S

: £ tve Nl — -
UNCLASSIFIED S T
| . r.Diese Entered) - /\
-4 Lot w ’ - READ INSTRUCTIONS
v \TION PAGE BFTORE :om;nrscrow(&_])
N ‘ AD_AZOS 498 12. GOVI ACCESSION WO. 3. MECIFIENT'S CATALOG umszav
Y
s S. TYPE OF REPORT & PERIOD COVERLD
Ada Compiler Valida..on Summary Report: NavaL 19 July 1988 - 19 July 1989
UNDERWATER SYSTEMS COMMAND, ADAUYK43 (ALS/N Ada/L), Versidg. praromwing DRc. RLPORT BMBLR
1.0, vaAX 11/785 (host) to AN/UYK-43 (target), 88071951.09}54)
7. AUTHOR(s) &. CONTRACT OR GRANT NUMEER(s)
National Bureau of Standards,
taithersburg, Maryland, T7SA
. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PRCJIICT, TASK
AREA & WORK UN]T MUMBERS
National Byreau of Standards,
Gaithersburg, Maryland, USA
S
11. CONTROLLING OFFICE NAME AND ADDRESS 12, REPORT DATE
Ada ngnt Proglr)am ofhc: £ Def 19 July 1988
- United States Department o efense h—woeet
washington, DC 20301-3082 o8 ;‘“"' TARES
14. MONITORING AGENCY NAME & ADDRESS(/f aifferent from Controlling Office) 15. SECUR]ITY CLASS (of thisreport)
< National Bureau of Standards, xs.LthLlAsssrerclA};‘?owoovvRADm’
Gaithersburg, Maryland, USA - BESERSEE ° ¢

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

~

17. DISTRIBUTION STATEMiNT (of the abstractentered in Biock 20 i different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

16, KEYWDRDS (Continue onreverse sidle if necessan a.\d:&ermfy by block number)

Ada Programming language, Ada Compiler Validation Summazry Repcrt, Ada
Cormpiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRALT (Continue on reverse side if necessary and i1dentify by block number)

ADAUYK43 (ALS/N Ada/L), Version 1.0, NAVAL UNDERWATER SYSTEMS COMMAND, National Bureau
of Standards, VAX 11/785 under VAX/VMS, Versionm 4.5 (host) to AN/UYK-43 under Bare

machine (target), ACVC 1.09)
"89 5 24 028

DD 'O 1473 epITiON OF 1 NOV 65 1S OBSOLETE
1 A% 73 S/N 0102-LF-014-8601 UNCLASSIFIED
SLCURITY CLASSIFICATION OF KIS PAGE (wWhenDats Entered)

- ~

"AVF Control Number: NBS88VUSN525 3

xaa Campiler
VALTDATION SUMMARY REPORT':
Certificate Number: 880719S1.09154
NAVAL UNDERWATER SYSTEMS COMMAND
ADAUYK43 (ALS/N Ada/L), VERSION 1.0
VAX 11/785 HOST ard AN/UYK-43 TARGET

Completion of On-Site Testing:
19 July 1988

Prepared By:
Software Stardards Validation Group
Institute for Camputer Science~ and Technology
National Bureau of Standards
Building 225, Roam A266
Gaithersburg, Maryland 20899

Prepared For:
Ada Joint Program Office
United States Department of Defense
Washington, D.C. 20301-3081

Accesion For
—]

NTIS CRa&l 13

DTIC 7a8 a
Uz‘.annOuru_ed 0
Justiticarorn .

By o —e
Dist ibution

Avd.’k:;)ilit o

A -~‘“1:0Oes

| Avan .md/‘()—r_&
Dist I Special

Al]

Ada Campiler Validation Summary Report:

Campiler Name: ADAUYK43 (ALS/N Ada/L), Version 1.0
Certificate Number: 880719S1.09154

Host: Target:
VAX 11/785 under AN/UYK-43

VAX/VMS, under Bare machine
Version 4.5

Testing Campleted 19 July 1988 Using ACVC 1.9

This report has been reviewed and is approved.

DL LE

Ada Validation Fac:;.ll

Dr. David K. Jefferso

Chief, Information SYstas
Engi.neering Division
National Bureau of Standards
Gaithershurg, MD 20899

Ada Validatior Organization
Dr. John F. Kramer

Institute for Defense Analyses
Alexancdria, VA 22311

AdZ Joint Program Office
Dr. John Sclomond
Director

Washington D.C. 20301

Ada Campiler Validation Summary Report:

Campiler Name: ADAUYK43 (ALS/N Ada/L), Version 1.0
Certificate Number: 880719S1.09154

Host: Target:
VAX 11/785 under AN/UYK-43

VAX/VMS, urder Bare machine
Version 4.5

Testing Completed 19 July 1988 Using ACVC 1.9

This report has been reviewed and is approved.

NN 4/

Ada Validation Faqilisy{j
Dr. David K. Jefferson' |\,
Chief, Information Systems
Engineering Division
National Bureau of Standards
Gaithersburg, MD 20899

Ada Validation Organizati
Dr. John F. Kramer
Institute for Defense Analy:
Alexandria, VA 22311

Ada Joint Program Office
Dr. John Solomond
Director

Washington D.C. 20301

e 8 o o o » o .

.

WWWWWLwWwWwwww
NN e W e

.

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

TABLE OF CONTENTS

INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REFPORT
USE OF THIS VALIDATION SUMMARY REFORT . .
REFERENCES ¢ o ¢ ¢ o o ¢ ¢ o s o o o o o o
DEFINITION OF TERMS . . ¢« . ¢ ¢« ¢« & ¢ o &
ACVCTEST CIASSES .+ « « =« ¢ o o « o o o o

e » s ®
e & o o o

CONFIGURATION INFORMATION
CONFIGURATION TESTED « + o & s « o ¢ o « o o &
TEST INFORMATION

TESTRESULTS . . « «© ¢ + o o « o o o o« s o o
SUMMARY OF TEST RESULIS BY CIASS .

SUMMARY OF TEST RESULTS BY CHAPTER
WITHDRAWN TESTS ¢ ¢ ¢ o « & o o o = s o o o o
INAPPLICABIE TESTS . ¢ v « ¢ « « ¢ o » o o

TEST, PROCESSING, AND EVALUATION I“DDIFICATIONS
ADDITIONAL TESTING INFORMATION
Prevalidation ¢« ¢« ¢« ¢ ¢« ¢ ¢ ¢ & o &
Test Site e s s o o o s s s =

COONFORMANCE STATEMENT

APPENDIX F OF THE Ada STANDARD

TEST PARAMETERS

¢« & & e o & o

1-2
1-2
1-3
1-3
1-4

2-1
2-2

. 3-1

3-1
3-2
3-2
3-2
3-4
3-5
3-5
3-5
3-5

e

~

CHAPTER 1

INTRODUCTION

/. ’
g

This Validation Summary Report (VSR) describes the extent to which a
specific Ada campiler conforms to the Ada Standard, ANSI/MI1~STD-181SA.
This report explains all technical terms used within it and thoroughly
reports the results of testing this campiler using the Ada Compiler
Validation Capability(ACVC). “An Ada campiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that
is not in the Standard. -

T e T e —

" Even though all validated Ada campilers conform to the Ada Standard, it
must be understood that some differences do exist between
implementations. The Ada Standard permits sane implementation
dependencies—for example, the maximum length of identifiers or the
maximm values of integer types. Other differences between campilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies observed

,—during the process of testing this campiler are given in this report.

—

This information in this report is derived from the test results
produced during validation testing. The validation process includes
submitting a suite of standardized tests, the ACVC, as inputs to an Ada
campiler and evaluating the results. The purpose of validating is to
ensure conformity of the campiler to the Ada Standard by testing that
the campiler properly implements legal language constructs amnd that it
identifies and rejects illegal language constructs. The testing also
identifies beha'ior that is implementation dependent but permitted by
the Ada Standard. Six classes of test are used. These tests are
designed to perform checks at campile time, at link time, and during
execution.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPCRT

This VSR docauments the results of the validation testing performed on an
Ada cawpiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by
the campiler that do not conform to the Ada Standard

To attempt to identify any unsupported language canstructs
required by the Ada Standard

To determine that the implementation-dependent behavior is
allowed by the Ada Standard

Testing of this camwpiler was conducted National Bureau of Standards,
under the direction of the AVF according to policies and procedures
established by the Ada Validation Organization (AVO). On-site testing
was campleted 19 July 1988, at Syscon Corporation, Washington, D.C.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. In the United
States, this is provided in accordance with the "Freedam of Information
Act" (5 U.S.C. #552). The results of this validation apply only to
the camuters, operating systems, and campiler versions identified in
this report.

The organizations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject campiler has no
nonconformities to the Ada Stardard other than those presented. Copies
of this report are available to the public from:

Ada Information Clearinghcuse

Ada Joint Program Office

OUSIRE

The Pentagon, Rm 3D-139 (Fern Street)

Washington DC 20301-3081

or from:

Software Standards Validation Group

Institute for Computer Sciences and Technology
National Bureau of Standards

Building 225, Room A266

Gaithershurg, Maryland 20899

1-2

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses

1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Re Mamial for the Ada '
ANSI/MIL~STD~1815A, February 1983 and ISO 8652-1987.

2. Ada Campiler Validatjon Procedures and Guidelines. Ada Joint
Program Office, 1 Jammary 1987.

3. Ada Campiler Validation Capability Implementers' Guide.,

December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Campiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada campiler to
the Ada programming language.

Ada Cammentary An Ada Cammentary contains all information relevant to
the point addressed by a camment on the Ada Standard.
These camments are given a unique identification mmber
having the form AI-ddddd.

Ada Standard ANSI/MIL~STD-1815A, February 1983 and ISO 8652-1987.
Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting campiler validations according to procedures
contained in the Ada Compiler Validation Procedures and

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
campilers. The AVO provides administrative and
technical support for Ada validations to ensure
consistent practices.

1-3

Campiler
Failed test

Inapplicable
test

Passed test

Target

Withdrawn

A processor for the Ada language. In the context of

this report, a capiler is any language processor,
including cross-compilers, translators, and

interpreters.

An ACVC test for which the campiler generates a result
that demonstrates nonconformity to the Ada Standard.

The camputer on which the campiler resides.

An ACVC test that uses features of the language that a
campiler is not required to support or may legitimately
support in a way other than the one expected by the
test.

The language Maintenance Panel (IMP) is a cammittee
established by the Ada Board to recommend
interpretations and Panel possible changes to the
ANSI/MIL~STD for Ada.

An ACVC test for which a campiler generates the expected
result.

The computer for which a compiler generates code.

An Ada program that checks a campiler's conformity
regarding a particular feature or a cambination of
features to the Ada Standard. In the context of this
report, the term is used to designate a single test,
which may camprise one or more files.

An ACVC test found to be incorrect and not used to check
conformity to the Ada Standard. A test may be incorrect
because it has an invalid test abjective, fails to meet
its test objective, or contains illegal or errvnecus use
of the language.

1.5 ACVC TEST CILASSES

Conformity to the Ada Standard is measured using the ACVC.

The ACVC

contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
campilation errors. Class L tests are expected to produce conp.lation
or link errors.

Class A tests check that legal Ada programs can be successfully campiled
and executed. There are no explicit program camponents in a Class A

1-4

test to check semantics. For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada campiler.
A Class A test is passed if no errors are detected at campile time and
the program executes to produce a PASSED message.

Class B tests check that a campiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting campilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
campiler.

Class C tests check that legal Ada programs can be correctly campiled
and executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABIE message indicating the result when it is
exeaurted.

Class D tests check the campilation amd execution capacities of a
campiler. Since there are no capacity requirements placed on a campiler
by the Ada Standard for same parameters-—-for example, the mumber of
identifiers permitted in a campilation or the number of units in a
library—a compiler may refuse to campile a Class D test and still be a
conforming camwpiler. Therefore, if a Class D test fails to compile
because the capacity of the campiler is exceeded, the test is classified
as inapplicable. If a Class D test camwpiles successfully, it is
self-checking amd produces a PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICARIE,
PASSED, or FAILED message when it is campiled and executed. However,
the Ada Standard permits an implementation to reject programs containing
same features addressed by Class E tests during campilation. Therefore,
a Class E test is passed by a campiler if it is campiled successfully
and executes to produce a PASSED message, or if it is rejected by the
campiler for an allowable reason.

Class I tests check that incamplete or illegal Ada programs involving
miltiple, separately compiled units are detected and not allowed to
execute. Class L tests are camwiled separately and execution is
attempted. A Class L test passes if it is rejected at link time—that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE,
support the self-checking features of the exeautable tests. The package
REFORT provides the mechanism by which executable tests report PASSED,
FATIED, or NOT APPLICABIE results. It also provides a set of identity
functions used to defeat same campiler optimizations allowed by the Ada
Standard that would circaumvent a test objective. The procedure CHECK
FIIE is used to check the contents of text files written by same of the
Class C tests for chapter 14 of the Ada Standard. The operation of

1-5

REFORT and CHBECK FIIE is checked by a set of executable tests. These
testspmducemssagsthatareeaammedtovenfyﬁntthemtsm
operating correctly. If these units are not operating correctly, then
the validation is not attempted.

The text of the tests in the ACVC follow canventions that are intended
to ensure that the tests are reasonably portable without modification.
For example, the tests make use of only the basic set of 55 characters,
contain lines with a maximm length of 72 characters, use small mumeric
values, and place features that may not be supported by all
implementations in separate tests. However, same tests contain values
that require the test to be customized according to
implementation-specific values—for example, an illegal file name. A
list of the values used for this validation is provided in Apperdix C.

A campiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Studard by either meeting the pass
criteria given for the test or by shuwing that the test is inapplicable
to the implementation. The applicability of a test to an implementation
is considered each time the mplemerrt:atmn is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an
illegal lamguage construct or an erronecus language construct is
withdrawn fram the ACVC and, therefore, is not used in testing a
campiler. The tests withdrawn at the time of validation are given in

Apperdix D.

1-6

2.1 CONFIGURATION TESTED

The candidate ~ampilation system for this validation was tested 'inder
the following configuration:

Campiler: ADAUYK43 (ALS/N Ada/l), Version 1.0

ACVC Version: 1.9

Certificate Number: 880719S1.09154
Host Computer:
Machine: VAX 11/785

Operating System: VAX/VMS

Version 4.5

Memory Size: 16 Mb

Target Carpuater:
Machine: AN/UYK-43

Operating System: Eare machine

Memory Size: 16 Mo

Cammmications Network: Portal-43

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating campilers is to determine the behavior

of a

campiler in those areas of the Ada Standard that permit

implementations to differ. Class D and E tests specifically check for
such implementation differences. However, tests in other classes also
characterize an implementation. The tests demonstrate the following
characteristics:

Capacities.

The campiler oorrectly processes tests containing locp
statements nested to 65 levels, block statements nested to 65
levels, ard recursive procedures separately campiled as subunits
nested to 17 levels. It correctly processes a campilation
containing 723 variables in the same declarative part. (See
test D55A03A..H (8 tests), D56001B, D6400SE..G (3 tests), and
D29002K.)

Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. ‘This
implementation processes 64 bit integer calculations. (See tests
D4A0O2A, D4A002B, D4A004A, and D4AO04B.)

Predefined types.

This implementation supports the additional predefined type
IONG_INTEGER 'in the package STANDARD. (See
tests B86001BC ard B36001D.)

Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during campilation, or it may
raise NUMERIC ERROR or OONSTRAINT ' ERROR during execution. This

mplenentatmn raises NUMERIC ERROR during execution. (See
test E24101A.)

Expression evaluation.
Apparently same default iritialization expressions or record

camponents are evaluated before any value is checked to belcng
to a caponent’'s subtype. (See test C32117A.)

2-2

A —

Assigments for subtypes are performed with the same precision
as the base type. (See test C35712B.)

This implementation uses no extra bits for extra precision.
This implementation uses all extra bits for extra range. (See
test C35903A.)

Sametimes NUMERIC ERROR is raised when an integer literal
operarnd in a camparison or membership test is outside the range
of the base type. (See test C45232A.)

Apparently NUMERIC FRROR is raised when a literal operard in a
fixed-point camparison or membership test is outside the range
of the base type. (See test C45252A.)

Apparently underflow is not gradual. (See tests C45524A..Z2.)

Rourding.

The method used for rounding to integer is apparently round away
fram zero (See tests C46012A..2Z.)

The method used for rounding to longest integer is apparently
round away fram zero (See tests C46012A..Z.)

The method used for rounding to integer in static universal real
expressions is apparently round toward zero (See test C4A014A.)

Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'IENGTH that exceeds
STANDARD. INTEGER'LAST and/or SYSTEM.MAX INT. For this
implementation:

Declaration of an array type or subtype declaration with more
than SYSTEM.MAX INT components raises NUMERIC ERROR (See test
C36003A.)

NUMERIC ERROR is raised when an array type with INTEGER'IAST + 2
camponents is declared.) (See test C36202A.)

NUMERIC ERROR is raised when an array type with SYSTEM.MAX INT +
2 camponents is declared. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'IAST
raises no exception. (See test C52103X.)

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST camponents CONSTRAINT FRROR when the length of a

2-3

dimension is calculated amd exceeds INTEGER'IAST. (See test
CS52104Y.)

A mll array with one dimension of length greater than
INTEGER'IAST may raise NUMERIC ERROR or CONSTRAINT ERROR either
when declared or assigned. Alternatively, an mplenentatmn may
accept the declaration. However, lengths must match in array
slice assigmments. This inplanentation raises no exception.
(See test ES52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. In assigning
two~dimensional array types, the expression does not appear to
be evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is campatible
with the target's subtype. (See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either
accept or reject an incamplete type with discriminants that is
used in an access type definition with a campatible discriminant
constraint. This implementation accepts such subtype
indications. (See test E38104A.)

In assigning record types with disciminants, the expression
appears to be evaluated in its entirety before CQONSTRAINT ERROR
is raised when checking whether the expression's subtype is
camatible with the target's subtype. (See test C52013A.)

Aggreqgates.
In the evaluation of a multi-dimensional aggregate, all choices

appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bounds.
(See test E43212B.)

Not all choices are evaluated before CONSTRAINT ERROR is raised
if a bound in a nonmull range of a nonmull aggregate does not
belong to an index subtype. (See test E43211B.)

Representation clauses.

An implemeritation might legitimately place restrictions on

2-4

representation clauses used by same of the tests. If a
representation clause is not supported, then the implementation
must reject it.

Emmeration representation clauses containing noncontiguous
values for emmeration types other than character ard boolean
types are supported. (See tests C35502I..J, C35502M..N, ard
A39005F.)

Emmeration representation clauses containing noncontiguous
values for character types are supported. (See tests
C35507I..J, C35507M..N, ard CS55Bl6A.)

Emmeration representation clauses for boolean types containing
representational values other than (FAISE => 0, TRUE => 1) are
not supported. (See tests C35508I..J and C35508M..N.)

length clauses with SIZE specifications for emmeration types
are supported. (See test A39005B.)

Length clauses with STORAGE SIZE specifications for access types
are supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE SIZE specifications for task types
are supported. (See tests A39005D arnd C87B62D.)

Iength clauses with SMALL specifications are supported. (See
tests A3S005E and C87B62C.)

