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Incremental Diffraction Coefficients for Planar Surfaces,

Part 1: Theory

1. INTRODUCTION

Consider an electromagnetic wave in free space incident upon a perfectly conducting scatterer. To a
first approximation, the surface current induced on the scatterer will be the physical optics (PO) current,
that is, 2A x HR on the illuminated side of the scatterer and zero on the shadow side. To obtain the
scattered fields radiated by the PO current, the PO current (multiplied by the free space Green's function)
can usually be integrated numerically, sometimes analytically, and often asymptotically for certain regions

of observation. In particular, a variety of computer programs exist for calculating the far fields of reflector
antennas by integrating the PO current induced on the reflector by a given feed illumination.'

Of course, the scattered fields obtained from the PO current will not be exact unless the PO current

equals the total surface curtent. Thus, the accuracy of the computed scattered fields can be improved if

one can estimate the contribution to the scattered fields of the difference between the total and PO
currents, bven for electrically large scatterers, this difference current or "nonuniform current,"t to use the
terminology of Ufimtsev,2L3 can strongly affect the scattered fields. For example, the far fields of the
nonunifor." current near the rims of reflectors can appreciably change the further-out side lobes of the
copolarized fields and all the lobes of the cross.polarized flelds.4.5 In general, the inclusio:n of the fields
radiated by the nonuniform currents is especially important for the accu-ate determination of cross-

polarized fields, side-lobe fields, and fields near nulls.

If one does not know the exact solution to the scattering problem, one must approximate the
nonuniform current. tlfimtsev,23 in developing his "physical theory of diffraction" (PMD), assumes that the
nonuniform current at a given point on a general electrically large scatterer is approximately equal to the
nonunifomn current of a corresponding canonical scatterer that conforn.s to the shape of the general

scatterer in the locality of the given point. (-Te incident field for the cmionical scatterer is also chosen as

(Receled for publication 14 April 1987)

tNouniforrm currents near edges are comamonly called "fringe currents."27



the incident field in the locality of the given point on the general scatterer.) For example, the nonuniform
current near the rim of an illuminated thin-metal reflector would be approximated locally by the nonuni-
form current near the edge of a correspondingly illuminated, perfectly conducting half-plane. Similarly, the
nonuniform current near the slits between panels that may form the reflector surface would be approxi-
mated by the nonuniform current near an infinite straight slit in an infinite perfectly conducting plane.

Typically, the predominant nonuniform currents vary rapidly over a transverse distance less than a
wavelength. Moreover, closed-form expressions for the nonuniform currents of canonical problems are not
generally available. Thus, unlike the PO current, it is usually impractical to numerically integrate the

nonuniform currents on a general scatterer to obtain their radiated fields.
Fortunately, the far fields radiated by the nonuniform currents of a number of two-dimensional

canonic-l problems can be expressed in dosed form, even though the nonuniform currents themselves
usually cannot. Specifically, the total diffracted far fields that result from plane-wave illumination are known
in closed form for these canonical scatterers. In addition, the PO current for these scatterers under
plane-wave illumination can usually be integrated to obtain closed-form expressions for the PO diffracted
far fields. Thus, the far fields radiated by the nonuniform currents of these two-dimensional canonical
problems can be found in closed form, simply by subtracting the PO far fields from the total far fields,
since the nonuniform current is defined as the difference between the total and PO currents. Of course,
this technique for finding the fields radiated by the nonuniform currents of canonical scatterers is precisely
the one that Ufimtsev used to obtain closed-form expressions for the nonuniform or PTD diffraction
coefficients for the perfectly conducting wedge.2.3 Because the total diffracted fields define the coefficients

of the geometrical theory of diffraction (GTD)6,7 one is also correct in saying that Ufimtsev obtained the
PTD diffraction coefficients by subtracting the PO diffraction coefficients from the GTD diffraction
coeftlclentsrt

Through an asymnptotic analysis of the diffraction integral, Van Kampen 9.10 shows that the dominant
high-frequency diffracted fields of a general three-dimensional scatterer emanate (or appear to emanate)
from "critical points" on the scatterer where the ray path length becomes stationary or discontinuous
(including discontinuities In derivatives of the path length). Van Kampen shows further that the critical
points can be divided Into critical points of the first, second, or third kind depending upon whether they
are (1) stationary points on the surface of Inegration (specular reflection), (2) stationary points along a

curve (edge, shadow, boundary, etc.) bout. ding the surface of integration, or (3) discontinuities (such as

comers and rips) in the slope (or higher ordec deriv2atives) of a bounding cure.

When the fr(quency is high enough that several Fresnel zones are containrd it) a neighborhlood of a

critical po;r1', and the amnplitude of the incident field does not vary appreciably over thLk ncighboXrhodxl, the

diffracted Gelh- o-' ,his cr-tical point is well approximated by the first term of the high-frequency asymptotic

tFor tmo-dimensional canonical problems of infinite cross section, like the perfectly conducting wedge, the far fields of
the total and PO current for an incident plane wave approach Infinity at the shadow and reflection boundaries. Since
the PO current is removed from the total current in the determination of the PTD diffraction coefficients, the PID
diffrartion coeffilcents for such canonical problems have the advantage of the GID coefficients of remaining finite at
shadow and reflection boundaries, except for grazing Incidence along an infinite face. The GTD coefficients, when
applIed to general scatterers, have the advantage over the PITD coefficlents of not requiring a separate evaluation of the
PO fields away fromn the shadow and reflection boundaries. The GTD singularitles at the shadow and reflection
boundaries are rernoed in "uniformt geometrical theories of diffraction" that consider the source or field points at a
finte distance from the scatterer. However, the shadow and reflection singularitics remain a diffkulty for GIT) under
scattering conditions most commonly encountered in practice, namely, large distances to the source and field points.
Also, in the )arttiCUlar Case of a plane H-wave illuminating a Hedge, both the GT1) and Pi"D diffraction coefficients are
discontinuou.s across the faces of the wedge, as a function of either the incident angle or the scattering angle. In
applying the wedge diffraction coefficients to general scatterers, these face-angle discontinulties can be removed, but
only by ad hoc truncation of the current tails or by considering multiple interactions, if possible, between different
parts of the scatterer.4
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expansion. 9 Under these conditions, the three-dimensional diffracted fields from a critical point of the

second kind lie on the local cone of diffraction and, therefore, can be expressed directly in terms of the

diffraction coefficients of the two-dimensional canonical scatterer that conforms locally to the general

scatterer at that point.2 ,3,6,7 This powerful result, which combines the assumpticn that, at high frequencies,
canonical currents approximate the local currents on the general scatterer, with the derivation of a

generalized Fermat's principle, is the keystone and main reason for the success of both the physical and

geometrical theories of diffraction. The approximation of local scattering by canonical scattering and the

generalization of Fermat's principle are sometimes stated as the two fundamental p,•tulates of the

geometrical theory of diffraction."1 However, only the assumption that high-frequency scattering is a local

phenomenon that can be approximated by canonical scattering need be postulated, because, as discussed

above, the generalization of Fermat's principle is derivable from an asymptotic treatment of the diffraction

integral. 9,10t

For critical points of the second kind that do not have several neighboring Fresnel zones, for
example, observation points near caustics of the scattered field, or that have an incident field with an
appreciable variation in amplitude along the curve near the critical point, and for critical points of the third

kind, that is, points of abrupt change in smooth curves, the diffracted fields do not, in general, lie on

isolated local cones of diffraction, and thus cannot be expressed directly in terms of the diffraction

coefficients of the corresponding two-dimensional canonical problems. To remedy this deficiency, Mitzner

introduced "Incremental length diffraction coefficients"' 7 that, when multiplied by the incident field, could

be integrated along a bounding curve of the scatterer to obtain the diffracted fields of the nonuniform

current for arbitrary angles of incidence and scattering.

The PTD incremental diffraction coefficients as defined by Mitzner give tile far fields (in any direction)

radiated by the nonuniform current on a differential length of an Infinite cylinder of arbitrary cross section

(two-dimensional canonical problem) illuminated by a plane wave at an arbitrary angle of incidence. Under

the assumption that high-firequcncy diffraction is a local phenomenon, the fields radiated by each

differential length of the nonuniform current on a general scatterer will be the same as tile fields radiated

by the differential length of the corresponding two-dimensional canonical scatterer. Thus, the scattered

fields radiated by a general scatterer can be detcrmineid by integrating the appropriate incremental

diffraction coefficients over tile bounding curves of the scatterer. For example, a computer program that

computes the fields of a refletor antenna by integrating the PO current can be improved to include the

contribution from tile nonuniform current by integrating the incremental diffrAction coefficients (multiplied

by the feed illumination) around the edge of the refieetor and along the slits betwmen the panels that form

the reflector. Separate, ad hoc analyses to obtain the field in caustic (focal) regions, main beam and ncar-in

sidc-lobe regions, or from comers (neglecting the higher-order distortion of the current near corners)

become unnecessary. Once the computer program is fed the geometry of the scatterer and the incident

field, the fields evert. here can be computed stralghtforwardly by two algorithms: one that Integrates tie

P0 current and one that integrates the inciemental diffraction coefficients. Moreover, tangential slope and

tAs early as 1902, Schwaarzschild' 2 presented the Idea of using the canonical half-plane solution to obtain an improked
solution to diffraction by a slit. lHowever, the first paper to combine the Idea of using canonical solutions wth a
stationary phase evaluation that included edges (generalized Fermat's principle) is apparently the classic 1912 paper by
MacDonald. 13".4 In 1950. Braunbek" developed further these two basic ideas of the modrrn theories of diffraction and
applied them in detail to the circwjlar erture and disc. Both Ufirntsev2 and Keller et a2l.6 reference Braunbck,' 5 who
fornulated a physical theory of diffraction by adding nonuniform "correction" fields to the uniform Kirchhoff fields in
the aperture of a plane screen or on a disc. Although we concentrate on the Ufintsev current formulation in the
present paper, it Is emphasized that similar results could be derived as well for a Braunbek field formulation. Such a
formulation involving nonuniform correction near fields instead of nonuniform currents would apply conveniently to

Improving the accuracy of the radiated fields computed from a geometrical-optics aperture field integration 1.16
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higher tangential derivative diffraction coefficients are computed implicitly when integrating the incremen-

tal diffraction coefficients multiplied by the incident field. (In the remainder of this report, we will

sometimes loosely refer to "Integration of incremental diffraction coefficients" without explicit mention'

that the coefficients are multiplied by the incident field.)

