaussian Markov Random Field
model which is again a specific MRF model [11]. A similar approach is proposed in [13]. In
this paper, we will consider the general MRF model which is noncausal and non-Gaussian.
As can be seen later, this class of MRF models is more convenient for the classification of
textures with few gray levels, as with binary textures, for example.

In a texture discrimination problem, an observed image is to be separated into disjoint
regions of different textures, hence is also known as texture image segmentation. Derin,
et al. {8] proposed a maximum a posteriori (MAP) estimation approach for texture dis-
crimination using the MRF model. More specifically, they have considered a hierarchical
image model. First, the distribution of the texture regions on the image lattice is modeled
as a MRF. Then, different texture types are modeled by different MRF models. The max-
imization in this MAP approach is performed through dynamic programming with some
approximations made on the a posteriori probability functional. The model parameters
for different textures are assumed to be estimated from training data while the model
parameters for the distribution of regions are chosen heuristically. In other words, this is
a superuvised approach. A similar supervised MAP approach is developed in [13] under a
Gaussian Markov modeling assumption.

In this paper, we use a novel unsupervised ML approach. First of all, we do not assume
a model for the distribution of regions since, even in those cases for which training data
for different textures are available, the training data for the region distribution is rarely
available. It is for this reason, in particular, that we have avoided a MAP approach and

made use of a simpler ML approach which requires less a priori knowledge. Secondly, we
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have considered the case when the training data for each texture type is not available.
A clustering technique is used to estimate the MRF model parameters directly from the
observed image, resulting in an unsupervised scheme. Finally, texture discriminaticn is
accomplished by assigning each pixel of the image into different texture classes through ai
ML test performed on the basis of neighboring pixels. This results in a highly parallel al-
gorithm. As will be shown, compared to a dynamic programring approach, this algorithm
requires far less computation.

After a brief review of the MRF theory in the next section, the ML approach for
texture classification and discrimination with corresponding experimental results will be
presented in Section 4.3.2 and Section 4.3.3, respectively. A summary is provided in Section
4.3.4.

4.3.1 The Markov Random Field Model:

The MRF model used in this paper originated from studies in statistical physics and
recently has been adapted to an image processing context. In this section, we review some
basic theory and some specific MRF models that will be used later.

For simplicity, we consider only digital immages. That is, images with finite size and a
finite number of grey levels. In particular, we define an image to be a two-dimensional (2-
D) array over a finite square lattice, denoted by f = {f(7,;),(1,7)eL} where L = {(7,).1 <
t < N,I <j < N} and f(1,5) can assume only a finite number of values.

A random field is defined to be a family of random variables defined over the 2-
D lattice L. Denote the random field by X, the random variable at (¢, 7) by X(i, ), then
X = {X(1,7),(1,7)eL}. In statistical image modeling, images are considered as realizations
of .andom fields. In this paper, capital letters are used for random fields or random
variables while lowercase letters are used for realizations or sample values.

A MRF on a 2-D lattice is a random field with the special property that the statistics
of a point in the lattice given those of the rest ¢f the lattice depends only on a few points
known as its neighbors. More rigorous definitions are presented in what follows, s. .rting
with the concept of a neighborhood system.

Definition 1: A collection of subsets of L, n = {n(1,7), (1, 7)eL,n(1,7) < L} is a neighbor-

hood system on L, if and only if
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(Y (5, 2 niio).

(i1) if (k,£)ea(s. g}, then GLoren(k. d).

Some typical neighborbood svstem configuraticns are shown in Fig. 4.3-1. As in-
dicated there, a neightorhood sysiem can be classified as first-order, second-order, etc.,
accotding ro the number of neignbors each iattice point has. To avoid boundary prob-
lemns, a periodic iattice structure is assumed. Under this condition, ali the points in L will
have the same number of neighbors. A MRF is then defined with respect to a specified
neighborhood system.

o

Defiritior 2: Let n be a neighborhood system over the 2- [ lattice L. A random field

X = {X{1,7).(s. 7)€L} is a MRF witl respect to n, if and only if

it1) P.X =2z >0forallg (la)
(1) PiX(i,7) = z(1.7)I Xk, &) = z(k.€), (k,8)eL, (k,€) # (1,7)]
= P[X(1,7) = z(¢,7)| X (k, &) = z(k, ), (k,8)en(1,7)] (1b)

where P!-| and P!.i-} indicate the joint and conditiona! probability distributions of the
random field, respectively. The order of the neighborhocd system n is called the order of
the MRF and the conditional probabilities in (1b) are also called the local characteristics.

The concept of the MRF would not be very useful for practical applications if it were
not for the Hammersley and Clifford theorem which establishes the relation between the
MRF and the Gibbs Random Field (GRF) and hence provides the functional form of the
joint probability distribution function for a MRF. Before the GRF can be defined, the
important concept of a clique must be introduced.
Definition 3: Given a lattice and neighborhood system pair, (L, n), a clique on the lattice,
denoted by ¢, is a subset of L, such that

(i) c contains at least a single point of L

(ii) if (k.€yec,(i,7)ec and (1,7) # {k,€), then {1, 7)en(k ).

In particular, the collection of all the cliques of the pair (L, n) is denoted by C(L, n).
Examples of clique types under different neighborhood systems are sho' n in Fig. 4.3-2.

Now, the GRF can be defined as follows:
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Definition 4: A random field X = {X(7,j),(¢,7)eL} is a GRF with respect to a given
neighborhood system n, if and only if its joint probability distribution function is of the

following form:

P|X = x] = Z tezp|-U(x)], (2a)
where
Ux) = ¥ Vi), (2b)
ceC(L,n)
and

Z = Zexp[—U(x)]. (2¢)

allx

Here, V.(x) is called the clique function and it depends only on the points in clique ¢ while
Z, called the partition function, is a normalizing factor to make (2a) a valid probability
distribution. Notice that the GRF is defined in terms of its joint probability distribution,
which provides complete information about the random field, while in the case of a MRF,
there is little known about the joint probability distribution. Similarly, the conditional
probabilities or local characteristics of a GRF can be found from the joint probability
distribution, while in the case of the MRF the conditional probabilities are not readily
apparent. Hammersley and Clifford have established the equivalence between the MRF
and GRF, hence making the MRF a feasible model for practical applications such as texture
modeling. This theorem will be simply stated in what follows. The proof is rather involved
and can be found in Besag’s work [14].
Theorem: A random field X = {X(t,3),(#,5)eL} defined over L is a MRF with respect to
the given neighborhood system n if and only if it is a GRF with respect to n.

In this paper, two MRF models will be used as texture models, presented in the
following examples in terms of their conditional probability distributions. These models
have been widely used for real-world two-dimensional (2-D) phenomena, including textures,

and have been shown to be simple and effective [6-10]. They are the main MRF texture
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models used in this paper. However, other models can also be defined for applications of
interest by properly selecting the clique functions [14].

