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Incremental Diffraction Coefficients for Planar Surfaces,
Part 1: Theory

1. INTRODUCTION

Consider an electromagnetic wave in free space incident upon a perfectly conducting scatterer. To a
first approximation, the surface current induced on the scatterer will be the physical optics (PO) current,
that is, 28 X H, on the illuminated side of the scatterer and zero on the shadow side. To obtain the
scattered fields radlated by the PO current, the PO current (multiplied by the free space Green's function)
can usually be integrated numerically, sometisnes analytically, and often asymptotically for certain regions
of observation. In partculae, a varicty of computer programs exist for calculatng the far ficlds of reflector
antennas by integrating the PO current induced on the reflector by a given feed illumination.?

Of course, the scattered flelds obtained from the PO current will not be exact unless the PO curremt
equals the total surface current. Thus, the accuracy of the computed scattered ficlds can be improved {f
onc can estimate the contribution to the scattered ficlds of the difference between the total and PO
currents, Bven for electrically large scatterers, this difierence current or 'nonuniform current,”t to use the
tetminology of Ufimtsev, 2 can strongly affect the scattered fields. For example, the far ficlds of the
nonuniform current near the rims of reflectors can appreciably change the further-out side lobes af the
copolarized ficlds and all the lobes of the cross-polarized fields. 45 In general, the inclusion of the fields
radiated by the nonuniform currents is especially important for the accucate determination of cross-
polarized ficlds, side-lobe fields, and fields near nulls.

If one does not know the exact solution to the scattering problem, one must approximate the
nonuniform current. (fimtsev,%3 in developing his “physical theory of diffraction™ (PTD), assumes that the
nonuniform current at 2 given point on a general electrically large scatterer is approximately equal to the
nonuniform current of 4 corresponding canonical scatterer that conforms to the shape of the general
scatterer in the locality of the given point. (The incident field for the canonical scatterer s also chosen as

(Received for publication 14 April 1987)
tNonuniform currents near edges are commonly called “fringe currents."37




the incident field in the locality of the given point on the general scatterer.) For example, the nonuniform
current near the rim of an illuminated thin-metal reflector would be approximated locally by the nonuni-
form current near the edge of a correspondingly illuminated, perfectly conducting half-plane. Similarly, the
nonuniform current near the slits between panels that may form the reflector surface would be approxi-
mated by the nonuniform current near an infinite straight slit in an infinite perfectly conducting plane.

Typically, the predominant nonuniform currents vary rapidly over a transverse distance less than a
wavelength. Moreover, closed-form expressions for the nonuniform currents of canonical problems are not
generally available. Thus, unlike the PO current, it is usually impractical to numerically integrate the
nonuniform currents on a general scatterer to obtain their radiated fields.

Fortunately, the far ficlds radiated by the nonuniform currents of a number of two-dimensional
canonical problems can be expressed in closed form, even though the nonuniform currents themselves
usually cannot. Specifically, the total diffracted far fields that result from plane-wave illumination are known
in closed form for these canonical scatterers. In addition, the PO current for these scatterers under
plane-wave {llumination can usually be integrated to obtain closed-form expressions for the PO diffracted
far fields. Thus, the far fields radiated by the nonuniform currents of these two-dimensional canonical
problems can be found in closed form, simply by subtracting the PO far fields from the total far fields,
since the nonuniform current is defined as the difference between the total and PO currents. Of course,
this technique for finding the fizlds radiated by the nonuniform currents of canonical scatterers is precisely
the one that Ufimtsev used to obtain closed-form expressions for the nonuniform or PTD diffraction
coefficients for the perfectly conducting wedge.?3 Because the total diffracted fields define the coefficients
of the geometrical theory of diffraction (GTD),%7 one is also correct in saying that Ufimtsev obtained the
PTD diffraction coefficients by subtracting the PO diffraction coefficients from the GTD diffraction
coefficlents.t

Through an asymptotic analysis of the diffraction integral, Van Kampen® 10 shows that the dominant
high-frequency diffracted fields of a general three-dimensional scatterer emanate (or appear to emanate)
from “'critical points” on the scatterer where the ray path length becomes stationary or discontinuous
(including discontinuitics in derivatives of the path length). Van Kampen shows further that the critical
points can be divided into critical points of the first, second, or third kind depending upon whether they
are (1) stationary points on the surface of integration (specular reflection), (2) stationary points along a
curve (edge, shadow, boundary, etc.) boui. ding the surface of integration, or (3) discontinuities (such as
comers and tips) in the slope (or higher ordec derivatives) of a bounding curve.

When the frequency is high enough that several Fresnel zones are contained in a neighborhood of a
critical point, and the amplitude of the incident ficld does not vary appreciably over this ncighborhood, the
diffracted fiel! o his critical point is well approximated by the first term of the high-frequency asympiotic

tFor two-dimensional canonical problems of infinite cross section, tike the perfectly conducting wedge, the far fields of
the total and PO current for an incident plane wave approach Infinity at the shadow and reflection boundaries. Since
the PO current ts removed from the total current in the determination of the PTD diffraction coefficients, the PID
diffraction coeffictents for such canonical problems have the advantage of the GTD coefficients of remalning finite at
shadow and reflection boundaries, except for grazing Incidence along an Infinite face. The GTD cocficients, when
applied to general scatterers, have the advantage over the PTD coefliclents of not requiring a separate svaluation of the
PO fields away from the shadow and reflection boundarics. The GTD singularities at the shadow and reflection
boundaries are reraoved in uniform geometrical theories of diffraction” that conslder the source or field points at a
finite distance from the scatterer. However, the shadow and reflection singularities remain a difftculty for GTD under
scattering conditions most commonly encountered in practice, namely, large distances to the source and field points.
Also, in the particular case of a plane H-wave illuminating a swwedge, both the GTD and P1D diffraction coefficients are
discontinuous across the faces of the wedge, as a function of either the incident angle or the scatiering angle. In
applying the wedge difiraction coefficients to general scatterers, these face-angie discontinuities can be removed, but
only by ad hoc truncation of the current aails or by considering multiple interactions, if possible, between different
parts of the scattever.

(%]




expansion.? Under these conditions, the three-dimensional diffracted fields from a critical point of the
second kind lie on the local cone of diffraction and, therefore, can be expressed directly in terms of the
diffraction coefficients of the two-dimensional canonical scatterer that conforms lncally to the general
scatterer at that point.23:6.7 This powerful result, which combines the assumpticn that, at high frequencies,
canonical currents approximate the local currents on the general scatterer, with the derivation of a
generalized Fermat's principle, is the keystone and main reason for the success of both the physical and
geometrical theories of diffraction. The approximation of local scattering by canonical scattering and the
generalization of Fermat’s principle are sometimes stated as the two fundamental p.stulates of the
geometrical theory of diffraction.!! However, only the assumption that high-frequency scattering is a local
phenomenon that can be approximated by canonical scattering need be postulated, because, as discussed
above, the generalization of Fermat's principle is derivable from an asymptotic treatment of the diffraction
integral 5-10t

For critical points of the second kind that do not have several neighboring Fresnel zones, for
example, observation points near caustics of the scattered field, or that have an incident field with an
appreciable variation in amplitude along the curve near the critical point, and for critical points of the third
kind, thar is, points of abrupt change in smooth curves, the diffracted fields do not, in general, lie on
isolated local cones of diffraction, and thus cannot be expressed directly in terms of the diffraction
coefficients of the corresponding two-dimensional canonical problems. To remedy this deficiency, Mitzner
introduced “incremental length diffraction coefficients”!7 that, when muttiplied by the incident ficld, could
be integrated along a bounding curve of the scatterer to obtain the diffracted fields of the nonuniform
current for arbitrary angles of incidence and scattering.

The PTD incremental diffraction coefficients as defined by Mitzner give the far fields (in any direction)
radiated by the nonuniform current on a differential length of an infinite cylinder of arbitrary cross scction
(two-dimensional canonical problem) iluminated by a plane wave at an arbitrary angle of incidence. Under
the assumption that high-frequency diffraction is a local phenomenon, the fields radiated by cach
differendial length of the nonuniform current on a general scatterer will be the same as the fields radiated
by the differendal length of the corresponding two-dimensional canonical scatterer. Thus, the scartered
fields radiated by a general scatterer can be determined by integratng the appropriate incremental
diffraction coefficients over the bounding curves of the scatterer. For cxample, a computer program that
computes the flelds of a reflector antenna by integrating the PO current can be improved to include the
contribution from the nonuniform current by integrating the incremental diffraction coefficients (multiplied
by the feed iftlumination) around the edge of the reflecior and along the slits between the panels that form
the reflector. Separaie, ad hoce analyses to obtain the field in caustic (focal) regions, main beam and near-in
side-lobe regions, or from corners (neglecting the higher-order distortion of the current near corners)
become unnecessiry. Once the computer program is fed the geometry of the scatterer and the incident
field, the ficlds everywhere can be computed straightforwardly by two algorithms: one that integrates the
PO current and one that integrates the inctemental diffraction coefficients. Moreover, tangential slopc and

—————

tAs early as 1902, Schwarzschild!? presented the idea of using the cananical half-plance selution to obtain 2n improved
solutton to diffraction by a slit. However, the first paper to combine the idea of using canonical soludons wih a
stationary phase evaluation that included edges (generalized Fermat's principle) is apparently the classic 1912 paper by
MacDonald. 1314 In 1950, Braunbek!® developed further these two basic tdeas of the modern theories of diffraction and
applied them in detail 1o the circular aperture and disc. Both Ufimtsev? and Keller ct al% reference Braunbek,'S who
formulated a physical theory of diffraction by adding nonuniform “correction” fields to the uniform Kirchhoft fields in
the aperture of a plane screen or on a disc. Although we concentrate on the Ufimtsev current formulstion in the
present paper, it is emphasized thas similar results could be derived as well for a Braunbek field formulation. Such a
formulation involving nonuaniform correction near fields instead of nonuniform currents would apply conveniently to
improving the accuracy of the radiated fields computed from a geometiical-optics aperture ficld integration 16




higher tangential derivative diffraction coefficients are computed implicitly when integrating the incremen-
tal diffraction coefficients multiplied by the incident field. (In the remainder of this report, we will
sometimes loosely refer to “integration of incremental diffraction coefficients” without explicit mention’
that the coefficients are multiplied by the incident field.)