Of course, for curves that lsve only ordinary stationary points Illuminated by incident fields with

slowly varying amplitudes over several Fresnel zones, the integration should yield approximately the same

values of the fields as those obtained wthout integration directly from the conventional two-dimensional

diffiaction coefficlen-. However, as mentioned above, integration of the incremental diffraction coefficients

has the advantage of determining accurately the fields of the nonuniform current of a general scatterer for

many geometries, observation angles, and incident fields for which the first order diffraction fields are a

poor approximation; in addition, tangential slope or higher tangential derivative diffraction coefficients are

not required when the variation in amplitude of the incident field becomes appreciable along the direction

tangent to the curve. Also, the extra computer time required to integrate the incremental diffraction

coefficients along bounding curves is generally small compared to the computer time required to do a

two-dimensional integration of the PO current.

As with the conventional two-dimensional diffraction coefficients, incremental diffraction coefficients

can be defined for the total current of cylinders to yield GTD incremental diffraction coefficients,.' or for

the PO current to yield PO incremental coefficients. The PTD (Mitzner) incremental diffraction coefficients

can be obtained by subtracting the PO incremental diffraction coefficients from the GTD incremental

diffraction coefficients.1 9 The comparative advantages mentioned in the footnote on page 2 for PTD and

GTD two-dimensional diffraction coefficients hold also for the incremental diffraction coefficients.

The implicit use of the concept of incremental diffraction coefficients was made in w-v.wk thzt

preceded that of Mitzner,1 7 notably that of Ufimtsev,213 Brmunbek,15 Millar,Y'a 2 and the "equivalent (edge)

current work of Ryan and Peters.23 However, this previous work required the fields of the incremental

diffraction coefficients only near focal regions whe.n slight, ad hoc modifications to the scattered fieids

along the dffiractlon cones were adequate. Knott and Senior24 review the use of GTD "equivalment

currents" before 1974 as well as extend the technique of Ryan and Petews to obtain approximate GTD

incremental diffraction coefficients for arbitrary angles of incidence and scattering. In a 1985 publication,)3

Knott reviews further the subject of equivalent currents and incremental length diffraction coefficients.

To the authors' knowledge, exact expressiois for the incremental diffraction coefficients have been

found previously only for the perfectly conducting wedge. Mitzner 1 7 determined the PTO inctemental

diffraction coefficients of the we^dge by matching the required nonuniform current integrals to similar

integrals that occur for the two-dimensional wedge diffraction coefficients. Ten years later. Mlchaeli:'

determined dhe GTD Incremental diffraction coefficients of the wedge by integrating thc total wedge

current in dosed form.

The main objective of this report is to complement the work of Mitiner17 and MichaeliIW by providing

a more genemal, convenient method for determining incremental diffraction coefficients. Specifically, we

derive exact expressiors for the incremental diffraction coefficients at arbittary angles of incidence and

scattering directly in terms of the corre, ponding tuo-dimensional diffraction coefficients. The derivation is

limited to perfectly conducting scatterers that consist of planar surfaces, such as the wedge, the slit in an

infinite plante, the strip, parallel or skewed planes, polygonal cylinde- or any combination thereof. The

derivation also requires a closed-form expression, whether exact or approximate, for the two-dimensional

diffraction coefficients produced by the current on each different plane. In other woords, if one can supply a

dosed-form expression for the conventional diffraction coefficients of a to-dimensWonal planar scatterer,

one can Immediately find the incremental diffraction coefficients through direct substitution. No integration,

differentiation, nor specific knowledge of the current is required. (Also, the restriction to "closed-form"



expressions can be removed for the many problems that require only real angles of the diffraction

coefficents.)
We show that the PTD, GTD, and P0 incremental diffraction coefficients obtained by direct substitu-

tion into the general expressions agree with the results of Mitzner,17 Michaeli,' 8 ,27 and Knott, 19 ,33

respectively. in the case of the infinite wedge. In addition, it is shown that the two-dimensional diffraction
coefficients are recovered when the general expressions for the incremental diffraction coefficients are
integrated over an infinite straight line. Finally, we use our general method to obtain for the first time the
incremental diffraction coefficients for the infinitely long, narrow strip and slit.

In sequels (Parts I1 and I11) to the present report, the incremental diffraction coefficients for the half
plane and for the narrow slit are integrated around the rims of reflectors and along the slits between
panels of the reflectors to obtain the far fields produced by the nonuniform currents. These computed far
fields of the nonuniform current are added to the far fields computed from the PO current to improve the
accuracy of the far fields especially, as mentioned above, in cross polarization, in the further-out side lobes,

and near nulls.

2. FIELDS OF CURRENT PRODUCED BY A PLANE WAVE INCIDENT

ON A TWO-DIMIENSIONAL. PERFECTLY CONDUCTING SCATTERER

Figure 1 shows the surface current sheet on a planar far nt of a two-dimcnsIonal, perfectly electrically
conducting scatterer in free space. The scatterer ex~ends uniformly to infinity in the ± z direction, and the
planar facet lies in tie xz plane. The scatterer is illuminated by a plane wave with propagation vector k.
whose direction Is denoted by the spherical angles %0 and 4o, The magnitude of K, equals k - 2TrA ukac.
where X is tie free-space wavelengtlh. W is the angular frequency of the suppmtssed cxp-iwo) time
dependence (w > 0), and c is the speed of light in free space.

Maxwell's cquations and the boundary condition of zero tangential electric field on the perfectly
electrically conducting •stterer show that, for plane-wave illuminationi the surface current T(e') at any

point t' on the current sheet can be factored as25

That is, the z'-depcidence can be written explicitly in term. of the evlation angle 0o of the incident plane
V6wave, and thus, the remailing currnt factor K(x•) depends on the transverse coortfinatc x', but not on the
longtudidasal coordinate z'. Although the phase of the z'-depetvdcncc in (1) is zcm at z' - o. (1) does not
imply that the phase of the incident plane wave is zero at Z' - 0 because an arbitrMry constant -Jhase factor
can be implicitly contained in K(x'). Of cou me, K(x') also depends impleitly on the angles (0 ,, s,) defining
the direction of propagation of the incident plane wi-v, and is proportional to the conplex amplitude of
the incIdent plane wave. Also, the surface current described by (1) need not refer to the total current; in
particular, it could refer to the PO current or the nonuniform cu.renmt (total minus PO cOrruent).

2.1 FY•ds Produced by an Increazesatal Current Sheet

lWt dHs(i-) be the ýcattered magnetic field at the point i radiated by the incremental current sheet of
length dz'. (Initially, the axis of the incremental current sheet is chosen perpendicular to the z-axis;
howevr, the analysis is generalized iM Section 1.3 to allow the axis of the incremental current sheet to

5
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make an arbitrary angle with the z-axis.) Through Maxwell's equations, we can express diH_() in terms of
_e current by taking the curl of the vector potential:

-'-iz= V X R,. , ) elkif.-F1 X
-I#) = WeV x0 (2)

To obtain the magnetic far field from (2), take the limit as r = II - co, bring the limit under the

integral,t and expand the scalar Green's function, exp(ik It - f' 1)/If -?', to get

-d-() - e--- e-ik '(c°sB+C°osa ik• x f• K(x')e-i' stnOt os dx'. (3)

The spherical angles 0 and q define the direction of scattering, that is, the direction to the observation

point f (see Figure 1), and the hat symbol ^ denotes unit vectors throughout. Although the limits of the
x' integrations in (2) and (3) extend from -co to -, they reduce to finite values for scatterers of finite

transverse dimensions (like the one shown in Figure 1).