Record representation clauses are not supported. (See test
A39005G.)

length clauses with SIZE specifications for derived integer
types are supported. (See test C87B62A.)

Pragmas.

The pragma INLINE is supported for procedures. The pragma
INLINE is supported for functions. (See tests IA3004A, LA3004B,
EA3004C, EA3004D, CA3004E, armd CA3004F.)

Input/output.

The package SEQUENTIAL IO cannot be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT IO cannct be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101H, EE2401D, and EE2401G.)

2-5

The director, AJFO, has determined (AI-00332) that every call to
OPEN and CREATE must raise USE_ERROR or NAME FRROR if file

mpxt/aztpxt is not supported. ‘This implementation exhibits
this behavior for DIRECT IO.

Overwriting to a sequential file truncates the file to last
element written. (See test CE2208B.)

An existing text file can be opened in OUT_FILE mode, can be
created in OUT_FIIE mode, and cannot be created in IN FILE mode.
(SeetstEESlozc.)

Generics.

Generic subprogram declarations and bodies can be campiled in
separate cawpilations. (See tests CA1012A and CA2009F.)

Generic package declarations and bodies can be camwpiled in
separate campillations. (See tests CA2009C, BC3204C, and
BC3205D.)

Generic unit bodies and their subunits can be caompiled in
separate campilations. (See test CA3011A.)

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULIS

Version 1.9 of the ACVC camprises 3122 tests. Wwhen this campiler was
tests, 28 tests had been withdrawn because of test errors. The AVF
determined that 447 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing.
Modifications to the code, processing, or grading for 24 tests were
required to successfully demonstrate the test cbjective. (See section
3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CIASS

RESULT TEST CLASS TOTAL
A B c D E L

Passed 107 1048 1416 17 13 46 2647
Inapplicable 3 3 437 0 4 0 447
Withdrawn 3 2 21 0 2 0 28

TOTAL 113 1053 1874 17 19 46 3122

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
¢_3_4_>3_6_7_8_9.10 11 12 13 14 __
Passed 181 449 466 245 165 98 141 327 137 36 234 3 165 2647

Inapplicable 23123208 3 0 O 2 0 O O O O 88 447
Withdrawn 2 14 3 0 1 1 2 0 0 O0 2 1 2 28

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 28 tests were withdrawn from ACVC Version 1.9 at the time
of this validation:

B28003A E28005C C34004A C35502P A35902C C35904A
C35904B C35A03E C35A03R C37213H C372137 C37215C
C37215E C37215G C37215H C38102C C41402A C45332A
C45614C E66001D A74106C C85018B C87B04B CC1311B
BC3105A AD1AOLA CE2401H CE3208A

See Apperdix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABIE TESTS

Same tests do not apply to all comwpilers because they make use of
features that a campiler is not required by the Ada Standard to support.
Others may depend on the result of ancther test that is either
inapplicable or withdrawn. The applicability of a test to an
implementatian is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not necessarily
inapplicable for a subsequent attempt. For this validation attempt, 447
test were inapplicable for the reasons irdicated:

C35508I..J (2 tests) and C35508M..N (2 tests) use emmeration
representation clauses for boolean types containing representational
values other than (FALSE => 0, TRUE => 1). These clauses are not
supported by this campiler.

C35702A uses SHORT FIOAT which is not supported by this implementation.
C35702B uses LONG_FIOAAT which is not supported by this implementation.

A39005G uses a record representation clause that is not supported by
this campiler.

The following (14) tests use SHORT_INTEGER, which is not supported by
this campiler.

C45231B C45304B C45502B C45503B C45504B
C4A5504E C45611B C45613B C45614B C45631B
C45632B BS2004E C55B07B BS5B09D

C45231D requires a macro substitution for any predefined mumeric types
other than INTEGER, SHORT INTEGER, LONG INTEGER, FLOAT, SHORT FIQAT, and
IONG FIOAT. This canpiler does not support any such types.

C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point base
types which are not supported by this campiler.

C455310, CA5531P, (455320, and C45532P use coarse 48-bit fixed-point
base types which are not supported by this campiler.

B86001D requires a predefined numeric type other than those defined by
the Ada language in package STANDARD. There is no such type for this
implementation.

C86001F redefines package SYSTEM, but TEXT IO is made acbsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package TEXT IO.

AE2101C, EE2201D, and EE2201E use instantiations of package
SEQUENTIAL IO with unconstrained array types and record types having
discriminants without defaults. These instantiations are rejected by
this campiler.

AFE2101H, EE2401D, and EE2401G use instantiations of package DIRECT IO
with unconstrained array types and record types having discriminants
without defaults. These instantiations are rejected by this campiler.

The following 79 tests are inapplicable because this implementation
supports only tape or terminal IO.

CE2102B CE2102F..G(2) CE2102I..K(3) CE2103B
CE2104C..D(2) CE2105B CE2106B CE2107A..I(9)
CE2108A..D(4) CE2109B CE2110B..C(2) CE2111B
CE2111D..E(2) CE2111G..H(2) CE2115A CE2204A. .B(2)
CE2401A..C(3) CE2401E..F(2) CE2402A CE2404A
CE2405B CE2406A CE2407A CE2408A
CE2409A CE2410A CE2411A CE3104A
CE3109A CE3111A..E(5) CE3112A..B(2) CE3114B

3-3

CE3115A CE3203A CE3402B CE3404A

CE3408B CE3411C CE3412C CE3413C
CE3602C..D(2) CE3605C CE3605E CE3704A
CE3804C CE38041 CE3805A..B(2) CE3806A
CE3806D CE3905A CE3906A

CE2102C uses a string which is illegal as an external file name for
SEQUENTIAL IO. No illegal file names exist.

CE3102B expects exception to be raised because of an illegal file name.
This implementation does not restrict file names.

The following 327 tests require a floating-point accuracy that exceeds
the maximm of 6 digits supported by this implementation:

C24113C..Y (23 tests) C35705C..Y (23 tests)
C35706C. .Y (23 tests) C35707C..Y (23 tests)
C35708C. .Y (23 tests) C35802C..2 (24 tests)
C45241C..Y (23 tests) C45321C..Y (23 tests)
CA5421C..Y (23 tests) CA5521C..Z (24 tests)
CA5524C..2 (24 tests) C45621C..Z (24 tests)
C45641C..Y (23 tests) C46012C..Z (24 tests)

3.6 TEST, PROCESSING, AND EVAIUATTION MODIFICATIONS

It is expected that same tests will require modifications of code,
processing, or evaluation in order to cawpensate for legitimate
implementation behavior. Modifications are made by the AVF in cases
where legitimate implementation behavior prevents the successful
capletion of an (otherwise) applicable test. Examples of such
modifications include: adding a length clause to alter the default size
of a collection; splitting a Class B test into sub-tests so that all
errors are detected; and confimming that messages produced by an
executakle test demonstrate conforming behavior that wasn't anticipated
by the test (such as raising one exception instead of ancther).

C4A012B raises NUMERIC ERROR rather than CONSTRAINT ERROR. The test has
been evaluated and graded as PASSEL.

Mcdifications were required for 24 Class B tests.

The following Class B tests were split because syntax errors at ane
point resulted in the campiler not detecting other errors in the test:

B2AOO3A B2A003B B2A003C B33201C B33202C
B33203C B33301A B37106A B37201A B37301I
B37307B B38001C B38003A B38003B B38009A
B38009B B44001A B51001A B54A01C BS4A01L
BS5063A BC1008A BC1201L BC3013A

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced
by the ADAUYK43 (ALS/N Ada/L) was submitted to the AVF by the applicant
for review. Analysis of these results demonstrated that the campiler
successfully passed all applicable tests, and the campiler exhibited the
expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the ADAUYK43 (ALS/N Ada/L) using ACVC Version 1.9 was
conducted on-site by a validation team from the AVF. The configuration
consisted of a VAX 11/785 operating under VAX/VMS, Version 4.5 host and
a AN/UYK-43 target operating under Bare machine. The host and target
camputers were linked via Portal-43.

A magnetic tape containing all tests was taken on-site by the validation
team for processing. Tests that make use of implementation-specific
values were customized on-site after the magnetic tape was loaded.
Tests requiring modifications during the prevalidation testing were not
included in their modified form on the magnetic tape. The contents of
the magnetic tape were loaded directly onto the host camputer.

After the test files were loaded to disk, the full set of tests was
campiled ard linked on the VAX 11/785, and all executable tests were run
on the AN/UYK-43. Object files were linked on the host camputer, and
executable images were transferred to the target camputer via Portal-43.
Results were printed from the host camputer, with results being
transferred to the host camputer via Portal-43.

The cawpiler was tested using cammand scripts pruvided by Control Data
Corporation and reviewed by the validation team. The campiler was
tested using all default option settings without exception.

Tests were campiled, linked, and executed (as appropriate) using a
single host camputer and a single target computer. Test output,
campilation listings, and job logs were captured on magnetic tape and
archived at the AVF. The listings examined on-site by the validation
team were also archived.

3.7.3 Test Site

Testing was conducted at Syscon Corporation, Washington, D.C., and was
campleted on 19 July 1988.

APPENDIX A

DECLARATION OF CONFORMANCE

Compiler Implementor: Control Data Corporation, Software Programs Division
AdaR Validation Facility: ASD/SCOL, Wright-Patterson AFB, OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.9

Base Configuration

Base Compiler Name: ADAUYK43 (ALS/N Ada/L) Version: 0.5
Host Architecture ISA: Digital VAX OS&VER #: VMS 4.5
Target Architecture ISA: AN/UYK-43 OS&VER #: N/A

Implementor’'s Declaration

I, the undersigned, representing Control Data Corporation, Software Programs
Division, have implemented no deliberate extensions to the Ada Language
Standard ANSI/MIL-STD-1815A in the compiler listed in this declaration. I
declare that Naval Sea Systems Command, Department of the Navy, is the owner of
record of the Ada Language compiler listed above and, as such, is responsible
for maintaining said compiler in conformance to ANSI/MIL-STD-1815A. All
certificates and registrations for the Ada language compiler listed in this
decYaration shall be made only in the owner’s corporate name.

Date: Jf;;ZQ)LL Jf—;/$7j*f’

D. L. Whitt, Program Manager

Owner’s Declaration:

I, the undersigned, representing Naval Sea Systems Command, Department of the
Navy, take full responsibility for implementation and maintenance of the Ada
compiler listed above, and agree to the public disclosure of the final
Validation Summary Report. I further agree to continue to comply with the Ada
trademark policy, as defined by the Ada Joint Program Office. 1 declare that
all of the Ada language compilers listed, and their host/target performance are

in cOﬁﬁggjrcq.w?:;%ZZf>33a guage Standard ANSI/MIL-STD-1815A.
L&\ \% Date: }V%Vj \ ’4 /, I?Bg

——

RAda is a registered trademark of the United States Government
(Ada Joint Program Office).

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
ccnventiasasnentionedinchapterlBoftheAdaStarﬂard,arﬂto
certain allowed restrictions on representation clauses. The
1nplenerrtat1m—deper1der1t characteristics of the VAX 11/785, Version 4.5,
are described in the following sections which discuss topics in Apperdlx
F of the Ada Standard. Ixrplementatlm- specific portions of the package
STANDARD are also included in this appendix.

package STANDARD is

type INTEGER is range -2_147_483_647 .. 2_147 483_647

type LONG_INTEGER is range -9_223_372_036_854_775_807 ..
9 2237372 036_854_775_807;

type FLOAT is digits 6 range -(16#0.FF FFFF#E63)..
(1640.FF_FFFF4E63) ;

type DURATION is delta 2.0**(-14) range -131_071.0 ..
131_G71.0;

end STANDARD;

B~1

APPENDIX F

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

IMPLEMENTATION- DEFINED PRAGMAS
pragma DEBUG:;
DEBUG Applies to the entire compilation unit in which the pragma appears.

This pragma enables one or more debugging features. These
debugging ieatures shall be sufficient to support the requirements
of the Embedded Target Debugger and the Run-Time Debugger.

pragma EXECUTIVE [(arg)]:

EXECUTIVE Applies to the library unit in which the pragma appears, and to
any corresponding secondary units.

This pragma shall provide user-written Ada programs and RTE
functions access to the machine-dependent facilities of the
embedded target computer £rom the Ada language implemented by the
Ada/L Code Generatcr. Program units compiled with the EXECUTIVE
pragma shall have:

Direct access to all the services of the Run-Time Executive,
Run-Time Suvpport Library, and Run-Time Loader that are
available to the RTE Functions (i.e., all interfaces

specified in the Ada/L Interface Specification). The only
access to the Run-time Executive is through the RTEXEC_GETEWAY;

The ability to execute the "privileged" instructions of the
embedded target computer (these instructions shall be
checked for and flagged as a WARNING if they occur in
program units compiled with the NO_EXECUTIVE option or
without the EXECUTIVE pragma);

The ability to specify address clauses for hardware
interrupts of the embedded target computers (these address
clauses shall be checked for and flagged as a WARNING if
they occur in program units compiled with the NO_EXECUTIVE
option or without the EXECUTIVE pragma);

- APPENDIX F OF THE ADA LRM FOR TEE ADAUYK43 TOOLSET.

The ability to execute in the "executive" state(s) of the
embedded target computer (program units compiled with the
NO_EXECUTIVE option or without the EXECUTIVE pragma shall be
limited to the "task"™ state);

The ability to call and be called by other program units
compiled with the NO_EXECUTIVE option or without the
EXECUTIVE pragma (the state will be changed as appropriate);

Continued use of the STATIC, UNMAPPED, DEBUG, and MEASURE
pragmas.

The EXECUTIVE pragma has an optional argument which is PRIVILEGE.
The use of the PRIVILEGE argument directs the compiler to generate
privileged instructions where possible.

pragma MEASURE (extraction_ set, {arg,...]}):
MEASURE No scope is associated with MEASURE.

This pragma enables one or more performance measurement features,
including the specification of objects in extraction sets. These
performance measurement features shall be sufficient to support
the requirements of the Run-Time Performance Measurement Aids.

pragma STATIC;

STATIC Applies to the library unit in which the pragma
appears, and to any corresponding secondary units.

The pragma STATIC is only allowed immediately after the

declaration of a task body containing an immediate interrupt

entry. The effect of this pragma will be to allow generation of
nonreentrant and nonrecursive code in a compilation unit, and tc
allow static allocation of all data in a compilation unit. This
pragma shall be used to¢ allow for procedures within immediate
(fast) interrupt entries. The effect will be for the compiler to
generate nonreentrant code for the affected procedure bodies. If
a STATIC procedure is called recursively, the program is erroneous.

pragma TITLE (arg):

TITLE Applies to the compilation unit in which the pragma appears.
This is a listing control pragma. It takes a single argument of
type string. The string specified will appear on the second line
of each page of every listing produced for the compilation

unit. At most one such pragma may appear for any compilation unit,
and it must be the first lexical unit in the compilation unit
(excluding comments).

pragma TRIVIAL_ENTRY (NAME: entry_simple_name);

TRIVIAL_ENTRY Applies only to the entry named in its argument.

F-2

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

This pragma is only allowed within a task specification after an
entry declaration and idgptifies a Trivial _Entry to the system.

pragma UNMAPPED (arg {arg,...)):

UNMAPPED Applies to package data in the compilation in which
the pragma appears.

The effect of this pragma is for unmapped (i.e., not consistently
mapped) allocation of package data in a compilation unit. The
arguments of this package are access types and variables to be
unmapped. The compiler shall be free to generate a compilation
unit with package data larger than the maximum allowable phase
size, but not larger than the physical memory.

Information about phase sizes and memory mapping may be found in
the Run-Time Environment Handbook.

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

LANGUAGE-DEFINED PRAGMAS

-~
This paragraph specifies implementation specific changes to those
pragmas described in Appendix B of ANSI/MIL-STD-1815A.

pragma CONTROLLED (arg):
CONTROLLED Applies only to the access type names in its argument.

No Change.
pragma ELABORATE (arg [arg,...]):-

ELABORATE Applies to the entire compilation unit in which the
pragma appears.

No Change.
pragma INLINE (arg [arg,...]):

INLINE Applies only to subprogram names in its arguments.
If the argument is an overloaded subprogram name,

the INLINE pragma applies to all definitions of that
subprogram name which appear in the same declarative

part as the INLINE pragma.

Subprograms specified as an argument to an INLINE pragma, and
which are directly recursive, are not expanded in-line at the
point of the recursive invocation. Such calls use normal Ada
subprogram calling semantics.

pragma INTERFACE (arg, arg);

INTERFACE Applies to all invocations of the named imported
subprogram.

The first argument specifies the language and type of interface to
be used in calls used to the externally supplied subprogram,
specified by the second argument. The allcwed values for the
first argument (language name) are MACRO_NORMAL and MACRO_QUICK.
MACRO_NORMAL indicates that parameters will be passed on the stack
and the calling conventions used for normal Ada subprogram calls
(see Section 3.4.14.2 of Ada/L_Intf_ Spec]) will apply.

MACRO_QUICK is used in RTLIB routines to indicate that parameters
are passed in registers.

The user must ensure that an assembly-language body container will
exist in the library before linking.

pragma LIST (arg);
LIST Applies from the point of its appearance until the

next LIST pragma in the source or included text, or
if none, the end of the compilation unit.

|

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

No Change.
pragma MEMORY_SIZE (arg);

MEMORY_SIZE Applies to the entire Program Library in which the
pragma appears.

This pragma must appear at the start of the first compilation when
creating a program library. If it appears elsewhere, a diagnostic
of severity WARNING is generated and the pragma has no effect.

pragma OPTIMIZE (arg):

OPTIMIZE Applies to the entire compilation unit in which the
pragma appears.

The argument is either TIME or SPACE. The default is SPACE. This
pragma will be effective only when the OPTIMIZE option has been
given to the compiler, as described in Appendix 20 of ALS/N_Spec.

pragma PACK (arg);

PACK Applies only to the array or record named as the
argument.

No Change.

pragma PAGE

PAGE No scope is associated with PAGE.
No Change.

pragma PRIORITY (arg):

PRIORITY Applies to the task specification in which it
appears, or to the environment task if it appears in
the main subprogram.

The argument is an integer static expression in the range 0..15,
where 0 is the lowest user-specifiable task priority and 15 is the
highest. If the value of the argument is out of range, the pragma
will have no effect other than to generate a WARNING diagnostic.

A value of zero will be used if priority is not defined. The
pragma will have no effect when not specified in a task (type)
specification or the outermost declarative part of a subprogram,
it will have no effect unless that subprogram is designated as the
main subprogram at link time.

pragma SBARED (arg);

SHARED Applies to the scope of the scalar or access
variable named by the argument.

No change.

APPENDIX F OF TEE ADA LRM FOR THE ADAUYR43 TOOLSET.

pragma STORAGE_UNIT (arg):;

STORAGE_UNIT Applies to the entire Program Library in which the
pragma appears.

This pragma must appear at the start of the first compilation when
creating a program library. If it appears elsewhere, a diagnostic
of severity WARNING is generated and the pragma has no effect.

pragma SUPPRESS (argl,argl);
This pragma is unchanged with the following exceptions:

Suppression of OVERFLOW_CHECK applies only to integer operations:
and a SUPPRESS pragma has effect only within the compilation unit
in which it appears except that suppression of ELABORATION_CHECK
applied at the declaration of a subprogram or task unit applies to
all calls or activations.

pragma SYSTEM_NAME (arg);

This pragma must appear at the start of the first compilation when
creating a program library. 1If it appears elsewhere, a diagnostic
of severity WARNING is generated and the pragma has no effect.