A.) Example of a First-Order MRF:

Consider a first-order MRF with the neighborhood system and 1ts clique types shown

in Fig.’s 4.3-1a and 4.3-2a. The joint probability distribution function of this MRF is:

PX =x]=Z 'expla Z z(1,7)
{s.7)eL

by Y z(i )i, 5 — 1)
+by Y z(i,f)z(i — 1,5)). (3)

Notice that in the above summations the periodic lattice structure is assumed. The

local characteristics of the MRF can be found easily by Bayes’ conditional probability

formula as:
PiX(7,5) = z(4,5)| X (k, ) = z(k,£), (k, €)en(s, )]
_ _exp(=(t, 4)s(i, )] (4)
Zz(i.j) exp[:c(i, J.)s(i’ .7)] ,
where

s(t,7) = a + byfz(t,7 — 1) + (3,7 + 1)]
+ba(z(i — 1,7) + z(¢ + 1, 7)) (5)
and the sum is over all possible values of (1, 7). A special case is when b; = by = b.

This is called an tsotropic MRF.
B.) Example of a Second-Order MRF:

This MRF model has the second-order neighborhood system and clique types shown
in Fig.’s 4.3-1b and 4.3-2b with the following joint probability distribution function
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PX =x]=Z 'ezpla Y z(i,j)

(+.5)eL
by > z(d, i)z - 1)
(i.7)eL
+ b2 Z z(1,7)z(f — 1,7)
{(£.3)eL
+ ¢y Z z(t,7)z(r — 1,7 - 1)
(s.5)eL
tez > z(i,5)z(i - 1,5+ 1)]. (6)
(3.7)eL

Again, the periodic assumption is made for the above summations. Similar to the

previous example, the local characteristics can be found as:

P[X(ivj) = x(i,j)|X(k,€) = :B(k,l), (k’e)en(i’j)]
 emplali,)t(,d)]
Zx({,j) ezp(z(7, 5)¢(, -7” ,

where now

t(i,7) = a+ by(z(i, 7 — 1) + (3,5 + 1)]
+ba[z(t — 1,5) + z(i + 1,5))
+efz(t - 1,7 - 1)+ z(t + 1,7 + 1)]

+exz(t — 1,7+ 1) +z(t + 1,57 — 1)) (8)

Suppose a given image f = {f(7,7),(¢,7)eL} is modeled by a specific MRF. It is
desired to estimate the model parameters of the MRF from the image data. Since the
ML approach to be developed later bears close relationship with the parameter estimation
algorithm, we will describe it in detail.

Let the parameters be denoted by the vector a. For example, for the first-order

isotropic MRF, a = (a,8). The maximum-likelihood (ML) estimate of a, denoted as7,
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is optained by maximizing the likelihood functional L(f;a) = P(f|a) where P(f|a) is the
joint probability of f as a realization of the MRF given a as the parameter vector. Once
the model is chosen, P(f'a} is a functional of the vector a. Although this estimate is
optimum, it is difficult to compute. This is because the computation of the conditional
joint probability functional, P(f|a), involves the computation of the normalization factor
Z in (2), which in turn contains all the possible realizations of the MRF, and in this case
is also a functional of a. The computation is almost impossible even for a binary MRF
(BMRF) on a reasonably small lattice. Obviously, a suboptimum technique needs tc be
used which preserves some optimality of the (ML) approach and yet is computationally
feasible. Besag’s coding method [14] is such a technique.

In this coding method, the 2-D lattice is separated into disjoint sets of points, called
codings, according to the neighborhood system assumption of the MRF. The codings are
defined in such a way that the points in each coding are conditionally independent given
the random variables on the other codings. From this property, no two points in the
same coding are neighbors. Examples of codings are shown in Fig. 4.3-3 for the first and
second-order MRF’s discussed in this section.

Suppose for a given MRF there are M codings, denoted by C,, Cs, ..., Cps. Define for
the m’th coding the following coding-likelthood:

L..(f;a) = P[F(%,5) = f(¢,7),(¢,5)eCmia, F(k,£) = f(k,£),(k,)eC,

forallg, 1<¢<M,q#m]; m=12,.,M. (9)

Since the points in a fixed coding are conditionally independent, L,,(f;a)} can also be

written as

La(fia) = [[ PIF(.5) = f.9)la, F(k,€) = f(k,6), (k,O)en(i,5)],  (10)

(2.7)eCm
where P[--| is the local characteristic which can be easily computed. Therefore, L,,(f;a)
is also easy to compute. The m’th coding estimate of the parameter vector can be obtained

by maximizing L,,(f;a) with respect to a for m = 1,2,..., M. The resulting estimate will
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be denoted by éy{"(;L,m = 1,2,....,M, where MCL indicates marimum coding likelithood

estimation and the superscript indicates the m’th coding. It has been noticed by Besag
{14}, Cross and Jain {7], and the present authors that this coding method provides very
accurate estimates. Also, the estimates obtained by using different codings are very clese
to each other. In the remainder of this paper, for definiteness, we compute the maximum

coding-likelihood estimate as the average over all 55\:{72'[,- That is, we take

M
aypcor ]TJ— Z é_(h;n(lv[‘ (11)

4.3.2 Texture Classification:

In this section, we will first develop the MRF model-based ML approach for texture
classification for the case where training data is available and then show that it can be
combined with a clustering algorithm when training data is not available. A block diagram
outlining an approach to the texture classification problem is shown in Fig. 4.3-4. The
inputs to the classifier are digital images containing texture data from one of a finite
number of texture classes. These images are separated into the unknown or test set of
images, whose texture class is unknown, and the training set of images, whose texture class
is known a priori. The training set is necessary to provide information that will be used
by the classifier in the decision process. In the parameter estimation stage, information
essential for differentiating the texture classes is estimated from the training set of images
and used to adapt the classifier for all the possible texture classes. Then the unknown
images will be processed by the classifier to decide which texture class is presented.

Let the image data on which the classifier is to operate be denoted by f =
{f(¢,7),(¢,7)€L}. Assume that there are K texture classes or hypotheses labeled by
He,k = 0,1,2,..., K — 1. The class-conditional likelihood functional [15], assuming the

k’th hypothesis is acting, is then defined as:

Lk(f) = P(f|Hk); k=0,1,...K -1, (12)

where P(f|H;) is the joint probability distribution of the random field assuming that

hypothesis Hy is acting.
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If the MRF described in Section 4.3-2 is used as the texture model, the likelihood
functional in (12) is the joint probability of the MRF model for th= k’th texture class. In this
paper, we assume different texture classes are modeled by MRF’s with the same functional
forms of prohability distribution but different in the parameters in these functionals. For

example, if the first-order isotropic model is used, the likelihood functional is

Li(f) = P[flax] = Plf|(ax,by)]; k=0C,1,..,K - 1, (13)

where ax = (ax, bx) is the parameter vector for class k. According to the ML decision rule,
which minimizes the classification error probability, the data is assigned to texture class
ko corresponding to the index that maximizes the class-conditional likelihood functional
in (12).