2.2 The Cylindrical Fields of the Current Sheet

The cylindrical fields of the entire current sheet in Figure 1 can be found by integrating (2) from

z'=- Co to -. In the Appendix, we show that the z' integral can be expressed in closed form as

Ila e~coseo elk I i -V1d = c-kCOO ffiH('( inP- 1  (4)

where I-I() is the Hankel function of the first kind, and 1 is the transverse part of f, that is, e = - z2.
Substitution of (4) into (2) integrated over z' gives the magnetic field 'Hs(f) of the entire current sheet as

V X e V x e-`scs~o f K(x')H(o1) (k sin 0 Ip - x'*I)dx'. (5)

To obtain the magnetic far field from (5) by taking the limit as p Co, bring the limit under the

integral (see footnote), and replace the Hankel function by its large-argument asymptotic form to get

He.(--r) - e, f el(no4 WO x K(x')e-2xx's'lnOoco4 dx. (6)

(8irkp sln80)1'/ 1-G

tAt first sight, this interchange may not Appear valid for scatterers with currents that extend to Infinity In the transverse
plane (such as the Ilnhtie wedge). However, the Interchange can also be applied rigorously to these infinite scauterers
by assuming that the currents have small exponential decay as x' -- .±

7



The unit vector ?, in (6) is defined as the unit vector tz evaluated at 0 = --0, that is,

to - A sin0o - 2 cos0o. Thus, we see that (6) represents a cylindrical wave propAgating al ng the
generators of the diffraction cone, that is, the scattered rays that make an ,:i•ge 0 wvith the longitudinal (z)

axis equal to 'r - 00.
For a number of canonical scatterers, the cylindrical far field given by (6) is known ir closed form

for the total current, PO current, and thus the nonuniform current. Consequently, the cross product of

to and the current integral in (6) can be written in terms of these convenient cioscd.form canonical
expressions. Moreover, in the next section, we show that the cross product of f& and the current integral

in (3) can be rewritten in terms of the cross product of ?, and the current integral in k6 ), so that the

incremental far fields (dlHs) can be written directly in terms of the canonical expressions for the

cylindrical far fields (lH,).

3. INCREMENTAL FAR FIELDS IN TERMS OF CYLINDRICAL FAR FIELDS

As a preliminary to expressing the incremental far fields in terms of the canonical cylindrical fields,
let us rewrite (3) and (6) in the following forr,

dH-s() r-A. dz' eIkr- t X dz'CX (7)
IW ekt x f k t = C.• X k (7

- p e~Tr/4 elkt'e lk eo Ao Coi'0 > / (8)

where the vectors A and Ao are the current integrals in (3) and (b), respectively, that is,

0J, R(x')c-e"tn8Q 4 dx'. (9b)

The constants C and Co are defined by inspection of (7) and (8):

c c= (W~a)
4irr

(8irkp stn0o)(

{The exp[ - kz' (cos0 + cosO0 )) phase faccor in (3) is eliminated in (7) by choosing the increnmntal current

sheet at z' - 0.) Since the current sheet Is in the cz.ptane, K, is zero and (7) and (8) can be written in
terms of the x. and z-components of A and Ak, respectively. Specifically, (7) and (8) becoxne

8



dH,(r) - dz' C[(A sin4)& + (Ax , k.,,s - A, sinO)4] (1)

( -) "so Co[Aox sin.) 0 - (A. cosO. cos4 + A, sin0o)$]. (12)

The unit vectors 0 and $ are retained in (11) and (12) because far fields conveniently polarize into 0

and 4) spherical components. The unit vector 0' in (12) denotes the unit vector 0 evaluated at the

diffraction-cone angle 0 = 7r - 0o.
We are assuming a known expression for the 0- and 4o components of the far fields H,(f) of the

canonical current sheet. In other words, we are given HI-I and H4 such that

Hjr) I-AP H,6 OT' + H,*4 (13a)

We could, of course, just as well be given the far electric field Es(?), which is related to H,(i) by the

cylindrical far-field formula

E,( ~-Zo× X - zo(, 0 $ - ) HO r,$ + E 0 ,6r-.oo (13b)

in which Zo is the impedance of free space. Equating the right sides of (12) and (13a) determines the

rectangular components of A, in terms of the given 0- and 4),omponents of i,:

Co s H41(14a)

A . Hs CO01 coa, + -n (14b)

Thus, the problem of finding the incremental far fici'i in terms of the canonical far fields reduces to

finding Ax and A& in (11) in tetrns of A,, and Aw,~ because A.. and A,, are known through (14).

3.1 kterniination of the Rectanguar Components of & in Terms of k

Inspection of (9b) reveals that thc rectangular components of A0 arc functiorns of 4) only through

the cosib In the exponential of the integrand, because the rectangular components of K(x') do not

depend on 4) or 0. Therefore, the rectangular components of A in (9a) can be obtained merely by

replacing 4) wth cos- I(sin0 cos$/sin0o) in A, of (9b). Specifically, we have from (9a) and (9b)

A(,. 4) A [4) cos (,,1

9



(A similar substitution was used by Mitzner in Section 3.2.1 of Ref. 17 for the special case of the wedge.)
Furthermore, the rectangular components of , can be related to the given components of the canonical
cylindrical far fields by substituting Ao. and A,, of (14) into (15) to get

AxO H,9 (d -+ Cosl 0) (16a)

C,• , sin (cos I t)

A1(O, Cs)• s -[Io- t) H Coto" + cos-1 (16b)
Co sin(cos- - t) sin 0o

where t stanris for sinO cos4)/sinO0 . [Note from (10b) and the definition of fo that Co is not a function of 4'.]
'rlndlly, lrsertior of A. Lad A. from (16) into (11) produces the desired expression for the incremental far
fields as a direct function of the cylindrical far fields ,f the two-dimensional canonical scatterer:

I__ Ho(ý cos- 1 t)&4(rf) -A dz, C _ _-1_ } sn_
,0 s•,-n(cos-) 0 s10]

+ [ Hs ( o' * -ost) (cos4' cosO + t sinO cot0o) + H4(0 -- cos- t (17)
Lsin(cos 1 ) sin 0

whu.re

1kri
Co rr(Birkp S1A0 0)1'2 0eXp - lickPsin00 - kz cý-ýSo, +

alud

sIn0 os4

sino ,

The far eletiric field 4i of the incremcental current irs found from d-i. through ihe spherical far-field
relationship

- - z• x dli,. (18)

3.2 Evaluation of ltwrenental Far Vields Lor itl > I

The far fields radiated by an inctemental current sheet Lan bc found from (17) and (18) provided one
knows the far fields of the: conresponding twk-dimensionai canonical problem. Specifically, one must
c.valuate 11¢, and H14 for 4) equal to cos" It.

10



Although cos- t is a multiple-valued function, when It is substituted for 4) in (9b), the unique value t is
recovered. That is, A,. and A,,, and thus H8s/sin(cos- It) and Hs¢ in (17) remain independent of which

multiple value is chosen for cos -It, as long as the same value is used throughout.
For ItI < 1, 4) is a real angle and H,0 and H4 can be evaluated from either numerical or closed-form expres-

sions. However, for ItI > 1, 4 is a complex angle, and thus, HG8 and H4 must be evaluated outside their usual
domain of scattering in real, physical space. This means that, if one merely has numerical values for Hs8 and H4 over
the usual domain of 0 <) < 2,rr, one would not be able to determine their values directly for ItI > 1. t

Fortunately, (9b) shows that A,, and A,,,, and thus H,9/sin(cos- It) and Hs,, are analytic functions of t for

continuoustt currents K(x') that havefinite extent in the x'-direction. 26 Therefore, if one has closed-form analytic
expressions of Hs0/sln(cos- It) and H4 for these finite problems solved originally for the domain It I < 1, the same
expressions can be used directly in the domain It I > 1 as well. For a current sheet that extends to infinity along the
x'-axls, such as the current on the face of the perfectly conducting wedge, the integral of (9b) is also an analytic
function of t on the real axis, provided a small negative or positive imaginary part is added to t that produces an
exponentially decaying integrand for x' integration that extends to plus or minus infinity, respectively. 26 Thus, for
current sheets of infinite transverse extent, the closed-form expressions of H58/sin(cos- It) and H4 in the domain Itl <
1 can also be evaluated by direct substitution of t (with a small loss approaching zero, if needed, to e~nsure analyticity
over the entire real axis) in the domain It > 1, (The theorems on analyticity of integrals with finite limits 26 assure

that the singularities of 1/sin(cos- It) in (17) at t = ± 1 ill be cancelled by zeros of H, 8 at t = t 1. These singulari-

ties may remain, however, for infinite current sheets, if a small Imaginary part is not added to t.)
In summary, If closed-form expressions for the cylindrical far fields, Hs6 and Hs¢, of the two-dimen-

sional canonical scatterer are available over the usual domain of It I < 1, these closed-form expressions can
be used directly and unambiguously for all t to find the incremental far fields from (17) and (18). Of
course, for normal incidence (0o = -r/2), I tI never exceeds one.