The only allowable value for the arqument is the enumeration
literal AN/UYK-43. For other values a WARNING diagnostic is
generated.

IO,

. APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

IMPLEMENTATION-DEFINED ATTRIBUTES

There are two implementation-defined attributes in addition to
the predefined attributes found in Appendix A of ANSI/MIL-STD-1815A.
These are defined below.

n'PTI_ID

Yields a value of type intentry.pti_entry. The prefix of this attribute
identifies a fully qualified interrupt entry. This attribute is used
to pass an entry name to a procedure.

p'PHYSICAL_ADDRESS For a prefix p that denotes a data object.

Yields a value of type system.physical_address, which corresponds to
the absolute address in physical memory of the object named by p. This
attribute is used to support operations associated with the pragma
UNMAPPED.

The following definitions augment the language-required
definitions of the predefined attributes found in Appendix A of
ANSI/MIL-STDO01815A.

T'MACHINE_ROUNDS is false.
T'MACHINE_RADIX is 16.
T'MACHINE_MANTISSA is 6.
T'MACHINE_EMAX is 63.
T'MACHINE_EMIN is -64.
T'MACHINE_OVERFLOWS is true.

APPENDIX P OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

The package SYSTEM is as follows:

- c 1987 United States Government as represented by

- the Secretary of Navy. ALL RIGHTS RESERVED.

- (The U.S. Government possesses the unlimited rights

- throughout the world for Government purposes to

- publish, translate, reproduce, deliver, perform, and
- dispose of the technical data, computer software, or
- computer firmware contained herein; and to authorize

- others to do so.)

—= REVISION HISTORY:
- 23 FEB 1988 DET

- ISTR 246 :

- 0 Added definitions for _CHK type exceptions that were

- present in the ADAVAX system but missing from ADA/L

- 25 JAN 1988 ROS

- ISCP 236 :

- 0 Added interrupt address constants and FUNCTION address_of.
- 10 Mar 1987 TCJ

- Coded from PDL

PACKAGE SYSTEM IS

--| JUSTIFICATION:

-

| SYSTEM contains the definitions of certain

--| configuration-dependent characteristics (see Section 13.7 of
-~} [ANSI/MIL-STD-1815A]) of Ada/L(43).

--|

- SYSTEM also provides system dependent logical routines
--| and conversion routines.

-1

--| Assumptions:

—-|

-] SYSTEM is targeted for Ada/L(43).
--] TYPES and DATA:
- See below.

TYPE name IS (anuyk43):;
-- only one compatible system name.

system_name : CONSTANT system.name := system.anuykd3;
-- name of current system.

storage_unit : CONSTANT := 32;
-- word-oriented systein (not configurable)

memory_size : CONSTANT := 1_048_576;
- 2"20
-- virtual memory size (not configurable).

F-8

. APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

TYPE address IS RANGE 0..system.memory_size - 1;

~ —— virtual address.

-- FOR address'SIZE USE 32;
-- virtual address is a 32-bit quantity.

null_addr : CONSTANT address := 0;
-- Indicates a NULL address.

-- Address clause (interrupt) addresses

Intercomputer_Timeout_address : CONSTANT address := l1l;
Confidence_Test_Fault_address : CONSTANT address := 12;
Data_Pattern_Breakpoint_address : CONSTANT address := 20;
Operand_Breakpcint_Match_address : CONSTANT address := 21;

DCU_Status_Interrupt_address : CONSTANT address := 23;
Instruction_Breakpoint_Match_address : CONSTANT
address := 27;
RPD_Underflow_address : CONSTANT address := 28;
I0C_Confidence_Test_Fault_address : CONSTANT
address := 37;
10C_Breakpoint_Match_address : CONSTANT address := 38;
-- Pseudo-Interrupts
System_Damage_address : CONSTANT address := 41;
Program_Damage_address : CONSTANT address := 42;
-~ I/0 Interrupts
-— User should program
- FOR entry-name USE AT system.address_of({(
- interrupt=>interrupt_name, for_channel=>
- channel number);:
- e.qg.
- USE system;

- FOR el USE AT address_of(ioc_cp_interrupt,
-—- for_channel=>5);

- (Declaration of FUNCTION address cf is found below)

IOC_CP_Interrupt : CONSTANT integer := 1000;

IOC_External Interrupt_Monitor : CONSTANT integer := 1001;
IOC_External Function_Monitor : CONSTANT integer := 1002;
IOC_Output_Data Monitor : CONSTANT integer := 1003;

IOC_Input_Data_Monitor : CONSTANT integer := 1004;
SUBTYPE IO_interrupts IS

INTEGER RANGE IOC_CP_Interrupt..IOC_Input_Data_Monitor;
SUBTYPE channel_numbers IS INTEGER RANGE 0..63;

physical_memory_size : CONSTANT := 2+%+*3];
-- maximum physical memory size
-- (not configurable)

TYPE physical_address IS
RANGE 0..system.physical_memory size - 1 ;
~- absolute address.

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

null_phys_addr : CONSTANT physical_address := 0;
-~ Indicates a NULL physical address.

-

TYPE word IS NEW INTEGER;

-- objects of this type occupy one target_computer
-- word *32 bits on the AN/UYK-413).

-~ UNCEECKED_CONVERSION must be used to interpret
-- the value for an object of this type from Ada.

min_int : CONSTANT := -((2**63)-1);
-- most negative integer.
max_int : CONSTANT := (2**63)-1:;

-- most positive integer.

max_digits : CONSTANT := 15;
-- most decimal digits in floating point constraint.

max_mantissa : CONSTANT := 31;
-- most binary digits for fixed point subtype.

fine_delta : CONSTANT
t= 2#0.0000_0000_0000_0000_0000_0000_0000_0014;
-- 2**(-3]1) is minimum fixed point constraint.

tick : CONSTANT := 4.8828125e-05;
-~ 1/20480 seconds is the basic¢ clock period.

SUBTYPE priority IS integer RANGE 0..15;
-- task priority, lowest = default = 0.

TYPE entry kind IS (normal, immediate);
-- enumeration type for use with PRAGMA
—— INTERRUPT_HANDLER_TASK.

-- The fcllowing exceptions are provided as a "convention"
-- whereby the Ada program can be compiled with all

-- implicit checks suppressed (i.e. PRAGMA SUPPRESS or

-- eguivalent) and explicit checks included as necessary
-- that RAISE the appropriate exception when required.

-- The explicitly raised execption is either handled or

-- the Ada program terminates.

ACCESS_CHECK : EXCEPTION;
DISCRIMINANT_CHECK : EXCEPTION:
INDEX_CHECK : EXCEPTION;
LENGTH_CHECK : EXCEPTION;
RANGE_CHECK : EXCEPTION;
DIVISION_CHECK : EXCEPTION;
OVERFLOW_CHECK : EXCEPTION;
ELABORATION_CEECK : EXCEPTION;
STORAGE_CHECK ¢ EXCEPTION;

F-10

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- implementation-defined exceptions.

UNRESOLVED_RE}ERENCE : EXCEPTION;
SYSTEM_ERROR : EXCEPTION:
CAPACITY_ERROR : EXCEPTION;

-~ The exception CAPACITY_ERROR is raised by the RTExec
-- when Pre-RunTime specified resouce limits are exceeded.

--| CREATED TASKS:

-} None.

--| SUBPROGRAMS AND TASKS:

FUNCTION ADDRESS_OF
-- returns the system.address of the given Class III interrupt
-- for the specified channel
(interrupt : IN IQ_inter:upts;
-- The name cf the interrupt,

for_channel : IN channel_numbers
== The channel number.

) RETURN address;
-- The address to be used in the representation

-- (address) clause.

PRAGMA INTERFACE (MACRO_NORMAL,ADDRESS_OF);

FUNCTION “AND"
-- returns the logical 32 bit 'AND' between two integers.
(operand_a : IN integer;
-- The first operand.

operand b : IN integer
-- The second operand

) RETURN integer:
-- The results.

PRAGMA INTERFACE (MACRO_NORMAL, "AND");
FUNCTION “NOT"
-~ returns the logical 32 bit 'NOT' of an integer.

(operand_a : IN integer
-- The first operand.

) RETURN integer;
==~ The results.

PRAGMA INTERFACE (MACRO_NORMAL, "NOT"):;

F-11

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

FUNCTION "OR"
~- returns the logical 32 bit 'OR' between two integers.

{(operand_a : IN integer;
-- The first operand.

operand_b : IN integer
-- The second operand

) RETURN integer;
-- The results.

PRAGMA INTERFACE (MACRO_NORMAL, "OR"):

END SYSTEM;

F-12

APPENDIX P OF THE ADA LRM FOR THE ADAUYR43 TOOLSET.

REPRESENTATION AND DECLARATION RESTRICTIONS

Representation specifications are described in Section 13 of
ANSI/MIL~-STD-1815A. Declarations are described in Section 3 of
ANSI/MIL-STD-1815A.

In the following specifications, the capitalized word SIZE

indicates the number of bits used to represent an object of the type
under discussion. The upper case symbols D, L, R, correspond to those
discussed in Section 3.5.9 of ANSI/MIL-STD-1815A.

Enumeration Types

In the absence of a representation specification for an

enumeration type “t", the internal representation of t'FIRST is 0. The
default size for a stand-alone object of enumeration type "t* is 32, so
the internal representations of t'FIRST and t‘'LAST both fall within the
range —-(2**15 - 1) .. 2**15 ~ 1.

Length specifications of the form

FOR t'SIZE USE n:
and/or enumeration representations of the form

FOR t USE aggregate;
are permitted for n in 2..32, provided the representations and the SIZE
conform to the relationship specified above, or else for n in 1..32,
provided that the internal representation of t'FIRST >= 0 and the

representation of t'LAST <= 2**(t'SIZE) -~ 1.

For components of enumeration types within packed composite
objects, the smaller of the default stand-alone SIZE or the SIZE length
specification is used.

Enumeration representations for types derived £rom the predefinecd
type standard.boclear will not be accepieC, but length
specifications will be accepted.

Arrays and Records
A length specification of the form
FOR t'size USE n;

may cause arrays and records to be packed, if required, to accommodate
the length specification. If the size specified is not large enough to
contain any value of the type, a diagnostic message of severity ERROR
is generated.

The PACK pragma may be used to minimize wasted space between
components of arrays and records. The pragma causes the type
representation to be chosen such that the storage space requirements
are minimized at the possible expense of data access time and code

F-13

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

space.

A record type representation specification may be used to

describe the allocation of compcnents in a record. Bits are numbered
0..31 from the right. Bit 32 starts at the right of the next higher
nunbered word. Each location specification must allow at least n bits
of range, where n is large encuch to hold any value of the subtype of
the component being allocated. Otherwise, a diagnostic message of
severity ERROR is cgenerated. Compcnents that are arrays, records,
tasks, or access variables may not be allocated to specified
locations. If a specification of this form is entered, & Zlagnostic
message Of severity ERROR is generated.

The alignment clause of the fcrm

AT MOD n

may only specify alignments of 1 or 2 (corresponding to word or
doubleword alignment, respectively).

If it is determinable at compile time that the SIZZ of a record

or array type or subtvpe is outside the range of stancdard.integer,

a diagncstic of severity WARNING is generated. Declaration cf such a
type or subtype wculc raise NUMEIRIC_ERROR when elabcrated.

hddress Clauses

Refer to Secticn 13.5 of ANSI/MIL-STD-1815A for a description
of address clauses. All rules and restrictions described there apply.
In addition, the following restrictions apply.

An adcdress clause designates a single task entry only, The
appearance of a cdata objec:, subprogram, package, or task unit name in
an addéress clause is not allowed, and will result in

the generation cf
a ciagncstic of severity ERROR.

An acédress clause mayv designate a single task entzv. Such an
acéress clause is allcwed cnlily within a task specifizaticn compiled
with the EXZITUTIVE compiler cpticn. The meaningful values cf the
simple expression are the allowable interrupt entry addresses as

defined in Appendix G of RTOS_PPS. The use of other values will

result in the raising of a PROGRAM_ERROR exception upon creation of the
task.

If more than one task entry is eguated to the same interrupt
entry address, the most recently executed interrupt entry registration
permanently oOverrides any previous registrations.

At most one adéress clause is allowed for a single task entry.

Specification of more than one interrupt address for a task entry is
erroneous.

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

SYSTEM GENERATED NAMES

There are no system generated names.

ADDRESS CLAUSES

Refer to Section 13.5 of ANSI/MIL-STD-1815A for a description
of address clauses. 211 rules and restrictions described there apply.
In addition, the following restrictions apply.

An address clause designates a single task entry only. The
appearance of a data object, subprogram, package, or task unit name in
an address clause is not allowed, and will result in the generation of
a diagnostic of severity ERROR.

An address clause may designate a single task entry. Such an

address clause is allowed only within a task specification compiled
with the EXECUTIVE compiler option. The meaningful values of the
simple_expression are the allowable interrupt entry addresses as
defined in Appendix G of RTOS_PPS. The use of other values will

result in the raising of a PROGRAM_ERROR exception upon creation of the
task.

If more than one task entry is eguatec to the same interrupt
entry address, the most recently executed interrupt entry registration
permanently overrides any previous registrations.

At most one address clause is allowed for a single task entry.
Specification of more than one interrupt address for a task entry is
erroneous.

UNCHECKED_CONVERSION

Refer to Section 13.10.2 of ANSI/MIL-STD-1815A for a

description of UNCHECKED_CONVERSION. It is erroneous if the

User Written_Ada_Program performs UNCEECKED_CONVIRSION when the scurce
and target objects have cdifferen: sices.

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

INPUT/OUTPUT

1/0 in Ada/L is performed solely on external files. No allowance is

provided in the I/0 subsystem for memory resident files (i.e., files which do
not reside on a peripheral device). This is true even in the case of temporary
files. With the external files residing on the peripheral devices, Ada/L

makes the further restriction that only one file may be open on an individual
RD358 tape unit at a time.

The naming conventions for external files in Ada/L are of particular
importance to the user. All of the system-dependent information needed by the
I1/0 subsystem about an external file is contained in the file name. External
files may be named using one of three file naming conventions: standard,
temporary, and user-derived.

Standard File Names:

The standard external file naming convention used in Ada/L identifies the
specific location of the external file in terms of the physical device on which
it is stored. For this reason, the user should be aware of the configuration of
the peripheral devices on the AN/UYK-43 at a particular user site.

Standard file names may be six to twenty characters long; however, the first six
characters follow a predefined format. The first and second characters must be
either "DK", "MT", or “"TT", designating an AN/UYH-3(V) Recorder-Reproducer

Set Magnetic Disk, the RD-358 Magnetic Tape Subsystem, or the AN/USQ-69

Data Terminal Set, respectively.

The third and fourth characters specify the channel on which the peripheral
device is connected. Since there are sixty-four channels on the

AN/UYK-43, the values for the third and fourth positions must lie in the
range "00" to "63".

The range of values for the fifth position in the external file name (the unit
number) depends upon the device specified by the characters in the first and
second positions of the external file name. If the specified peripheral dev:ice
is the AN/UYH-3 magnetic disk drive, then the character in the fifth positicn
must be one of the characters "“0", "1", "2", or "3"., This value determines
which of the four disk units available on the AN/UYH-3 is to be

accessed. If the specified peripheral device is the RD-358 magnetic tape
drive, the character in the fifth position must be one of the characters "Q",
=1*, "2", or "3". This value determines which of the four tape units

available on the RD-358 is to be accessed. If the specified peripheral

device is the AN/USQ-69 militarized display terminal, the character in

the fifth position must be a "0". This is the only allowable value for

the unit number when the AN/USQ-69 is connected to a paralled I/0 channel.
This is because the AN/USQ-69 may have only one unit on a parallel channel.

The colon, ":", is the only character allowed in the sixth position. If any
character other than the colon is in this position, the file name will be
considered non-standard and the file will reside on the default device defined
during the elaboration of CONFIGURE_IO.

Positions seven through twenty are optional to the user-written Ada program and
may be used as desired. These positions may contain any printable character the

F-16

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

user chooses in order to make the file name more intelligible. Embedded blanks,
however, are not allowed,

The location of an external file on a peripheral device is thus a function of
the first six characters of the file name regardless of the characters that
might follow. For example, if the external file "MT000:0ld_Data” has been
created and not subsequently closed, an attempt to create the external file
“MT000:New_Data"” will cause the exception DEVICE_ERROR (rather than
NAME_ERROR or USE_ERROR) to be raised because the peripheral device on
channel "00" and cartridge "0" is already in use.

The user is advised that any file name beginning with "xxxxx:" (where x
denotes any printable character) is assumed to be a standard external

file name. If this external file name does not conform to the Ada/L
standard file naming conventions, the exception NAME_ERROR will be raised.

Temporary File Names:

Section 14.2.1 of {ANSI/MIL-STD-1815A) defines a temporary file to be an
external file that is not accessible after completion of the main subprogram.
If the null string is supplied for the external file name, then the external
file is considered temporary. In this case, the high level I/0 packages
internally create an external file name to be used by the lower level I/0
packages. The internal naming scheme used by the I/0 subsystem is a function of
the type of file to be created (text, direct or sequential), the temporary
nature of the external file, and the number of requests made thus far for
creating temporary external files of the given type. This scheme is consistent
with the requirement specified in [ANSI/MIL-STD-1815A) that all external file
names be unique.

The first three characters of the file name are "TEX",

*DIR", or "SEQ". The next six characters are “_TEMP_". The remaining

characters are the image of an integer which denotes the number of temporary

files of the given type successfully created. Therg are two types of temporary
files; one is used by SEQUENTIAL_IO@T’%:B the other is used b
by TEXT_IO.

For instance, the temporary external file name "TEX_TEMP_10"
would be the name of the tenth temporary external file successfully created
by the user-written Ada program through calls to TEXT_IO.

User-Derived File Names:

A random string containing a sequence of characters of length one to twenty may
also be used to name an external file. External files with names of this nature
are considered to be permanent external files. The user is cautioned to refrain
from using names which conform to the scheme used by the I/0 subsystem to name

temporary external files (see subsection (b) above).

Ada/L restricts the creation of files to those of mode "out_file."
In the case of the AN/USQ-69, where one file of mode "in_file" and one file

of mode "out file" may be open on the same terminal, the user must open two
separate files in order to read from and write to the terminal.

F-17

APPENDIX F OF TEE ADA LRM FOR THE ADAUYR43 TOOLSET.

If the peripheral device is an RD-358, the file is assumed to be an
Ada/L compatible file, including the file information header block
unless a foreign tape format is specified by a form parameter with a
NOHEAD option. If the underlying 1/0 system is expecting an Ada/L
compatible header record and none is found, the tape is rewound and the
exception DATA_ERROR is raised. If the peripheral device is an

RD-358 and the tape format is foreign, the file must be opened with

the form parameter specifying the NOHEAD option. This suppresses the
check for Ada/L compatibility and assumes that no header record exists
for the file.

Failing to close a file on a terminal has no adverse effects.