Although this approach is optimum, it is usually difficult to implement, since the com-
putation of the normalization factor Z in P[f|Hl, just as the case of parameter estimation,
involves all the possible realizations of the MRF. A reasonable suboptimum approach is
to use a likelihood functional which is closely related to the joint probability function
and is yet easy to compute. The coding likelihood used in Besag’s coding method for
mode! parameter estimation can be used ic develop such a suboptimum approach. In-
stead of computing the joint probability, the coding likelihood, defined as follows, is used
as the likelihood functional. More specifically, suppose there are M codings denoted by

C1,Ca,...,C)py, the class-conditional likelihood evaluated on the m’th coding is

Lm.k(f) = P{f(1,7),(3,)€Cmlak, f(k, &), (k,€) ¢ Crm]

= I Plrtdlax (k0. (k,Oen(i, )

(17)eCm
m=12,..M;k=0,1,..., K - 1. (14)

As mentioned previously, the coding likelihoods computed for different codings are
very close. In principle, we could choose any value of m = 1,2,...,M and perform ML
classification on the basis of L,, x(f),k = 0,1,..., K — 1. However, for definiteness, we have

chosen again to average the various coding likelihoods. More specifically, define
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M
Le() £ 3 Lous(f). (15)

The decision rule then becomes: assign the data to class kg if

Lko(f) = max Lk(f) (16)

0<k<K-1

When training data is available, this suboptimum ML classifier can be implemented
with the estimated parameter vectors for each texture class from the training data set
using Besag’s coding method. When the training data is not available, as is often the case
in many practical applications, the parameter vector for each texture class can be obtained
as follows. First, model parameter vectors are estimated from every observed image. Then
these vectors, also called samples, are grouped into several disjoint sets called clusters.
Finally the centroids of the clusters are used as the estimated class model vectors in the
ML classifier. This is usually referred to as a clustering procedure in pattern recognition
and the algorithm which performs the grouping is called a clustering algorithm. There are
many clustering algorithms available [16], {17]. In this paper we make use of the K-means
algorithm [17]. It has been shown that this algorithm is optimal under a specific cluster
criterion function and convergent under a well defined condition for the distribution of
samples. It is also simple to implement. The major disadvantage of this algorithm is that
the number of clusters has to be known before applying the algorithm, which is sometimes
an impractical assumption. A number of techniques, mostly heuristic, have been proposed
to determine the number of clusters, or classes, and there is no well accepted theory [16],
18!. In this paper we assume that the number of classes is known or predetermined and
pursue this problem in other separate work.

Texture classification experiments have been performed on both synthetic texture
classes and natural texture classes to test the efficacy of the ML approach described above.
The synthetic textures used are realizations of binary Markov random fields (BMRF’s)
while the natural textures are equal probability quantized binary images from Brodatz’s
photo album [19]. For each case, the classification is performed with the aid of training

data or using the clustering method. The experimental results are presented as follows:
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A.) Supervised Classification of Synthetic Textures:

The texture classes used in this experiment are generated as follows: First, a re-
alization of a binary MRF of size 240 x 24 specified by a parameter vector ag,k =
0,1,...,K - 1, is generated using Geman and Geman'’s algorithm [9]. Next, each 240 x 240
image is cut into nine 80 x 80 subimages. Finally, the subimage at the upper-left corner is
used as the training data for that texture class, while the rest of the subimages are taken
as test data.

The first-order isotropic BMRF is used in both texture generation and parameter
estimation. Four texture classes are generated. The estimated model parameters from the
training data for each texture class are shown in Table 4.3-1a along with the actual model
parameters used to generate the texture classes. The 240 x 240 image for each texture
class is shown in Fig. 4.3-5. It can be seen from these images that they have different
clusterings. The classification results are shown in the contingency table in Table 4.3-2a.
All the data are correctly classified. Similar results have been obtained for second-order
MRF’s 119..

B.) Unsupervised Classification of Synthetic Textures

In this experiment all the subimages in A.) are used as test data. The clustering
algorithm described previously is applied on the set of model vectors estimated from the
thirty-six subimages, using the same BMRF model as A.) and assuming the number of
classes is known to be four. The cluster centroids as shown in Table 4.3-1b along with
the model parameters that generates the synthetic textures and the classification result is
shown in Table 4.3-2b. The estimated model vectors obtained by clustering are very close
to the actual values and all data are correctly assigned.

C.) Supervised Classification for Natural Textures

The natural textures used in this experiment are four texture images from Brodatz’
photo album [20!. They were originally 256 grey level images of size 128 x 128. An
equal probability quantization is performed to transform these textures into binary images.
Figure 4.3-6 shows the binary quantized images of these texture classes. The training data
and test data sets are obtained as follows: First, each image is cut into four 64 x 64

subimages. Then the subimage at the upper-left corner is used as training data while the
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rest are used as test data for that texture class. Usually, natural textures are modeled by
MRF models of order higher than one 17] However, we found that when fitted with the
second-order MRF model, parameter ¢, and ¢, for these images are quite small comparing
to the other ones in (8), hence ali the binary texture classes are modeled as first-order
BMRF’s. The class parameter vector for each class is estimated from training data and
shown in Table 4.3-3a with corresponding classification results in Tavle 4-3.4a. All the
subimages have been correctly classified.

D.) Unsupervised Classification for Natural Texture

The resuits for this part is obtained in the same way as in C.) except the class model
vectors are obtained through clustering, assuming the number of classes is known to be
four. The centroids of the clusters and classification results are shown in. Table 4.3-3b and
4.3-4b. All the data are correctly classified.

4.3.3 Texture Discrimination:

Unlike texture classification, which assigns an entire image to a specific class, the
interest now is to discriminate between different texture classes within the image. The ML
approach of [4] is adapted, under a MRF modeling assumption, to develop a new likelihood
functional using the information provided by the MRFE model. Discrimination experiments
have been performed on test images containing synthetic textures and natural textures.

Assume that textured image, f = {f(:,7),(¢,7)eL}, is a realization of a random
field denoted by F = {F(i,7),(¢,5)eL} and the lattice can be decomposed into regions
R,,...,Ry of K different textures as shown in Fig. 4.3-7. That is

(17)

where K < Q.

We will model the texture classes within each region as a MRF defined over that
region. Regions belonging to the same texture class will have the same MRT model vector.
Suppose each pixel (1, ;) of the image belongs to one of K texture ciasses denoted by the
hypothesis Hi, k = 0,1,..., K — 1. Texture discrimination is the process in which each
pixel is assigned to a particular class. Suppose a window of size (2M + 1) x (2M + 1) is

constructed for each pixel position (1,7) and the pixels within this window are denoted
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by %, = {f(k,€),(k,€)eW; ;}, where W; ; = {(k,€),i — M <k < i+ Mj;j-M<ILL
J+ M}, with M is much less than N and the periodic condition is imposed. The likelihood

functional in this case, given that the k’th hypothesis is acting, is defined as

Lk{.‘f:’.j} = P{Z;‘J'IH;C}; k=0,1,....,. K — 1. (18)

Pixel (7, 7) will be assigned to texture class kg, if

Lno 4%} = s LR} (19)

After this procedure is performed for all the pixels, the image will be segmented into
disjoint regions which belong to different texture classes in such a way as to minimize the
classification error [4].