Of course, for curves that huve only ordinary stationary points illuminated by incident fields with
slowly varying amplitudes over several Fresnel zones, the integration should yield approximately the same
values of the fields as those obtained wthout integration directly from the conventional two-dimensional
diffraction coefficien~. However, as mentioned above, integration of the incremental diffraction coefficients
has the advantage of determining accurately the fields of the nonuniform current of a general scatterer for
many geometries, observation angles, and incident fields for which the first order diffraction ficlds are a
poor approximation; in addition, tangential slope or higher tangential derivative diffraction coefficients are
not required when the variation in amplitude of the incident field becomes appreciable along the direction
tangent to the curve. Also, the extra computer time required to integrate the incrémental diffraction
coefficients along bounding curves is generally small compared to the computer time required to do a
two-dimensional integration of the PO current.

As with the conventional rwo-dimensional diffraction coefficients, incremental diffraction cocfiicients
can be defined for the total current of cylinders to yield GTD incremental diffraction coefficients,8 or for
the PO current to yield PO incremental coefficients. The PTD (Mitzner) incremental diffraction coefficients
can be obtained by subtracting the PO incremental diffraction coefficients from the GTD incremental
diffraction coefficients.’® The comparative advantages mentioned in the footnote on page 2 for PTD and
GTD rwo-dimensional diffraction coefficients hold also for the incremental diffraction coefficients.

The implicit use of the concept of incremental diffraction coefficients was made in wark that
preceded that of Mitzner,!” notably that of Ufimtsev,2? Braunbek,!? Millar,2%22 and the “equivalent (edge)
current work of Ryan and Peters.?3 However, this previous work required the fields of the incremental
diffraction coefficients only near focal regions where slight, ad hoc modifications to the scattered felds
along the diffraction cones were adequate. Knotw and Senior®? review the use of GTD “equivalent
currents” before 1974 as well as extend the technique of Ryan and Peters to obuin approximate GTD
incremental diffeaction coeflicients for arbitrasy angles of incidence and scateering. In a 19835 publication,?
Knott reviews further the subject of equivalent currents and incremental teagth diffraction coefficients.

To the authors' knowledge, exact expressions for the incremental diffraction coefficients have been
found previously only for the perfectly conducting wedge. Mitzner!? determined the PTD inciemental
diffraction cocfficients of the wadge by matching the required nonuniform current integrals to similar
integrals that oceur for the two-dimensional wedge diffraction cocfficients. Ten years later, Michaeli®
determined the GTD incremental diffraction coefiicients of the wedge by integrating the total wedge
currens in closed form.

The main objective of this report is to complement the work of Mitzaer!? and Michaeli!® by providing
a more geneial, convenient method for determining incremental diffraction coeflicients. Specifically, we
derive exact expressionrs for the incremental diffraction ceefficients at arbitrary angles of incidence and
scattering directly in terms of the corresponding two-dimenstonal diffraction coefficiente. The derivation is
limited to perfectly conducting scatterers that consist of planar surfaces, such as the wedge, the slit in an
infinite plane, the strip, parallel or skewed planes, polygonal cylinde~ or any combination thercof. The
derivation also requires a closed-form cxpressicn, whether exact or approximate, for the two-dimensional
diffraction coefficients produc=d by the current on cach different plane. In other words, if one can supply a
closed-form expression for the conventional diffraction coefficients of a two-dimensional planar scatierer,
one can immediately find the incremental diffraction coefficients through direct substitution. No integration,
differentiation, nor specific knowledge of the current is required. (Also, the restriction to *'closed-form"




expressions can be removed for the many problems that require only real angles of the diffraction
coefficienrs.)

We show that the PTD, GTD, and PO incremental diffraction coefficients obtained by direct substitu-
tion into the general expressions agree with the results of Mitzner,17 Michaeli,'827 and Knote, 933
respectively, in the case of the infinite wedge. In addition, it is shown that the two-dimensional diffraction
coefficients are recovered when the general expressions for the incremental diffraction coefficients are
integrated over an infinite straight line. Finally, we use our general method to obtain for the first time the
incremental diffraction coefficients for the infinitely long, narrow strip and slit.

In sequels (Parts 11 and III) to the present report, the incremental diffraction coefficients for the half
plane and for the narrow slit are integrated around the rims of reflectors and along the slits between
panels of the reflectors to obiain the far fields produced by the nonuniform currents. These computed far
fields of the nonuniform current are added to the far fields computed from the PO current to improve the
accuracy of the far fields espacially, as mentioned above, in cross polarization, in the further-out side lobes,
and near nulls.

2. FIFLDS OF CURRENT PRODUCED BY A PLANE WAVE INCIDENT
ON A TWO-DIMENSIONAL, PERFECTLY CONDUCTING SCATTERER

Figure 1 shows the surface current sheet on a planar fac «t of a two-dimensional, perfectly clectrically
conducting scatterer in free space. The scatterer exiends uniformily to infinity in the *z direction, and e
planar facet lies in the x2 plane. The scatterer is illuminated by a plane wave with propagation vector &,
whose direction is denoted by the spherical angles 8, and ¢,. The magnitude of k equals k = 20/ = wi,
where A s the free-space wavelength, w is the angular frequency of the suppressed exp(-iat) tme
dependence (w > 0), and ¢ is the speed of light in frec space.

Maxwell's cquations and the boundary condition of zero tangential electric field on the perfectly
clecirically conducting scatterer show tha, for plane-wave illumination, the surface current H(¢') at any
point i on the curcent sheet can be factoved 3583

Ry = o=t ohF(x"), )

That is, the 2'-dependence can be written explicitly in terms of the elesation angle 8, of the incident plane
wave, and thus, the remaining current factor K(x") depends on the transverse coondinate x', but not on the
longitudinal coordinate 2'. Although the phase of the z'«dependence in (1) is zero at 2" = B, (1) does not
imply that the phase of the incident plane wave is zero at 2 = 0 because an arhitrary constant phase factor
can be implicitly contained in K(x'). Of course, K(x') also depends imphicitly on the angles (0,, &) defining
the dircction of propagation of the incident plane wave, and is proportwnal to the complex amplitude of
the incldent plane wave. Also, the surface current described by (1) need not refer to the total current; in
pasticular, it could refer to the PO currest or the nonuniform cumrent (total minus PO current).

2.1 Ficlds Produced by an Incremcental Current Sheet

Lat dH,(F) be the scatiered magnetic ficld at the point ¢ radiated by the incremental current sheet of
tength dz'. (Initiaily, the axis of the incremental current sheet is chosen perpendicular to the z-axis;
however, the analysis is generalized in Section 3.3 to allow the axis of the incremental current sheet to
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make an arbitrary angle with the z-axis.) Through Maxwell’s equations, we can express dH,(f) in terms of
the current by taking the curl of the vector potential:

_— ' @ — k|t~-¢
@ = %z“:-e-ﬂa'cos% vV x f 9] e tl . Q)

- If—f'

To obtain the magnetic far field from (2), take the limit as £ = || — o, bring the limit under the
integral,t and expand the scalar Green’s function, exp(ik |t — ' [)/|f — ], to get

_— tke 3! - ® ot
st(i‘) =250 3431_2 e~ ike'(cost +cosBo) . ki x ./:-m K(x')c"‘k" sin cosd Jx !, (3)

The spherical angles 6 and ¢ define the direction of scattering, that is, the direction to the observation
point £ (see Figure 1), and the hat symbol " denotes unit vectors throughout. Although the limits of the
x' integrations in (2) and (3) extend from -® to «, they reduce to finite values for scatterers of finite

transverse dimensions (like the one shown in Figure 1).

2.2 The Cylindrical Ficlds of the Current Sheet

The cylindrical fields of the entire current sheet in Figure 1 can be found by integrating (2) from

z' = —® to o, In the Appendix, we show that the z' integral can be expressed in closed form as
® , e -
f el cos%gl—fl_'—%,—,l dz' = e~Hacosle miH((k sinbo|p — x'%|) @

 where H{ is the Hankel function of the first kind, and § is the transverse part of f, that is, p = © — 2.
Supsticution of (4) into (2) integrated over z' gives the magnetic field Hy(f) of the entire current sheet as

Fs(f) = :i;V x g~ ikecosho [ . KOOHD (k sind, [p - x'%])dx'. )

To obtain the magnetic far field from (5) by taking the limit as p — «, bring the limit under the
- _mtégral‘ (sec footnote), and replace the Hankel function by its large-argument asymptotic form to get

e

Hs@' T ‘,-—--—-—-———-—-CM"'? gt

(Brkp singg) 2 1o % [ L Keeriocantocost gy ©)

- At first sight, this interchange may not appear valid for scatterers with currents that extend to infinity in the transverse
. plane (such as the in(nite wedge). However, the interchange can also be applied rigorously to these infinite scatterers
by assuming that the currents have small exponential decay as x' — + « 2




The unit vector £, in (6) is defined as the unit vector ¢ evaluated at 6 = w — 8, that is,
£, = p sinB, — 2 cosb,. Thus, we see that (6) represents a cylindrical wave propagating alc ng the
generators of the diffraction cone, that is, the scattered rays that make an sig.e 6 vith the longitudinal (z)
axis equal to v — 6.