3.3 Singularities in the Incremental Par Fields

Singularities in the Incremental far fields given by (17) and (18) will c.cur only at angles (0, 4)) where
Hsq(ý -- cos- tt)/sin(cos- It) or H4,,(4 -• cos- It) are singular. For canoni: Al scatterers of finite transverse
dimensions, integrability of the current in (9b) demands that these two functions be finite for all t, and
thus, die Incremental fields of finite canonical scatterers will have no singularities for all (0, 4)).

ior infinite sheets of current like the total currents on the faces of the wedge, the cylindrical far-field
functions ll5 Wsin4) and l1-1 have singularities at isolated values of azimuth angle 4) for which the current integral
in (9b) becomes Infinite. Denoting these singular angles by 4),, we see from (17) that the correspowming
incremental far fields will, in gencr-alttt have singularities for all 0 and 4 that satisuy t cosi4, that is,

tOf course, if the current K(x') were known, one could conceivably integrate (9a) numerically or possibly analytically
to obtain the A4 and &g required to determine the incremental far fields immediately from (11). In fact, as men-
tioned in the Introduction, Mlchaeli"8 was able to perform the current integration in (9a) analytically for the faces of
the perfectly conducting wedge to obtain the G'ID Incremental fields of the wedge. In the present paper, we want
to avoid such Involved current Integrations by working directly with the cylindrical far fields of the comuesponding
two-dimensional canonical scatterers.

ttFor scatterers with sharp edges, the current may be singular at the edge. However, since these singularities are
Integr.ble, they can be removed from the Integi'ation by moving the lii•lt of the integration just inside the edge, and
thus. the theorems of Whittaker and Watson26 still apply.

tttA notable exception can occur when 0. " rr/2, 4b, = 0 so that (19) Is satisfied only by the single far-field point
0 = rr/2, 4) = 0 whiere the sMnO and (cos$ cosO + t sin0cot0o) factors in the numerators of (17) cancel the sln(cos' t t)
factors In dhe denominators of (17). This exception is a particular example of the generalization (discussed later in
Section 3.3) to current Increments lying along the direction of the grazing diffracted ray.

11



sine cosý = sino0 cos4,. (19)

Eq. (19) defines a cone of fitr-field singularities In the incremental fields about the x.axis, that is, about the
transverse coordinate axis of the current sheet. (Ihis cone of singularities is not to be confused with the
far-field cone of diffraction for the cylindrical fields about the z-axis, that is, the longitudinal axis of the
planar current sheet.) The half angle %a of the cone of singularities measured from the positive x-axis is
given by

n = cos -I (cos4' sin 0o). (20)

For normal incidence, 0, equals r/2 and a. equals tn. Geometrically, the cone of the far-field singularities
of the incremental fields is generated by rotating about the x- axis the ray that lies in the direction of the
singularity of the cylindrical far-field function (He/sin or H,4). This generating ray, of course, lies on the
cone of diffraction of the cylindrical far fields as well.

The total current on the illuminated face of a wedge has two associated cones of singularities given by
(19). One Is generated by the singularity in the diffracted fields at the shadow or reflection boundary

(41n1 'r ±f 40t), that Is, the singularity produced by integration of the PO current in (9b). The second is
generated by the singularity of H, 0/simn (or H4b for a TM plane wave grazing at 4t = tr) In the plane of the
face (Nn - 0, 2ir), that Is, the singularity produced by integration of the nonuniform current in (9b)
excited by an incident TE plane wave (or TM plane wave grazing at 4o = Tr). Both diffracted components,
H4, and Hle/sln4, produced by the P0 current remain finite at a face angle of the wedge (except for
grazing Incidence at 4o =i r), whereas these same components produced by the nonuniform current
remain finite at the shadow and reflection boundaries (except for grazing incidence at 4xo - rr). Therefore,
in calculating the far fields of three-dimensional scattering bodies locally approximated by infinite
two-dimensional canonical scatterers, like the wedge, with cylindrical far fields containing singularities at
the shadow and reflection boundaries, it is especially advantageous to use the incremental far fields of the
nonuniform (VID) currents of the canonical scatterers, because the far fields of the nonuniform currents of
these infinite scatterers do not contain singularities at the shadow and reflection boundaries, unlike the far
fields of the total (GTD) and PO currents of these Infinite scatterers. Moreover, in the PTD formulation,
there are no singularities In the PO far fields if they are obtairv..d by integrating numerically the P0 current
on the finite three-dimensional scatterer.

The cone of singularities defined by (19) that may occur at 4 0, 21r for canonical scatterers of
Infinite transverse extent can be collapsed to a single line and sometimes eliminated by choosing the axis
of the Increment of current sheet skewed rather than perpendicular to the z-axis. In particular, Michaeli27

has recently shown that the cone of singularities generated by the diffracted ray grazing the face of a wedge
(On - 0, 2-m) can be eliminated (except when the direction of incidence is also grazing at +. = T) by
choosing the axis of the Incremental length in the direction of the grazing diffracted ray, that is, in the
direction of propagation of the nonuniform clirrent far from die edge. Butorin and Uflmtsev37 derive the
same result for scalar (acoustic) diffraction from the wedge.

The present analysis show, that choosing the positivi x' integration axis of the incremental current
sheet to make an arbitrary angle 0 with the positive 7.-axis (rather than 90W, as shown in Figure 1)
multiplies the current in (3) by exp(- ikx' cos0o cot,) and the exponential in the integrand of (3) by
exp(- ikx' cosO cot4); thereby changing the integral on the right side of (3) to

12



K(x) e-ikx'sine co + cot* (coso + cosoo)jdx' (21)

Thus, our general analysis and final results (17) and (18) for the incremental far fields remain the same
when the axis of the incremental current sheet is skewed, except that t is set equal to t,

[sine cos + cot, (cos0 + cos0o)] (22)tqs =sin~o

instead of to sinO cos4/sin0o. Eq. (22) reduces to Michaeli's corresponding result2 7 for the faces of the
infinite wedge when 'P is set equal to Tr - 00, the angle of the grazing diffracted ray for a face along the
positive x-axis. In that case, as mentioned above, the original singularity of the incremental diffracted

fields at 4n - 0, 2ir is eliminated (except for grazing incidence at 4o = 1T) by substituting tO, for t; note,
t < 1 for s 1r - 0,. For a face extending to infinity along the negative x-axis, the angle of grazing is

'P 00, and the singularity at t = - 1 is eliminated; note, t4, ; - I for P = 00.
In summary, the differential increment of current on the face of a wedge forms a semi-infinite line

source along the x-axis of Figure 1, and thus radiates with a symmetric vector potential about the x-axis.
The total current of the line source can be divided into the PO current and the nonuniform current. The
PO current of the line source radiates a far field that becomes singular in a cone of directions that includes

the shadow and reflection directions of the corresponding two-dlmensonal wedge face. The nonuniform
current of the line source radiates a far field that becomes singular in a cone of directions that includes the
diffracted ray along the corresponding two-dimensional wedge face. Skewing the axis of the differential

increment of current to form a line source in the direction of the grazing diffracted ray rather than the
x-axis collapses the cone of singularities of the nonuniform current to a single line in the direction of the

grazing diffracted ray.
Skewing the axis of the current strip cannot eliminate the GTD and PO cone of singularities associated

with the shadow and reflection boundaries (tq - it t 'bo) of the face of a wedge because for nongrazing

incidence, the shadow and reflection boundaries of a face of a wedge do not lic along that face. Also, the
directions of propagation of the PO and nonuniform currents on the face of a wedge are different except

for normal (0o - tr/2) incidence or grazing incidence at +, - ir. Of course, the singularites in the P) far

fields at the shadow and reflection boundaries of the infinite wedge can be eliminated by giving the faces
of thie wedge finite radii of curvature. 28 However, the resulting incremental diffraction coefficients apply
then only to three-dimonsional scatterers with curved rather than flat surfaces.

3.4 Divislon of Incremental Far Fields Into T1 and TM Fields

The scattered fields of two-dimensional perfectly conducting cylinders divide conveniently into

transverse electric (1E) and transverse magnetic (NM) fields depending on whether the incident plane wave
is TE (E1 = 0) or TM (H, - 0), respcctlvcly.2 5t Specifically, for the TE case, the far field component -i,$ is

tlthough the diffracted fields radiated by the total currents of two-dimensional perfectly conducting cylinders divide
conveniently Into IT and TM fields, the fields radiated by the PO currents, and, thus, the fields radiated by the
nonuniform currents do not divide generally into 113 and TM fields, except for nornal incidence (0o - 90'). Conse.
quently, (17) or (18) must be used, in general, rather than (23) or (24), to determine die incremental diffraction
coefficients for the PO and nonunifomi currents. (For example, see Section 4.3.)
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zero everywhere (and, for the TM case, Hse is zero everywhere). Thus, the incremental magnetic far fields
(17) for these TE and TM cylindrical fields reduce to

dH-1(r) , dz' CnHs () -+ cos-I t) [sin4ý 0 + (cosl) cosO + t sine cotO0 ) 41 (23a)
Co sin(cos 1 t)

UsH1(f) f-' dz' H4 cos-H t) sine (23b)

The incremental electric far fields are obtained, as usual, from (18):

UETH(t r-A dz, cE3$(+--"os-I !)
S C, sin(cos-it) [pin+ • - (cos4) cos0 + t sin0 cotO0) 01 (24a)

Cz' sn( cos-I t) sin0 (24b)

CO sinO.

where E14 and E19, the cylindrical electric far fields, have been substituted from (13b). Note especially that
the incremental TE magnetic and electric fields have both 0- and 4i-components even though the corre-
sponding TB cylindrical fields have only a 0-component of magnetic field and a 4)-component of electric
field. For the TM incremental magnetic or electric field, however, the single component of the correspond-
ing TM cylindrical field remains as the only component. Recall that E50 and HO0 as defined by (13) refer to
the 0 components of the cylindrical far fields.