Although this method is theoretically optimal, the joint probability of the pixels in
the window is hard to evaluate and complicates the evaluation of Li{-}. For exarple,
assuming the texture in each regions R, is modeled as a MRF, the likelihood functional

in (17) can be written as

L{Fij}= Y. Y Plf(k0),(kOeRij|Hc); k=0,1,..,K -1,  (20)
(k)@ W, ; flk.E)

where P|-|H,] is the class-conditional joint probability distribution of the MRF and R, ; is
one of the R!s in (17). The difficulty of evaluating (20) is that region R; ; is unknown before
the discrimination process. Again, as in the case of texture classification, a suboptimal
approach is desired which preserves some optimality of the previous likelihood functional
and yet is easy to compute. The ML approach developed in this section is such an approach
which uses the coding structure. In this approach, the likelihood is the coding-likelihood
evaluated only within the decision window centered at the pixel to be classified. More
specifically, we chose a coding which contains the center point in the window, denoted
by C; ;. Now, the ML approach can be described as follows: Define the class-conditional

coding-likelihood as
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Lex{%.;} = Pf(k,8), (k. 0)eC; ; n Wi ;1 f(m,n),(m,n)eR; ;,(m,n) ¢ C; ;, Hy)
- [T  Plfk.0)1f(m.n), (m,n)en(k,0), Hyl;

(k.)eC, ,OW, ,
k=0,1,..,K - 1. (21)

This likelihood can be easily computed from the local characteristics and the discrim-

inator will assign a pixel (1,7) to texture class kg if

Lc.ko {}:J} = Og}inga.}){(—l Ll‘.k{z‘]}' (22)

Due to its simplicity, the algorithm above is quite efficient. For an N x N image with
K texture class types it requires approximately N2 K computations to process the image.
Note that the previously described MAP algorithm of Derin, et al. requires about N2KP
computations using dynamic programming where D is an integer and D > 2. In addition,
the ML algorithm proposed here can be implemented through parallel computation since
the assignment of a pixel in the image does not depend on that of others.

When training data for different types of textures are available, the MRF model class
vectors can be estimated from them, resulting in supervised texture discrimination. When
the training data is not available, a clustering scheme, similar to the one described in the
last section for unsupervised texture classification can be used. In particular, consider
a sliding window of size M; x M, on the observed image as shown in Fig. 4.3-8 where
we assume M, M, << N. At each position of the window, a MRF parameter vector is
estimated from the data within the window. The parameter vectors obtained are then
used as the sample vectors for the clustering algorithm. We have chosen the K-means
algorithm as the clustering algorithm. Finally the centroids of the clusters are taken as
class model vectors as if they were estimated already from training data. Here, again, we
assume knowledge of the number of clusters. In this clustering approach the choice of size
of the window is quite important. If the size is too large, a single window might contain
data from several different texture classes whereas if the size is too small, a single window

might not contain enough data for reliable estimation. Both result in unreliable sample
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vectors which will effect the accuracy of the results of the clustering algorithm. The size of
the window should be related to the expected size of the texture regions in the image. At
this point, we make the choice heuristically trying different windows and selecting the one
which provides reasonably good segmentations. Notice here, the sliding window described
above is used for unsupervised model parameter estimation before segmentation whereas
the decision window described previously is used during the segmentation.

Texture discrimination experiments have been performed on images containing syn-
thetic and natural textures. Each test image used in these experiments is 128 x 128 and
contains two different textures distributed in the image according to the “region-map”
shown in Fig. 4.3-9. After the ML discrimination, each pixel in the resulting image is
assigned one of two gray levels, depending on which texture class it belongs to. The re-
sults for both supervised and unsupervised discrimination are presented below. While the
results are for binary and two class images, the extension of the method to non-binary and
multi-class problem is straightforward.

A.) Supervised Discrimination of Synthetic Textures:

The two-class test image is shown in Fig. 4.3-10b along with the region map. The
two synthetic textures are generated using the first-order isotropic BMRF’s. The model
parameters are estimated from training data which are different realization of the above
BRMF’s and are listed in Table 4.3-5a. The results of applying the ML discriminator in
(22) with different decision window sizes are shown in Fig. 4.3-10c and 4.3-10d. As can be
seen, the 3 x 3 window provides very good discrimination. More extensive experimental
results of the same nature can be found in [19], [21].

B.) Unsupervised Discrimination of Synthetic Textures:

The test image used in this experiment is the same as that in A.). The mode! vectors
for the two different texture classes are obtained from clustering using a nonoverlapping
32 x 32 sliding window.That is, we take N; = M,;,1 = 1,2, here and in all experimental
results to follow. The estimated values are shown in Table 4.3-5b and the results of
discrimination using these model vectors is shown in Fig.'s 4.3-10e and 4.3-10f. It can be
seen the clustering scheme is quite effective in the ideal case when the textures are from

MRF's.
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C.) Supervised Discrimination for Natural Textures:

The test image shown in Fig. 4.3-11b, along with the region map, contains two
binary quantized natural textures from Brodatz’ photo album. These binary textures
are modeled here by the first-order BMRF model. The model parameters are estimated
from training data and are shown in Table 4.3-6a. The discrimination results for selected
decision windows are shown in Fig. 4.3-11c and 4.3-11d. Notice now that a larger decision
window is needed to obtain results comparible to those of A.). This might be caused by
the model mismatch. However, the discrimination results are still quite good.

D.) Unsupervised Discrimination_for Natural Textures:

The experiment in C.) is repeated with the model parameter vectors obtained from
clustering with a nonoverlapping 16 x 16 sliding window. The resulted cluster centiroids
(model vectors) are shown in Table 4.3-6b and the texture discrimination results with
different decision window size are shown in Fig. 4.3-lie, and f. Again, the clustering
approach worked well.

1.3.4 Summary

In this paper, we have developed a MRF model-based ML approach to texture classi-
fication and discrimination problems. Under the MRF texture modeling assumption, they
were formulated as statistical decision problems. To make computation feasible. the likeli-
hood functional originally derived based on the joint probability distribution of the MRF
model is approximated using Besag’s coding method. Most of the statistical model-based
approaches proposed previously are supervised. That is, they require a training data set
for model parameter estimation. Unlike these approaches, we ailso consider unsupervised
schemes which do not require the training data. For the latter, a novel clustering technique
is proposed to estimate the model parameters directly from the cbserved image. Exper-
imental results on texture classification and discrimination using these two schemes are
shown to be quite promising.

However, there are limitations to the MRF model-based approach. For example, in
the unsupervised clustering scheme we assume the number of different texture classes is
known which is generally not the case. Although a number of methods exist which can be

used to determine the number of classes, they are mostly ad hoc and there is little known
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as to how well they work in general. In some cases, a reasonable assumption might be
made about the number of classes based on a priori knowledge of the situation. However,
to make the unsupervised scheme work in general, it is desired to develop more reliable

methods to estimate this number. One such approach is described in [21].
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Table 4.3-2

Parameters for the First-0Order BMRF.
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Classification Results for the First-Order BMRF.