For 2 number of canonical scatterers, the cylindrical far field given by (6) is kncwna ir closed form
for the total current, PO current, and thus the nonuniform current. Consequenily, the cross product of
fo, and the current integral in (6) can be written in terms of these convenient closed-forin canonical
expressions. Moreover, in the next section, we show that the cross product of £ and the current integral
in (3) can be rewritten in terms of the cross product of £, and the current integral in (6), so that the
incremental far fields (dH,) can be written directly in terms of the canonical expressions for the
cylindrical far fields (Hjy).

3. INCREMENTAL FAR FIELDS IN TERMS OF CYLINDRICAL FAR FIELDS

As a preliminary to expressing the incremental far fields in terms of the canonical cylindrical fields,
let us rewrite (3) and (6) in the following forn.:

—_— ltJ -
dH,® e d' S-K b x A= arct x A )

el alkdo e

'ﬁ.(r)wmw?oxﬂoacoi‘ox&o (8)
where the vectors A and A, are the current integrals in (3) and (b)), respectively, that is,

Aw T Reeyemia sm e gy (9)

Ao = f : K(x')e ™~ ths" sindo cosd i, (9b)
The constants C and C, are dcfined by inspection of (7) and (8):

ke .
c= &K (10a)

e

el etids-? ik
(8wkp sinb,)12

(10b)

{The exp| — ke’ (cosd + ©c0s0,)] phase factor in (3) is climinated in (7) by choosing the incremental current
sheet at 2’ = 0.} Since the current sheet is in the xaz-plane, K, is zero and (7) and (8) can be written in
terms of the x- and zcomponents of A and A,, respectively. Specifically, (7) and (8) become




dH, () == dz’ C[Ax sindd + (Aq vl cusd — A, sin8)d) (11)

Hy() *2* CofAcx sind 87 — (Agy cosf, cosd + Ay, sinbo)d]. (12)

The unit vectors § and $ are retained in (11) and (12) because far fields conveniently polarize into 0
and ¢ spherical components. The unit vectar ég in (12) denotes the unit vector § evaluated at the
diffraction-cone angle § = 7 — 8,

We are assuming a known expression tor the 8- and ¢- components of the far fields H,(f) of the
canonical current sheet. In other words, we are given Hyg and Hgy such that

Hy(®) == Hy 0T + Hyy . (13a)

We could, of course, just as well be given the far electric field Es(f), which is related to Hy(f) by the
cylindrical far-field formula

Bi) ~ ~Zofo X Hy ~ ~Zo(Hug & ~ Hyp 1) ~ By & + By 07, ro o0 (13b)

in which Z, is the impedance of free space. Equating the right sides of (12) and (13a) determines the
rectangular components of A, in terms of the given 0- and ¢-components of Hy:

1 S
Aox = T sind (14a)
H .
. ¢ L
A = —Col (H,a coid, cotd + Sm%)_ (14b)

Thus, the problem of finding the incremental far fieids in terms of the canonical far fislds reduces to
finding Ay and Ay in (11) in terms of Ag, and Ay, because Ay, and Ay, are known through (14).

3.1 Determination of the Rectangular Components of A in Terms of A,

Inspection of (9b) reveals that the rectangular components of A, are functions of ¢ only through
the cosd in the cxponential of the integrund, because the rectangular components of K(x') do not
depend on ¢ or 9. Therefore, the rectangular components of A in (92) can be obtained merely by
replacing & with cos ~ I(5inf cosd/sing,) in A, of (9b). Specifically, we have from (9a) and (9b)

A0, ) = g [6 = cor? (tindoss )| %)

sinf,




(A similar substitution was used by Mitzner in Section 3.2.1 of Ref. 17 for the special case of the wedge.)
Furthermore, the rectangular components of A can be related to the given components of the canonical
cylindrical far fields by substituting Aok and A, of (14) into (15) to get

.. Hu(d 2 cos™'y
AS, ) = Co sin (cos™ 1 ¢) (162)
A8, ¢) = - "é: h’(;(ii (:;sc?f;)l D cotfy + Hsd:(d)s;; 323—1 tlJ (16b)

where t stanss for sinf cosd/sind,,. [Note from (10b} and the definition of #, that C, is not a function of ¢.]
Finzlly, irsertior of Ay zad A, from (16) into (11) produces the desired expression for the incremental far
fields as a direct function of the cylindrical far fields of the two-dimensional canonical scatterer:

_— - cos—] X
aH,G) e a2 & [Eﬁ@;_sgs__tzsmw

0 sin{cos ™! t)

[H,o (¢ > cos™!
+
sind

t) -1 sme] }
Sn(eos=T 1) (cosd cosB + ¢t sind cotdy) + Hgp(d — cos~! )-=E2 1h an

whire

C e [
[ "5;;:‘ (Brrkp sinB0) 17 exp L—i(kp sin, — kz ¢.s6 + 5‘3{)],

and

{ » Sub cosd
sing,

The far cleciric ficld dE; of the incremental current is found from dB, through the spherical far-field
celatlonship

dE, 2 ~ Z, ¢ x di,. (18)

3.2 Bvaluation of Increirental Yar Fields for [t| > 1

The far ficlds rachated by an incremental current sheet can be found from (17) and (18) provided one
knows thic fur felds of the corresponding two-dimensional canontcal problem. Specifically, one must
evaluate bt and Hyy for ¢ equal to cos™ 1t
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Although cos ~ 1t is a multiple-valued function, when it is substituted for ¢ in (9b), the unique value t is
recovered. That is, Aok and A, and thus Hgg/sin(cos ™ It) and Hyy in (17) remain independent of which
multiple value is chosen for cos~1t, as long as the same value is used throughout.

For |t| < 1, ¢ is a real angle and Hyg and H;y can be evaluated from either numerical or closed-form expres-
sions. However, for |t| > 1, ¢ is a complex angle, and thus, Hyg and H,y, must be evaluated outside their usual
domain of scattering in real, physical space. This means that, if one merely has numerical values for Hyp and Hgy over
the usual domain of 0 < ¢ < 2, one would not be able to determine their values directly for |t| > 1. 1

Fortunately, (9b) shows that Ay and A, and thus Heg/sin(cos ~1t) and Hgy, are analytic functions of t for
continuoustt currents K(x') that have finite extent in the x'-direction.26 Therefore, if one has closed-form analytic
expressions of Hyg/sin(cos ™ 't) and Hgy for these finite problems solved originally for the domain |t| < 1, the same
expressions can be used directly in the domain |t| > 1 as well. For a current sheet that extends to infinity along the
x'-axis, such as the current on the face of the perfectly conducting wedge, the integral of (9b) is alsv an analytic
function of t on the real axis, provided a small negative or positive imaginary part is added to t that produces an
exponentially decaying integrand for x' integration that extends to plus or minus infinity, respectively.26 Thus, for
current sheets of infinite transverse extent, the closed-form expressions of Hyy/sin(cos " *t) and Hyy in the domain {t] <
1 can also be evaluated by direct substitution of t (with a small loss approaching zero, if needed, to ensure analyticity
over the entire real axis) in the domain {t| > 1, (The theorems on analyticity of integrals with finite limits 26 assure
that the singularities of 1/sin(cos™'t) in (17) att = * 1 ..ill be cancelled by zcros of Hg att = % 1. These singulari-
tles may remain, however, for infinite current sheets, if a small imaginary part is not added to t.)

In summary, if closed-form expressions for the cylindrical far fields, Hgg and Hyg, of the two-dimen-
stonal canonical scatterer are available over the usual domain of [t| < 1, these closed-form expressions can
be used directly and unambiguously for all t to find the incremental far fields from (17) and (18). Of
course, for normal incidence (8, = 7/2), |t| never exceeds one.

3.3 Singularities in the Incremental Far Flelds

Singularities in the incremental far fields given by (17) and (18) will occur only at angles (8, ¢) where
Hga(d — cos ™ 't)sin(cos ™1ty or Hyy(d — cos™ Mty are singular. For canoni: ol scatterers of finite transverse
dimensions, integrability of the current in (9b) demands that these two functions be finite for all ¢, and
thus, the incremental fields of finite canonical scatterers will have no singulacities for all (0, ¢).

For infinite sheets of current like the total currents on the faces of the wedge, the cylindrical far-field
functions Hy/sind and Hy have singularitics at isolated values of azimuth angle ¢ for which the current integral
in (9b) becomes infinite. Denoting these singular angles by ¢, we see from (17) that the corresponding
incremenal far Relds will, in general, 111 bave singularities for all § and ¢ that satsty ¢ = cos¢y, that is,

———

tOf course, if the current K(x') were known, one could conceivably integrate (92) numerically or possibly analytically
to obtain the Ay and A, required to determine the incremental far fields immediately from (11). In fact, as men-
tioned in the Introduction, Michacli'® was able to perform the current integration In (93) analytically for the faces of
the perfectly conducting wedge to obtain the GTD inceemental Relds of the wedge. In the present paper, we want
to avold such involved current integrations by working directly with the cylindrical far fields of the covresponding
two-dimensional canonlcal scatterers.

ttFor scatterers with sharp edges, the current may be singular at the edge. However, since these singularities are
Integeable, they can be removed from the integration by moving the limit of the integration just inside the edge, and
thus, the theorems of Whittaker and Watson26 seill apply.

