UNCLASSIFIED

TLATION CF TS PALE

’
SETuE T Are- Datettnte ed

v ASSY

Pame ¥

- RLAZ INSTR.CTIONS J
REPORT DOCUMINTATION PAGE e remimos |
1. REPORY WoME: R [2. GOVT ACCESSION MC |3 MECIPIEN" S CATA.OC WumeiR S——"
¢ TITLE (anoSubtitie! £ TvPt OF MEPIRT B PLEIOT (OVERED
Ada Cormpiler Validation Sumrary Report: TELESOIT, S dune LesE - 1o Jdune 1989
f*:mthorola Dt:ll("‘. b(t'leb" ‘lc(iqvenl A, Version 1.2, _\ivturolgt PLRFORM, N. Dho REPOFS WoMLLR
VME Delta Series, Modo! 2eih (host to MOeEQ20 (tarcet)

TN RS L LS
Y. AUTHOR,s; £ CONTRALT DF GRAN WuMiiky,
Wright™=ratterson ATE

avtorn, NH, USA
$. PLRFIORMING ORGANIZATION ANZ ADORESS 1C PROLKAS [_EMiN" PE_OIZY . TASK

ARLA & WOKka UNIT NUMEL RS

Wright-Patterson AFB

Davton, COH, USA
11 CONTRO.LING OFFICE MAMI AND ADDRESS 12. REPCKT D&

Aca Joint Prog am Dffice . . 16 June 1988

ited States Department of Defense TRV U VESTS

Nashing:on, DC 20301-3081 S R
14, MONITORING AGENDY NAMD & ADTTISS(1Ta.fterent from Controliing Office; 5. SETURITY (LASS (o'thisrepon,

. o - UNCLASSIFIED
Wright-Patterson ATFB e EL USS TICATION DowNoRACING
Davton, 0, USA Lrided

N/&
18, DISTRIB.TION STATEMINT {of ths Report)
Approved for public release; distribution unlimited.

T{elrmedtrracentees B o 20 o terent o~ Rezo)

DTIC

ELECTE

to MCAHB020),
ACVC 1.09

implemented on a Motorola MVME 133A-20 Board

LS. KEYeIRIS (Comtnueonreverses e ‘necessdry, anodent fy by b ooa number;

F22 Prcocramming lenguacze, Rée Ceompiler Velideticn Scrmrmary Report, AZe
crpiler Valicetion Capebi llty, ACVC, Valication Testing, Aca

Velicdetion Office, AVO, khCa Velicdation Facility, AVF, ANSI/MIL-STD-
1#.8A, AZa Joint Program Office, AJPO

20. AESTRAZT (Continue onreverse s:Je (fnecessary anogentfy by block numper)

Motorola Delta Series TeleGenl Ada, Version 1.2, TELESOFT, Wright-Patterson AFE,
Motorola VME Delta Series, Model 2616 under Motorola UNIX Svstem V/68, Release 3 (hest)

(bare mach...e) (target),

tUrm

1 JAx 735

DD 1473 Si110n O

Sin C1C2-LF-0

1 NDv EL
14-8EC1

1S CE50.ETL

UNCLASSITIED

StCURITY CLASSIFICAY

108 07 THIS PALL (WhenDsta Entered)

AVF Control Number: AVF-VSR-188.0389
88-02-11-TEL

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 880610W1.09095
TELESOFT
Motorola Delta Series TeleGen2 Ada, Version 1.2
Motorcla VME Delta Series, Model 2616 to MC68020,
implemented on a Motorola MVME 133A-20 board

Completion of On-Site Testing:
16 June 1988

Prepared By:
Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH U45433-6503

Rcsenon For T
Prepared For: ccesion for '
Ada Joint Program Cffice NTIS CﬁZ&T‘W—
United States Department of Defense DTIC 1483
Washington DC 20301-3081 Vet 112 5
TSN RO MY L
Jurtioay o .
b e LTI
By
i C.oatabting
———]
) " [ootitny Codes
R b e
‘ L L Avae 3l or]
. i ,// I ’ N el

Ada Compiler Validation Summary Report:

Compiler Name: Motorola Delta Series TeleGen2 Ada, Version 1.2

Certificate Number: 880610W1.09005

Host: Target:
Motorola VME Delta Series, MC68020, implemented on a
Model 2616 under Motorola MVME 133A-20 board
Motorola UNIX System V/68, bare machine
Release 3

Testing Completed 16 June 1988 Using ACVC 1.9

This report has teen reviewed and is approved.
P

/. .