In dyadic notation, (24) can be written

dE() m %(4) -cos -It) -5s dz' (25)

where the components of the dyadic 15. are the elements of the matrix defined by (24) that converts the
cylindrical electric far field of the canonical scatterer to the corresponding incremental electric far field. If,
in addition, we express the cylindrical electric far field as a dyadic I5 multiplied by the incident field E4
(see, for example, Kouyoumjian t1 ), that is,

(26)
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then (25) becomes

dýWr -L t,. (5 D3)" = Ed 5ýdz'. (27)

[In (25), (26), and (27), we have included the radial dependence of the far fields in the dyadics.] The
dyadic incremental diffraction coefficient 51 provides an extremely compact notation (27) for the
incremental diffraction fields. However, for detailed analytical or computational purposes, the explicit
vector expressions (17), (18), (23), or (24) prove the more useful.

4. CHECKS ON THE CORRECTNESS OF THE EXPRESSIONS OBTAINED FOR THE INCREMENTAL
FAR FIELD

In this section, we present a series of checks on the expressions that have been derived for the
incremental far field. In Section 4.1, we integrate the incremental magnetic far field (17) from minus to
plus infinity and show that, by doing so, we recover the cylindrical magnetic far field, (13a). In Section 4.2,
we specialize our general resu!ts to the perfectly conducting half-plane and infinite wedge illuminated by a
plane wave, obtain incremental far fields corresponding to both TM and TE incident illumination, and
compare the resulting expressions with those obtained independently by Michael 1'8 through integration of
the surface currents. Complete agreement is found between our expressions and his. In Section 4.3, we
use our method to derive exprei sions for the incremental physical optics far field of a wedge illuminated
by a plane wave. The resulting expressions for both TM and TE incident illumination arc found to agree
with those obtained independently by Knott19'33 in his paper comparing the incremental diffraction
coefficients of Michaell1 8 and Mitzner.17

4.1 Integration of the Incremental Par Field to Obtain the Cylindrical Far Field

A basic cieck on the expression (17) obtained for the incremental far field Is that the integral of (17)
over z' from minus to plus infinity should yield the cylindrical far field (13a). With the plan of evaluating
the Integral of (17) by the method of stationaqr phase, we write

f: d-, Q) - Cp e'q""'1 (z') dz' (28)

where (see Figure 2)

? -z'2 (29)

q(z') -. (r - z coso0 ) (30)
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and

i (z'8=(kp AMn,)v e_•. - M, /4
RZ 4irr

[H ge (1 - cos-' t') Ln• , [H s& C4( -* cos-1  t') t'
s in (cos- 1 t') +l sin(cos-' t') (cos4) cosO'+ sinO' cotOo)

siO]slnO' cs (31

+ 11(0 ) -* cos- t') sInO mo1)

Since 4)', the azimuth coordinate of the field point relative to the point of integration, is a constant for
all z', we have set 4)' equal to 4) in (31).

For large kp, the integral (28) is asymptotically approximated by the stationary phase formula29

: cikPql(z) I'(z')dz' P-.P' eI'P ) + ijw/4 (i ' )r (32)

where z, is the point of stationary phase defined by

p

zi

0

RIgurc 2. Geometry of Integration of the lncrementWj Far Field
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q'(z's) = 0

and

* • sign qN(7.).

Differentiating (30),

q'(z') = 1 - coseo) (33)

and since

r = (p2 + (z' 2z)2 11/, (34)

dr z'-Z -cosO'. (35)

dz' r

Equating (33) to zero then gives cosO" at z

cosO's = - cosOo. (36)

It follows easily, using (34) and (35), that

r. = . (37)

so that

z4 = p (cotO, + cotO)

and hence

-_ cosOo (cotOo + cotO). (38)
17sino
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Moreover, differentiating (33), using (35), and substituting (36) and (37) yields

= sin30° (39)

p2

which implies that pi in (32) is positive. Also, since

sinm' = 2t

sinO = -P- = sinO0  (40)
r.,

from which

ý = cos4p (41)

and hence,

sin(cos" 1 t sin4. (42)

Since

t cosO' cos4 + ý cosO' sin4 - 2 sinO',

substitution of (36) and (40) yields

0. 0• 066Io. (43)

Finaily, substituting (38), (39), (36), (40), (41), (42), and (43) In (32), and using the readily obtained
expression for Po.-

"T --- cos(O + 0o)
sin1

is



yields the desired relation

f dH (f) P--- H,6 6 + H4(44)

4,2 Comparison With Mlchaeli's Incremental Diffraction Coefficients for the Perfectly Conducting
Half-Plane and Infinite Wedge

As a second check on the expressions we have derived for the incremental far fields of planar
surfaces, we obtain the incremental far fields for the particular cases of a half plane and infinite wedge, and
show that these fields agree with the expressions obtained independently by Michaeli 8 from integration of
the surface currents.

4.2.1 HALF-PLANE ILLUMINATED BY A PLANE WAVE

We specialize (24a, b) to the case of a half-plane illuminated by a plane wave. The half-plane is defined

in terms of Cartesian coordinates (x, y, z) by the equation y = 0, x Ž 0, so that the edge of the half-plane
coincides with dte z-axis. The direction vector of the incident plane wave forms angles of 'rr + kbo and
'r- 0o with the positive x-axis and z-axis respectively (see Figure 3).

OBSERVATION OBSERVATION
y DIRECTION DIRECTION

INCIDENT

EDGE OF PLANE WAVE
INCIDENT HALF-PLANE 

I

PLANE WAVE

0

0U

HALF-PLANE

ligure 3. (eorneirt of a Ilall-Plate luminated by a Klan" Wave
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We begin with a TM (E.polarized) incident plane wave for which

E1 - -B1 exp (--Ikp sinOo cos(4, Q - ikz cosOo] 60 (45)

where Ej is the complex electric field amplitude of the plane wave. For 00 = ir/2 (that is, the incident

plane wave propagating normal to the z.axis), the scattered electric far field is given by3°

snln sin~
.n' k + i 2 . 0 < 2 < 2r'r,

kp co,6 +Co40

from which it can be shown25 ,31 that the scattered electric far field corresponding to oblique incidence is

sink2 sink-
S , e1'2 .+ /4) a 2 2(

-i(kp sinfi. coso + cso 0 o (46)

Substituting (46) in (24b), noting that ýo~i In the expnentital factor of C" is equal to p SnI 0 - z .os 0,

and replacing the magnitude, Eý, of the incident plane wave by "l3jsin0o. we obtain