1A notable exception can occur when 0, = m/2, ¢y = 0 50 that (19) Is satisfied only by the single far-field polnt

0 = w2, ¢ = 0 where the sind and (cosd cosd + t sinBeotd,) factors in the numerators of (17) cancel the sin(cos'!t)
factors in the denominators of (17). This exception is a particular example of the generalization (discussed later in
Section 3.3) to current inceements lying along the direction of the grazing diffracted ray.
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sind cosd = sinb, cosdy,. 19

Eq. (19) defines a cone of far-field singularities in the incremental fields about the x-axis, that is, about the
transverse coordinate axis of the current sheet. (This cone of singularities is not to be confused with the
far-field cone of diffcaction for the cylindrical fields about the z-axis, that is, the longitudinal axis of the
planar current sheet.) The half angle o, of the cone of singularities measured from the positive x-axis is

given by

oq = €08~ 1(cosdn sindy). (20)

Por normai incidence, 6, equals 7/2 and a, equals ¢,. Geometrically, the cone of the far-field singularities
of the incremental fields is generated by rotating about the x- axis the ray that lies in the direction of the
singularity of the cylindrical far-field function (Hse/sind or Hyy). This generating ray, of course, lies on the
cone of diffraction of the cylindrical far fields as well.

The total current on the illuminated face of 2 wedge has two associated cones of singularities given by
(19). One is generated by the singularity in the diffracted fields at the shadow or reflection boundary
(bn = ™ L ¢y), that Is, the singularity produced by integration of the PO current in (9b). The second is
generated by the singularity of Heg/sind (or Hyg for a TM plane wave grazing at ¢, = ) in the plane of the
face (b = 0, 241), that is, the singularity produced by integration of the nonuniform current in (9b)
excited by an iacident TE plane wave (or TM plane wave grazing at ¢, = ). Both diffracted components,
Hss and Hyg/sing, produced by the PO current remain finite at a face angle of the wedge (except for
grazing incidence at ¢, = 1), whereas these same components produced by the nonuniform current
remain finite at the shadow and reflection boundaries (except for grazing incidence at ¢, = w). Therefore,
in calculating the far ficlds of three-dimensional scattering bodies locaily approximated by infinite
two-dimengjonal canonical scatterers, like the wedge, with cylindrical far fields containing singularities at
the shadow and reflection boundaries, it is especially advantageous to use the incremental far fields of the
nonuniform (PTD) currents of the canonical scatterers, because the far fields of the nonuniform currents of
these Infinite scatterers do not contain singularitics at the shadow and reflection boundaries, unlike the far
fields of the total (GTD) and PO currents of these infinite scatterers. Morcover, in the PTD formulation,
there are no singularities in the PO far flelds if they are obtained by integrating numerically the PO cuerent
on the finite three-dimenslonal scatterer.

The cone of singularities defined by (19) that may occur at ¢, = 0, 2w for canonical scatterers of
infinite transverse extent can be collapsed to a single line and sometimes eliminated by choosing the axis
of the Increment of current sheet skewed rather than perpendicular to the z-axis. In particular, Michaeli?’
has recently shown that the cone of singularities generated by the diffeacted ray grazing the face of a wedge
(dn = 0, 27) can be clirainated (except when the directlon of incidence 1s also grazing at ¢, = ) by
choosing the axis of the incremental length in the direction of the grazing diffracted eay, that is, in the
direction of propagation of the nonuniform cirrent far from the edge. Butoria and Ufimisevd7 derive the
same result for scalar (acoustic) diffraction from the wedge.

The present anaiysis shows that choosing the positiv: x' Integration axis of the incremental current
sheet to make an arbltrary angle ¢ with the positive z-axis (rather than 90°, as shown in Figure 1)
multiplics the current in (3) by exp(~ikx' cosl, cotd) and the exponential in the integrand of (3) by
exp(—thx' cosd cow); thereby changing the integral on the right side of (3) to

12




/m g ") e~ ix'[sind cosd + coty (cosd + coso)} iy’ @1

o«

Thus, our general analysis and final results (17) and (18) for the incremental far fields remain the same
when the axis of the incremental current sheet is skewed, excent thar t is set equal to ty,

(22)

[sine cos¢ + coty (cosd + cosb,)
sinf,

instead of to sin® cosd/sin,. Eq. (22) reduces to Michaeli's corresponding result?? for the faces of the
infinite wedge when { is set equal to ™ — 8,, the angle of the grazing diffracted ray for a face alang the
positive x-axis. In that case, as mentioned above, the original singularity of the incrementa! diffracted
fields at &, = 0, 27 is eliminated (except for grazing incidence at ¢, = ) by substituting ty, for t; note,
ty S Yfor ¥ = 7 — 0, For a face extending to infinity along the negative x-axis, the angle of grazing is
Y = 0, and the singularity at t = —1 is eliminated; note, ty, 2 — 1for ¢ = 6.

In summary, the differential increment of current on the face of a wedge forms a semi-infinite line
source along the x-axis of Figure 1, and thus radiates with a symmetric vector potential about the x-axis.
The total current of the line source can be divided into the PO current and the nonuniform current. The
PO current of the line source radiates a far field that becomes singular In a cone of directions that includes
the shadow and reflection directions of the corresponding two-dimensonal wedge face. The nonuniform
current of the line source radiates a far field that becomes singular in a cone of directions that includes the
diffracted ray along the corresponding two-dimensional wedge face. Skewing the axis of the differential
increment of current to form a line source in the direction of the grazing diffracted ray rather than the
x-axis collapses the cone of singularitics of the nonuniform current to a single line in the direction of the
grazing diffracted ray.

Skewing the axis of the current steip cannot climinate the GTD and PO cone of singularities associated
with the shadow and reflection boundaries (¢, = 1t % ) of the face of a wedge because for nongrazing
incidence, the shadow and reflection boundaries of a face of a wedge do not lic along that face. Also, the
directions of propagation of the PO and nonuniform currents on the face of a wedge are different except
for normal (8, = 1/2) incidence or grazing incidence at ¢ = . Of course, the singularites in the PO far
ficlds at the shadow and reflection boundarics of the infinite wedge can be climinated by giving the faces
of the wedge finite radil of curvature.28 However, the resulting incremental diffraction cocfficients apply
then only to three-dimensional scatterers with curved rather than flag sucfaces.

3.4 Division of Incremental Far Flelds Into TE and T™ Fields

The scattered ficlds of two-dimensional perfectly conducting cylinders divide conveniently into
transverse clectric (TE) and transverse magnetic (TM) fields depending on whether the incident plane wave
is TE (E; = 0) or TM (H, = 0), respectively.2*t Specifically, for the TE case, the far field component Hyy is

tAlthough the diffracted fields radiated by the total currents of two-dimensional perfectly conducting cylinders divide
conveniently into TE and TM ficlds, the fields radiated by the PQ currents, and, thus, the felds radlated by the
nonuniform currents do not divide geneeally into T8 and TM fields, except for normal incidence (8, = 90). Conse.
quently, (17) or (18) must be used, In general, rather than (23) or (24), to determine the incremental diffraction
cocfiicieats far the PO and nonuniform cuerents. (For example, sce Section 4.3)
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zero everywhere (and, for the TM case, Hgg is zero everywhere). Thus, the incremental magnetic far fields
(17) for these TE and TM cylindrical fields reduce to

Eﬁ}'ﬂ({-) 2o dz’ %ﬁ:‘—(—:o:—f_)s%g [sind & + (cosd cosh + t sinb cotf,) b} (23a)
TE™G) 2 dz’ —CC: Hyy (& = cos=11) %‘9"; b. (23b)

The incremental electric far fields are obtained, as usual, from (18):

-1
() r2» dz' %‘:‘;‘f_&;) [sind ¢ — (cos cosd + t sinb cotby) ) (242)
dBMGE) 2= dz’ & B (6~ cos™i o) L @4y

where By, and By, the cylindrical electric far fields, have been substituted from (13b). Note especially that
the incremental TE magnetic and electric ficlds have both 8- and $-components even though the corre-
sponding TE cylindrical fields have only a 6-component of magnetic field and a ¢-component of electric
field. For the TM incremental magneti: or electric field, however, the single component of the correspond-
ing T™ cylindrical field remains as the only component. Recall that By and Hyg as defined by (13) refer to
the 87 components of the cylindrical far felds.

In dyadic notation, (24) can be written

dEy(§) 2 B, (¢ - cos™1 ¢y - D, dz’ (25)

where the components of the dyadic f), are the elements of the matrix defined by (24) that coaverts the
cylindrical electric far ficld of the canonical scatterer to the corresponding incremental electric far field. If,
in addition, we express the cylindrical electric far field as a dyadic D multiplied by the incident field
(see, for example, Kouyoumjlant?), that is,

—
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then (25) becomes
dEy(® ™= E - (0 - Dydz’ = E - Dydz'. 27)

{In (25), (26), and (27), we have included the radial dependence of the far fields in the dyadics.] The
dyadic incremental diffraction coefficient D, provides an extremely compact notation (27) for the
incremental diffraction fields. However, for detailed analytical or computational purposes, the explicit
vector expressions (17), (18), (23), or (24) prove the more useful.

4. CHECKS ON THE CORRECTNESS OF THE EXPRESSIONS OBTAINED FOR THE INCREMENTAL
FAK FIELD

In this section, we present a series of checks on the expressions that have been derived for the
incremental far field. In Section 4.1, we integrate the incremental magnetic far field (17) from minus to
plus infinity and show that, by doing so, we recover the cylindrical magnetic far field, (13a). In Section 4.2,
we specialize our general results to the perfectly conducting haif-plane and infinite wedge illuminated by a
plane wave, obtain incremental far fields corresponding to both TM and TE incident illumination, and
compare the resulting expressions with those obtained independently by Michaeli!® through integration of
the surface currents. Complete agreement is found between our expressions and his. In Section 4.3, we
use our method to derive expre:sions for the incremental physical optics far field of a wedge illuminated
by a plane wave. The resulting expressions for both TM and TE incident illumination are found to agree
with those obtained independently by Knott!933 in his paper comparing the incremeatal diffraction
coefficients of Michacli!® and Mitzner.!?