/><€j;{ ﬁ/:;>)7<2£4-
A >~ C

Ada Validation Facility
teven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH U45433-6503

o

- A
— T e —eeo—

Acda Validation Organization
Dr, John F. Kramer
Institute for Defense Analyses

> rovmAwms g T eizic i
HLIEXENCOArIZ v-o <L

4da Joint Program Office
Dr. John Solomond
Director

Washington D.C. 20301

CHAPTER

CHAPTER

CHAPTER

APPENDIX

APPENDIX

APPENDIX

APPENDIX

1

n N - s _a .
N —

W

WwWwWw W wwuwww

L T
L% 2 I SN UU T |V Jupevy

N 1A FWwWwN

to

TABLE OF CONTENTS

INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT . .
USE OF THIS VALIDATION SUMMARY REPORT
REFERENCES s e e e e e s e e e e
DEFINITION OF TERMS e e e e s e e e s e e e
ACVC TEST CLASSES v ¢ v v ¢ &+ o o o o o o o

CONFIGURATION INFORMATION

CONFIGURATION TESTED e e e e e s
IMPLEMENTATION CHARACTERISIICS e e e e e e

TEST INFORMATION

TEST RESULTS « . . . o e e e e e e e e
SUMMARY OF TEST RESULTS BY CLASS « e e e e e e

SUMMARY OF TEST RESULTS BY CHAPTER
WITHDRAWN TESTS & ¢ v ¢ ¢ o ¢ o o o o o o o &
INAPPLICABLE TESTS . . « « .«
TEST, PROCESSING, AND EVALUATION MODIFICATIONS
ADDITIONAL TESTING INFORMATION
Prevalidation .« &« v o ¢ o o ¢ o « o o o o
Test Method . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o« o = ¢ «
Test Site ¢ v ¢ ¢ ¢ o 4 o @ 4 4 4 e e e e .

DECLARATION OF CONFORMANCE

APPENDIX F OF THE Ada STANDARD

TEST PARAMETERS

WITHDRAWN TESTS

. .
wwwwwtiuwwww

T SEPON
[I N |
Fwwmnmn

| v
NN ENDNNND

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-181SA.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation <Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
narticular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The tcsting also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

INTRODUCTION

1.1 PURPOSE CF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

To attempt to identifyv any language constructs supported byv the
compiler that do not conform to the Ada Stancard

To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 16 June 1988 at San Diego CA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVD may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. {#552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that 3sll statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Program 2ffice

OUSDRE

The Pentagon, Rm 3D-139 (Fern 3treet)
Washington DC 20301-3081

or from:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH U5433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines. Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4, Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformitv of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the

Commentarv point addressed by a comment on the Ada Standard. These
comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF 1is responsible for
conducting compiler wvalidations according to procedures

contained in the Ada Compiler Validation Procedures and
Suidelines.

1-3

INTRODUCTION

AVD The Ada Validation Organization. The AVO has oversight
authoritv over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this

report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.
Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.
Tarzet The computer for which a compiler generates code.
Test A program that checks a compiler's conformity regarding a

particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a singie test, which may comprise one or more

fiies.
Withdrawn An ACVC test found tc be incorrect and not used to check
test conformity to the Adas tandard. test may be incorrect

because 1t has an invalid test obljective, fails to meet its
test objective, or coriains illegal or erroneous Juse of the
language.

1.5 ACVT TEST CZLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains Dboth legal and illegal Ada programs structured into six test
classes: A, B8, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Cilass B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors.

Class A tests check that legal Ada programs can be suzcessfully compiled
and executed. There are no explicit program components in a Class A test
to check semantics. For example, a Class A test checks that reserved words
of another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is

1-U

INTRODUCTION

passed if no errors are detect-d at compile time and the program executes

-

to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every svntax or
semantic error in the test is detected. A Class B test is passed 1f every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test 1s self-checking and produces a PASSED,
FATILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity regquirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
mav refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and procduces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not a&allowec 10
execute. Class L tests are compiled separately and executicn i: acttempted.
£ Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced bdv the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECKX_ FILE, sunport
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK_FILE is used to
check the contents of text files written by some of the Class C tests fer
chapter 14 of the Ada Standard. The operation of REPORT and CEECK_FILE is
checked by a set of executable tests. These tests produce messages that
are examined %to verify that the units are operating correctlv. If these
units are not operating correctly, then the validation is not attempted.