4.3.21




Table 4.3-3

Estimated Mode! Parameters Estimated Mode! Parameters
Parameters | Grass | wWood Bark Sand Parameters Wood rBark Sand
e
a -1.94{ -4.56 -2.95 -2.26 a -3.92 -2.35
by 0.75{ 0.36 1.21 1.23 by 0.32 1.23
by 1.14} 4.07 1./1 1.17 b2 3.62 1.12
a.) Estimated from training data b.) Estimated by clustering
Estimated Parameters for Natural Texture
Samples Modeled as First-Order BMRF's.
Assigned Class Assigned Class
Trye Class Grass wood Bark Sand True Class Grass Wood Bark Sand
Grass 4 0 0 0 Grass 4 0 0 0
wood 0 b4 0 0 wood 0 4 0 0
Bark 0 i 0 4 0 Bark 0 0 4 0
|
Sand 0 l 0 0 4 Sand 0 0 0 4
a.) Supervised Classification b.) Unsupervised Classification
Table 4.3-4

Classification Results for the Natural Texture Samples.
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Table 4.3-5

Est. Parameter Est. Parameter
Texture Class a b Texture Class a b |
Class 1 -5.55 2.74 Class 1 -4.67 2.32
Class 2 5.72 -2.90 Class 2 3.56 | -1.87
a.) Estimated from training data b.) Estimated by clustering

Estimated Parameters from the first-order BMRF
For Synthetic Texture Discrimination.

Table 4.3-6
YEstimated Parameters Estimated Parameters
Texture a b1 bp Texture a b1 by
brass -1.94 .75 1.14 Grass -1.82 .53 1.31
Ripple -3.03 .343 | 2.53 Ripple -2.88 | -.15 3.05
a.) Estimated from training data b.) ‘te<timated by clustering

Estimated First-order MRF Model Para:nters
for the Discrimination of Natural Textured Image.
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Figure 4.3-1
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Figure 4.3-2
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Figure 4.3-3
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Figure 4.3-4
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Figure 4.3-5
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Figure 4.3-6
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Figure 4.3-7
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Figure 4.3-8
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Figure 4.3-9
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Figure 4.3-11
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4.4 Cluster Validation With Application to Image Segmentation:

Clustering procedures have found wide application in statistical data analysis and
processing. The application of specific interest here is stochastic model-based image seg-
mentation where a clustering algorithm is used to estimate the model parameters for the
various image classes in an observed image. In this, and similar applications, it’s generally
the case that the clustering algorithm requires prior knowledge of the number of clusters
or data classes. For many applications, however, the number of clusters is not known a
priori and we would like to determine it directly from the data. This is known as the
cluster validation problem. For stochastic model-based image segmentation, the solution
of this problem directly affects the quality of the segmentation. In this work we propose a
model fitting approach to the cluster validation problem based upon Akaike’s Information
Criterion (AIC). The explicit evaluation of the AIC for the image segmentation problem
is achieved through an approximate maximum-likelihood (ML) estimation algorithm. We
demonstrate the efficacy of the proposed approach through experimental results for both
svnthetic mixture data, where the number of clusters is known, and to stochastic model-
based image segmentation operating on real-world images, for which the number of clusters
is unknown. This approach is shown to correctly identify the known number of clusters in
the synthetically generz.ed data and to result in good subjective segmentations in aerial
photographs.

4.4.1 Background:

backgrouna

Clustering procedures are widely used in various applications of pattern classification
and statistical data analysis. In a clustering procedure, the observed data or entities are
grouped together to form a number of clusters in such a way that the entities within a
cluster are more similar to each other than to those in other clusters. The measure of
similarity, usually heuristically defined, is called the cluster criterion.

For the past three decades, many clustering algorithms have been developed by re-
searchers in such diverse fields as biology, statistical data analysis and pattern recognition,
nsing very different cluster criteria (11, In some previous work {2l-14" on stochastic model-
based image segmentation, clustering algorithms have been used to estimate the model

parameter vectors for different image classes directly from the observed image. Since the
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nature of this work is related to statistical pattern recognition, the clustering algorithm
used was selected from those developed within the pattern recognition community. One of
the most successful clustering algorithms in this respect is the K-means algorithm {5],[6].
This algorithm is optimum in the sense that it minimizes the variance within each clus-
ter and has been widely used in unsupervised pattern recognition. However, an important
problem existing with most clustering algorithms, including the K-means algorithm, is that
the number of clusters in the data must be specified a priori before using the clustering
algorithm.

In some situations this number can be derived from prior knowledge about the data,
or sometimes can even be determined from visual inspection of the two- dimensional pro-
jection of the data. However, in many applications, such as our previous work on image
segmentation, it is desired to estimate this number directly from the observed data since
a priori knowledge is generally not available and the data are often vectors of dimension
higher than two such that the projection method is not satisfactory. Furthermore, even
when the data is two dimensional, visual inspection may not be successful if the data
clusters cannot be decided by observation. This problem is of great practical importance
for many clustering algorithrns and is known as the cluster validation problem [7]. For
stochastic model-based image segmentation, such as the schemes described in [2]-[4], the
solution of this problem directly affects the quality of the resulting segmentation. If the
estimated number of clusters, or data classes, is smaller than the true value, the objects
in the image will not be well separated. Likewise, if this estimated number is too large, a
single object may be separated into a number of smaller regions. Both of these situations

are to be avoided.

Most of the previously proposed solutions to the cluster validation problem can be
classified into two approaches: a heuristic approach and a statistical hypothesis testing
approach. In the heuristic approach, the number of clusters are determined by using
some ad hoc criteria. For example, for the K-means algorithm it has been proposed to
look at the plot of the average of the variances within the clusters under assumptions of
different K, the number of clusters. The value of K corresponding to the point where

the curve begins to saturate can then be taken as the estimated number of classes. Many
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ad hoc variations of the A-means algorithms have been proposed based on similar ideas.
In these algorithms, the number K is increased or decreased according to criteria such
as intra-cluster variance and distance between clusters. While some practical problems
can be solved using the heuristic approach, it does not provide a general solution to the
cluster validation problem and, even when applied to specific problems, the criteria have
to be fine-tuned through trial-and-error. This, in part, reflects the difficult nature of the
problem. More specifically, as pointed out by Everitt {1] and Jain {7, clusters are generally

very difficult to define precisely.

To find generally applicable and mathematically rigorous solutions to cluster vali-
aation, many researchers have tried to formulate the problem as a statistical hypothesis
testing problem 8!, 9. For example, hypothesis tests have been proposed to test whether
a given cluster should be divided into two. More general likelihood tests have been at-
tempted with the data modeled in terms of finite mixture distributions |9). However, due
to the structure of the mixture distribution, the parameters, which characterize one hy-
pothesis (for example, the null hypothesis) are at the boundary of the parameter space of
the other hypothesis. This, in turn, violates the regularity conditions (cf. [9]) which are
required for the validity of the asymptotic distribution theory for the generalized likelihood
ratio {GLLR) test which exists for many simple hypothesis testing situations where each of
the hypotheses can be described in terms of a single probability distribution. As a result,
no GLR test is available at this point to determine the number of clusters directly from

observation data.