4.1 Integration of the Incremental Yar Field to Obtain the Cylindrical Far Field
A basic check on the expression (17) obtained for the incremental far ficld is that the integral of (17)

over 2' from minus to plus infinity should yield the cylindrical far ficld (13a). With the plan of evaluating
the integral of (17) by the method of stationary phase, we write

L= oeet@)a (28)

wilere (see Figure 2)

P=R-22 (29)
q2') = -3 (t ~ 2’ cosby) (30)
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1”2
te') = @1"_‘_‘&4_;1‘:&1_ PRI e

. {Hgp (& = cos™1 1) , [nggg —cos”1t) s,
sin (cos-1 1) sing §' + sin(cos=1 ¥) (cosd cos®’ + t' sind’ cotly)

+ Hyp (¢ — cos™1 t") %&] &], ¢ = Hnf_cosd e, 3

Since ¢’, the azimuth coordinate of the field point relative to the point of integration, is a constant for
all z’, we have set ¢' equal to ¢ in (31).
For large kp, the integral (28) is asymptotically approximated by the stationary phase formula??

_/: : clo4(z) fz')dz' pm eM0AED + jpm/d (maz%w)m ) (32)

where z, is the point of stationary phase defined by

i)

z fonn Gk wh® Bl s SRS WD D A G e D WP W GEAS S W A

zl

o

Figure 2. Geometsy of Integration of the Incremental Bar Field
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q'@@s) =0
and

B = sign q'(z).
Differentiating (30),

q'@) = %(ang" - cosBo)
and since

£= (0 + @ - 2R

Equating (33) to zero then gives cosé at z = z,,
cosh’y = —cash,.
It follows casily, using (34) and (35), that
so that
z = p (coth, + cotd)
and hence
1

q (7.') = mb-; et COSOO (CO‘GO + CO!O).

17
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Moreover, differentiating (33), using (35), and substituting (36) and (37) yields

T = L 39
which implies that . in (32) is positive. Also, since

sing’ = £,

singy = -f: = sinf, (40)
from which

§ = cosd 1
and hence,

sin(cos™ ! ) = sind. (42)
Since

8’ = % cosd’ cosd + P cosd’ sind — 2 sind’,
substitution of (36) and (40) yields

0y = 07 2 8 |gag-g,- (43)

Finally, substituting (38), (39), (36), (40), (41), (42), and (43) in (32), and using the readily obtained
expression for £,-R,

Roe= -
£oR g cos(® + 0a)
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yields the desired relation

4.2 Comparison With Michaeli’s Incremental Diffraction Coefficients for the Perfecdy Conducting
Half-Plane and Infinitc Wedge

As a second check on the expressions we have derived for the incremental far fields of planar
surfaces, we obtain the incremental far fields for the particular cases of a half plane and infinite wedge, and
show that these fields agree with the expressions obtained independently by Michaeli!® from integration of
the surface currents.

4.2.1 HALF-PLANE ILLUMINATED BY A PLANE WAVE

We specialize (24a, b) to the case of a half-planc illuminated by a plane wave. The half-plane is defined
in terms of Cartesian coordinates (x, y, z) by the equation y = 0, x = 0, so that the edge of the half-plane
coincides with the z-axis. The direction vector of the incident plane wave forms angles of v + ¢, and
w - 0, with the positive x-axis and z-axis respectively (sce Figure 3).

OBSERVATION OBSERVATION
Y DIRECTION 24 DIRECTION

INCIDENT

EDGE OF o] PLANE WAVE

INCIDENT HALF-PLANE
PLANE WAVE

-]
T+, 7r-8ifﬁ

dq

’ X
HALF-PLANE

Figure 3. Geometry of 3 Half-Mane luminated by a Flane Wave
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We begin with a TM (E-polarized) incident plane wave for which

E, = ~E exp [—ikp sinfg cos(d — o) — ikz cosBo) 8, (45)

where E; is the complex electric field amplitude of the plane wave. For 8, = w/2 (that is, the incident
plane wave propagating normal to the z-axis), the scattered electric far field is given by30

sin-‘b- sinE

PRI, S il
E“w&("kp) el 1r)t:o.«ut)+cos.<1>°’o<d><2‘“"

from which it can be shown?3:3! that the scattered clectric far field corresponding to oblique incidence is

B 2 V2. (ko sind, + w/d) o - ikz cosh Sin% Sin%g A
- ——l e nl, + w - o+ ———— S B
E, b= E‘(vkp slnﬁo) el e cosd + cosd, % (46)

& &96:.

Substituting (46) in (24b), noting that 8,7 in the exponential factor of C; s equal to p sinby ~ 2 cosl,,
and replacing the magnitude, B, of the inddens planc wave by By/sin,, we obtain

&

§ sing— sin—2

TETM s —elnt B sing g_‘_k: .._,......;_._...2... ‘
dE," () m» -dz' By 07 0, 4w cosa + cusdy 8 @

a = cos-} (sin() r:os§>)
sinB, 7

To compare (47} with Michaeli's expression, we start with Michaeli's Eq. (1),' which, after specializing
to an edge discontinuity coinciding with the z-axis and noting the correspondences j —» =i, §«o P, L+ 2
between his aotation and ours, yiclds

dB o ik gg-f sind2y 12)8 - M@E@)d)de’ (48)

where | and M are the electric and magnetic equivalent currents, respectively. Expressions for T and M
for a wedge with exterior angle Nn are given in Michacli's Eq. (31). For T™M incident llumination M =
0, and Michaeli's Eq. (31) with N = 2 gives

20




{ ; 4 sinfz- sin-3* o
= ~Eg ¥z, §in? g, cosa ¥ cosé" ’

(49)

o = COS-l (MM)

sinb,

where we have used the correspondences B’ «» w — 0,, B « 0, and ¢’ « ¢, between Michaeli’s notation
and ours. Substituting (49) in (48), with M = 0, is then seen to give an expression for the incremental far
field identical with (47).

Next, we consider a half-plane illuminated by a TE (H-polarized) incident plane wave for which

—H, exp [ —ikp sinB, cos (¢ — &) — ikz cosby] 8o (503

where H, is the complex magnetic field amplitude of the plane wave. For 8, = m/2, the scattered magnetic
far fleld is given by 30

cosd‘ ose
By 22 — H; s cltko + iy 2 2

<08} + cosd, 0 < <2m

from which the scattered magnetic far field corresponding to oblique incidence is 2531

H eam Hy {——2—\Y2 ol sind, + /4) o — k2 cosb cos% cos%—° ™
[ e eny o
s U Tkp sinBgs  © ° ¢

cosd + cosdg 60 G
= Hg Q'g

Substituting (51) in (24a) using (cf. (13b)] Eg = — ZoH,q, simplifying algebraically, and repiacing H; by
Hy,/sinb,, one finds

b0
ey car -z’ 2, Hi elle 4 cos2 c0s=
s sineo 4arr COSX + COSPo sing

“ [sind & ~ (cosd cosd + cosa sing cotdy)d], (52)

—1 [sin8 cosd
a = cos~! (szmeo )

21




Michaeli’s expression is again given by (48) with I and M defined by his Eq. (31) with N = 2. We obtain

- [s.'ue cosd | —Coseo) _. cosb }
! ksinb, L sinf, \ sinBg sing OS¢
LT A 1 1
. Sin—— — -
2 T—a _ . P - o, _‘i’g_)
cos ) cos o) cos 2 + CCcs 2
iH, 4 cos—% cos%9 1 '
K sinf, Cosa + cosbg sina sind (cosd cos0 + cosa sind cotly) (53)
and
T«
M= —iHpZo sind sin——im 1 1 1
" ksinbsinb, T sina m—a_ % -« o
\cos 3 oS 2 CcOos 3 + COos )
o $o

[319) (oL} 4 cos=>
_ iz, dindcosy 2
k sinf sinB, ~ sina  cosa + cosdg’

(59

Substituting (53) and (54) in (48) yiclds an expression for the Incremental far field identical with (52).

4.2.2 INFINITE WEDGE ILLUMINATED BY A PLANE WAVE

We now apply (242, b) to an infinite wedge illurainated by a plane wave. The wedge is defined in
teans of cither a circular cylindrical coordinate system (p, ¢, 2) or a spherical coordinate system (r, 0, ¢) by
the equations ¢ = 0 {face 1) and & = Nrr (face 2), 0 < N s 2, with the ed;;e coincident with the z-axis.
The direction vector of the illuminating plane wave forms angles of w + &, and ® = 0, with the positive
x-axis and z-axis, respectively (see Figure 4).