If the user fails to close a file on the magnetic tape prior to the
end of the main subprogram, the tape may not be positioned correctly for
future tape operations.

Issuing a CREATE or OPEN with the form option NOREWIND after loading
the tape and manually placing the tape in an arbitrary position will also
give unpredictable results.

Failure to close a file on a magnetic disk prior to the end of the
main subprogram may result in loss of date. Since the disk 1/0 is
buffered, data may reside in local buffers which could be lost if the
buffers are not flushed prior to the completion of the main
subprogram.

I/0 Arguments:

The I/0 arguments allow a user access to the features of the
RD-358/UYK tape drive. Specifically the arguments control the
positioning and formatting of the tape prior to I/0 operations to
the tape. This section describes the appropriate use of these 1/0
arquments and the consequences of inappropriate use.

The RD-358/UYK tape drive has been implemented to allow several
different formatting/positioning options. The user selects the
arquments for a particular file and conveys them to the I/0 System
via the FORM parameter.

The FORM parameter is a string literal of which a maximum cf
twenty characters is processed. I1f the supplied form string is longer
than the maximum allowed form string (20 characters), the exception
USER_ERROR will be raised. The string literal is interpreted
as a sequence of arguments. If the user wishes to utilize the
default arguments, a FORM parameter need not be supplied.

Only the first two arguments within the string are processed.
All following characters or arguments will cause the USE_ERROR to be
raised. The arguments are not case sensitive. The arguments must be
separated by at least one delimiter. A legal delimiter consists of a
comma or blank. Extra delimiters are ignored. Of the recognized
arguments, at most one formatting and one positioning arguments are
allowed. If conflicting arguments are used, the exception USE_ERROR

F-18

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

will be raised.

The two procedures which use the form parameter are CREATE
and OPEN. For the CREATE procedure any of the possible arguments
may be applied. The APPEND argument (discussed below) is not legal
for the OPEN procedure; if used with an OPEN procedure a USE_ERROR
exception will be raised.

Positioning arguments allow control of tape before its use.
The following positioning arguments are available to the user:

a. REWIND - specifies that a rewind will be performel prior
to the requested operation.

b. NOREWIND - specifies that the tape remains positioned as is.

c. APPEND -~ specifies that the tape be positioned at the
logical end of tape (LEOT) prior to the requested
operation. The LEOT is denoted by two consecutive
tape_marks.

The formatting argument specifies information about tape format.
If a formatting argument is not supplied, the file is assumed to contain
a format header record determined by the ALS/N I/0 system.
The following formatting argument is available to the user:

a. NOHEAD - specifies that the designated file has no header
record. This argument allows the reading and
writing of tapes used on computer systems using
different header formats.

Although I/0 arguments affect the CREATE and OPEN procedures in a
similiar manner, each procedure has unique situations that it handles.
These distinctive characteristics of the CREATE procedures are as follows:

a. If a file is created with a REWIND argument, the tape
rewinds to the beginning of tape before the CREATE operation
takes place. No information following the current file will
be accessible to the user.

b. If a file is created with the NOREWIND argument, the file
is created with the tape positioned as is. No information
following the current file will be accessible to the user.
If a file is created with no positioning argument, the
default is NOREWIND.

c. If a file is created with argument APPEND, the tape is
forwarded to the LEOT before the CREATE operation takes
place.

d. If an attempt to create a file with argument APPEND on a
blank tape is made, a DEVICE_ERROR exception will be raised.

e. If a file is created with argument NOHEAD, the writing of
a header record to tape is suppressed. All future references

F-19

APPENDIX P OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

to the file must be done via positioning of the tape, not
by name. -~
f. Use of the positioning argument may allow multiple files
with the same name to be created on the tape. Invoking the
CREATE procedure will not cause a search for an existing file
of the same name.

A description of the OPEN procedure's distinctive characteristics are
as follows:

a. If a file is opened with mode out_file, the user is allowed
to write to the file. But, all data in the current file and
all data in succeeding files is lost if there is an actual write
to the opened file (i.e. the data is not lost as a result of
the OPEN request but as a result of a WRITE reguest). The
LEOT is written after each write to tape, thus causing all
data following the LEOT tape mark to be inaccessible.

b. If a file is opened with argument REWIND, and the file
contains a header record, the tape is rewound to the beginning
of tape before searching for the specified file. The first
file with the specified name is opened. If a file is opened
with no positioning argument, the default is REWIND,

c. If a file is opened with argument NOREWIND and the file contains
a header record, the tape remains positioned as is. The
searching for the specified file begins from the current position
of the tape. The first file with the specified name is opened.
If no file of the specified name exists after the current
position, the exception NAME_ERROR will be raised.

d. If a file is opened with arguments REWIND and NOHEAD, the
tape is rewound to the beginning of tape and the first file
on the tape is opened.

e. If a file is opened with argument NOREWIND and NOHEAD, the file
at which the tape is currently positioned is opened.

f. If a file is opened with the default arguments (i.e. the
file contains a header record and is rewound to the beginnng
of tape) the first file with the specified name is opened.

Other distinctive characteristics of the Tape I/0 subsystem are
as follows:

a. If NOHEAD argument is specified it is assumed that NONE of
the files on the tape has a file header. By default
if the NOHEAD argument has not been specified all files on
the tape are assumed to contain file headers. If a mixture
of files with headers and without headers occur on the same
tape, results are unpredictable.

b. The CLOSE procedure positions the tape at the start of the
following file, if one exists, or else at the LEOT.

F-20

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

c¢. The results of the DELETE procedure are affected by the
formatting arquments. If the NOHEAD argument was specified
when the file was opened or created, then the LEOT is written.
Any files following the file being deleted are also deleted and
are no longer accessible to the user. If the file does contain
a header record the file is marked as deleted and is no longer
accessible to the user. No other files are affected.

d. The low tape sensor is treated as physical end of tape. No
reading OR writing is permitted beyond this point.

The maximum permissible length of an enumeration value is the number
of characters that will fit on a single line or 251, which ever is smaller.

The user, if choosing to perform 1/0 with an unbounded line length, should

be mindful that the size of the internal text buffers is limited to 1024
characters. Successive calls to TEXT_IC.PUT can be made so long as the
cumulative number of characters passed as arguments does not exceed the buffer
size. If the buffer size is exceeded, the exception USE_ERROR is raised. A
call to TEXT_IO.NEW_LINE or TEXT_IO.PUT_LINE empties the buffer by

requesting that the low-level portion of the I/O subsystem write the contents
of the buffer to the external file. The user must remember to count all of the
characters already in the text buffer in addition to those passed in the
argument to TEXT_IO.PUT_LINE in determining whether or not the size of the
text buffer will be exceeded. If the user is performing I/0 on files with a
bounded line length, TEXT_IO monitors the buffer length automatically, writing
the contents of the buffer to the external file whenever the length of the
buffer reaches the limit specified by a prior call to

TEXT_I0.SET_LINE_LENGTH.

An area of special concern to the user is the reading of complex (i.e.,
composite) data types through calls to an instantiation of SEQUENTIAL_IO.READ.
[ANSI/MIL-STD-1815A) permits an implementaticn not to raise the exception
DATA_ERROR during input operations from sequential files for which the data
type is complex. Ada/L does not support the checking of data that is read

from a sequential file against the instantiated element type.

Ada/L tape device crivers limit their support to peripherzl egquipment in
the following ways: no more than one RD-358 device per channel is allowed;
no more than one open file per tape and no more than four tapes per device
is permitted.

The Ada/L terminal device driver limits its support to peripheral equipment
in the following ways: no more than eight AN/USQ-69 devices per channel is
allowed; and no more thar one input file and one output file can be attached
to a single terminal.

Ada/L disk device drivers limit their support to peripheral equipment
in the following ways: no more than one UYH-3 device per channel is
allowed; and no more than four disks units per device. However, more
than one open file is permitted on a disk.

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

'Y X232222X22X22222X23 2223222223222 22222222 2222222222222 R 2

PACRAGE TEXT_IO

-~

-=- C 1987 United States Government as represented by
- the Secretary of the Navy. ALL RIGHTS RESERVED.

- (The U.S. Government possesses the unlimited rights
- throughout the world for government purposes to

-- publish, translate, reproduce, deliver, perform, and
-- dispose of the technical data, computer software, or
-~ computer firmware contained herein; and to authorize
-~ others to do so.)

— Revision History:

- 3 Feb 1987 JGR
- Package Specification Created.

WITH 10_EXCEPTIONS, ADA_RTLIB, 10O_DEFS, FILE_IO;
PACKAGE TEXT_IO IS

PRAGMA PAGE; -- In Package TEXT_IO Specification
--| JUSTIFICATION:

—| TEXT_IO provides input and output services for textual
--| files including creation, deletion, opening, and closing (as
~-] described in Section 14.3.10 of [ANSI/MIL-STD-1815A]).

- TEXT_IO also will make use of the Ada feature to overload
--| subprogram names. In the cases where overloading is used,
--| each subprogram will be listed separately in its entirety.

--| paTa:

- Data associated with this package will include the type
--| declarations for COUNT, POSITIVE_COUNT, FIELD, NUMBER_BASE,
~-| TYPE_SET, FILE_MODE and the limited private type FILE_TYPE.
--| The FILE_TYPE is an access to the FILE_CONTROL_BLOCK, also
--| declared in this package specification. Object for the

--| standard and current default input/output FILE_CONTROL_BLOCKs
—-| are declared in this package specification.

TYPE file_type IS LIMITED PRIVATE;
-- Forward reference of the private type.

TYPE file_mode IS
-- The enumerations used to indicate whether a file is set

F-22

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- for input or output.

(in_file, ~- File is set for read only (input).
out_file -- File is set for write only (output).
):

TYPE count IS RANGE 0..INTEGER'LAST;
-- Implementation-dependent.
-- This is the maximum allowable range on columns, lines,
-- and pages. 2Zero is used here to indicate special case of
-- an empty item.

SUBTYPE positive_count IS text_io.count
RANGE 1..text_io.count'LAST;
-- Used to establish the allowable range for columns, lines,
-- pages, and the current indices of each.

unbounded : CONSTANT text_io.count := 0;
-- The line and page lengths used for initialization
== in the private implementation-dependent
-- declarations.

SUBTYPE field IS INTEGER RANGE 0..INTEGER'LAST;
-- Implementation-dependent.
-- This is the allowable range for widths in the type fields.

SUBTYPE number_base IS INTEGER RANGE 2..16;
-- Allowable range of numeric bases used in based literal
~- integers.

TYPE type_set IS
-- Determines which character set is used for identifiers.

(lower_case, -- Lower case characters.
upper_case -- Upper case characters.
)i

--| INITIALIZATION:

--] The elaboration of this package will initialize the

--] standard input and output devices of the Ada/L environment
--| and set the current input and output devices to the standard
--| input and output devices.

--| CREATED TASKS:

e | None.

--| NESTED PACRAGES:

-~ TEXT_I0.INTEGER_IO,
- TEXT_IO.FLOAT_IO,

--| TEXT_IO.FIXED_IO,

-] TEXT_I0.ENUMERATION_IO

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

--| SUBPROGRAMS AND TASKS:

PROCEDURE CREATE
~- will create a file for text input-output.
(file : IN OUT text_io.file_type:;
—= The pointer to the File_Control_Block.

mode : IN text_io.file_mode := text_io.out_file;
-- Specifies the direction of data transfer.

name : IN STRING := "*;
-— Holds the external name of the file.

form : IN STRING := *"
-~ System-dependent file characteristics.

PROCEDURE OPEN
~- will a file for text input-output.
(file : IN OUT text_io.file_type:
-- The pointer to the File_Control_Block.

mode : IN text_io.file_mode;
-- Specifies the direction of data transfer.

name : IN STRING;
-- Holds the external name of the file.

form : IN STRING := "*
-- System~dependent file characteristics.

PROCEDURE CLOSE
-~ will close the text input-output file.
(file : IN OUT text_io.file_type
-- The pointer to the File_Control_Block.

PROCEDURE DELETE
-- will delete the text input-output file.
(file : IN OUT text_io.file_type
-- The pointer to the File_ Control_Block.

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

PROCEDURE RESET -~
-~ will reset a text input-output file and change its mode
-- to the requested mode.
(f£ile : IN OUT text_io.file_type:
‘ -- The pointer to the File_Control_Block.

mode : IN text_io.file_mode
-=- The new mode of the file once it is reset.

PROCEDURE RESET
-- will reset a text input-output file but will not change
-- its mode.
(file : IN OUT text_io.file_type
~- The pointer to the File_Control_Block.

FUNCTION MODE
-- will return the mode of the given text input-output file.
{file : IN text_io.file_type
-- The pointer to the File_Control_Block.

) RETURN text_io.file_mode;
-- Designator for the mode of the file.

FUNCTION NAME
-- will return the name of the given text input-output file.
(file : IN text_io.file_type
~- The pointer to the File_Control_Block.

) RETURN STRING;
-- The external name of the file.

FUNCTION FORM
-- will return the form of the given text input-output file.
(file : IN text_io.file_type
-~ The pointer to the File Control_Block.

) RETURN STRING:
-~ The form of the file.

PUNCTION IS_OPEN
~- will return the status of the given input-output file.
(file : IN text_io.file_type
-- The pointer to the File_Control_Block.

) RETURN BOOLEAN;

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOCLSET.

-- The pointer to the File_Control_Block.
to : IN text_io.éount
-- The requested new line length maximum.

):

PROCEDURE SET_LINE_LENGTH
-- will set the maximum line length of the default text
-- output file to the given length.
(to : IN text_io.count
-- The requested new line length maximum.

PROCEDURE SET_PAGE_LENGTH
-- will set the maximum page length of the given text output
-~ file to the given length.
(file : IN text_io.file_type:;
== The pointer to the File_Control_Block.

to : IN text_io.count
-- The requested new page length limit.

PROCEDURE SET_PAGE_LENGTH
~-- will set the maximum page length of the default text
-- output file to the given length.
({to : IN text_io.count
-- The requested new page length limit.

FUNCTION LINE_LEINGTH
-- will return the maximum line length for the given text
-- output file.
{file : IN text_io.file_type
-~ The pointer to the File_Control_Block.

) RETURN text_io.count;

~- The maximum line length.

FUNCTION LINE_LENGTH
-~ will return the maximum line length for the default text
-- output file.

RETURN text_io.count:
-- The maximum line length.

F-27

APPENDIX F OF THE ADA LRM FOR TEE ADAUYK43 TOOLSET.

FUNCTION PAGE_LENGTH _
-- will return the maxxmum page length for the given text
-- output file.
(file : IN text_io.file_type
== The pointer to the File_Control Block.

) RETURN text_io.count;
-- The maximum page count.

FUNCTION PAGE_LENGTH
-~=- will return the maximum page length for the default text
-- output file.

RETURN text_io.count;
-- The maximum line length.

PROCEDURE NEW_LINE
-~ will put the requested amount of new lines in the given
-- text output file.
(file : IN text_jo.file_type;
-- The pointer to the File_Control_Block.

spacing : IN text_io.positive_count := 1
-- Number of lines to advance. Initialized to
~- one for a default value. Hence, this
-- parameter is optional.

PROCEDURE NEW_LINE
-~ will put the reguested amount of new lines in the default
~- text output file.
(spacing : IN text_io.positive_count := 1
-- Number of lines to advance. 1Initialized to
-— one for a default value. Hence, this
-- parameter is optional.

):

PROCEDURE SKIP_LINE
-- will skip the requested amount of lines in the given text
-- input file.
(file : IN text_io.file_type;
-- The pointer to the File Control Block.

spacing : IN text_io.positive_count := 1
=- The number of lines to be advanced in the
-- file. The default of one is set to ensure
-= that at least an advance to the beginning
~= of the next line is achieved.

APPENDIX F OF TEE ADA LRM FOR THE ADAUYK43 TOOLSET.

PROCEDURE SKIP_LINE

—- will skip the requested amount of lines in the default

-- text input file.

(spacing : IN text_io.positive_count := 1

-- The number of lines to be advanced in the
-- file. The default of one is set to ensure
-- that at least an advance to the beginning
-- of the next line is achieved.

FUNCTION END_OF_LINE
-—- will indicate if the end of the line has been reached for
-- the given text input file.
(file : IN text_io.file_type
~- The pointer to the File_Control_Block.

) RETURN BOOLEAN;
-- Indication of end of line found.

FUNCTION END_OF_LINE
-~ will indicate if the end of the line has been reached for
-~ the default text input file.

RETURN BOOLEAN;
-~ Indication of end of line found.

PROCEDURE NEW_PAGE
-- will end the current page and start a new page in the
-- given text output file.
(file : IN text_io.file_type
-- The pointer to the File Control_Block.

PROCEDURE NEW_PAGE;
-- will end the current page and start a new page in the
-- default text output file.

PROCEDURE SKIP_PAGE
-- will skip to the beginning of the next page in the given
~- text input file.
(file : IN text_io.file_type
-- The pointer to the File_Control_Block.

):

F-29

ey

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

PROCEDURE SKIP_PAGE;
-- will skip to the beginning of the next page in the
-- default text input file.

FUNCTION END_OF_PAGE
-- will indicate if the end of the page has Lz2en reached
-- for the given text input file,
(file : IN text_io.file_type
-— The pointer to the File_Control_Block.

) RETURN BOOLEAN:;
-- Indication of end of line found.

FUNCTION END_OF_PAGE
~- will indicate if the end of the page has been reached for
-- the default text input file.

RETURN BOOLEAN:;
~- Indication of end of line found.

FUNCTION END_OF_FILE
~- will indicate if the end of the file has been reached for
-- the given text input file.
(file : IN text_io.file_type
-~ The pointer to the File_Control_Block.

) RETURN BOOLEAN;
-- Indication of end of file found.

FUNCTION END_OF_FILE
-- will indicate if the end of the file has been reached for
-- the default text input file.

RETURN BOOLEAN:;
~- Indication of end of file found.

PROCEDURE SET_COL
-- wiil set the current column to read-write to the given
—- column in the given text input-output file.
(file : IN text_io.file_type;
-- The pointer to the File_Control_Block.

to ¢ IN text_io.positive_count
-- The new column to set the position pointer to.

PROCEDURE SET_COL

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- will set the current column to read-write to the given
-- column in the default text input~output file.
(to : IN text_io.positive_count
—- The new column to set the position pointer to.

PROCEDURE SET_LINE
-- will set the current line to read-write to the given line
-- in the given text input-output file.
(file : IN text_io.file_type;
-- The pointer to the File_Control_Block.

to : IN text_io.positive_count
-- The new line to set the position pointer to.

PROCEDURE SET_LINE
-- will set the current line to read-write to the given line
-- in the default text input-output file.
(to : IN text_jio.positive_count
-~ The new line to set the position pointer to.

FUNCTION COL
-- will return the current column position for the given text
-- input-output file.
(file : IN text_io.file_type
-- The pointer to the File_Contrecl_Block.

) RETURN text_io.positive_count;
-- The value of the current column index.

FUNCTION COL
-- will return the current column position for the default
-- text input-output £ile.

RETURN text_io.positive_count;:
~-- The value of the current column index.

FUNCTION LINE
-- will return the current line position for the given text
-- input-output file.
(file : IN text_jo.file_type
-- The pointer to the File_Control_Block.

) RETURN text_io.positive_count;
-- The value of the current line index.