On the other hand, ‘he problem we face is not unlike the one faced in developing a
theory to fit an autoregressive (AR) model to real-world data in which the order of the
model has to be decided before the model parameters can be estimated from the data.
Having observed that neither heuristic nor hypothesis testing approaches alone would
provide a satisfactory solution to determining the order of the model, hence the practical
fitting of a model to observation data, Akaike 10’ suggested that the problem should
be viewed as a multiple decision problem. That is, rather than asking which hypothesis
is acting (which order is correct), we should ask which model best fits the data. The

goodness of fit, as pointed out later by Akaike '11:, should be a properly defined entropy
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function and the best fit should be obtained by maximizing this quantity. Based on
this maximum-entropy principle, Akaike proposed a criterion, called the AIC (Akaike’s
information criterion), to determine both the order and the parameters of an AR model for
observed data. Although there have been some criticisms of the AIC as being inconsistent,
Akaike showed that the AIC is robust and optimal in a minimax sense. That is, it is optimal
when there is no a priori knowledge about the distribution of the model parameters. In
addition, Akaike and others also extended the AIC to several Bayesian variations called
the BIC (Bayesian Information Criterion)[13],[14]. This class of criteria can be shown to
be AIC’s averaged with respect to various a priori distributions for the model parameters.
Although the AIC criterion and its variations have achieved substantial success, mostly in

AR model fitting, their application is, of course, not limited to AR time series modeling.

In this work, we have applied the AIC to the problem of cluster validation. The
colnticn is thon used to find the number of distinct image classes in an observed image.
There has been little previous work on the application of the AIC to cluster validation.
Sclove [17] demonstrated a way to use the AIC to verify image segmentation results.
After segmenting a synthetic image under the assumption of two and three classes, the
AIC was used to verify that the segmentation with three classes is a better segmentation.
Our results differ from Sclove’s work in that we apply the AIC explicitly to the cluster
validation problem and, in the application to image segmentation, we use the AIC to decide
the proper number of classes in an image before segmentation. The explicit evaluation of
the AIC is obtained by an approximate maximum- likelihood (ML) estimation algorithm to
be described. We demonstrate the effective application of this procedure to both synthetic
data, where the true number of classes is known, and to real-world aerial photographs, in

which case the number of classes is unknown and can be assessed only subjectively.

In the next section, we will formulate the cluster validation problem as a mixture
model-fitting problem and describe how to determine the number of clusters by using the
AIC. Then, in Section 4.4.3, we will show some experimental results in which the number of
clusters is determined from synthetic data or real image data using the AIC criterion. We
will also show real-world image segmentation results obtained with the number of classes

determined by the AIC. Finally, a summary and conclusions are provided in Section 4.4.4.
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1.4.2 The Model Fitting Approach:

In this work, we determine the number of clusters from the observed data by find-
ing the best-fitting random mixture model for the data using the AIC criterion. Assume
that the sample data is represented by N independent and identically distributed (i.i.d.)
m-dimensional vectors, Y = {y1,¥2,..., Yy~ }. Furthermore, assume that a mixture distri-

bution can be used to model the probability distribution of yeY. That is,

K
p(y) = ) mepi(y); yeY, (1)
k=1

where the pi(y)’s are individual m-dimensional component pdf’s with 7;’s as the weights

such that
7 > 0,for k =1,2,...,K (2a)
and
K
Y me=1. (2b)
k=1

The number K is the number of mixture components and is used as an indicator of the
number of clusters. That is, we consider each cluster in the data as a component of the
mixture distribution with K the number of clusters.

A special case of the mixture distribution is the Gausstan mixture where the indi-
vidual pdf’s, pr(y),k = 1,2,..., K, are all Gaussian [9]. For example, suppose K = 2
and m = 2 and suppose the components of the individual sample vectors are indepen-
dent. In this case the Gaussian mixture is completely defined by the parameter vector!
a — (m;,ms,0% 02, m) where my and o} are each of dimension m = 2 representing,
respectively, the mean-value vector my = (mg;, mx2) and variance vector o = (ofl,ozg)
associated with px(y),k = 1,2. The parameter vector, a, is of dimension K’ = 9 in this

case.

'We will make use of this notation in describing some experimental results in the next

section.
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Under the mixture distribution modeling assumption, the problem of determining the
number of clusters for the observation Y becomes that of finding the best-fitting mixture
model for Y. The resulting K in that model would then be taken as a good estimate for
the number of clusters. According to Akaike, the best fit should be the one that maximizes

a generalized entropy or minimizes the AIC criterion defined as

AIC(K) = —2loglmaximum-likelihood of the model(K)| + 2K, (3a)

where

maximum-likelihood of the model(K) = px (Y | 4\5}), (3b)

Here, é&‘;\’g is the maximum-likelihood (ML) estimate of the model parameter vector,
a, of the mixture model given K, the number of components, and K’ is the number of
independent parameters of the K-component mixture model. In the case of the Gaussian
mixture model, the vector égffl consists of ML estimates for the parameters of the Gaussian
component pdf’s and the first K-1 weights, m,,75,..., 7Tk _1. Now, for a given set of sample

data vectors, Y, the optimal estimate of the number of clusters is

Kq = arg 1<Krréin AIC(K), (4)

where K,,,, is a prespecified upper limit for K. Rigorous justification of the AIC for
model fitting can be found in a series of papers by Akaike [10]-[14]. This method can be
easily implemented provided we can find the ML estimate of the mixture model parameters
which is known in statistical data analysis as the mixture estimation problem [9].

The ML estimation approach has been a very successful method in stochastic model
parameter estimation for the pdf’s which contain only one component. Explicit solution
can often be found by solving the likelihood equation and the ML estimate in many cases
is consistent ‘18 . Even in the case where the true distribution of the data is not the same
as the model, the consistency property often still holds under niild regularity conditions
19", This result is especially important since, when we try to use a model wc approximate

an unknown probability distribution using MI, estimation, we hope tht the estimates are
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consistent. Unfortunately, these results do not readily extend to the mixture distributions
9. First of all, explicit solution is impossible even for the tvo-component case. Secondly,
the likelihood surface often has singularity points which makes numerical solution difficult.
A major reason for this is that the data is incomplete in the sense that we do not know
a priori to which cluster a data vector belongs. However, a number of approximate ML
algorithms do exist. One of the more popular methods is the so-called EM (expected
maximumn) algorithm 9. It has been shown that under mild regularity conditions it does
provide local maxima that are consistent. However, a disadvantage of the EM algorithm
is its relatively slow convergence.

In this work we use an approximate ML estimation scheme using a clustering algo-
rithm. First of all, the K-means clustering algorithm is applied to the data to divide the
data into K groups. Then each group is assumed to correspond to the sample data for
one and only one mixture component. A ML estimate is then evaluated on each group
separately to estimate the parameters for the corresponding mixture component. Finally,
a component weight i.e., the m;’s can be estimated as the ratio of the number of samples
in a group tc the total number of samples. This approximation transforms the problem of
ML estimation of a mixture to that of ML estimation of several individual p.d.f.>s. It will
be shown in the next section, through experimental results, that it provides reasonably
good estimates. This scheme also converges fast since the clustering algorithm is known
to possess fast convergence properties.