As with the half-plane, we begin with a2 TM incident plane wave with the incident clectric field given by
(45). To apply (24b), we require expressions for the fuc-zone electric field radtated separately by the
current on cach of the faces of the wedge. Michaeli3? has derived expressions for the contsibusions, By,
and Bay,, of each of the wedge faces 10 the total diffracted field when the incident wave vector is normal to
the edge of the wedge (0, = w/2). For a2 T™ incident wave

Eia = B [f(~®) -~ f(~)) (35)
Era = B [f(-®Y) ~ f(@)) (56)
where
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Figure 4. Geometry of a Wedge Hluminated by a Plane Wave

‘I)‘xs‘b"‘bo-(paa‘b*"bo

i.r ir
O3 = Py

¢ Nw -
do — Nw — o

and

' ¢ m

f(d) = z;i-ﬁ j;_“ cot(’" ;Nd)) ¢~ ko coiv gy, 57

Making the substitution v = « + i{ in (37) and evaluating the resulting integral by the method of
stationary phasc yields

e

from which, with the aid of some ~'=mentary trigonometric identitics, (55) and (50} vield
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do

sin—

2 2 4 N
Emw‘&(-;—) eilo + v/d) —,0 < $ < 2m,
ko ZN(COS% - coslii)
and
sin¢°

Emw'ﬂ‘(‘;%k;)m ciGep + =/4) ~@2 - Ny < ¢ < Nm

2N (cos%? - cos—-;—g) ’

Just as for the half-plzne diffraction discussed in Section 4.2.1, the scattered electric far fields corre-
sponding to oblique incidence of the illuminating plane wave are then

- 17 .
E, 2o - E -'.cp_zir-xT) ¢l(kp sind, + /) o —ikz cosd, (59}
sin%‘l 6
T 0< ¢ < 2m,
ZN(cos.ﬁ - cosﬂﬁij
8 Ejgq 6
and
By, o> &(;_3__.._)"‘ el(kp sinty + ) o= ‘e cos, (60)
kp sinf,
sing o

- @2~ Nyw < ¢ < Nm,

& Eap ég,

Now, while By can be used directly in (24b) to calculate the contribution of the upper face of the
wedge to the incremental electeic far field, By cannot, since the current sheet is not in the xz-plane as
was assumed in the derivation of (24). Hence, we first transform to a (p, ¢', 2) coordinate system with

=2+ @Q-Nwm ¢=¢" - Q2-Nw (61)

so that ¢’ = 0 i3 the equation of face 2 of the wedge. Substituting (61) in (60) gives
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- 2
Bps 02 El(méim ilko sind, + ) ¢ ke costy ©62)
sin-?—g
2N t,os—-— + cos——ﬁ—g-)

= Ea 93-
Substituting (59) and (62) in (24b) then yields
dE™M@ =dEM @ + dEQ () (63)

with

bo

2sin——

kr .

£ 8, (64)
$ = oy

N(cos—-b;’ - cos— 5 )

FEIM 2y ra — _sin8
dEys” () dz’ By 25in? 0, 8, 4mr

ay = COS—-l (ﬂ_ﬂﬁ&ﬁﬁ)' 0 < ¢ < 2,
slneo '

and
do
2sln
JEM @) e - dz' B, S00 € 8 (65)
Esin® 0, 4ur ¢ -0z '
N (cos—l\-;2 + cos— N )
@ = cos=l {sin8 cos¢’ ) 6D o5~ [slnﬂ COS(Nw _— d))]
2 \ sinB, sinf,

- @2 - N)w < ¢ < Nu.

Michaeli's expression® for the incremental far field is given by (48) with M = 0 (TM illumination) and

$o
sln......
2 N 1 3
I= Bagd ( +
sin20, Ty O T - 0 9o
cos N cos N cos-—--——-—«N + cos.—«N

which is seen to be identical to cur expression given by (53) with (64) and (65).
Next, we turn to the incremental diffraction coefficient for an infinite wedge illuminated by the TE
(H-polarized) incident field given by (50). Michacli's expressions3? for the contributions, Hyy, and Hay, of
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face 1 and face 2, respectively, to the total diffracted magnetic field when the incident wave vector is
normal to the edge of the wedge are

Hie = H [{(-®) + K(~9))

Hyy, = H [f(®) + £(@5)]

with f(®) given in general by (57) and for large kp by (58), and ¥y, defined as for TM incidence.
Similar to the TM case, we find that

Hyg P2 ~ Ht(;z")m el + w/d) sin” X , 0 < ¢ < 2m,
kp ZN(cos% -~ cos%)
and
H m-H(:Z-)me‘“"”m Smi‘; - @-N7w<¢ <Ny
m l k 2N(cosg9 - cosﬂ-g—i), .

Then, like the half-plane- diffraction discussed in Section 4.2.1, the scattered magnetic far fields
corresponding (o oblique incidence of the illuminating plane wave are

H, 2 B ( 7. el(kp slnd, + /) o~ lkz costl,

) l

(cosi)g - cos——ﬁ-é-

)Gg,-o<¢<z«r, (66)

2 Hy 87

01
and

Hy, v H, ( V2 oo sinty + wid) =t cost

k)

wkp sin6,
sinm

anfoosde - cosw_ﬂ %

= (2~ Ny < ¢ < Nm, (W)

W Hae Gg.
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As done above in treating the TM case, we transform (67) to the (p, ¢', z) coordinate system with ¢
defined by (61), obtaining

Hy r2» H, (__2._..)1” eikp sin8, + w/4) o~ ike costl

/ i
1rkp sinf, {63)
Sinu
N - 6101"
(cosgcl + cosﬂ—;rli)
= Hzg ég
Use of [cf. (13b)] Esp = =ZoH.p, and substitution of (66) and (68) into (24a) then yields
dEFE@) = dETE () + dEgr () (69)
with
m = Qf
2 sin ——
TE /= At le E}Er_ N
dE | (®) r=» ~dz' Z, sind, dmr . P (70)
N COSy ~ €08 —y
. sina [sing & — (cosd cosd + cosa; sind cotd,)d],
@y = cos~? (M), 0 < ¢ < 2m,
sinf,
and
M = o
2 sin
TR eyt 7 Hi e N
B2 @) = =2 Zo o, Gmr T, P Q)
os-— + cos N

sma [sind’ ¢ — (cosd’ cosd + cosay sind cotfy)d]

oz = cos™! (____g_smo £03 '), 0 < ¢' < 2w,
sin6,

Finally, we transform (71) back to the (p, ¢, z) coordinate system to obtain
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w = 0
ke 2sin T2
Hiy e N 72)

Nicos N + cos N

dEE@) r» d2' Z,

. slnlaz [sin (N7 — $)d + (cos(NT — d)cosb + cosay sind cotdy)d),

sinf cos(Nw — ¢)
sinf,

],-(2-N)1r<<b<N'n'.

az = cos~! [

Michaeli's expression 18 for the incremental far field is given by (48) with, from his Eq. (31),

sind cosd (_ Coseo) _ cos cosd pa—_—
iH, 2 sinf, sinf, sinf sin———11
I= ksing, N sinay cos T4 _ cosi‘-’
X N
sind cos (Nw — &) (_ 00890) _ cosf - T -0y
sinf, sinf, sing <0 N ) sin— ]
- sinaz T — oy [
Ccos——p—= + cos
d T = Q1
e —iHp 2 Sy cosd cosd + cosay sind cotf,
ksinB, Nsind | T — %1 & sinog
N N
1 ™ = Q2
_ sin—y cos(Nm — ¢)cosd + cosay sind coteo)
- % Do sina;
cos—g— + cos o
and
i sinﬂ _. sln" —2
Me —HeZo 2| sind N + Sin(Nm ~ &) N
k sinb sinf, N cos T — O _ cos99 sinog =00 s |
sinoy N N cos N + €08 N

o -1 (slne cosgb_) - -1 [sln() cos(Nw — dg)}
% = cos sing, /1 % T €08 sind, '

His expression is thus identical with ours given by (69) with (70) and (72).

4.3 Comnparison of the Physical Optics Incremental Far Fields for a Wedge With Knott's
Expressions

Just as total incremental far fields are obtained by our method starting with the toal cylindrical far
ficld, one can obtain physical optics incremental far fields by starting with expressions for the cylindrical
PO far field. Such PO incremental far fields are important since, in practical computational applications, it
is often desired to supplement the PO far field (obtained by numerical integration of the PO surface
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currents) with the far field radiated by the nonuniform currents. This latter far field can then be
obtained by integrating the nonuniform current incremental far field that has been found by subtracting
the PO incremental far field from the total incremental far field.

In this section, we derive PO incremental far fields for the wedge and compare these with expres-
sions given by Knott, 193 who shows that the difference between Michaeli’s!® and Mitzner’s!? incremen-
tal far fields are simply the PO incremental far fields. The starting point for obtaining the PO incremental
far fields for the wedge is the cylindrical PO far field of each face of the wedge (see Figure 4 for the
wedge geometry). In Section 4.2, to obtain expressions for the incremental total far field, we began with
the two-dimensional far field corresponding to normal incidence of the iluminating plane wave, from
which the cylindrical far field for oblique incidence was obtained by a simple substitution using a
method described by Senior and Uslenghi?5 and Jull.3! The same procedure cannot, in general, be used
to derive the cylindrical PO far field for oblique incidence from the two-dimensional PO far field for
normal incidence since, unlike the total field, the PO fields do not satisfy the boundary condition that
the tangential eleciric fleld vanishes on the surfaces of the scatterer. In particular, the PO fields
associated with a TE incident plane wave do
not remain transverse for oblique incidence. Hence, we will obtain the cylindrical PO far field for

oblique incidence directly.
We begin with a TM (E-polarized) incident plane wave with the incident electric field given by (45).
The incident magnetic field is then

iy = 7+ explikp sindo cos(p ~ ¢a) — iz cosoldo
On face 1 of the wedge, ¢ = 0 and the unit normal is ¢, so that the PO current is given by

K= 2U,-% sind, exp(~ikp sinb, cosdy — ikz cosby)2 (73)
where

Uy = Ul — ¢)

with U(x) the unit step fuaction (0 for x < 0, 1 for x > 0). On face 2 of the wedge, ¢ = Nm and the
unit normal is sin Nt® —~ cos Nnj, so that the PO current is

Ry = 2U;z} sinir ~ ¢o) exp| =1k siny cos(r — o) = kz cost2 (74)
where

Uz = Uldo - (N = D)m).
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The PO magnetic far field may be found from (6). Since

fo X 2 = — sinf, §,

(6) with (73) gives
expli(kp sinf, — kz cosB, + T)]
.ﬁ{o @ e — ZUIEK- plitke o ‘ > ot g sind, .
Z, (Barkp sinBy,) cosd, + cosh

from which, with (13b), we obtain the PO electric far field

exp[ikp sinf, — kz cosb, + )]
RPO - 4 sindg
E‘. (@) = = 2UsE, (87kp sinby)2 cosd, + cosb 0 < <2m (73)

PO
= By ég.