F-31

5

APPENDIX F OF THE ADA LRM FOR THE ADAUYR43 TOOLSET.

~-

FUNCTION LINE
-- will return the current line position for the default text
-- input-output file.

RETURN text_io.positive_count;
-—- The value of the current line index.

FUNCTION PAGE
-- will return the current p&ge number for the given text
-=- input-output file.
(file : IN text_io.file_type
-- The pointer to the File_Control_Block.

) RETURN text_io.positive_count;
-- The current page number.

FUNCTION PAGE
-- will return the current page number for the default text
-= input-output file.

RETURN text_io.positive_count;
-- The current page number.

PROCEDURE GET
-- will read a character from the given text input file.
(file : IN text_io.file_type;
-- The pointer to the File_Control_Block.

item : OUT CHARACTER
-— The character to return.

PROCEDURE GET
-- will read a character from the default text input file.
(item : OUT CHARACTER
~- The character to return.

PROCEDURE PUT
-- will write a character to the given text output file.
(file : IN text_io.file_type:
-- The pointer to the File_Control_ Block.

item : IN CHARACTER
~- Character to write to the file.

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

'ROCEDURE PUT

- will write a character to the default text output file.
(item : IN CHARACTER

~=- Character to write to the File_Control_Block.

JROCEDURE GET
-- will read a string from the given text input file.
(file : IN text_io.file_type:;
-- The pointer to the File_Control_Block.

item : OUT STRING
-~ The string to return.

2ROCEDURE GZ=U
-- will reac a string from the cefault text input file.
{(item : CUT STRING
-- The string to return.

PROCEDURE PUT

-- will write a string to the given text output file.
file : IN text_io.file_type;

-- The pointer to the File_Ccntrol_ Block.

.

ot

r v
(S5

[To RN}

in

)
|
0 0

)i

PROCEDURE PUT

—— will write a string to the default text output file.
(item : IN STRING

~- String to write to the File_Control_Block.

PROCEDURE GET_LINE

-- will read the remaining portion of a line from the given
-- text input file.
(file : IN text_io.file_type:
-~ The pointer to the File_Control_Block.

F-33

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

item : OUT STRING:
-~ The string to return.

last : OUT NATURAL
-- An index containing a value such that
-- item{last) is last character read.

PROCEDURE GET_LINE
-- will read the remaining portion of a line from the
-- default text input file.
(item : OUT STRING;
== The string to return.

last : OUT NATURAL
~-- An index containing a value such that
-- item(last) is last character read.

PROCEDURE PUT_LINE
-- will write a line to the given text output file and
-- advance to the next line.
(file : IN text_io.file_type;
-~ The pointer to the File_Control_Block.

item : IN STRING
--~ String to write to the file.

PROCEDURE PUT_LINE
~- will write a line to the default text output file and
-- advance to the next line.
(item : IN STRING
-~ String to write to the File_Control_Block.

):
PRAGMA PAGE; ~= In Package TEXT_IO.INTEGER_IO Specification

-~ C 1987 United States Government as represented by
-- the Secretary of the Navy. ALL RIGHTS RESERVED.

- (The U.S. Government possesses the unlimited rights

- throughout the world for government purposes to

- publish, translate, reproduce, deliver, perform, and
- dispose of the technical data, computer software, or
-- computer firmware contained herein; and to authorize
- others to do so.)

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- Revision History:

- 3 Feb 1987 JGR
- Package Specification Created.
GENERIC

TYPE num IS RANGE <>;
-- The type and range used upon instantiation of the
-- INTEGER_IO package.

PACKAGE INTEGER_IO IS
PRAGMA PAGE; == In Package TEXT_IO.INTEGER_IO Specification

--| JUSTIFICATION:

-] INTEGER_IO contains the subprograms necessary for the
--| user to perform Text I/0O for integer types (as described in
--| section 14.3.7 of [ANSI/MIL-STD-1815A}). INTEGER_IO is a
--| generic package, internal to the body of TEXT_IO and must be
--| instantiated prior to its use. INTEGER_IO primarily allows
--| the reading (getting) and writing {(putting) of integers of
--| the type INTEGER_IO.NUM either with respect to strings or
~~| with respect to text files.

-] INTEGER_I0 also will make use of the Ada feature to
—-| overload subprogram names. In the cases where overloading
--| is used, each subprogram will be listed separately in its
--| entirety.

--| DATA:

-] Generic package level declarations for input-output of
--| integer types.

default width : text_io.field := num'WIDTH;
== The default integer width. Initialized to
-- the width of the instantiated type., though
-- the user may reset t0 the desired width.

default_base : text_io.number_base := 10;
-~ The default base width., 1Initialized to the
~-- width of the instantiated type, though the
-~ user may reset to the desired width.

--| CREATED TASKS:

F-35

1 e

. APPENDIX P OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

== None.

--| INITIALIZATION:

| The data of this package specification is initialized to
--| a default integer type NUM with a default width large enough
--| to support the range of NUM and a default base of ten.

-] Elaboration of this package will raise an USE_ERROR if
~~| the size of NUM exceeds the implementation dependent size
--| of a long_integer.

~-| SUBPROGRAMS AND TASKS:

PROCEDURE GET
-- will read an integer from the given text input file.
({file : IN text_io.file_type;
~- Pointer to the specified file to read from.

item : OUT num;
~- The generic integer type result.

width : IN text_io.field := 0
~- amount of characters to read. The default is
~- zero and will read the entire string.

PROCEDURE GET
-- will read an integer from the default text input file.
(item : OUT num;
-- The generic integer type result.

width : IN text_io.field := 0
—-- Amount of characters to read. The default is
-- zero and will read the entire string.

PROCEDURE PUT
-- will write an integer to the given text input file.
(£ile : IN text_io.file_type:;
-- Pointer to the specified file to write to.

item : IN num;
~- The generic integer type to write.

F-36

st

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

width : IN text_io.field := default_width;
-- The width of item. 1Initialized to the width
-- of the instantiated integer type. May be
-- reset by the user.

-
1

base text_io.number_base := default_base
-- The base of item. 1Initialized to the default

-- base 10, but may have ranges 2..16.

PROCEDURE PUT
—- will write an integer to the default text input file.
(item : IN num;
~- The generic integer type to write.

width : IN text_io.field := default_width;
-~ The width of item. Initialized to the width
-- of the instantiated integer type. May be
~-- reset by the user.

base : IN text_io.number_base := default_base
-- The base of item. Initialized to the default
-- base 10, but may have ranges 2..16.

PROCEDURE GET
-- will read an integer form the given text string.
(from : IN STRING;
-~ The string to read from.

item : OUT num;
-- The generic integer type result.

last : OUT positive
-- Index of the last character read
-- from the string.

PROCEDURE PUT
-- will write an integer 0 the given text string.
(to ¢ OUT STRING:;
-- The string containing the integer image.

item : IN num;
-=- The generic integer type to write.

base : IN text_io.number_base := default_base
-- The base of item. Initialized to the default
~-=- base 10, but may have ranges 2..16.

F-37

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

)i ~
END INTEGER_I1O;
PRAGMA PAGE; -- In Package TEXT_IO.FLOAT_IO Specification

-- C 1987 United States Government as represented by
- the Secretary of the Navy. ALL RIGHTS RESERVED.

- (The U.S. Government possesses the unlimited rights

- throughout the world for government purposes to

-— publish, translate, reproduce, deliver, perform, and
- dispose of the technical data, computer software, or
- computer firmware contained herein; and to authorize
- others to do so.)

-- Revision History:

- 3 Feb 1987 JGR
-- Package Specification Created.

GENERIC

TYPE num IS DIGITS <>;
-- The type and range used upon instantiation of the
-- FLOAT_IO package.

PACKAGE FLOAT_IO IS
PRAGMA PAGE; -- In Package TEXT_IO.FLOAT_IO Specification

--| JUSTIFICATION:

-

- FLOAT_IO contains the subprograms necessary for the user
--| to perform Text_IO for floating point types (as described in
--| Section 14.3.8 of [ANSI/MIL-STD-1815A]). FLOAT_IO is a

-~| generic package, internal to the body of TEXT_IO and must be
--| instantiated prior to its use. FLOAT_IO primarily allows
--| the reading (getting) and writing (putting) of floating

--| point values of the type FLOAT_IO.NUM either with respect to
--] strings or with respect to text files.

- FLOAT_IO also will make use of the Ada feature to ove:load

--| subprogram names. In the cases where overloading is used,
--| each subprogram will be listed separately in its entirety.

--| paTa:

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-1 Generic package level declarations for input-output of
--| floating point types:-

default_fore

text_io.field := 2;
—= The default width of the whole number portion
-- of the floating point type.

default_aft : text_jo.field := num'DIGITS-1;
== The default width of the decimal portion of the
-- floating point type.

default_exp : text_io.field := 3;
-== The default width of the exponent field
-- following the character E when a nonzero
-- exponent is provided.

--| CREATED TASKS:

e None.

--| INITIALIZATION:

--| The data of this package specification is initialized to
--| a default floating point type NUM with a default FORE of two
--| characters (the decimal representation), a default AFT

~-| large enough to support the range of NUM (the fractional

--| representation), and a default EXP of three characters (the
--| exponent representation).

--| SUBPROGRAMS AND TASKS:

PROCEDURE GET
-~ will read a floating point real from the given text
-~ input file.
(file : IN text_io.file_type;
—- Pointer to the specified file to read from.

item : OUT num;
-- The generic floating point type result.

width : IN text_io.field := 0
== Amount of characters to read. The default is
-- zero and will read the entire string.

PROCEDURE GET
-- will read a floating point real from the default text

F-39 -~

APPENDIX F OF THE ADA LRM FOR THE ADAUYR43 TOOLSET.

-= input file.
(item : OUT num;
-- The generic floating point type result.

width : IN text_io.field := 0
-- Amount of characters to read. The default is
-- zero and will read the entire string.

PROCEDURE PUT

-- will write a flocating point real to the given text input
-- file.

(file : IN text_io.file_type;
-- Pointer to the specified file to write to.

item : IN num;
-- The generic floating point type to write.

fore : IN text_io.field := default_fore;
-- The width of the whole number portion cf the
-~ floating point value. 1Initialized to the width
-- of two. May be reset by the user.

aft

-
4

text_io.field := default_afti;

-- The width of the decimal portion of the

~-- floating point value. 1Initialized to the

-- default width of the number of digits in the
-- instantiated type minus one. May be reset by
-- the user.

exp : IN text_ijo.field := default_exp
-~ The width of the exponent field following the
~- character E. Initialized tc the width of
~- three. May be reset by the user.

PROCEDURE PUT

-- will write a floating point real fo the default text input
-- file.

(item : IN num;
-- The generic floating point type to write.

fore : IN text_io.field := default_fore;
-~ The width of the whole number portion of the
-- floating point value. 1Initialized to the width
-~ of two. May be reset by the user.

aft

-
4

text_io.field := default_aft;:

-- The width of the decimal portion of the

-- floating point value. 1Initialized to the

—- default width of the number of digits in the

F-40

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- instantiated type minus one. May be reset by
-- the user.

()
4

text_io.field := default_exp

-- The width of the exponent field following the
-- character E. Initialized to the width of

-- three. May be reset by the user.

exp

PROCEDURE GET
-- will read a floating point real from the given text string.
(from : IN STRING;
== The string to read from,

item : OUT num;
-- The generic floating point type result.

last : OUT positive
-- Index of the last character read from
-- the string.

)

PROCEDURE PUT
-- will write a floating point real to the given text string.
(to : OUT STRING;
-- The string containing the floating point image.

item : IN num;
-- The generic floating point type to write.

aft : IN text_io.field := default_aft;
-- The width of the decimal portion of the
-- floating point value. Initialized to the
-- default width of the number of digits in the
-- instantiated type minus cne. May be reset by
-- the user.

exp : IN text_io.field := default_exp
-- The width of the exponent field following the

-- character E. 1Initialized to the width of
-- three. May be reset by the user.

):
END FLOAT_IO;
PRAGMA PAGE; -- In Package TEXT_IO.FIXED_IO Specification

-- C 1987 United States Government as represented by
- the Secretary of the Navy. ALL RIGHTS RESERVED.

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

- (The U.S. Government possesses the unlimited rights
- throughout the world for government purposes to

-- publish, translate, reproduce, deliver, perform, and
-~ dispose of the technical data, computer software, or
- computer firmware contained herein; and to authorize
- others to do so.)

-- Revision History:

-— 3 Feb 1987 JGR
- Package Specification Created.
GENERIC

TYPE num IS DELTA <>;
-~ The type and range used upon instantiation of the
-- FIXED_IO package.

PACKAGE FIXED_IO IS
PRAGMA PAGE: -- In Package TEXT_IO.FIXED_IO Specification

--] 1. JUSTIFICATION

—-|

--| FIXED_IO contains the subprograms necessary for the user
--| to perform Text_IO for fixed point types (as described in

--I Section 14.3.8 of [ANSI/MIL-STD-1815A)). FIXED_IO is a

--| generic package, internal to the body of TEXT_IO and must be
--| instantiated prior to its use. FIXED_IO primarily allows the
--] reading (getting) and writing (putting) of fixed point values
--| of the type FIXED_IO.NUM either with respect to strings or
--| with respect to text files.

-=1 FIXED IO also will make use of the Ada feature to

--| overload subprogram names. 1In the cases where overloading
--| is used, each subprogram will be listed separately in its
--| entirety.

--| 2. para
e Generic package level declarations for input-output of

~-| fixed point types.

default_fore : text_io.field := num'FORE;
-~ The default width of the whole number portion
-- of the floating point type.

default_aft

text_io.field := num'AFT;

APPENDIX F OF TBE ADA LRM FOR THE ADAUYK43 TOOLSET.
-- The default width of the decimal portion of the
-- floating point type.
default_exp : text_io.field := 0;
-= The default width of the exponent field
-- following the character E when a nonzero
~- exponent is provided.

-=-| 3. CREATED TASKS

-1 None.

-—-| 4. INITIALIZATION

- The data of this package specification is ini’ lized to
--] a default fixed point type NUM with a default FOR3 large

--| enough to represent the decimal part of type NUM, a default
--| AFT large enough to represent the fractional part of type
--| NUM, and a default EXPonent of zero characters.

--] 5. SUBPROGRAMS AND TASKS

-- The following routines are used for fixed point input-output.

PROCEDURE GET
-- will read a fixed point real from the given text input

-- file.
(file : IN text_io.file_type;
~—- Pointer to the specified file to read from.
item : OUT num;
-- The generic fixed point type result.
width : IN text_io.field := 0

-=- Aamount of characters to read. The default is
-- zero and will read the entire string.

)i

PROCEDURE GET
-- will read a fixed point real from the default text
-- input file.
(item : OUT num;
-- The generic fixed point type result.

width : IN text_io.field := 0

-- Amount of characters to read. The default is
~-- zero and will read the entire string.

F-43

APPENDIX F OF THE ADA LRM FOR THE AD..UYK43 TOOLSET.

PROCEDURE PUT
-- will write
(file : IN

item

fore

aft

exp

IN

PROCEDURE PUT
~-- will write

-- file.

(item :

aft

exp

IN

a fixed point real to the given text input file.
text_io.file_type;
Pointer to the specified file to write to.

num;
The generic fixed point type to write.

text_io.field := default_fore;

The width of the whole number portion of the
fixed point value. JInitialized to the width
of two. May be reset by the user.

text_io.field := default_aft;

The width of the decimal portion of the fixed
point value. 1Initjalized to the default width
of the number of digits in the instantiated
type minus one. May be reset by the user.

text_io.field := default_exp

The width of the exponent field following the
character E. 1Initialized to the width of
three. May be reset by the user.

a fixed point real to the default tex:i input

num;
The generic fixed point type to write.

text_io.field := default_fore;

The width ¢f the whole number portion of the
fixed point value. 1Initialized to the width
of two. May be reset by the user.

text _jo.field := default_aft;

The widt~ ¢of the decimal portion of the fixed
point value. Initialized to the default width
of the number of digits in the instantiated
type minus one. May be reset by the user.

text_io.field := default_exp

The width of the exponent field following the
character E. Initialized to the width of
three. May be reset by the user.

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOQLSET.

PROCEDURE GET
-- will read a fixed point real from the given text string.
(from : IN STRING;
-- The string to read from.

item : OUT num;
-- The generic fixed point type result.

last : OUT positive
-- Index of the last character read from
-- the string.

PROCEDURE PUT
-- will write a fixed point real to the given text string.
(to : OUT STRING;
-- The string containing the fixed point image.

item : IN num;
~-- The generic fixed point type to write.

-
4

aft text_io.field := default_aft;

-- The width of the decimal portion of the fixed
-- point value. 1Initialized to the default width
-- of the number of digits in the instantiated

-- type minus one. May be reset by the user.

—
4

text_io.field := default_exp

-- The width of the exponent field following the
-- character E. 1Initialized to the width of

-- three. May be reset by the user.

exp

END FIXED_IO;
PRAGMA PAGE; -- In Package TEXT_IO.ENUMERATION_IO Specificaticn

-- C 1987 United States Government as represented by
-- the Secretary of the Navy. ALL RIGHTS RESERVED.

- (The U.S. Government possesses the unlimited rights
- throughout the world for government purposes to

- publish, translate, reproduce, deliver, perform, and
- dispose of the technical data, computer software, or
-- computer firmware contained herein; and to authorize
- others to do so.)

-- Revision History:

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

- 3 Feb 1987 JGR
- Package Specification Created.
GENERIC

TYPE enum IS (<>);
-- The type used upon instantiation of the
-- ENUMERATION_IO package.

PACKAGE ENUMERATION_IO ‘IS
PRAGMA PAGE; -~ In Package TEXT_IO.ENUMERATION_IO Specification

--| JUSTIFICATION:

-~

- ENUMERATION_IO contains the subprograms necessary for the
--| user to perform Text_ IO for enumeration types (as described
--| in Section 14.3.9 of [ANSI/MIL-STD-1815A])). ENUMERATION_IO
--| is a generic package, internal to the body of TEXT_IO and

--| must be instantiated prior to its use. ENUMERATION_IO

--| primarily allows the reading (getting) and writing (putting)
--| of enumerations of the type ENUMERATION_IO.ENUM either with
--| respect to strings or with respect to text files.

-] ENUMERATION_IO also will make use of the Ada feature to
--| overload subprogram names. 1In the cases where overloading is
--| used, each subprogram will be listed separately in its

--| entirety.

--| paTa:

-] Generic package level declarations for input-output of
--| enumeration types.

default_width : text_io.field := 0;
-- The default field width of the character(s)
-~ including any trailing spaces.

default_setting : text_io.type_set := text_io.upper_case;
-- The default character case of the letter(S).

--| CREATED TASKS:

- None.

--] INITIALIZATION:

—-|
- The data in this package specification is initialized to
--] a default enumeration type NUM with a default width of zero

F-46

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

--| and a default case of upper_case.

-~

--| SUBPROGRAMS AND TASKS:

PROCEDURE GET
-- will read an enumeration literal from the given text
-- input file.
(file : IN text_io.file_type;
-- Pointer to the specified file to read from.

item : OUT enum
~- The generic enumeration type result.

PROCEDURE GET
-- will read an enumeration literal from the default text
-- input file.
(item : OUT enum
-- The generic enumeration type result.