i ,, 4 sin- sin--
~~~~(t) dz - ' 14. - e0r 2 (47)

sinl 0. 4irr cowA + cosqý

CK~~ ofCs anO oidr

To compare (47) with Michaeli's expression, e'c start with Michacl's Eq, (1)," which, after spceializing

to an edge discontinuity coinciding with the z-axis and noting the correpondencam J -. t -, t - I

between his noutatko antd ours, icelds

i -k SIM 1nj (2')o - M(Z')4)d;A' (491

wherc I and M arc the electric and magnetic equivalent currents, respectivmly. Expreslons for I and M

for a wedge with exterior angle Nir are given in MIchalchi's Eq. (31). Fo1 I11M incident illumination M -

0, and Michacli's Eq. (31) 'ith N - 2 gims
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sin +011 I

2 2 2

4 sinR sin' 10
1 212Ek7 sin 2 0o cost + cos0,o (49)

S(sin cosi )

where we have used the correspondences 3' -r - 00, 13 - 0, and 40' ,* 4o between Michaeli's notation

and ours. Substituting (49) in (48), with M- 0, is then seen to give an expression for the incremental far

field identical with (47).
Next, we consider a half-plane illuminated by a TE (H-polarized) incident plane wave for which

HR - H, exp [ - ikp sinG0 cos (4) - 4)o) - ikz cos0o] bo (50)

where H, is the complex magnetic field amplitude of the plane wave. For 00 = ri/2, the scattered magnetic

far field is given by 30

cos4- Co
Hz.- H,\- iekp ) + s4 + cOS4o' 0 <4 < 21r,

from which the scattered magnetic far field corresponding to oblique incidence Is 25,31

cos-2 Cos--•
HH 2 12 el(kpsino + it/4) e - cO&Oo - + -O2 _ Air (51)ý YpsinG, cos4) + cos4)0 '

Substituting (51) in (24a) using [cf. (13b)] EO= --ZH,4 , simplifying algebraically, and repiacing H, by

H1/stn0o, one finds

2 2 1
S ZsinG0 4-r r cosaTco@ sincx

' [sin4 $ - (cos4 cosO + cosa sinO cot0o)O], (52)

cos (sinO cosb,)s1 sinO



fMichael'P, expression is again given by (48) with I and M defined by his Eq. (31) with N = 2. We obtain

-!!Ij- S~n.Cos$ (coseo - cosio

CosC-os Cos- + cos

m 4COSY Cos 
4) -

S2 os 2 2 1 (cos<) co0 + cosa sin0 cOtO) (53)
k sin0o cosa + co-s-)o sin sinO

and

inlzsn sin c s _ 2-

2 o2  2 2

______2 2 (54)
Sk sin(} sin0o sinac cosa + cOSo0 (

Substituting (53) and (54) in (48) yields an expression for the incremental far field identical with (52).

4.2.2 INFINITE WEDGE ILLUMINATED BY A PLANE WAVE

We now apply (24a, b) to an infinite wedge illuminated by a plane wave. The wedge is defined in

tea-ms of either a circular cylindrical coordinate system (p, 4), z) or a spherical coordinate system (r, 0, 4)) by

the equations 4 - 0 (face 1) and + = Nw (face 2), 0 : N : 2, with the edc;e coincident with the z-axis.

The direction vector of the illuminating plane wave forms angles of w + 4)D and ir - 0o with the positive

x-axis and z-a.ids, respectively (see Figure 4).

As with the half-plane, we begin with a TM incident plane wave with the incident electric field given by

(45). To apply (24b), we require expressions for the far-zone electric field radiated separately by the

current on each of the faces of the wedge. Michaeli32 has derived expressions for the contribu'ions, E1"

and E•., of each of the wedge faces to the total diffracted field when the incident wave vector is normal to

the edge of the wedge (0) - tr/2). For a TINM incident wave

El"- B1 w(-00 - f(-4•)J (55)

,• - Er if(-I) - f(V)) (56)

where
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14) -• N• - 4
-ý0 N-rr - tý

and

Making the substitution v - Tr + il in (57) and evaluating the resulting integral by the method of

stationary phase yields

f(4b) P-Ao (1 ~ r+4 21T )~ CinQc p + i/ (58)4-rN cot wN 'kp(

from which, witd the aid of sov-- '-1mentasy trigonometric identities, (55) and (56) yield
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El P-F" e(kp + -04) N 0 < 2w,
2N (Co- N -

and

sin-
E2• P E-) '(kP + "/4) N- c ,-(2 -N)iT < < Nr.

2Nc CON N )

Just as for the half.plane diffraction discussed In Section 4.2.1, the scattered electric far fields corre-

sponding to oblique incidence of the illuminating plane wove are then

E13 2 ) c'2 seneo + v/4) e - ikz coso9 (59

sin -s N ... 0 < , < 2T

2N cos±- - csN N

and

o esinno +o4) e (60)

2 N N o

Now, while 21,o can be used directly in (24b) to calculate the contribution of the upper face of the

wedge to the incremental electric far field, E2,8 cannot, since the current sheet is not in the wz-plane as
was assumed in the derivation of (24). Hence, we first transform to a (p, ()', z) coordinate system with

4-' - + (2- N)r, 4- 4)'- (2- N)r (61)

so that 4' 0 is the equation of face 2 of the wedge. Substituting (61) in (60) gives
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E23 ,P 2 e°'OPsi°o + w,/4) e lkzcsOo (62)

N

2N (cos--j + cos-TN

E E280 o.

Substituting (59) and (62) in (24b) then yields

Is 23 (63)

with

sin 0 r 2sin - .

(sin 0 eo N
dE I '* d'E 2 00 ~r-co (64)

No CQN -CsTrN 1

a,= cos-. sinOcosb), 0 < d < 2Tr,

and

' -n0 (65)

,,-I 0 sIn0cos(V (6.1) C [sin cos+r - M

az = os k sin~o ) Wo- C.. sin0o

- (2- N)ir < + < Nit.

Michadi's expression$8 for the incremental far field is given by (48) with M - 0 (TM illumination) and

si 2 -N" 1 +I = Eiz sn"--o +oW-•t cs• • +cs-.

sin 200 Co r-" O$0 'r-L
IN N COs5 NN

which is seen to be identical to our expression given by (63) with (64) and (65),
Next, we turn to the incremental diffraction coefficient for an infinite wedge illuminated by the TrE

(H-polarized) incident field given by (50). Michaeli's expressions 3 2 for the contributions, H11, and H2,, of
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face 1 and face 2, respectively, to the total diffracted magnetic field when the incident wave vector is
normal to the edge of the wedge are

Hi,=HI [f(-IV,) + f(-4Dr)J

H Hu =H f((Dý +

with f((D) given in general by (57) and for large kp by (58), and (D1,2 defined as for TM incidence.
Similar to the TM case, we find that

sin--
H," - HiLJ eop + w/4) N ' , 0 < 4) < 21r,

2N os±- Cos

and

HZ - - H ) ei(kP + v/4) ,N ", (2 - N)7 < 4)< Ni
kp2N cos-N -0 Cos~~±A -,r + 2-N r<)<

N - N

Then, like the half-plane-diffraction discussed in Section 4.2.1, the scattered magnetic far fields
corresponding to oblique Incidence of the illuminating plane wave are

H e-- I" H1 ; 2 _ t2(kp s~nO, + v/4) e - Ikz coO,

sing•--:-.

2Nos±2 ~,0<4 < 2 y, (66)2N(C S - No

and

R26P--t- H,(~?~ ' e'(kp hinO, + vI/4) C Ua to,~

sin•r +-_

2No, -csN j (2 N)mr<<4).Nm, (67)2N(o Q - Cos T+

N MN
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As done above in treating the TM case, we transform (67) to the (p, *', z) coordinate system with 4)'
defined by (61), obtaining

R2. P-t- HI (P2~)12 eifkP sInO0 + ~if4) e - z c~sB0  (68)(rrk- sin~o.

sin IT - V

N Tr

2N cosL. + cos - -

N N

Use of [cf. (13b)) E,( = -ZoH.- 0, and substitution of (66) and (68) into (24a) then yie!ds

dTE (f) = FETE (f) + dEs (r) (69)

with

• r- a1I

HIz e1ik 2 sin N 
(0

Isi 0 rN cos-N - r Ný

( (sin, $ - (cos, cos0 + cosac sin0 cot 0o)O],
sin a4

al = cOS-1 (sin ), 0 < 2,

and

2 sin 'H - 2

TEw()r-j d-z' 4 HIz ell, N IT-(2(71)dE ( 2 - sinG0 4irr N O -

~N os + Cos N

-•-1- [sin4' 4) - (cos4)' cosO + cosa 2 sin0 cotO0 )6J,

sin a•

(sin~O /a• (cs-t inG os) J0 < 4'< 2'r,

Finally, we transform (71) back to the (p, 4), z) coordinate system to obtain
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Hlz~ 0 e1• 2 sin -- - 2(72)

- [sin (Nr - 4)$ + (cos(Nr -4))cosO + cosa 2 sine cotO0 )61,
sin a2

a2== Cos3sincos(N -, - (2 - N)1T < 4 < Nr.

Michaeli's expression I8 for the incremental far field Is given by (48) with, from his Eq. (31),

sine cosg ( cos~o') cosCos$ - al
iHh 2 sin 0, -' ) sion -sinI N

ksin8o N sinal 'rr - a1 _
Cos N cos±-

N N
sinO cos (N - ( coseo ) cosc N a2

ssnin stn-o - cos (NT - )) N
sina 2  " + aCos N + Cos

- iH 2 sin-- N - cos4 cosO + cosat sinO cotO.
ksin80  NinO s-- --sa

Coscosl_ +osna2

si'Tsn - a2a
N N

and

M iHiZo 2 .2i sinn(ci -+
M sInO sinO0 N Isn T1  N al- 0 slnot2  CoTr-a+ oa

- ::1 C (sin cos Q2 = CO sinO cos(Norr

His expression is thus identical with ours given by (69) with (70) and (72).

4.3 Comparison of the Physical Optics Incremental Far Fields for a Wedge With Knott's

Expressions

Just as total incremental far fields are obtained by our method starting with the total cylindrical far

field, one can obtain physical optics incremental far fields by starting with expressions for the cylindrical

PO far field. Such PO incremental far fields are important since, in practical computational applications, it

is often desired to supplement the PO far field (obtained by numerical integration of the P0 surface
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currents) with the far field radiated by the nonuniform currents. This latter far field can then be
obtained by integrating the nonuniform current incremental far field that has been found by subtracting
the PO incremental far field from the total incremental far field.

In this section, we derive PO Incremental far fields for the wedge and compare these with expres-
sions given by Knott,19' 33 who shows that the difference between Michaeli's18 and Mitzner's' 7 incremen-
tal far fields are simply the PO incremental far fields. 1he starting point for obtaining the PO incremental