For face 2 of ihe wedge, before applying (6), it is necessary to transform to the (p, ¢’ z) coordinate system
with ¢’ given by (61), since (6) is based on the assumption that the current sheet is in the xz-plane. Thus,
the factor exp(—ikx' sinf, cosd) in (6) is replaced by

exp(—lix’ sinf, cosd’) = exp[—ikx' sinf, cos(Nw —~ &)].

Then (6) with (74) gives

By explitkp sinf, ~ kz cosf, + w/4)] sin(Nw = ¢)
Zy (8rrkp sind,) 12 cos(NTT — $g) + cosd’ ¢

HEO (@) m2o - 20,

and hence, using (13b),

explitkp sinBy — kz cosf, + w/4)] 76)
(8rrkp sinfg) V%

B ® > - 2UsB

) sinNw —~ ¢,)
cos(Nw — &o) + cosd’

0T, 0 < ¢' < 2m,

= BYY 47
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Substituting (75) and (76) in (17-18) or equivalently in this TM case (24b), then yields the PO incremen-
tal electric far field

7

@ = dE° @ + dE° () )

with
- . E ke gin@ Zsing,
ILPO _ ' iz € Sin
dE;™ @) = = dz' Uy sinf, 4wr sinB, cosd, + cosag 78
and
—ney E ke ging 2sin(Nt — o)
PO - ' iz €7 sin
dE;” () = — dz' U, sinf, 4wr sinf, cos(Nw — o) + cosay @9)
where
= -1 (slne €OS§ )
01 = Cos sindy /" 0 < ¢ <27,
and

ap = cos™! (———-—M:;g: ) = cos™! [smo C(znme: i) ], - (@2~ Nm< ¢ < Nm

Knott’s expression 1 for the PO incremental far field is given by (48) with M = 0 (TM illumination)
and

E.2i DH'
kZ, sin%6,

with

AP sin sin(Nw — &)
Dy = U’CGS% + cosay + Uz cos(Nw — ¢y) + cosap

where we have made use of the correspondences B« 8, ' & 1 — 8, ¢’ © ¢, n & N, Ut « Uy, U™
Uz, Z & Z,, E; « By, and I, « I between Knott's notation and ours. Knott's expression is thus seen
to agree with our expression given by (77) with (78) and (79).
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We now obtain the PO incremental diffraction coefficient for an infinite wedge illuminated by the TE
(H-polarized) incident field given by (50). On face 1, the PO surface current is

K1 = 2UH; exp(—ikp sind, cosd, — ikz cosbc)(sinfek + cosb, cosde2),
while, on face 2, the PO current is found to be
K2 = —2U,H; exp[ —ikp sinf, cosqNT — &) — ikz cosd,)
* [cosNm sinB,% + sinNT sinfof + cosd, cos(NT — $)2].
We next apply (6) to find the PO magnetic far field. Since
fo X (sinBk + cosb, cosdel) = sinb,[sind8T — cosBy(cosdo + cosd)d]

4

[recall that (%, 87, &) are the standard (¢, §, d) spherical coordinate system unit vectors evaluated at
0 = q — 6,and ¢}

expli(kp sinf,~ kz cosb, + n/4)] 1
(8mkp sind,,) 1?2 cosd, + cosd

HIO (1) == 2U3H,
+ [sind 87 — cosB, (cospo + cosd)d}
# H{P 07+ HIQ

from which (17) and (18) yield the PO incremental electric far fleld for face 1 of the wedge

Hi elr 2
5inf, 4wr cosd, + cosay

dE}° (@) ra» —d2' Uy2Z,

{sind b - (cosd cosd — cosd, 5inb cotdy)b} (80)

oy = COS" (M).o < ¢ < 2.

sin0,
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For face 2 of the wedge,
fo X [cosNT sinfok + sinNt sinb, § + cos, cos(Nw — &g)2]
= —sinf, {sin(Nmw — $)87 + costio[cos(NT — bo) + cos(Nw — &)]d}.
Transforming to the (p, ¢’, z) coordinate system with ¢’ given by (61) so that
sinNw — ¢) = — sind’
cos(Nmw — ¢) = cos ¢’

and applying (6), the PO magnetic far field is found to be

exp[i(kp sinb, — kz cos 8, + TM4)]
(8wkp sinfy) /2

HIC () == 2UH,

| SN = ;0) ¥ oosd’ 1 sing'0T + vosl, [cos(Nwr — o) + cosd’ 1}

HiY 67 + Hgd,

from which, with (17) and (18), we obtain the PO incremental electric far field for face 2 of the wedge.

— , Hy el 2 .
dE;™ (F) v dz'Ugd, siny §qr cos(NT — o) + cosay

{sind’ & ~ [cosd’ cosd ~ cos(Nw — & ) sind coil,]0)

RTINS "I el 2
= —dz Uzl"’sineo 4mr cos(Nw — o) + cosay

{sin(Nw — &) + [cos(NT ~ $)cosd — cos(Nm ~ $,)sind co18,)0}

1 asd' _1|5inB cos(Nm —~
o2 o (S - o SOOI D] _ o g0 < 6 <

RE)

(81)




Thus, the PO incremental el=ctric far field for the wedge for TE illumination is

dE° () = dE° () + dE;° () (82)

with dE'1° and dEzio given by (80) and (81), resp=ctively.
Knott’s expression!? for the TE incremental PO clecuic far field for the wedge is given by (48) with

He2iD, , _ ~Hu2lZD,
I=1yx sin?g,’ ~ ksinB, sind
= - €os Q cos{Nw — &)
D" Ui (cos¢ + cosay + coseo) + Uz[cos(Nv - ¢g) + COSaz + cosBe .
D' sind sin(Nar = &)

cosd)o + COSQy ~ U cos(NT — ) + cosap’

and

1 - cosd cosly __ sinbg ( sin?0 coseo)
Q-= sbsnb, (080 cosbo) = — g \eosd + ==gp=—= ),

where, in addition to the correspondence already noted between Knott's notation and ours, we have used
Hig +» Hy and I, ++ M. To facilicate comparison between Knott's expression and ours, we rewrite Knotts

expressioa in the form

3B o (dBfQ + dBi) + (dBYD + dBED (83)
where
, H 2otks - 1 '
,dE';? = —-ge' Uid, 5“:50 é?nr L oo _: cosa (cosd cosB + cosay sind coidy) + sind coxﬁo} (84)

dER = —dz'Ugl, ;;go e [ — ey (oSN — &)cosh + coraq sind coid) — sing co&ﬂo] @5)

c“" 2sind
hn' cosd, + cosay’

dBfg . = dz2' U o “" (86)
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¢

A Hy ke 2 sin(Nw — &)
ipo = e » 2 -E'-_._
d£2¢ dz’ UzZo sinf, 4mr cos(NT - ¢g) + cosay’ ®7)

Starting with the 6-terms and comparing (84€) and (85) with the 8-components of (80) and (81), respec-
tively, we see that there is complete agreement between Knott's expression and ours, while comparing (86)
and (87) with the ¢-components of (80) and (81), respectively, it is seen that there is agreement to within
the sign of (86) and complete agreement of the ¢-components for the second face of the wedge. The
difference of sign between Knott's expression and ours for the -component of the incremental TE physical
optics far field for face 1 is the result of a misprint in the sign of the right-hand side of Knott's Eq. (20) for
D, which he corrects in Reference 33.

In concluding this section, we want to draw aitention to the essential simplicity of our method for

* obtaining incremental far fields. As seen above with the examples of the half-plane and infinite wedge, all

that is needed is an expression for the cylindrical far field of each of the planar surfaces comprising the
scattering object. The incrementa! far field is then obtained by straightforward substitution of the
components of the cylindrical far field in the general expressions (23) and (24) or (17) and (18). No
current integrations are required.

5. INCREMENTAL FAR FIELDS FOR THE INFINITE STRIP AND SLIT

We now obtain incremental far fields, totat and physical optics, for the perfectly conducting infinite
steip and the complementary infinite slit. To the best of our knowiedge, this is the first time that such
cxpressions have been derived. Our expressions for the total incremental far fields are given for the low
frequency approximation (that is, narrow strip and slit), but the method used to obtain them is fully
applicable to any size strip or slit.