PROCEDURE PUT
-- will write an enumeration literal to the given text input
-- file.
(file : IN text io.file_type;
-- Pointer to the specified file to write to.

item : IN enum;
-- The generic enumeration type to write.

width : IN text_io.field := defaul:_ width;
-- The width of item. Initialized to the width
-- cf the instantiated enumeration type. May be
-- reset by the user.

set : IN text_io.type_set := default_setting
-=- The character type to be used. Initialized to
-- the default setting of upper-case letters.
-- May be reset by the user.

PROCEDURE PUT
-- will write an enumeration literal to the default text
-- input file.
(item : N enum;
-- The generic enumeration type to write.

F-47

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

width : IN text_io.field := default_width;
-- The width of item. Initialized to the width
-- of the instantiated enumeration type. May be
-- reset by the user.

set

(o)
z

text_io.type_set := default_setting

-- The character type to be used. 1Initialized to
-- the default setting of upper-case letters.

-- May be reset by the user,

PROCEDURE GET
~- will read an enumeration literal from the given text
-- string.
(from : IN STRING;
-- The string to read from.

item : OUT enum;

-- The generic enumeration type result.
last OUT positive
—- Index of the last character of the enumeration
—-— literal.

PROCEDURE PUT
-- will write an enumeration literal to the given text string.
(to : OUT STRING;
-- The string containing the enumeration image.

item : IN enum;
-- The generic enumeration type to write.

set : IN text_ic.type_set := default_setting
—-- The character type to be used. Initialized to
-- the default setting of upper-case letterc. May
-- be reset by the user.

)i
END ENUMERATION_IO;
PRAGMA PAGE; -- In Package TEXT_IO Specification

-- These are the Text I/O-specific Ada exceptions.

status_error : EXCEPTION RENAMES io_exceptions.status_error;
-- Indicates that the file is not properly set
-- for the requested operation.

mode_error

name_error

use_error

device_error

end_error

data_error

layout_error

PRAGMA PAGE:

(1}

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

EXCEPTION RENAMES io_exceptions.mode_error;
-—- Indicates that the file was not in the proper
-~ mode for an attempted read or write operation.

EXCEPTION RENAMES io_exceptions.name_error:
-- Indicates that the syntax of the name is not
-— valid or that the name has already been used.

EXCEPTION RENAMES io_exceptions.use_error;
~— Indicates the improper usage of a file.

EXCEPTION RENAMES io_exceptions.device_error;
-- Indicates that a device driver program has
-~ failed for one reason or another.

EXCEPTION RENAMES io_exceptions.end_error:;
-- Indicates that an attempt was made to read
-- past the end of the file.

EXCEPTION RENAMES io_exceptions.data_error;

~-- Indicates that an attempt was made, to read
-- from a file into a buffer or write from a

-- buffer into a file, data that is of the wrong

-- type.

EXCEPTION RENAMES io_exceptions.layout_error;

-- Indicates that an attempt was made to set the
-- column or line numbers in excess of the

-~ currently specified line and page maximums.
-- It will also indicate when an attempt has

-- been made to PUT too many characters to a

~~ string.

-- In Package TEXT_10 Specification

-~ The following are the private implementation-dependent
-- declarations.

PRIVATE

TYPE file_control_block;
-- The File_Control_Block forward declaration.

TYPE file_type IS ACCESS text_io.file_control_block;
-- Defines the access pointer to the File_Control_Block.

~- These are the required file marker values for this particular
-- implementation.

line_term

page_term

: CONSTANT CHARACTER := ASCII.LF;
-- The character used to indicate the end
-- of the current line. <CTRL-M>,.

: CONSTANT CHARACTER := ASCII.FF:
~=- The character used to indicate the end

F-49

.

. APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- of the current page. <CTRL-L>.

file_term : CONSTANT CHARACTER := ASCII.SUB;

-~ The character used to indicate the end
-- of the file. <CTRL-2Z>,

~- The following constant declarations are required for use
-- within the File_Control_Block.

null_strm CONSTANT file_io.stream_id_prv := NULL:
~- A null value for the stream pointers

-- used during initializations.

buffer_length : CONSTANT := io_defs.buffer_data_limit;
-- The upper bound for the text buffers
-- used in the file_Control_Block. This
~- is the maximum amount of data that the
-- vertual mamory can handle in an I/0
-- request at one time.

max_line_length : CONSTANT := io_defs.buffer_data_limit;
~-- Establishes the restrictions for a line
—-- length of 1020. This will then
-- coincide with the maximum buffer_length
-- and the maximum amount of data that
-- the vertual memory can handle in an
-- I1/0 request at one time and still
-- leave the necessary amount of trailing
~-- space for the information required by
-- the Ada/L device drivers.

~- The folowing type declarations define types used within the
-~ File_Control_Block.

TYPE char_buffer IS ARRAY (io_defs.data_length_int RANGE
l..text_io.bsuffer_length) OF CHARACTER;
-- Estsblishes the characteristics for the text
-- buffers used in the File_Control_Block.

TYPE buffer_ptr IS ACCESS text_io.char_buffer;
-- Defines the access pointers to the text buffers
-- used in the File_Control_Block.

~- The following object declaration is required to support
~- temporary file name creation.

temp_file_count : INTEGER := 0;
-~ Counts the number of temporary files created
-~ by the User-Written_Ada_Program. The 'IMAGE
-~ of this object will be added to the
~~ temporaryfile name tO ensure that all files
-= remain unique.

F-50 i

APPENDIX F OF TEE ADA LRM FOR THE ADAUYK43 TOOLSET.

-

~- These are the standard and current file control blocks. They
~- are not visible to the user except through the provided
-- routines.

std_input : text_io.file_type;
-- The access pointer to the Standard default
~- input File_Control_Block.

std_output : text_io.file_type;
. -- The access pointer to the Standard default
-- output File_Control_Block.

curr_input : text_io.file_type;
-- The access pointer to the current default
== input File_Control_Block.

curr_output : text_io.file_type;
—— The access pointer to the current default
-- output File_Control_Block.

~- Full declaration for the File_Control_Block.
TYPE file_control_block IS
-~ The File_Control_Block state description. The actual
~- FILE_TYPE declarations will be access types to this record.
RECORD
strm_ptr

file_io.stream_id_prv

:= text_io.null_strm;

-- Contains the system's link to the
-- external file.

external_name : io_defs.file name_str
:= (OTHERS => ' '):
-- Holds the external name of the file.
-- Initialized to blanks to clear arny
-- portion that will not be used.

temporary : BOOLEAN := FALSE:
-- Indicates whether the file was
-- created as a temporary file, or
-- created for permanent storage.
-- Initialized to the value of false
-- since the standard input and output
-- blocks also use this
-- File_Control_Block.

files_class : io_defs.file_class_enu
:= io_defs.fc_text:
-- Contains the value indicating the
-- type of data in the file. 1Initialized
-- for the text oriented input and
-= output.

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

£_mode : text_io.file_mode;
- Contains the value indicating the
-- mode of the file.
interactive ¢ BOOLEAN := FALSE;
~= Indicator showing whether the file is
~~ being used either directly to or from
~- a display terminal, or to or from a
~- tape file. Initialized to false fcr
~- tape files.
end_info : BOOLEAN := FALSE;
~- Indicator showing whether the end of
~- data presently being processed has
~- been reached.
curr_col : text_io.count := 1;
-~ Holds the present column index
~- position for the current line.
~- Initialized to the start of a new
~- line.
curr_line : text_io.count := 1:
~- Holds the present line index position
~- for the current page. 1Initialized to
-- the start or a new page.
line_len : text_io.count := text_io.unbounded;
~- Holds the maximum allowable line
-- length limit. Initialized for
-- unformatted text output.
curr_page : text_io.count := i; .
-- Holds the present page index in th
-- current file. Initialized to the
-- start of a new file.
page_len : text_io.count := text io.unbounded;
-- Holds the maximum allowable page
-- length limit. Initialized for
-- unformatted text output.
eoln_found : BOOLEAN := FALSE:
-- Indicator showing whether the end of
-- current line has been reached.
-- Initialized to false for the
-- beginning of the first line.
eop_found : BOOLEAN := FALSE;
-- Indicator showing whether the end of
-- current page has been reached.
-- Initialized to false for the beginning
-- of the first page.
eof found : BOOLEAN := FALSE;

F~52

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- Indicator showing whether the end of
—= current file has been reached.

-- Initialized to false for the

-- beginning of a file.

text_buf text_io.buffer_ptr := NULL:
-- The primary text buffer for all
-- reading and writing of text

-- characters.

next_buf ¢ text_io.buffer_ptr := NULL:
-- The alternate text buffer for the
-- reading of text characters.

text_index io_defs.data_length_int := 0;

-- Holds the value used to index into

-- the primary text buffer. 1Initialized
-- to show that the primary text buffer

-- is initially empty.

curr_rec_length : io_defs.data_length_int := 0;
-~ Holds the length of data, in elements,
~-- contained in the primary text buffer.
-- Initialized to show that the primary
-- text buffer is initially empty.

next_rec_length : io_defs.data_length_int := 0;
-- Holds the length of data, in elements,
-~ contained in the alternate text
-- buffer. Initialized to show that the
-~ alternate text buffer is initially
-~ empty.

max_rec_length : text_io.count := text_io.max_line_length;
-~ Holds the maximum allowable length of
-- data, in elements, for the primary
-- and alternate text buffers.
-— Initialized to the maximum amount of
-- elements that can be handled by the
-- device drivers in a single transfer.

exclusion : ada_rtlib.mutex.semaphore_type;
—- Declares the access to the mutual
-- exclusion task required for solitary
-- access to the File_Control Block.
END RECORD;

END TEXT_IO;

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

P2 XXX ZZXXZZZZRSSREXERRAREERRAE RS2SRSS 2R AR 222 X222 R XE R

PACKAGE DIRECT_IO .
-- C 1987 United States Government as represented by
-- the Secretary of the Navy. ALL RIGHTS RESERVED.

- (The U.S. Government possesses the unlimited rights
-- throughout the world for government purposes to

- publish, translate, reproduce, deliver, perform, and
-- dispose of the technical data, computer software, or
- computer firmware contained herein; and to authorize
-- others to do so.)

-- Revision History:

- 3 Feb 1987 JGR
- Package Specification Created.

WITH IO_EXCEPTIONS, IO_SUPPORT;

GENERIC

TYPE element_type 1S5 PRIVATE;
-- The type of the element instantiated on the call to
-- any of the subprograms of this package. It is
-- determined by the type of the element being used
-- in the invoking subprogram.

PACKAGE DIRECT_IO IS
PRAGMA PAGE; -- In Package DIRECT_IO Specificatiocn
--| JUSTIFICATIC!:

- DIRECT_IO contains the subprograms necessary for the user
--| to perform direct access I/0 operations (as described in

--| Section 14.2.1 and Section 14.2.4 of [ANSI/MIL-STD-1815A}).
--| DIRECT_IO is primarily an interface, between the

--| User-Written_Ada_Program and the package IO_SUPPORT which

--| does the actual work for DIRECT_IO operations. In serving
--| as this interface, DIRECT_IO contains only the calls and

--| necessary conversions for the calls to invoke the subprograms
--| of I0O_SUPPORT. DIRECT_IO is a generic package thus enabling
--| it to work for all instantiated types.

el | DIRECT_IO also will make use of the Ada feature to

--| overload subprogram names. In the cases where overloading
--| is used, each subprogram will be listed separately in its
--| entirety.

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

--| DATA:

-

—| Type declarations for the limited private type FILE_TYPE
--| and the types FILE_MODE, COUNT, and POSITIVE_COUNT are

--| declared in this package specification.

TYPE file_type IS LIMITED PRIVATE;
-- Forward declaration. The formal declaration will
-- appear later.

TYPE file_mode IS
-- Allowable modes for direct files.
(in_file, -- Input mode (read only).
inout_file, == Input and output modes (read
-- and write both).
out_file -- Output mode (write only).
)¢

TYPE count IS RANGE 0..io_support.count'LAST;
-- This is the maximum allowable range on columns, lines, and
-- pages. Zero is used here to indicate special case of empty
-- items.

SUBTYPE positive_count IS count
RANGE 1l..count'LAST;
-- Used to establish the allowable range for buffer indices.

--] INITIALIZATION:

- None.

--| CREATED TASKS:

-~ Norne.

~-| SUBPROGRAMS AND TASKS:
-

PROCEDURE CREATE
-- will create a file for direct access.
(file : IN OUT file_type:
-- Points to the block containing
-- the file information.

mode : IN file_mode := inout_file;
-- Specifies that the file is to be both read from

-- and written to.

F-5%

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

name

form

IN STRING := **;
-- The name of the external file.

IN STRING := "*
-- Used by the system for file characteristics.

PROCEDURE OPEN
-- will open a file for direct access.

(file

mode

name

form

IN OUT file_type:
-- Points to the block containing the
-- file information.

IN file_mode;
-- Specifies whether the file is to be read from,
-~ written to, or both.

IN STRING;
== The name of the external file.

IN STRING := "*
-- Used by the system for file characteristics.

PROCEDURE CLOSE
-- will close a direct access file.
(file : IN OUT file_type

-- Points to the block containing the
—- file information.

PROCEDURE DELETE
~= will delete a direct access file.

(file

IN OUT file_type
-~ Points to the block containing the
-- file information.

PROCEDURE RESET
-- will reset a direct access file and change
-- its mode to the requested mode.

(file

IN OUT file_type;
== Points to the block containing the
-=- file information.

IN file_mode

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- Specifies whether the file is to be read from,
-- written to, or both.

PROCEDURE RESET
-- will reset a direct access file but will
-- not change its mode.
(file : IN OUT file_type
-- Points to the block containing the
-- file information.

FUNCTION MODE
-- gives the mode of the direct access file.
(file : IN file_type
-- Points to the block containing the
-- file information.

) RETURN file_mogde;
-- Mode to return to invoking subprogram.

FUNCTION NAME
-- gives the external name of the direct access file.
(file : IN file_type
-- Points to the block containing the
-- file information.

) RETURN STRING:
-- The name of the external file.

FUNCTION FORM
-- gives the form cf the direct access file.
(file : IN file_type
-~ Points to the block containing the
-- file information.

) RETURN STRING:
-- The form of the external file.

FUNCTION IS_OPEN
-- indicates whether the direct access file is open.
(file : IN file_type
-- Points to the block containing the
~-- file information.

) RETURN BOOLEAN;
-- Status of the file.

F=-57

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOQLSET.

-

PROCEDURE READ
-- will read from a direct access file starting at the given
-- position.
(file : IN file_type:
-= Points to the block containing the
-- file information.

item

OUT element_type:
-- Holds the data being read.

from : IN positive_count
~— Specifies the index to be used by the operation.

PROCEDURE READ
-- will read from a direct access file from the position
~- following the last read position.
(file : IN file_type;
-- Points to the block containing the
-- {ile information.

item : OUT element_type
-- Holds the data being read.

PROCEDURE WRITE
-- will write to a direct access file at the position given.
(file : IN file type;
-~ Points to the block containing the
-- file information.

item : IN element_type;
-- Holds the cata being written.

to : IN positive_count
-- Index of the element in the file to be used for
-- transfer.

PROCEDURE WRITE
-~ will write to a direct access file at the position
-- following the last written position.
(file : IN file_type;
~=- Points tc the block containing the
-- file information.

item : IN element_type

APPENDIX F OF THE ADA LRM FOR THE ADAUYR43 TOOLSET.

-=- Holds the data being written.

-

PROCEDURE SET_INDEX
-- will set a direct access file's index to the giwven
-- position.
(file : IN file_type:
~- Points to the block containing the
-- file information.

to

IN positive_count
-— Specifies the new index to be set.

FUNCTION INDEX
~- gives the position of a direct access file's index.
(file : IN file_type
-- Points to the block containing the
-- file information.

) RETURN positive_count;
-- The current index position.

FUNCTION SIZE
-- gives the size of the direct access file.
(file : IN file_type
—-- Points to the block containing the
-- file information.

) RETURN count;

-- Eize in elements of the file.

FUNCTION END_OF_FILE
-- indicates whether the end of the direct access file has
-- been reached.
(file : IN file_type
-- Points to the block containing the
-- fi'e information.

) RETURN BOOLEAN;
-=- Indicator of end of file test.

PRAGMA PAGE; -~ In Package DIRECT_IO Specificaticn
-- The following are the I/O-specific Ada exceptions.

status_error : EXCEPTION RENAMES io_exceptions.status_error;
-- Indicates that the file is not prcperly set

F-59

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- for the requested operation.

EXCEPTION RENAMES io_exceptions.mode_error:;
—-— Indicates that the file was not in the proper
-- mode for an attempted read or write operation.

mode_error

name_error EXCEPTION RENAMES ic_exceptions.name_error;
-~ Indicates that the syntax of the name is not

-- valid or that the name has already been used.

use_error EXCEPTION RENAMES io_exceptions.use_error;

-- Indicates the improper usage of a file.

device_error : EXCEPTION RENAMES io_exceptions.device_error;
== Indicates that a device driver program has
-- failed for one reason or another.

end_error : EXCEPTION RENAMES io_exceptions.end_error;
~=- Indicates that an attempt was made to read
-- past the end of the file.

data_error ¢ EXCEPTION RENAMES io_exceptions.daca_error:
-~ Indicates that an attempt was made, toO read
-- from a2 file into a buffer or write from a
-- buffer into a file, data of the wrong type.

PRAGMA PAGE; -- In Package DIRECT_IO Specification

-- The following are the private implementation-dependent
-- declarations.

PRIVATE

TYPE file_type IS

-- Contains all the needed information on the file and its

-- properties of concern to the I/0 cperation.

RECORD

real_file_=ype : io_support.file_type:

-— Contains the needed information for
-- direct reacding and/or writing of the
-- data.

END RECORD;

END DIRECT_IO;

"

-60

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

I3 XZX2XX3XX2222R22 2222222222222 2222222222222 2222222 R Rl]

PACKAGE SEQUENTIAL_IO ~
-- C 1987 United States Government as represented by
- the Secretary of the Navy. ALL RIGHTS RESERVED.

- (The U.S. Government possesses the unlimited rights

- throughout the world for government purposes to

- publish, translate, reproduce, deliver, perform, and
- dispose of the technical data, computer software, or
- computer firmware contained herein; and to authorize
- others to do so0.)

-- Revision History:

- 3 Feb 1987 JGR
- Package Specification Created.

WITH IO_EXCEPTIONS, IO_SUPPORT:
GENERIC

TYPE element_type 1S PRIVATE;
-- The type of the element instantiated on the call to any
-- of the subprograms of this package. It is determined
~~ by the type of the element being used in the invoking
~- subprogram.

PACKAGE SEQUENTIAL_IO IS

PRAGMA PAGE; -- In Package SEQUENTIAL_ IO Specification

--| JUSTIFICATION:

--|

-] SEQUENTIAL IO contains the subprograms necessary £2: the

--| user to perform sequential access I/0 operations (as

--| described in Section 14.2.1 and Section 14.2.3 of

--| [ANSI/MIL-STD-18151}). SEQUENTIAL_IO is primarily an

--| interface, between the User-Written_Ada_Program and the

--| package IO_SUPPORT which does the actual work for

--| SEQUENTIAL_ IO operations. In serving as this interface,

--| SEQUENTIAL_IO contains only the calls necessary to invoke
--| the subprograms of 10 _SUPPORT. SEQUENTIAL_IO is a generic
--| package thus enabling it to work for all instantiated types.