The Gaussian mixture model is the most studied mixture model because it is a realistic
model for many applications and it is mathematically tractable. In this work, we make
explicit use of the Gaussian mixture model. To further simplify the mathematics, we
assume the components of the individual observation vectors are independent.? Under
these assumptions, the procedure of determining the number of clusters in a set of observed
data can be stated as follows:

1.) For a given K - 1,2,..., K,,.., apply the K-means clustering algorithin with the

number of classes preset to K.

>The component p.d.f.’s are then completely described by their mean value vectors my =

(M 1y My2y ..., Miy,) and variance vectors f = (07,,02,,...,08, ),k - 1,2,... K.
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2.) Estimate the mean and variance vectors for each cluster and the weight of each cluster.
3.) Compute AIC(K).
4.) Select Ky as the estimate of the number of clusters in the data if it minimizes AIC(K)
forall K =1,2,..., Kjnae-
There are two applicable expressions for the likelihood functional in the use of the
AIC criterion. If we consider the data vectors to be sncomplete, that is, the class status of
the samples is unknown, we will have the standard likelihood expression for the mixture

which, from (1), becomes

k(Yla) = H Z TP (Yi)- (5)

i=lk=1
On the other hand, if we first classify the data by applying the K-means algorithm,
we in effect assign data vectors to hypotheses classes. In this case a data vector assigned
to class k can be considered coming from a particular class and has a probability m of
occurring. The corresponding expression for the likelihood functional for correctly classified

samples then becomes

N
x(Yl|a) = Hw 1] pelys,), (6)

j=1

where Nx < N is the number of samples in the k** cluster and Yk,,J = 1,2,..., Ni are
data vectors associated with this cluster. Since we have used the K-means algorithm for
approximate ML estimation, each sample vector is assigned to a unique class. In what
follows, we will make use of the second likelihood functional as expressed by (6). The ML
estimate, ég{([i, to be used in (3) in computing AIC(K) is then formed from the resulting
K class-conditional parameter estimates together with the estimated weights as described
above.

The method proposed here is quite general in that we can use assumptions for the
single mixture components other than Gaussian. Furthermore, other AIC related criteria,

such as BIC’s, can be properly adapted to it. Finally, we note that the AIC criterion

has a useful intuitive appeal. More specifically, when two or more models are almost
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equally likely, in the sense they have approximately the same maximum likelihoods, the

AlC criterion selects the one with the smaller number of parameters or the least complex.

1.4.3 Experimental Results:

In this section we demonstrate the effectiveness of the model-fitting approach to de-
termining the number of clusters from observed data. First, we perform an experiment on
synthetic data where the sample vectors are indeed generated from a Gaussian mixture
distribution as described in the last section. Then, we will apply the same approach to the
image segmentation problem to identify the number of image classes present in an observed
image. The synthetic data set is used to study the ideal performance of this approach,
while the image data is used to assess its application to a particular real-world problem.
We now present the results for these two cases separately.

A.) Synthetic Data:

In this experiment, three two-dimensional (m = 2) Gaussian mixture data sets with
two, three and four components, or clusters, are generated as shown in Fig. 4.4-1. We
choose the data to be two-dimensional since it’s then easy to display on a plane. There are
two objectives of this experiment: first, to see if the approximate ML estimates provide a
reasonable estimate of the true model parameters and, secondly, to see whether the AIC
provides correct estimates of the number of clusters, even in the ideal case. The results
of the parameter estimates for al' the test data sets under the correct assumptions on the
number of clusters are shown in Table 4.4-1. It can be observed that when the assumption
of the number of classes acting corresponds to the true but unknown value, the parameter
estimates are quite accurate. This indicates that the approximate ML estimation scheme
using clustering is quite effective. In Table 4.4-2, we have shown the AIC’s computed for
all the test data under the assumptions of different number of clusters, with K,, ., = &.
We find that the AIC does make correct decisions each time. This indicates that when
the data is indeed a Gaussian mixture, the method proposed here tends to estimate the
number of clusters correctly. Additional examples are given for a much larger variety of
Gaussian mixtures in 19 with similar results.

B.) Application to Image Data:

In this experiment, we attempt to apply the method proposed in the previous section
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to a stochastic model-based image segmentation procedure developed previously in ;2]-141.
In our work, we take the point of view that image segmentation is the process of assigning
the pixels of the image to a finite, and usually small, number of image model classes. In
a stochastic model-based approach, different image classes are modeled by random field
models. For simplicity. we consider the Gaussian model used in [2] for tonal properties
of the image classes. That is, each image class is modeled by an i.i.d. Gaussian random
field. Then, each image class can be characterized in terms of a model parameter vector

consisting of only two components: the mean and variance.

In the segmentation process, the pixels are assigned to model classes through a like-
lihood test based on the Gaussian model. In particular, a likelihood test for each pixel is
performed on the data contained in a deciston window of a fixed size centered at that pixel
position. Before the image can be segmented, however, the model vectors corresponding
to different image classes have to be estimated from the image. It was suggested in [2] that
this can be realized by a clustering approach on the sample model vectors estimated from
a sliding estimation window on different spatial locations in the image and the resulting
cluster centers can then be taken as the model vectors for the image classes. The clustering
algorithm used was the K-means algorithm in which the number of image classes, or clus-
ters, needs to be specified beforehand. The method proposed here provides an objective
way to determine the number of image classes.

In Fig.’s 4.4-2a and 4.4-3a, we show two aerial photographs. The first contains a
building, roads and vegetation while the second contains an oil tank complex surrounded
by vegetation. The computed AIC’s for different numbers of clusters are shown in Table
4.4-3 with K,,,. = 10. The sliding estimation window is of size 16 x 16 pixels. The results
suggest that in the first image there are four tonal classes while for the second image
five tonal classes best fits the data. The images are segmented using the corresponding
model vectors estimated according to that suggested by the AIC criterion and are shown
in Fig.’s 4.4-2 and 4.4-3, along with the original images. In these segmentations different
tonal areas are well separated. For comparison purpose we have also shown the results
of the segmentation using from two up to six classes. It can be seen from the results for

both images that, when the assumed number of classes is smalier than that determined
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by the AIC, a number of significant regions of reasonably large size are missing from
the segmentation. On the other hand, when the number of classes is larger than that
suggested by the AIC, no significant change in segmentation will result from the increase
of the number of classes except the appearance of some noisy regions with small size.
This suggests that the AIC model-fitting approach is a reasonable objective approach for
practical applications such as image segmentation.
1.4.4 Summary:

In this paper we described a model-fitting approach for determining the number of
clusters in observed random data and its applications to stochastic model- based image
segmentaiion. The problem, also known as cluster validation, is solved by findirg a best-
fitting mixture distribution model to the observed data. The goodness »f fit is determined
by the AIC criterion. An approximate ML parameter estimation scheme using clustering is
proposed to compute the AIC. Experimental results are also described to demonstrate the
ideal performance and practical applicability of this method. In the experiments, the AIC
correctly determines the number of clusters in the synthetic mixture data and provides a
subjectively reasonable number of classes for a number of real-world images. These results
indicate that the proposed approach is quite general and effective.