5.1 Incremental Total Far Field for the Strip

Following Asvestas and Kleinman,3? the strip of width d is defined in terms of Cartesian coordinates
(%, v,2) byvy = 0, |x| < d/2, so that the strip lies in the xz-plane with the edges of the strip parallel to the
z-axis; in other words, as shown in Figure 1, but with the c2nter of the strip at x = 0. The cirection vector
of the incident plane wave forms angles of w + ¢, and 7 — 8, with the positive x-axis and z-axis
respectively.
We pegin with 2 T™ incident plane wave and the incident electric field given by (45). For 6, = w/2,
the scattered electric far field is given by

Eg, o2 El(;?i_p)m el + 74 Py (¢, do, kd)

where, in the low frequency approximation

2
P1 () o kd) = T D Taq (b, doi P) S + 0 (c5)

n=o
with
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kd,

S

=lnf S 13
p lﬂ4+‘y 2)

0.5772157 . . . = Euler's constant,

<
il

To"“’%‘P»

082 2
T = - (0082 _ cogp, cose - S0e),

and

= cos'e _ 1 3 .._1.(.5‘“_24’2 2 _.1____1_) 2
Ty 128p 32 casd, cos’d 32 5 + c0s%dg > 4p cos“d

+ ilé [- %cos%o + (p + —};) coscbo] cosd

cosfdo . 1 (1 _ B) eaats + L (1 L 3 _ ]
+[1289+64(1 Zp)cos¢°+256(p2+2p 2)‘

These expressions taken from Asvestas and Kleinman® are valld for all values of ¢ and &,. Por brevity,
we have included only terms through c! in the series for Py. Expressi s for higher order terms are
given In Asvestas and Kieinman®¢ and Millar.3® The scattered clectric far field corresponding to oblique
incidence is then

By ow» - K (m)m cllkp sind = L cosdy + ) Py (5 b, kd sin0o)0T 88)
5 B 07,
Substitution of (88) into (24b) yields the incremental electzic far field
dEM™ (&) P ~ d2' By ﬁn‘—';%; f}:f; 4P, (a, bg, kd sinb)d, (89)

a = cos-} (5!(\8 cosﬁg)

sind,
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with the incremental magnetic far field obtained from (18)

__ ) , B : ikr . 2
T @ rm — 62 3 o e 4P (@ 0o K sindd ©0

Next, we consider the strip illuminated by a TE (H-polarized) incident plane wave given by (50). For
8, = 1/2, the scattered magnetic far field is given by>4

Ho 2 H (L) eite 50 £y, 06, k)

g

where, in the low frequency approximation
1
Pa(d, do, kd) = c? D" Tan (b, doi Y + 0O(c?)
nw

with

To = — & sing, sing,

T; = 'll(; sind, sirub[% cos?dp + % cosdy cosd + (p - % + —;—coszd)o)],

and ¢ and p are defined as for TM illumination. These expressions are valid for all values of ¢ and ¢,
Expresslons for higher order terms in the series for P; are to be found in Asvestas and Kleinman34 and
Millar.3® The scattered magnetic far field corresponding to oblique incidence of the illuminating plane
wave is then

— 12
H, ran - H{(._ 2 )‘ cl(ha sind = kacosby + 74) (4, g, kd sin 0,)07 o1

ﬂ'kp s‘neo

B H,Q 6:‘

By substituting (91) in (23a) and using (13b), we obtain the incremental magnetic far ficld

ur
Hip ol dPa(c, "b.' kd sinby) [sind § + (cosd cosd + cosa sind cotdp)d]  (92)

T YE ,
dH,” () = —dz sinl, dnr sina

o = cos..x(sinq cos )
sinf,
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with the corresponding incremental electric far field then given by

Hi, el 4Pa(@, do, kd sinBy)
sirif, 4mr sina

dBJF @) = dz' Zo

- [sind & — (cosd cos® + cosa sind cotb)d]. 93)

5.2 Incremental Far Fields for the Infinite Slit

The slit, of width d, is defined in terms of Cartesian coordinates (x, v, z) to be complementary to the
strip in the xz-plane, y = 0, |x| = d/2. As with the strip, the direction vector of the incident plane wave
forms angles of w + ¢, and w — 6, with the positive x-axis and z-axis, respectively. Here, we restirict ¢, to
lie between 0 and .

We consider first TM (E-polarization) illumination with the incident electric field given by (45).
Application of Babinet’s principle3 enables us to obtain the electric far field Eq diffracted by the slit with
TM illumination from the magnetic far field scattered by the strip with TE illumination.

Specifically,

- 2 12 - sin
Eyr2» - E (m) el(kp sind; — kez cosB + ) p, (4, o, kd sinfy) sind 6 ©4)
= B 07,

{The total field in the illuminated half-space y > 0 is equal to the field that would be there if no slit were
present — the incident and reflected field — plus the diffracted field, whereas, in the half.space y < 0 behind
the screen, the total fleld is given by the diffracted field.) Subsdtuticn of (94) in (24b) then yields the
incremental diffracted clectric far field

TR ' o _SinQ_ el sin
dB ™ (f) 0 —d2' By Sino,, & 4Py(@, do, ke sinlo) T2 6, 95)
~1 (8in0 cosd
@ = cos ( sin0, )’

with the correspording incremental diffracted magnetic far ficld giver: by (18),

Ty e ' ing ol
G @~ -dz' 3 e e 4P, b, kd sint) (08 (96)

Next, we treat TE (H-polarization) tllumination with the incident magnetic field given by (50). Using
Babinet's principle3$ again, we obtain the magnetic far fietd diffracted by the slit with TE llumination from
the electric far field scattered by the steip with TM illumination,

38




" - ___.2_____)1/2 i(kp sinf, — kz cos8, + m/4) 1 sin u
Hye2» - H (wkp il © P (&, o, *d sinbo) 75,8 67 ©7

= Hgp 67

Substituting (97) in (23a), we obtain the incremental diffracted magnetic far field

4P (a0, b, kd sindy) sln

ST o Hy ek sind
dH 4" (@) = —dz sinf, 4mr sina ©8)
+ [sind & + (cosd cos8 + cosa sind cotBy)d], a = cos~! (SJT;TCGOQ)
(]
and the corresponding incremental diffracted electric far field is then
ind
4P(t, do, kd sinfg)
— ZH,, el 4P1 o o) Tsing]
TB ’ lz € Sing
dEg4" @) ™ dz sinb, 4mr sina ©9)

+ [sind & — (cosd cosd + cosa sind coty)f].

5.3 Incremental Physical Optics Far Field for the Strip and Slit

In obtaining incremental PO far fields for the strip and slit, it suffices to limit attention to either the
strip or the slit. This is because the sum of the PO difiracted far field of the strip and complementary slit is
the PO diffracted far field of the entire plane, which is equal to zero if it is assumed, as is done consistently
in this report, that the PO surface current vanishes at infinity. Hence, the PO diffracted far field of the slit is
the negative of the PO far field of the complementary strip.

The geometry of the strip and incident illumination are defined as in Section 5.1. We note that the PO
surface currents excited on the strip for either T™M or TE ilumination are identical in form to those excited
on face 1 of the wedge for the given illumination. Hence, in applying (6) to obtain the PO magnetic far
field for the strip, the strip differs from face 1 of the wedge only in that the effective limits of the K(x')
integration are -d/2 to d/2 for the strip, and zero to infinity for the wedge. Thus, the PO incremental far
fields for the strip can be obtained from those found in Section 4.3 for face 1 of the wedge, (78) and (80),
simply by multiplying the face 1 incremental wedge fields by the factor

d/2
f ¢l 8In0, cosd, =l sing, cosdly
-2

f ® o=l sind cosdh, ~ o sinl cosd iy’

[}

= 2isin [l‘:,fi sindy (cosdo + cos¢)]. (100)
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6. SUMMARY

After introducing incremental diffraction theory in Section 1, we derived in Sections 2 to 3.1 exact
expressions (17-18) for the three-dimensional incremental diffraction coefficients in terms of the
conventional, two-dimensional diffraction coefficients of perfectly conducting, planar scatterers. Section
3.2 explained how the necessary two-dimensional far-field functions are analytically continued into the
domain of imaginary values of the azimuthal angle &,

In Section 3.3, we showed that an isolated singularity in the two-dimensional far field transforms to a
cone of singularities in the incremental far fields. Moreover, Section 3.3 showea that the exact expres-
sions for the incremental far fields can be generalized to allow increments of current that are skewed
rather than normal to the axis of the two-dimensional scatterer, merely by replacing t in (17-18) with t;
given in (22). When this generalization is applied to the infinite wedge and the skew angle is chosen
along the grazing diffracted ray, the cone of singularities associated with the diffracted ray reduces to a
single direction and the corresponding results of References 27 and 37 are obtained.

In Section 3.4, the incremental far ficlds were separated into TE and TM fields (23-24).

In Section 4.1, the expression (17) for the three-dimensional incremental far magnetic field was
integrated over an infinite straight line to prove that the two-dimensional far magnetic field is recovered.
in the remainder of Section 4, we further confirmed the validity of the general expressions by showing
that PTD, GTD, and PO incremental diffraction coefficients obtained by direct substitution into (17-18)
and (23-24) agree with the results of Mitzner,2”7 Michaeli,'827 and Knott, 933 respectively, in the case of
the infinite wedge.

In Section 5, we determined the total and PO incremental diffracted fields of the infinite strip and
complementary infinite slit by direct substitution into the general expressions deérived in Sections 2 to 3.

As a concluding invitation to further analysis, there remains the question of whether the method of
direct substitution derived here for determining three-dimensional incrementa! far fields from the
corresponding two-dimensional far fields can be extended, at least in some cases, to curved surfaces and
penetrable scatterers.
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Appendix A

To prove (4), change the integration variable z' to 2" = z' ~ z, so that the integral becomes

o ©  elf oklp - " . -

F(p,Z) [ &[w —I'B—:?l—— dZ’ ez Fo(p), B = kCOSGo. (Al)
Because (V2 + k%) e!F ~Fl/|¢ — #| = — 4w 8¢ — ), taking the Laplacian of (A1) shows that Fo(p)
obeys the scalar wave equation

ViE + (k2 — BYF, = —4mw 5( — p'). (A2)

2 . 32
Vo=V

Letting p — ® in (Al), one sees that F,(p) satisfles the radiation condition
2y po® e"‘p
Fo(P) "2° O 5 ). (a3)
Thus, (A2) has the well-known unique solution

Bo = im HY (V2 - 82 |5 ~ p')). (Ad)
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