-= SEQUENTIAL_IO also will make use of the Ada feature to
--| overload subprogram names. In the cases where overloading
-~| is used, each subprogram will be listed separately in its
--| entirety.

‘ APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.
--	DATA:
- Type declarations for the limited private type FILE_TYPE

--| and the type FILE_MODE are declared in this package
--| specification.

TYPE file_type IS LIMITED PRIVATE;
-- Forward declaration. The formal declaration
-~ will appear later.

TYPE file_mode IS
-- Allowable modes for sequential files.
(in_file, ~= Input mode (read only).
out_file == QOutput mode (write only).
);

--| INITIALIZATION:

-] None.

--| CREATED TASKS:

e None.

--| SUBPROGRAMS AND TASKS:

__l

PROCEDURE CREATE
-- will create a file for sequential access.
(f£ile : IN OUT file_type;
-- Points to the block containing the file
-- information.

mode : IN file_mode := out_file;
~- Specifies that the file is to be written to.

name : IN STRING := "";
-- The name of the external file.

form : IN STRING := ""
-- Used by the system for file characteristics.

):

PROCEDURE OPEN
~-- will open a file for sequential access.
(file : IN OUT file_type;
-- Points to the block containing the
-- file information.

mode :

name 3

form :

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

file_mode:
Specifies whether the file is to be read from or
written to.

STRING;
The name of the external file.

STRING :=
Used by the system for file characteristics.

PROCEDURE CLOSE

-=- will close
(file : IN

a sequential access file.

OUT file_type

Points to the block containing the
file information.

PROCEDURE DELETE
—- will deiete a sequential access file.

(file IN

)s

OUT file_type
Points to the block containing the
file information.

PROCEDURE RESET

-- will reset

a seguential access file and change its mode

-~ to the requested mode.

T

-

(file

mode

)i

oUT file_type;
Points to the block ccntaining the
file information.

file_moce
Specifies whether the file 1s to be read from or
written to.

PROCEDURE RESET

~-- will reset
-~ its mode.
(file IN

a sequential access file but will not change

OUT file_type
Points to the block containing the
file information.

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

FUNCTION MODE .
-~ gives the mode of the sequential access file.
(file : IN file_type
-~ Points to the block containing the
-~ file information.

) RETURN file_mode;
-~ Present mode of the given file.

FUNCTION NAME
-~ gives the external name of the sequential access file.
(file : IN file_type
-~ Points to the block containing the
-- file information.

) RETURN STRING:
== Full name of the external file.

FUNCTION FORM
-~ gives the form of the sequential access file.
(file : IN file_type
-- Points to the block containing the
-~ file information.

) RETURN STRING;:
-- Form (system file characteristics) of the

-- given file.

FUNCTION IS_OPEN
-~ indicates whether the sequential access file is open.
(file : IN file_type
-- Points to the block containing the
-- £ile information.

) RETURN BOOLEAN:
—= Whether or not the file is open.

PROCEDURE READ
-~ will read from a sequential access file.
(file : IN file_type:
-- Points to the block containing the
-~ file information.

item : OUT element_type
-- Holds the data being read.

PROCEDURE WRITE

APPENDIX F OF THE ADA LRM FOR THE ADAUYR43 TOOLSET.

-- will write to a sequential access file.
(file : IN file_type:
-- Points to the block containing the
-~ file information.

item : IN element_type
-- Holds the data to be written.

FUNCTION END_OF_FILE
-- indicates whether the end of the sequential access file
-- has been reached.
(f£ile : IN file_type
-- Points to the block containing the
-- file information.

) RETURN BOOLEAN;
-- Result of the end of file test.

PRAGMA PAGE; -- In Package SEQUENTIAL_IO Specification
-- The following are the I/O-specific Ada exceptions,
status_error : EXCEPTION RENAMES io_exceptions.status_error;

-- Indicates that the file is not properly set
-- for the requested operation.

mode_error EXCEPTION RENAMES io_exceptions.mode_error:
-- Indicates that the file was not in the proper

-- mode for an attempted read or write operation.

..

name_error EXCEPTION RENAMES io_exceptions.name_error;
—-— Indicates that the syntax of the name is not

-- valid or that the name has already been used.

use_error : EXCEPTION RENAMES ic_exceptions.use_erczor;
Indicates the improper usage of a file.

device_error : EXCEPTION RENAMES io_exceptions.device_error;
-- Indicates that a device driver program has

-- failed for one reason or another.

end_error

EXCEPTION RENAMES io_exceptions.end_error;
-~ Indicates that an attempt was made to read
-- past the end of the file.

data_error : EXCEPTION RENAMES io_exceptions.data_error;
~=- Indicates that an attempt was made, to read
-- from a file into a buffer or write from a
-- buffer into a file, data of the wrong type.

PRAGMA PAGE: == In Package SEQUENTIAL_IO Specification

F-65

.

- APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-- The following is the private implementation-dependent
-~ declaration.

-

PRIVATE

TYPE file_type IS

-~ Contains all the needed information on the file and its

-~ properties of concern to the I/0 operation.

RECORD

real_file_type : io_support.file_type:

-- Contains the needed information for
-- sequential reading and/or writing of
-- the data.

END RECORD;

END SEQUENTIAL_IO;

- APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

I X222 X222 XXYYXXT X2 2RSSR 2XS22 2222222222222 22X 2222222222 2R3 232

PACKAGE IO_DEFS -
-- C 1987 United States Government as represented
-- by the Secretary of the Navy. ALL RIGHTS RESERVED. ‘

- (The U.S. Government possesses the unlimited rights
- throughout the world for government purposes to

- publish, translate, reproduce, deliver, perform, and
-- dispose of the technical data, computer software, or
- computer firmware contained herein; and to authorize
~- others to do sc)

-- Revision History:

-— 3 Feb 1987 JGR
- Package Specification Created.

WITH SYSTEM;
PACKAGE 10 _DEFS IS
PRAGMA PAGE; ~- In Package IO_DEFS Specification

--| JUSTIFICATION:

=

-] IO_DEFS contains the implementation-dependent object and
--| type declarations used in I/0_Management/RTLib. Hence,

--| IO_DEFS allows the I/0_Management/RTLib packages to stay

--| implementation-independent.

--| DATA:

=] The data in this package will consists of CONSTANTS,
--| TYPES and SUBTYPES. The data will define the

--| implementation-dependent objects and types, such as

--| file lengths, data size, transfer limits, buffer limits,
--| file modes and accessibility. The peripheral devices

--| supported will also be contained in an enumerication type.

io_device_map_size : CONSTANT := 32;
-- 1/0_Device_Map array size.

data_maxln_k : CONSTANT := 2_147 483_647;
-- The largest positive integer on the
-~ AN/UYK(43).

file_minln_k : CONSTANT := -2_147_483_647;
-~ The smallest negative integer on
-~ the AN/UYK(43).

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

o

file_maxln_k CONSTANT := 2_147_483_647;
-- The largest positive integer on the

-- AN/UYK(43).

CONSTANT := 20;
-- The limit of the string length for
-- holding an external file name.

ext_name_length

..

CONSTANT := 20;
-- The limit of the form length for

max_form_length

-~ holding the file creation form parameter.

buffer_data_limit : CONSTANT := 256*4;
-- This is the maximum amount of data to

-- be put into a text data buffer to hand to

~-- the Ada/L device drivers to transfer.

SUBTYPE channel_range_int IS INTEGER
RANGE 0..63;
-- This defines the allowable range

-- of values used in the determination

-- of which I/0 channel is to be
-- accessed.

SUBTYPE unit_range_int IS INTEGER
RANGE 0..9;
~- This defines the allowable range

-— of values used in the determination

-~ 0f which unit on a device is to
-- be used.

SUBTYPE data_length_int IS INTEGER
RANGE 0..data_maxln_k;
-- The allowable range of maximum
-- values for a file record element.

~- Also the last position in all buffers,

-- lines, columns, and pages, within
—-— package TEXT_IO. Zero here

-- indicates the special case that
—- the item being indexed is empty.

SUBTYPE file_length_int IS INTEGER
RANGE 0..file_maxln_k;
-~ The allowable range of maximum
-- values for an index used to mark
~- the position in a file. Zero
-- here indicates the special case
-- that the item being indexed is
-~ empty.

SUBTYPE device_range_int IS INTEGER
RANGE l..io_defs.io_device_map_size;
-~ Type for 1/0_Device_Map index

F-68

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

=- (device_id).

SUBTYPE file_name_str IS STRING(l..io_defs.ext_name_length):
-- The external name of a file.

SUBTYPE form_str IS STRING(l..io_defs.max_form_length):
-- The form specified at file creation.

blank_file name : CONSTANT file_name_str := (OTHERS => ' '};
-~ A blank file name used for initialization.

SUBTYPE device_mnemonics_type IS STRING(l..2);
-- A two character device unemonic.

TYPE status_type IS
-- A flag used for device and channel status.

(up, -- used to set status to up.
down, -- used to set status to down.
none -- used when no secondary channel

-- is supplied
)i

TYPE channel_type_enu IS
-- The allowable channel types.

(computer_device_l6, -~ computer to device,
-- 16 data bits.
computer_computer_1l6, -- computer to computer,
-- 16 data bits.
computer_device_32, -- computer to device,
-— 32 data bits.
computer_computer_32 -- computer to computer,

-- 32 datae bits.
)

TYPE io_mode_enu IS
~-- Defines the type of I/0 mode for the file referenced.

(iom_in, -- Read mode, an input operaticn.
iom_out, -- Write mode, an cutput operar.on.
iom_inout -~ Read and write mode, :n input or

-- output operation.

Y

TYPE accessibility_enu IS
-- Defines a corresponding value for the allowable types of
-- 1/0 access. These values are of particular importance to
-~ the device drivers to indicate what type of read/write
-- operations will be expected of any one driver.

(a_sequential, -- Read/Write access will be
-- sequential.

a_direct, -- Read/Write access will be
~- direct.

a_both -- Read/Write access will be

-- sequential or direct.
):

F-69

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

TYPE file_class_enu IS

-~ Defines the allowable predefined types of alpha-numeric
the Ada/L 1/0.

-- The file contents may be data
-- only.

-- The file contents may be text
-- only.

-- contents for a file in
(fc_data,

fc_text
):

TYPE io_result_enu IS

-- Defines the status of the requested I/0 operation

-- immediately following its return. The variable, local to
-- the subprogram that requested the I/0 operation (the

~-- invoking subprogram), of this type should be checked

-- directly after the return from the I1/0 operation (the

-- invoked subprogram) for its 1/0 result enumeration status.
-- Hence, this will allow the raising of exceptions at the
-- needed points in the execution.

(ior_ok,
ior_end_info,
ior_access_err,
ior_name_err,
ior_device_err,
ior_storage_err,
ior_data_err,
ior_operation_err,
ior_node_exists,
ior_node_doesnt_exist,
ior_default_chosen

):

TYPE peripheral_device_enu I

S

1/0 request executed
satisfactorily.

1/0 request reached the
end of file.

1/0 reguest made an
invalid access.

1/0 request had a name
syntax error.

I/0 request had a
system malfunction.
1/0 request accessed
storage wrong.

I1/0 request contained
invalid data.

1/0 request operation
failed.

1/0 request reached

a valid node.

1/0 recuest reached
an invalid node.

1/0 request using the
default device.

-- Used to specify which device the external file is on.

== NOTE_l: The enumeration values "user_device_?" are for
-- user written and added device driver tasks. The
-- current design in the Ada/L I/0 allows for the

- addition of s
(usg69_device,

uyh3_device,
rd358_device,
milstdl397_interface,

milstdl553_interface,

ix

device driver tasks.

Specifies the USQ-69 display
terminal.

Specifies the UYH-3 disk drive,
Specifies the RD-358 tape drive.
Specifies a MilStd-1397A computer
interface.

Specifies a MilStd-1553B computer

F-70

user_device_a,
user_device_b,
user_device_c,
user_device_d,
user_device_e,
user_device_¢£,
user_device_g,
user_device_h,
user_device_i,
user_device_j,
user_device_k,
user_device_1,
user_device_m,
user_device_n,
user_device_o,
user_device_p
)i

TYPE io_operations_enu IS

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

~- interface.

-~ User-defined device type A.
-~ User-defined device type B.
-- User-defined device type C.
-- User-defined device type D.
-— User-defined device type E.
-- User-defined device type F.
-~ User-defined device type G.
-- User-defined device type H.
-- User-defined device type I.
-- User-defined device type J.
—-- User-defined device type K.
-- User-cdefined device type L.
—- User-defined device type M.
-- User-defined device type N.
-- User-defined device type O.
-~ User-defined device type P.

-- Identifies the different I/0 operations supported by the

Ada/L 1/0. These operations are an intricate part of the

- File_Info_Block used by the System_I/0 level code.
- IO_MANAGEMENT/RTLIB layers FILE_IO and PHYSICAL_IO

(create_request,
open_request,
close_request,
delete_request,
read_request,

write_request,

set_index_request,

cize_request,

reset_request,
eof request

)i

TYPE io_request_block IS

will make explicit use of these codes.

-- Create a new external file.

-- Open an already existing file.
~— Close the specified file.

-- Delete the specified file.

-- Read a record from the specified

-- file.
-—- Write a record to the specified
-- file.
-- Set a specified position in the
-- file.

-- Determines the number cf reccrds
-— in the file.

-~ Reset the specified file.

-- Determines the end of file

-- boclean.

~- This structure defines the I/0_Reguest_Block used by the

RECORD

function_request :

device drivers to service all I/0 requests. The data,
discriminanted by the peripheral type, contained in this
record is the information required for the proper
communication between FILE_I10 and PHYSICAL_IO.

INTEGER;

-~ The device specific function request.
-- Each device driver will interpret

-- the contents of this integer by

F-71

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-~ associating it with an enumeration
~= type which is internal to the device
~-= driver task body.

device_type : io_defs.peripheral_device_enu;
-=— Indicates the device type
-- that the io request is being
-- directed to.

device_id io_defs.device_range_int;
-- Identifies the index into the

-- 1/0_Device_Map.

unit_number io_defs.unit_range_int;
-- Indicates the specific unit number

== to use on the peripheral devices.

data_location : system.address;
~= Indicates the address of the
-- data buffer.

data_length : io_defs.data_length_int:
-— Indicates the number of words
-- in data buffer.

status : io_defs.io_result_enu;
-- Indicates the resulting status of
-- 1/0 operation.

ei_word : INTEGER;
-- The returned external interrupt
-- word.

fillerl,

filler2,

filler3,

filler4,

filler$S : INTEGER;

~- Used to pass device specific infoc,
—-- the contents will very by device
-— type.
-~ NCTE: For DISK_IO these £illers are
-- used as specified below:
~~ Fillerl := disk_cylinder,
-- Filler2 := disk_sector,
== Filler3 := disk_head,
-— Filler4/5 := not used.
END RECORD;

TYPE iorb_access IS ACCESS io_request_block;
-- Provides access for allocating an I0_Regues:_Block.

-~] INITIALIZATION:

L ———

- APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

-=| All constant data will be initialized to an initial
--] valve representing a. implementation-dependent fixed value.

--| CREATED TASKS:

-=| None.

--| SUBPROGRAMS AND TASKS:

-] None.

END IO_DEFS;

F-73

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.
AN AR AR R R R R RS R SR NP R A R N R N N E AN AR R R AN R RN AR IR R AR E AN R AR SN R LSRR RN RSN AN RN RS
PACRAGE STANDARD =

The package STANDARD contains the following definitions in
addition to those specified in Appendix C of ANSI/MIL-~-STD-1815A.

- c 1987 United States Government as represented by

- the Secretary of Navy. ALL RIGHTS RESERVED.

- (The U.S. Government possesses the unlimited rights
- throughout the world for Government purposes to

- publish, translate, reproduce, deliver, perform, and
- dispose of the technical data, computer software, or
- computer firmware contained herein; and to authorize
- others to do s0.)

- REVISION HISTORY:
-— 10 Mar 1987 TCJ
- Coded from PDL

PACKAGE STANDARD IS

-~| JUSTIFICATION:

-

- STANDARD contains the definitions for the pre-defined
~~| types and constants as defined in Appendix C of

-~| ANSI/MIL-STD-1815A.

-~| Assumptions:

-~ STANDARD is targeted for Ada/L(43).
-~| TYPES and DATA:

-] See below.
TYPE boolean 1S (false, true):;
-—- FOR boolean'SIZE USE 1;
-- The predefined relational operators for this type are as
-- follows:
-- FUNCTION "=" (left, right : boolean) RETURN boolean:
-- FUNCTION " /=" (left, right : boolean) RETURN boolean:
-— FUNCTION "<" (left, right : boolean) RETURN boolean:
-— FUNCTION "<=" (left, right : boolean) RETURN boolean:;
~=- FUNCTION ">* (left, right : boolean) RETURN boolean:
-= FUNCTION *">=" (left, right : boolean) RETURN boolean:;
-- The predefined logical operators and the predefined logical
-- negation operators are as follows:
- FUNCTION "AND” (left, right : boolean) RETURN boolean;
- FUNCTION "OR” (left, right : boolean) RETURN boolean:
- FUNCTION "XOR” (left, right : boolean) RETURN boolean:
- FUNCTION *"NOT" (right : boolean) RETURN boolean;
-- The type universal_integer is predefined.
TYPE integer IS RANGE -2_147_4B3_647 .. 2_147_483_647;
-— =(2%**31 - 1) .. (2**31 - 1)
-~ FOR integer‘'SIZE USE 32;
-- The predefined operators for this type are as follows:
- FUNCTION "=" (left, right : integer) RETURN boolean;
- FUNCTION "/=" (left, right : integer) RETURN boolean:

F-74 .