far fields for the wedge is the cylindrical PO far field of each face of the wedge (see Figure 4 for the
wedge geometry). In Section 4.2, to obtain expressions for the Incremental total far field, we began with
the two.dimensional far field corresponding to normal incidence of the illuminating plane wave, from
which the cylindrical far field for oblique incidence was obtained by a simple substitution using a
method described by Senior and Uslenghi25 and Jull. 31 The same procedure cannot, In general, be used
to derive the cylindrical PO far field for oblique incidence from the two-dimensional PO far field for
normal Incidence since, unlike the total field, the PO fields do not satisfy the boundary condition that
the tangential electric field vanishes on the surfaces of the scatterer. In particular, the PO fields
associated with a TE Incident plane wave do
not remain transverse for oblique incidence. Hence, we will obtain the cylindrical PO far field for
oblique incidence directly.

We begin with a TM (E-polarized) incident plane wave with the incident electric field given by (45).
The incident magnetic field is then

i exp[-ikp sino cos(4O - o) - Ikz cOS0o] $o.

On face 1 of the wedge, 4 0 and the unit normal is ý, so that the PO current is given by

= 2U1t sin4,o exp(-ikp sln0o cos4)o - ikz cos0o)l (73)

where

U, 3 U(ir -

with U(x) the unit step function (0 for x < 0, 1 for x > 0). On face 2 of the wedge,4 = Nir and the
unit normal is sin Nwk - cos N%, so that the PO current is

K2  2U2t sin(Nir - o)exp[ - ikp sinO0 cos(Nrr - 40) - lkz cosO0]l (74)

where

U2  UJo - (N - 1)4
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The PO magnetic far field may be found from (6). Since

to x o = - sinOo 4,,

(6) with (73) gives

E- exp(i(kp sinO0 - kz coso0o + j in

Io (8,irkp sinGo)" 2  cos4o + cosO 4)

from which, with (13b), we obtain the PO electric far field

exp[l(kp sinOo - kz cosOo + 2)] sin4,o
S) (8rrkp sino,)1/2  cos4 + cos 0 , 0 <4) < 2,rr (75)

SE• O:.

For face 2 of the wedge, before applying (6), it Is necessary to transform to the (p, 4)' z) coordinate system
with 4)' given by (61), since (6) is based on the assumption that the current sheet is in the xz-plane. Thus,
the factor exp(- ikx' sin(o cos4)) in (6) is replaced by

exp(-tkx' sin0o coso') = exp(- ikx' sInO0 cos(Ntr - 4))].

Then (6) with (74) gives

E, exp~l(kp sin~o - kz cos~o + Tr/4) sin(N -)2() - 2u - (kp sin 0o)w co(Nir - o) + cos4i'

and hence, using (13b),

go (? r-A -2 exp[l(kp sln0o - kz cos0o + r/4)] (76)(8-wkp sinO0) 1176

sin*Ni * - 0) 0, , 0 < 4)' r' o-s(N~rr - 0 o) + c os f<

,U B• 0:
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Substituting (75) and (76) in (17-18) or equivalently in this TM case (24b), then yields the PO incremen-

tal electric far field

dPo (f) = dEn' (f) + dEo ( (77)

with

(f) -AP - dz' U Eiz e"kr sinO 2sin4)0  (78)
d--" sinO0 41'Tr sin 0o cos4)o + cosal

and

E0() - z elkr sine 2sin(Nir - )(79)
-"F•O) r-±_ dz' U2  4rr sin 0o cos(N-r - 4)') + cosM2

where

al = COS- tsin0 cos$,
\in0o o 0 < ý < 27,

and

•2 = cos-i (s o C sI, i0 o (2 - N)'n <, < Nr.

Knott's expression 19 for the PO incremental far field is given by (48) with M = 0 (TM Illumination)

and

Etz2l D1 .

kZ4 sin 2
0 0

with

D - [U n+ . + U2  sin(Nir - 4)o) +
+ Cosa, cos(N-ir - i~o + COS4 2

where we have made use of the correspondences 03 - 6, p3' .o - 0o, 4 +' ý-. ,o, n 44 N, U+ 4- UI, U-

4- U2, Z -. Zo, Elt *, EBi, and le ++ I between Knott's notation and ours. Knott's expression is thus seen
to agree with our expression given by (77) with (78) and (79).
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We now obtain the P0 incremental diffraction coefficient for an infinite wedge illuminated by the TE
(H-polarized) incident field given by (50). On face 1, the PO surface current is

Ki = 2U1 H1 exp(- ikp sin80 cos4ý - ikz cosO)(sin80o + cOse0 cos4mo),

while, on face 2, the PO current is found to be

k2 2U2H1 exp[ - ikp sin0o cos(N'r - 4o - ikz cos 0o]

-[cosNrr sinOot + sirinr sin0o0  + cos0o cos(Nit - 4o)W].

We next apply (6) to find the PO magnetic far field. Since

to x (sinOot + cos0o cos400) = sln 0 [sin40n - cos0o(coso + cos4)$]

[recall that (0., O, $) are the standard (f, 0, 4) spherical coordinate system unit vectors evaluated at
0 -r - 6o and fl

([Slk p s ln0o)- l cosOc + - 4r14)](•) •.Q) 2UIH, (~osnoi o•o+os

t[sln4 •n - cos00 (cos;o + cos,)$j

a H~o On+ iH%,

from which (17) and (18) yield the PO incremental electric far field for face I of the wedge

TWjO Qi) r-. dz' UlZ 0 -L".- e1k 2
slnO0 4Trr cos4o + cosal

{sln4 4 - (cos4 cosO - cos4o sinO cotO0)O} (80)

C91 -i (s1n COS 0 < ' < 21.\ sinOo
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For face 2 of the wedge,

o x [cosNfr sinO,* + sinNir sinO0 , + cos0o cos(N'r -

= -sin 0o {sin(N'r b -6) + cos0o[cos(NiT - 4o) + cos(Nir - *)]4}.

Transforming to the (p, ,)' z) coordinate system with 0' given by (61) so that

sin(Nir - 4) = - sin4'

cos(N'rr - ,) cos 4,'

and applying (6), the PO magnetic far field Is found to be

1~O () r-Ae 2U2H xp[k p sin0o - kz cos O0 + 1r/4)]
2 -2U (8irkp sin0o) 1 2

1400 s"n'";, + coO.~ (cos(N-ir o + coub']j
COS(Nir - 24b +cos¢' +-

from which, with (17) and (18), we obtaln the PO incremental electric far field for face 2 of the wedge.

FETO (t I-- dz'U2Z0  'A-e 2
sid) d 4irr cos(N-r - 4Q + cosua

{sin4' 4 - (co4' cosO - cos(Nir - ib,) sin0 cotOO0 })

-dz' Uz4 .S!-j " (81)2ZsinU, 4"rrr cos(Nirr - fý,) + cowa2

f{sin(Nn - 6)$ + [cos(N•r - 4))cos0 - cos(Nir - i).sin0 coiG,}OJ

C12= os-I Sio c = > LM) - Sitiao CGS(Mrf - 4,))] ~ <4 i
siio L s-nOo '
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Thus, the PO incremental electric far field for the wedge for TE illumination is

Ef (Q) = (r) + T4 0 (k) (82)

with dU1E and dR2 given by (80) and (81), respectively.

Knott's expression1 9 for the TE incremental PO clectric far field for the wedge is given by (48) with

HI,2iDx M H,21 MD,sI = n'1o0M0 f k sin0o Sin0

-u COS4 oso Q cos(N'IT -1D,,- -U, coý + cosa, U2 cos(N1r - 4)0) + cosa2 c

sinb _ U2 sin(N-r - 4))

D, = Cos04. + cosa, cos(N-" - 4b) + cosa2'

and

Q - 1 - cosO coso 0  + CO 0) slnO,, (COs + sin29 cosOo)
sinO sl0o (cosO - sin e sinOo

where, In addition to the correspondenct already noted betveen Knott's notation and ours, we have used

Hig *Iij awnd 1, - M. To facilitate comparison bctwecen Knott's exprmuion and ours, we rewrite Knott'3

=pmsl in thi form

di~ (d~pO + dlia)O + (ddlo + dlli-)4 (83)

where

dE,'* - -dz* UjZ0 Hi- (cos4 co= + cosac, SIn Coto•) + sine cOeo (84)
ZTe, -flc" c4- ++Cosa, I

14 2' 1czuz - (ces(Ny~r - 4bcaoO + coiaz sinO axOto - s~ib coto (85)

d5W- - i~ dz'Ur 71s7 + coro 2

and
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Sz' fl,, Hz ý;Ikr 2 sin(Nrr -16 ' sin0 41rr cos(N-Tr - (ku) + cosa 2  (87)

Starting with the 0-terms and comparing (84) and (85) with the 0-components of (80) and (81), respec-
tively, we see that there is complete agreement between Knott's expression and ours, while comparing (86)
and (87) with the 4i-components of (80) and (81), respectively, it is seen that there is agreement to within

the sign of (86) and complete agreement of the (k-components for the second face of the wedge. The
difference of sign between Knott's expression and ours for the .k-component of the incremental TE physical

optics far field for face 1 is the result of a misprint in the sign of the right-hand side of Knott's Eq. (20) for

D., 9-hich he corrects in Reference 33.

In concluding this section, we want to draw atýtention to the essential simplicity of our method for
* obtaining incremental far fields. As seen above with the examples of the half-plane and infinite wedge, all

that is needed is an expression for the cylindrical far field of each of the planar surfaces comprising the

scattering object.. The incremental far field is then obtained by straightforward substitution of the
components of the cylindrical far field in the general expressions (23) and (24) or (17) and (18). No
current integrations are required.

5. INCREMENTAL FAR FIELDS FOR THE INFINITE STRIP AND SLIT

We now obtain incremental far fields, total and physical optics, for the perfectly conducting infinite
strip and the complementary infinite slit. To the best of our knowledge, this is the first time that such
expressions have been derived. Our expressions for the total incremental far fields are given for the low

frequency approximation (that is, narrow strip and slit), but the method used to obtain them is fully
applicable to any size strip or slit.

5.1 Incremental Total Far Field for the Strip

Following Asvestas and Kleinman, 34 the strip of width d is defined in terms of Cartesian coordinates

(x, y, z) by y = 0, 1xi < d/2, so that the strip lies in the xz-plane with the edges of thc strip parallel to the
z-axis; in other words, as shown in Figure 1, but with the center of the strip at x = 0. The direction vector

of the incident plane wave forms angles of ir + (,o and iT - 0. with the positive x-axis and z-axis

respectively.

We bugin with a TM incident plane wave and the incident electric field given by (45). For 00 aTI2,