This work also brings up several interesting issues which need further investigation.
First of all, it would be of interest to apply the BIC criteria to cluster validation and
compare the results with that of the AIC. To do so we need to decide on what parameter
set the averaging of the likelihood is to be performed and how to implement the numerical
integration involved in the averaging. It would also be of interest to use the EM algorithm
as the estimation method for computing the AIC and compare the results on Gaussian
mixture model-fitting with those described in this paper. Finally, work is underway in
applying the model-fitting approach to image segmentation where the image classes are
modeled as autoregressive random fields '3]. This work will be reported on at some later

time.
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Parameter Estimates for the Synthetic

Gaussian Mixture Data:

Table 4.4-1

No. of samples=500

Values
Parameters Real Entimated
@, (4.00,4.00) | (3.99,4.0))
m3 (9.00,9.00) | (8.89,9.12)
- of (1.00,1.00) | (1.04,1.06)
o (1.00,1.00) | (1.01,1.02)
" (0.50,0.50) | (0.49,0.51)
a.l  Two-Cemponent Gausscan Moxtune
Values
Parameters Real Estimated
o, (4.00,4.00) (3.81,4.04)
Values m, (4.00.,9.00) (3.87,9.16)
Paraseters Real tocimated oy (9.00,9.00) (8.92,9.09)
=, (4.00,4.09) (3.88,3.99) =, (9.00,4.00) (9.03,4.00)
T, (9.00,9.00) (8.89,9.11) o? (1.00,1.00) (0.99,0.98)
m, (9.00,4.00) (9.02.,4.06) o} (1.00,1.00) (0.99,1.10)
ol (1.00,1.00) (0.01,1.05) 0! (1.00,1.00) {1.00,0.90)
0} (1.00,1.00) (1.00,1.00) a? (1.00,1.00) (1.03,1.11)
93 (1.00,1.00) (1.08,1.09%) " (0.25,0.25, (0.23,0.26,
— 0.25,0.25) 0.25,0.26)
hd | (0-33,0.33,0.33) (0.32,0.34.0.36) —
b.] Three-Component (auss«an Marture c.) Feur-Component Gausssan Hoxlunre
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Table 4.4-2
Computed AIC’s for the Synthetic Data with K4,z = 8.

LK ALC(K) K AIC(K) K AIC(K)

o 998 ! ! 960 \ 988

I

P2 388(min) 2 712 2 852

! 3 e 3 1 586 (atn) 3 805

i 4 i 6472 £ ; 4 | 617 4 717 (min)

s | oo s 68l 5 753 |

6 | s ‘ e 703 6 782 ;

| 7 | ss0 | o ; 692 7 806 ‘
8 o 55t _j { 8 [ 709 8 803 J
a) Two-component b) Three-conponent c) Four-component

Gaussian nixture Gaussian mixture Gaussian mixture
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Table 4.4-3
Computed AIC’s for the Real Image Data with Kz = 10.

K AIC(K)

1 526

2 534

3 511 i
4 égé(min)|
5 515

6 ! 518

7 E 519

8 é 512

9 i 518

10 526

a)

Road Scene
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K AIC(K)
1 } 882

2 5 768

3 1 70
4 i 679

5 i 664 (min)
6 682

7 | 674
8 677

9 670
10 672
b) O1il Tank Scene




Figure 4.4-1

Examples of Synthetic Gaussian Mixture Data

20 4 207
18 4 184
16 16
‘l"‘ - 144
12 4 _ - 124
10 4 i 104
8 J - 8
6 - 64
[ 4
24 24
T T Y T T T T T T K Y Y T T T T T T T 1
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
a) Two-Component Gaussian Mixture. b) Three-Component Gaussian FMixture.
No. of points=500, gl-(A-O.G.O). No. of points=500, m,=(4.0,4.0),
2,=(9.0,9.0),cf=05=(1.0,1.0). m_=(9.0,4.0), m,=(9.0,9.0,
=2 =i -2 =2 =3
20~ gi-p_i-gg-ml.O.l.O) .
1 84
164
§
124
10 ' .
-" '-I-
8+ v :
64
. l"—'. [

T T T T 1

L
2 4 6 8 10 12 14 16 18 20

¢) Four-Component Gaussian Mixture.
No. of points=500, m =(4.0,4.0),
2,209.0,4.0), @ =(4.0,9.0),

2,2(9.0,9.0), 9f=0fegf=g2=(i.0,1.C).
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Fig. 1.4-2 Segmented Road Scene According to the AlC criterion.

b.) 2-Ciass Segmentation

3) 4-Class Segmentation
Suggested by AIC criterion

e) 5-Class Segmentatinn f1 6-Ciass Segmentation

4.1 1%




Fig. 4.4-3 Segmented Oil Tunk Scene According to the AIC criterion.

s

a) Onginal Image

b) 2-Class Segmentation

c) 3-Class Segmentation d) 4-Class Segmentation

e 1 5-Class Segmentation

t) 6-Class Segmentation
S uggested hy AIC
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4.5 Overall Summary and Conclusions:

We have been very active over the last year in further refining our concept of a region-

based hierarchical approach to image interpretation. A major thrust has been in the

development and implementation of improved image segmentation schemes. We expect to

continue this effort into FY’'88 and, in particular, to concentrate more on improvements

in the interpretation process. Issues to be investigated will include:

1.

(9}

10.

11.

Investigate techniques for fusing information from different image segmentation
schemes to provide pertormance improvements over that achievable with any

single scheme.

Investigate improvements in the information theoretic criteria for unsupervised

determination of the number of different image classes present.

Develop and investigate techniques for choosing the appropriate model type for

stochastic model-based image segmentation schemes.

Devise and investigate techniques for incorporating knowledge information into
image segmentation schemes. In particular, investigate techniques for incorpo-

rating feedback from the interpretation process.

. Additional, and perhaps more powerful, features have to be incorporated into the

image segmentation procedure.

Object detection and boundary extraction procedures need to be incorporated

into the image segmentation process.

. More comprehensive region and mutual attributes need to be employed in the

image interpretation process.

The manual image segmentation procedure needs to be improved and interfaces

with knowledge database worked out.

. Our raw image database needs to be expanded.

More general procedures for designing the clique functions need to be worked out.

Optimum annealing schedules for effecting the simulated annealing search proce-

dure need to be developed.




12.

13.

14.

Propagation of interpretations from one region to the next needs to be investi-
gated.

We need to provide feedback from the interpretation process to the segmentation
process to improve its performance.

We have to investigate how map data and/or archival, previously interpreted,
image data can be utilized to improve the photointerpretation process or to im-

plement change detection/interpretation procedures.
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