P

. \ APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

- FUNCTION "<* (left, right : integer) RETURN boolean;
- FUNCTION "<=" (left, right : integer) RETURN boolean;
- FUNCTION ">* (left, right : integer) RETURN boolean;
- FUNCTION “>=" (left, right : integer) RETURN boolean;
-— FUNCTION “+* (right : integer) RETURN integer;

- FUNCTION *-" (right : integer) RETURN integer;

- FUNCTION "abs" (right : integer) RETURN integer:

- FUNCTION “+* (left, right : integer) RETURN integer;
- FUNCTION “-" (left, right : integer) RETURN integer;
- FUNCTION "#**» (left, right : integer) RETURN integer;
- FUNCTION "/" (left, right : integer) RETURN integer;
- FUNCTION "rem" (left, right : integer) RETURN integer;
- FUNCTION "mod” (left, right : integer) RETURN integer:;
- FUNCTION “**" (left : integer; right : integer) RETURN
- integer:

TYPE long_integer IS RANGE
-9_223_372_036_854_775_807 .. 9_223_372_036_854_775_807;
-- The predefined operators for this type are as follows:
- FUNCTION "=*" {left, right : long_integer) RETURN boolean;

- FUNCTION "/=" (left, right : long_integer) RETURN boolean;
- FUNCTION "<" (left, right : long_integer) RETURN boolean:
- FUNCTION "<=" (left, right : long_integer) RETURN boolean:
- FUNCTION *">* (left, right : long_integer) RETURN boolean;
- FUNCTION ">=" (left, right : long_integer) RETURN

-— boolean:

- FUNCTION "+ (right : long_integer) RETURN long_integer:;

— FUNCTION *-* (right : long_integer) RETURN long_integer;

- FUNCTION "abs" (right : long_integer) RETURN long_integer:

- FUNCTION “+" (left, right : long_integer) RETURN

- long_integer:

-- FUNCTION "“-* (left, right : long_integer) RETURN

- long_integer:

- FUNCTION "=*" (left, right : long_integer) RETURN

- long_integer;

- FUNCTION /" (left, right : long_integer) RETURN

- long_integer;
- FUNCTION “rem” (left, right : long_integer) RETURN
- long_integer;
-— FUNCTION "mod" (left, right : long_integer) RETURN

- long_integer;
- FUNCTION "**" (left : long_integer; right : integer) RETURN
- long_integer;

TYPE float IS DIGITS 6 RANGE
-(164#0.FF_FFFF#E63) ..
(1640.FF_FFFF#E63);
-- The predefined operators for this type are as follows:

- FUNCTION “=" ({left, right : float) RETURN boolean:
- FUNCTION "/=" (left, right : float) RETURN boolean:
- FUNCTION “<* (left, right : float) RETURN boolean;
- FUNCTION "<=* (left, right : float) RETURN boolean:
- FUNCTION ">" (left, right : float) RETURN boolean;
- FUNCTION ">=" (left, right : float) RETURN boolean;
- FUNCTION “+* (right : float) RETURN float;

- FUNCTION "-* (right float) RETURN float:

- FUNCTION "abs" (right float) RETURN float;

F-75

—————

'llllllllllIlIlIIIlIIIIlIIIIIlIIlIIIIIIlIlIIIIIIIIIIIIIIIIIIIIIIIIIIII.....t*

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

- FUNCTION "+* {left, right : float) RETURN float:;
- FUNCTION "-* (left, right : float) RETURN float:
- FUNCTION "** (left, cight : float) RETURN float:
- FUNCTION “/* (left, right : float) RETURN float:
-- FUNCTION "*** (left : float; right : integer) RETURN float;

TYPE long_float 1S DIGITS 15 RANGE
-(1640.FF_FFFF_FFFF_FFFF#E63) ..
(L640.FF_FFFF_FFFF_FFFF#E63);
-- The predefined operators for this type are as follows:

- FUNCTION "=" {left, right : long_float) RETURN boolean;

- FUNCTION "/=" (left, right : long_float) RETURN boolean;

- FUNCTION "<" (left, right : long_float) RETURN boolean:

-- FUNCTION <= (left, right : long_float) RETURN boolean;

- FUNCTION ">* {left, right : long_float) RETURN boolean;

- FUNCTION ">=" (left, right : long_£float) RETURN boolean;

- FUNCTION *+* (right : long_float) RETURN long_float;

- FUNCTION *-*" (right : long_float) RETURN long_float;

- FUNCTION “abs" (right : long_float) RETURN long_float;

- FUNCTION "+* (left, right : long_float) RETURN long_float;
- FUNCTION "-* (left, right : long_float) RETURN long_float;
- FUNCTION "#** (left, right : long_float) RETURN long_float;
- FUNCTION "/* (left, right : long_float) RETURN long_float;
- FUNCTION “"*** (left : long_float; right : integer) RETURN

-- long_float:
-- In addition, the following operators are predefined for universal

-- types:

- FUNCTION "*" (left : universal_integer;
- right : universal_real)

- RETURN universal_real;

- FUNCTION "*" (left : universal_real;

- right : universal_integer)
- RETURN universal_real:;

- FUNCTION " /" {left : universal_real;

- right : universal_integer)
- RETURN universal_real;

-~ The type universal fixed is predef.ned. The cnly cperators
-~ declared for this type are:

- FUNCTION "“*" (left: any_fixed_point_type;
- right : any_fixed_point_type)
- RETURN universal_fixed:

- FUNCTION "/* (left : any_fixed_point_type;
-~ right : any_fixed_point_type)
- RETURN universal_fixed;

The following characters form the standard ASCII set.

TYPE character IS
{ -- 32 control characters are defined here -—-

\] |' l!" lﬂ', l'l' ls‘, I‘l' '&.’ ll.'

-(c'), A L R R VA

‘o', 1, '2Y, '3, '4', 'S, '6', |7|'
F-76

‘e,
lH.'
CP"
lx' ’

[|
’

lhl'
lpl'
lxl'

(o,
10,
20,
30,
40,
50,
60,
70,
80,
90,

character

‘90' l:l

‘A',
.I"
Q'
'Y,

'al' L}
li" t
Iql' [}
ly"]

USE
2,
12,
22,
32,
42,
52,
62,
72,
82,
92,

1,
11,
21,
a1,
41,
51,
61,
71,
81,
91,

3,
13,
23,
33,
43,
53,
63,
73,
83,
93,

-- 128 ASCII

4,
14,
24,
34,
44,
54,
64,
74,
g4,
94,

5,
15,
25,
35,
45,
55,
65,
75,
85,
95,

|<l ,

IDII
ILC'
ITI'
I\I'

Odll
‘1Y,
'ty

lll
’

6,
16,
26,
36,
46,
56,
66,
76,
86,
96,

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOQLSET.

'

IFC .
INI’
.vQ'

I]O' c“o,

'y ‘£,
lnl,
¢ 'V,

] [B }
’ ’

'G' ’
lo| ’
owl ’

L] L]
’

’
4
14

’

]
‘o
w
')

character set without holes

7,
17,
27,
37,
47,
57,
67,
77,
87,
97,

g8, 9
18, 19
28, 29
38, 39
48, 49
58, 59
68,
78,
88,
98,

79
89
99

[

’

’

14

4

[4

69,

r

[4

100,101,102,103,104,105,106,107,108,109,
110,111,112,113,114,115,116,117,118,119,
120,121,122,123,124,125,126,127 };

-~ FOR character'SIZE USE 8;

-- The predefined operators for the type CHARACTER are the same
-- as for any enumeration type.

PACKAGE ASCII IS

~- Control characters:

nul : CONSTANT character := 'y
soh : CONSTANT character := '
stx : CONSTANT cnaracter := '
etx : CONSTANT character := ‘i
eot : CONSTANT character := ‘3
eng : CONSTANT character := ‘i
ack : CONSTANT character := ‘s
bel : CONSTANT character := ‘e
bs : CONSTANT character := ‘s
ht : CONSTANT character := ‘s
1f : CONSTANT character := ';
vt : CONSTANT character := ‘e
ff : CONSTANT character := '3
cr : CONSTANT character := ‘s
sO : CONSTANT character := '
si : CONSTANT character := ‘3
dle : CONSTANT character := 'y
dcl : CONSTANT character := ':
dc2 : CONSTANT character := ‘e
F=-77

'lllllllllIlllllllIIlIIlIIlIIIIllIIllllIlIIIIIIIIIIIIII-----:.

APPENDIX F OF THE ADA LRM POR THE ADAUYK43 TOOLSET.

dc3 : CONSTANT character := ‘s
dc4 : CONSTANT character := ts
nak : CONSTANT character := ‘s
syn : CONSTANT character := ';
etb : CONSTANT character := ‘s
can : CONSTANT character := ‘s
em : CONSTANT character := '
sub : CONSTANT character := ‘s
esc : CONSTANT character := ts
fs : CONSTANT character := ‘s
gs : CONSTANT character := ' ';
rs : CONSTANT character := ' ';
us ¢ CONSTANT character := ' ';
del : CONSTANT character := * ';
-~ Other characters:

exclam ¢ CONSTANT character
sharp ¢t CONSTANT character
dollar : CONSTANT character
query : CONSTANT character
at_sign : CONSTANT character
1_bracket : CONSTANT character
back_slash : CONSTANT character
r_bracket : CONSTANT character
circumflex : CONSTANT character
grave : CONSTANT character
1 _brace : CONSTANT character
bar : CONSTANT character
r_brace : CONSTANT character
tilde :+ CONSTANT character

-- Lower case letters:

lc_a : CONSTANT character := ‘'a‘'
lc_b : CONSTANT character := 'b’
lc_c : CONSTANT character := 'c’
lc_d : CONSTANT character := '@g‘'
lc_e : CONSTANT character := ‘e’
lc_f : CONSTANT character := 'f°
lc_g : CONSTANT character := 'g'
lc_h : CONSTANT character := 'h'
lc_i : CONSTANT character := ‘i
lc_j : CONSTANT character := 'j'
lc_k : CONSTANT character := 'k’
lc_1 : CONSTANT character := 'l
lc_m : CONSTANT character := ‘m'
lc_n : CONSTANT character := 'n'
lc_o : CONSTANT character := ‘o'
lc_p : CONSTANT character := 'p'
lc_g : CONSTANT character := 'q’
lc_r : CONSTANT character := 'r'
lc_s : CONSTANT character := 's'
lc_t : CONSTANT character := ‘t'
lc_u : CONSTANT character := ‘u'

-
.

LYY

~e ws

~e we e we

-

e %o Ne we we wo

l!l
l*l
lsl

te,

le'
'(l

F-78

~s we we

r---I--.IIIIII-I-IIIIII-III-I-III-IIIII-I-III-I----.4*

APPENDIX F OF THE ADA LRM FOR THE ADAUYK43 TOOLSET.

lc_v : CONSTANT character := 'v';

lc_w : CONSTANT character := 'w';

le_x : CONSTANT character := 'x';

le_y : CONSTANT character := 'y';

lc_z : CONSTANT character := 'z°';
END ASCII;

-- Predefined subtypes:

SUBTYPE natural IS integer RANGE 0 .. integer'LAST;
SUBTYPE positive IS integer RANGE 1 .. integer'LAST:

-- Predefined string type:
TYPE string IS ARRAY (positive RANGE <>) OF character;

PRAGMA PACK(string):
-- The predefined operators for this type are as foilows:

-- FPUNCTION "=" (left, right
-- FUNCTION “/=" (left, right
-- FUNCTION "<* (left, right
—-- FUNCTION "<=" (left, right
-- FUNCTION ">" (left, right
-— FUNCTION ">=" (left, right

string) RETURN boolean:
string) RETURN boolean;
string) RETURN boolean;
string) RETURN boolean;
string) RETURN boolean;
string) RETURN boolean:

P TR T

-~ FUNCTION “&" (left : string:; right : string)

- RETURN boolean;

-- FUNCTION "&" (left : character; right : string)

- RETURN boolean;

-- FUNCTION "&" (left : string; right : character)
-- RETURN boolean;

~-—- FUNCTION "&" (left : character; right : character)
-- RETURN boolean;

TYPE duration IS DELTA 2.0 **(-14) RANGE -131 _071.0..131 _071.0;
- -- (2%*17 - 1)

~- The predefined operators for the type DURATION are the same
-- as for any fixed point type.
-- The predefined exceptions:

constraint_error : exception;
numeric_error t exception;
program_error : exception;
storage_error : exception;
tasking_error : exception;

END STANDARD;

F-79

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation—dependent values,
such as the maximm length of an input line and invalid file names. A
test that makes use of such values is identified by the extension .TST
in its file name. Actual values to be substituted are represented by
names that begin with a dollar sign. A value must be substituted for
each of these names before the test is run. The values used for this
validation are given below.

Name and Meaning Value

$BIG_ID1 <1..119 => 'A', 120 => '1'>
Identifier the size of the
maximm input line length with
varying last character.

$BIG_ID2 <1..119 => 'A', 120 => '2'>
Identifier the size of the
maximm input line length with
varying last character.

SBIG ID3 <1..59 => 'A', 60 => '3,
Identifier the size of the 61..120 => 'A'>
maximm imput line length with
varying middle character.

S$BIG_ID4 <1..59 => 'A', 60 => '4°',
Identifier +the size of the 61..120 => 'A'>
maximm input line length with
varying middle character.

$BIG_INT LIT <1..117 => '0', 118..120 =>
An integer literal of value 298 1298 1>
with enough 1leading =zerves so
that it is the size of the
maximm line length.
S$BIG REAL LIT <1..115 => '0', 116..120 =>

A universal real literal of 1690.0'>
value 690.0 with enough leading

2erves to be the size of the

maximm line length.

C-1

SBIG_STRING1
A string 1literal which when
catenated with BIG STRING2
yields the image of BIG ID1.

SBIG_STRING2
A string 1literal which when
catenated to the end of
BIG_STRING1 Yields the image of
BIG_ID1.

SBLANKS
A sequence of blanks twenty
characters 1less than the size
of the maximm line length.

$OOUNT_LAST
A universal integer literal
whose value is
TEXT_IO.COUNT'LAST.

SFIELD IAST
A universal integer
literal whose value is

TEXT IO.FIEID'IAST.

SFIIENM'IEWI‘IHBADCHARS
An external file name that
either contains invalid
characters or is too long.

SFIIE NAME WITH WILD CARD CHAR
An external file name that
either ocontains a wild card
character or is too long.

SGREATER THAN DURATION
A universal real literal that
lies between DURATION'BASE'IAST
and DURATION'IAST or any value
in the range of DURATION.

$GREATER THAN_DURATION BASE IAST
A universal real literal that is
greater than DURATION'BASE'IAST.

$IIIMAL_EXIWL_FII.E_W‘IE1
An extermal file name which
contains invalid characters.

C-2

<1 => '"O'
i"l>

2..61 = 'A', 62 =>

J
\

<1=>'"', 2..60 => 'A', 61 =
lll’ 62 => LALLR DY

<1..100 => ' >

2147483647

2143483647

BAD~CHARS ” #-TOO-LONG-A~FILE-
NAME. $!X

WILD-CHAR*-TOO-LONG~-A-FILE~
NAME . NAM

131_071.5

131_073.0

BADCHAR * @~TOO-LONG~-A-FILE-
NAME. !

_j

$TLIFGAL EXTERNAL FILE NAME2 MOCH_TOO_IONG NAME FOR A FIIE
An external file name which
is too long.

S$INTEGER_FIRST -2147483647

A universal integer 1literal
whose value is INTBGER'FIRST.

SINTBGER_IAST 2147483647
A universal integer literal
whose value is INTBGER'IAST.

S$INTEGER IAST PIUS 1 2147483648
A universal integer 1literal
whose value is INTEGER'IAST + 1.

SLESS_THAN DURATION -131_071.5
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$I.BS THAN DURATION BASE FIRST =131_073.0
A universal real literal that is
less than DURATION'BASE'FIRST.

$MAX DIGITS 6
Maximm digits supported for

floating-point types.

SMAX IN LEN 120

Maximum input line length
permitted by the implementation.

SMAX_INT 9223372036854775807
A universal integer literal
whose value is SYSTEM.MAX INT.

SMAX INT PIDS 1 9223372036854775808
A universal integer literal
whose value is SYSTEM.MAX INT+1.

SMAX_LEN_INT BASED LITERAL <1..2 => '2:', 3..117 = '0',
A universal integer based 118..120 => '11:'>
literal whose value is 2#11#
with enouwgh 1leading zercves in
the mantissa to be MAX IN LEN
long.

C-3

m

SMAX_LEN REA", BASED LITERAL <l..3 => '16:', 4..116 => '0O°,
A iversal real based literal 117..120 => 'F.E: ">
whose value is 16:F.E: with

enough leading zerves in the

%X_SIRDG_LI'I‘ERAL <l => '"' 2..119 => 'A', 120 =>
A string literal of size LA DS
MAX IN IEN, including the quote
characters.

SMIN INT ~9223372036854775807

A universal integer literal
whose value is SYSTEM.MIN _ INT.

SNAME No_Such_Type
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
IONG_FIOAT, or LONG_INTEGER.

SNBG_BASED INT 164FFFFFFFFFFFFFFFD#
A based integer literal whose

highest order nonzero bit

falls in the sign bit

position of the representation

for SYSTEM.MAX_INT.

C-4

APPENDIX D

Same tests are withdrawn from the ACVC because they do not conform to
the Ada Standard. The following 28 tests had been withdrawn at the time
of validation testing for the reasons indicated. A reference of the
form "AI-ddddd" is to an Ada Commentary.

B28003A:

E28005C:

C34004A:

C35502P:

A35902C:

C35904A:

C35904B:

C35A03E,
& R:

C37213H:

C37213J:

A basic declaration (line 36) wrongly follows a later
declaration.

This test requires that fPRAGMA LIST (ON);' not appear in a
listing that has been susperded by a previous "pragma LIST
(OFF) ;"; the Ada Standard is not clear on this point, and the
matter will be reviewed by the ARG.

The expression in line 168 wrongly yields a value outside of
the range of the target type T, raising CONSTRAINT ERROR.

Equality operators in lines 62 & 69 should be inegquality
operators.

Line 17's assigment of the namimal upper bound of a
fixed-point type to an object of that type raises
CONSTRAINT ERROR, for that value lies outside of the actuzl
range of the type.

The elaboration of the fixed-point subtype on line 28 wromgly
raises CONSTRAINT ERROR, because its upper bound exceeds that
of the type.

The subtype declaration that is expected to raise
CONSTRAINT ERROR when its campatibility is checked against that
of various types passed as actual generic parameters, may in
fact raise NUMERIC ERROR or CONSTRAINT ERROR for reasons not
anticipated by the test.

These tests assume that attribute 'MANTISSA returns O when
applied to a fixed-point type with a null range, but the Ada
Standard doesn't support this assumption.

The subtype declaration of S™NS in line 100 is wrongly
expected to raise an exception when elaborated.

The aggregate in line 451 ~rongly raises CONSTRAINT ERROR.

D-1

W—

C37215C, Various discriminant constraints are wrangly expected
E, G, H: to be incampatible with type CONS.

C38102C: The fixed-point conversion on 1line 23 wrongly raises
CONSTRAINT ERROR.

C41402A: 'STORAGE SIZE is wrongly applied to an object of an access
type.

C45332A: The test expects that either an expression in line 52 will
raise an exception or else MACHINE OVERFLOWS is FAISE.
However, an implementation may evaluate the expression
correctly using a type with a wider range than the base type of
the operands, and MACHINE OVERFLOWS may still be TRUE.

C45614C: REPORT.IDENT INT has an argument of the wrong type
(LONG_INTEGER) .

E66001D: This test wrongly allows either the acceptance or rejection of
a parameterless function with the same identifier as an
enumeration literal; the function must be rejected (see
Cammentary AI-00330).

A74106C, A bound specified in a fixed-point subtype declaration

C85018B, lies outside of that calculated for the base type, raising

C87B04B, CONSTRAINT ERROR. Errors of this sort occur re lines 37 & 59,

CC1311B: 142 & 143, 16 & 48, and 252 & 253 of the four tests,
respectively (and possibly elsewhere).

BC3105A: Lines 159..168 are wrongly expected to be illegal; they are
legal.

AD1AOlA: The declaration of subtype INT3 raises CONSTRAINT ERROR for
implementations that select INT'SIZE to be 16 or greater.

CE2401H: The record aggregates in lines 105 & 117 contain the wrong
values.

CE3208A: This test expects that an attempt to open the default ocutput
file (after it was closed) with mode IN FILE raises NAME ERROR
or USE_ERROR; by Commentary AI-00048, MODE ERROR should be
raised.

D-2