the scattered electric far field is given by34

E, P- E( (2 ine-1( + Ir'4) P1 ((, (ko, kd)

where, in the low frequency approximation

2

P1 (44, k0, kd) --- >T T2 n (4 )o;P) c2" + 0(c 5)
n -o0

with
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c =- 1 kd,2

p =In -S+ -Y-IM
4 2

-y = 0.5772157 ... Euler's constant,

S~1

T 1 ____ i 2 )

T2 2p -COS4) coslo - __4 2p 2p

and

T4 ( COS,, sin24)o 1 1 ) cos2z)

-_ 128p - 3 '''- + c3s2k)p 2 4p

+ A -1 COS34) + (p + )Cos4.o] cos4

+ [coSo 4(1 + cos2 o+ (+1 2)].

These expressions taken from Asvestas and KleinmanU4 are valid for all values of +) and +.. For brevity,
we have Included only temis through c0 in the series for P1. Expressit for higher order terms are

given In Asvestas and Klelnman34 and Millar.35 The scattered electric far lield corresponding to oblique
incidence is then

E -A - l OA610 - L- "00 /) PI() 4~ kd slnO,)O, (88)

Substitution of (88) into (24b) yields the incremental elect.ic far field

-d (ia, ) - dz' E.3 -s -os- St 4P, (aL, 4ý, kd sInO,)8, (89)
sin2t) 4/

a wCS-I Nos (co-541s~
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with the incremental magnetic far field obtained from (18)

" • TMrig'El, sin0 eik"
dHsTM (f) - - dz' sin20- 4"- 4P, (a, 4o,, kd sin4ýo)). (90)S Zo sin2O4, 4rrr

Next, we consider the strip illuminated by a TE (H-polarized) incident plane wave given by (50). For
6, = rr/2, the scattered magnetic far field is given by34

Hu P-AP Hi ( 2 )12 el(kp + 'a/) P2(*, o, kd)

where, in the low frequency approximation

I

P2 (*, 4o, kd) = -rc2 E T2n (*), *o; P)c2'2 + O(c5)
n 0

with

S.0 - sinio sin4),

T2 = -L stn4o sln4l cos2ý + cosio COs4) + (p + oS2o))],

and c and p are defined as for TM illumination. These expressions arc valid for all values of 4 and 4bo.
Expressions for highec order terms in the series for P2 are to be found in Asvestas and Kleinman 34 and

Millar.3 5 The scattered magnetic far field corresponding to oblique Incidence of the illuminating plane
wave is then

HS - - 4 + f P2(4o, kd sin 0,)0 (91)

"i H j, O'f

By substituting (91) in (23a) and using (13b), we obtain the incremental magnetic far field

j-- (jT) I--, -dz' H1.2 L e '02(a, 4), kd snO0O). sineo 0 + (co4 cosO + cosa sinO cot0O)$] (92)
sWnO,, 4wr sinot

a cos (-91noso)
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with the corresponding incremental electric far field then given by

Q) r;,- dz ZHi. eir 4P2(0t, •o, kd sin6o)

sinO0 4iTr sina

[sin4 $) - (cos4 cosO + cosa sin0 cot0o)Oj. (93)

5.2 Incremental Par Fields for the Infinite Slit

The slit, of width d, is defined in terms of Cartesian coordinates (x, y, z) to be complementary to the
strip in the xz-plane, y = 0, lxi > da2. As with the strip, the direction vector of the incident plane wave
forms angles of rr + 4, and ir - 0. with the positive x-axis and z-axis, respectively. Here, we restrict 4ýo to
lie between 0 and fr.

We consider first TM (E-polarization) illumination with the incident electric field given by (45).
Application of Babinet's principle 36 enables us to obtain the electric far field Ed diffracted by the slit with
TM illumination from the magnetic far field scattered by the strip with TE illumination.

Specifically,

EA - El ( s o•el0MOO - kz cos°O + "/4) P2 (••k,' kd sinO0 ) sin 0 (94)

- B
Ssi 1 0

(The total field in the illuminated half-space y > 0 is equal to the field that would be there if no slit were
present- the incident and reflected field - plus the diffracted field, whereas, in the half-space y < 0 behind
the screen, the total field is given by the diffr-acted field.) Substitution of (94) in (24b) then yields the
incremental diffracted electric far field

E-T" (k) €-AP- -dz' E. _line C 42(a, , kd s in,) ,9

a. = Cos -(i nO cl6o

"with the cocresponding incremental diffracted magnetic far field giveri by (18),

WEl1t (0 e-W -&t sinO e'.¢ 0 ,_$d in%0 4vrt IP(t •, slnýo I 96

Next, we treat TE (H-polarization) illumination with the incident magnetic field given by (50). Using
Babinet's principle-% again, we obtain dte magnetic far field diffracted by the slit with TH illumination from
the electric far field scattered by the strip with TM illumination,
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lHd P-A9 - H1 ( 2 ) el0kp sin0o - kz cos 0o + 7r,4) p1 (4), 4,o, kd sin0o) I sn (97)

• =-- Hd0 o

Substituting (97) in (23a), we obtain the incremental diffracted magnetic far field

e 4PI(a, *)o, kd sinO.)sS~Hj e•
.sine, 4'rrr sina (98)d (sinO cos4)

[sin4) 0 + (cos4 cosO + cosa sinO cotOo)$], a = cos- 1  sinQo I

and the corresponding incremental diffracted electric far field is then

d--E• ([) • z'.ZHl, elkr 4PI(a•, (Do, kd sino) s

i,ý00 T-(99)di~ 4xrr sina (9

[sin4 4) - (cos4) cosO + cosa sinO cot0o)O].

5.3 Incremental Physical Optics Far Field for the Strip and Slit

In obtaining incremental PO far fields for the strip and slit, it suffices to limit attention to either the

strip or the slit. This is because the sum of the PO diffracted far field of the strip and complementary slit is

the PO diffracted far field of the entire plane, which is equal to zero if it is. assumed, as Is done consistently

in this report, that the PO surface current vanishes at infinity. Hence, the PO diffracted far field of the slit Is

the negative of the PO far field of the coniplementary strip.

The geometry of the strip and Incident illumination are defined as in Section 5.1. We note that the PO
surface currents excited on the strip for either TM or TE illumination are identical In form to those excited

on face 1 of the wedge for the given Illumination. Hence, In applying (6) to obtain the PO magnetic far

field for the strip, the strip differs from face 1 of the wedge only in that the effective limits of the K(x')

integration are -d/2 to d/2 for the strip, and zero to infinity for the wedge. Thus, the PO Incremental far

fields for the strip can be obtained from those found in Section 4.3 for face 1 of the wedge, (78) and (80),

simply by multiplying the face 1 incremental wedge fields by the factor

f da e "- fex* sln~o cw(.'o - ikx' $M.1n .do

e -. 1k O sInS 0covo - 1kx' slnnOo cS4dx1

f
121
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6. SUMMARY

After introducing incremental diffraction theory in Section 1, we derived in Sections 2 to 3.1 exact

expressions (17-18) for the three-dimensional incremental diffraction coefficients in terms of the
conventional, two-imensional diffraction coefficients of perfectly conducting, planar scatterers. Section
3.2 explained how the necessary two-dimensional far-field functions are analytically continued into the
domain of imaginary values of the azimuthal angle 4ý,

In Section 3.3, we showed that an isolated singularity in the two-dimensional far field transforms to a

cone of singularities in the incremental far fields. Moreover, Section 3.3 showea that the exact expres.
sions for the Incremental far fields can be generalized to allow increments of current that are skewed

rather than normal to the axis of the two-dimensional scatterer, merely by replacing t in (17-18) with t*
given in (22). When this generalization is applied to the infinite wedge and the skew angle is chosen
along the grazing diffracted ray, the cone of singularities associated with the diffracted ray reduces to a
"single direction and the corresponding results of References 27 and 37 are obtained.

"In Section 3.4, the Incremental far fields were separated into TE and TM fields (23-24).

In Section 4.1, the expression (17) for the three-dimensional incremental far magnetic field was

integrated over an infinite straight line to prove that the two-dimensional far magnetic field is recovered.
In the remainder of Section 4, we further confirmed the validity of the general expressions by showing

that PTD, GTD, and PO incremental diffraction coefficients obtained by direct substitution into (17-18)
and (23-24) agree with the results of Mltzner,2 7 Michaeli, 18,27 and Knott, 19,33 respectively, in the case of

the infinite wedge.
In Section 5, we determined the total and PO incremental diffracted fields of the infinite strip and

complementary infinite slit by direct substitution into the general expressions derived in Sections 2 to 3.

As a concluding invitation to further analysis, there remains the question of whether the method of

direct substitution derived here for determining three-dimensional incremental far fields from the
corresponding two-dimensional far fields can be extended, at least in some cases, to curved surfaces and
penetrable scatterers.
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Appendix A

To prove (4), change the integratlon variable z' to z" '- z, so that the integral becomes

F(fi,z) = e - J0z - de" = e - z Fo(P), P k cos 0o. (Al)

Because (V2 + k2) elt- - -I/ j = - 8(f - k'), taking the Laplacian of (Al) shows that Fo(P)
obeyi the scalar wave equation

,V2 F0 + (kI2 
- 2)Fo - -4rr 8(p -p'). (A2)

V2 V2 - -2
8z 2

Letting p -) co in (Al), one sees that F 0 5() satisfies the radiation condition

Fo(• 0-& -, lkP
otW 0 •- ). (A3)

Thus, (A2) has the well-known unique solution

Fo= ir H") (Vk2-P2 It - (A4)
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