1-5

INTRODUCTION

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests maxe use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
iliegal file name. A 1list of the values used for this validation is

-

provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity tc the Ada tandard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
th> implementation. The applicability of a test to an implementation is
considered each time the implementation 1is validated. A test that is
inapplicable for one validation 1is not necessarilv inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is witndrawn from the
ACVC and, therefore, is not wused in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTLD

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: Motoro.la Delta Series TeleGen?2 ida, Version 1.2

AZVC Version: 1.0

Certificate Number: 880610W1.0900%

Host Computer:

Machine: Mptorola VME Delta Series, Model 26136

Operating Svstem: Motorala JNIY Svstem V/68

Releasge 7
Yemorv Cize: 12 Megarytes
Target CTomputer:
Machine: MC68020, implemented on the Motordia

MVME 1324-20 board

bare macnine

Memory Size:

Communications Network:

1 Megabvte

RS-232

CONFIGURATION INFORMATION

Z.< IMPLEMENTATION CHARACTERISTICS

One of the purposes »{ validating compilers is to determine the pehavior of
a compiler in those areas of the Ada Standard that permit implementations
ty differ. Class D and T tests specifically check for such implemeniation
differences. However, tests in other classes also characteriz an

~

implementation. The tests demonstrate the fcllowing characteristics:

. Capacit_e-<,

The compiler correctly processes tests containing loop statements
nested to 65 1levels, bLlock statements nested to €5 levels, and
recursive procedures separately compiled as subunits rested to 17
levels. It correctly processes a compilation containing 722
variables in the same declarative part. (See tests DS5A03A..H (¢
tests), DS6001B, DOLOOSE..G {3 tests), and D29002¥.)

. Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation processes 64 bit integer calculations. (See tests
DYAOOLA, DUAOG2B, DUAOOLA, and DUAQO4EB.)

. Predefined types.
This 1implementation supports the additional predefined <tvoes

LONG_INTEGER and LONG_FLOLT in the package STANDARD. (See tests
386001C and 386001D.)

. Based literals.

An implementation is allowed to reject a based literal with =
value exceeding SYSTEM.MAX INT during compilation, or it may ralise
NUMERIC _EZRROR or CONSTRAINT _ERROR urin execution. This
implementation raises NUVERIC EZRROR during execution. '3See test
E2U1014.)

. Expression evaluation.

Apparently some default initialization expressions for record
components are evaluated before any value is checked to t:long to
a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same precision as
the base type. (See test C35712B.)

CONFIGURATION INFORMATION

This implementation uses no extra bits for extra precision. This
implementation uses all extra bits for extra range. (See test
C359034.)

Apparently NUMERIC ERROR is raised when an integer literal operand
in a comparison test is outside the range of the base type. (See
test CU5232A.)

Sometimes NUMERIC_ERROR is raised when an integer literal operand
in a membership test is outside *he range of the base type. (See
test CU52324.)

Apparently NUMERIC_ERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the range of
the base type. (See test CU52524.)

Apparently underflow is gradual. (See tests CUS524A..Z.)

Rounding.

The method used for rounding to integer is apparently round to
even. (See tests CU6012A..2.)

The method used for rounding to longest integer is apparently
round to even. (See tests CH46012A..Z.)

The method used for rounding to integer in static universal real
expressions is apparently round away from zero. (See test
ZHAO1LAL)

Arrav types.

An implementation 1is allowed to raise NUMERIC_ERROR or
CONSTRAINT_ERROR for an array having a 'LENGTE that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX_INT. For this
implementation:

Declaration of an array type or subtype with more than
SYSTEM.MAX INT components raises NUMERIC_ERROR only for a two-
dimensional array when the second dimension is the large number.
Dtherwise, no exception is raised. (See test C360034.)

No exception is raise! when 'LENGTH is applied to an array type
with INTEGER'LAST + 2 components. (See test C362024.)

No exception is raised when 'LENGTH is applied to an array type
with SYSTEM.MAX_INT + 2 components. (See test C36202B.)

A pacxed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises no exception. (See test C52103X.)

CONFIGURATION INFORMATION

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises CONSTRAINT_ERROR when the length of a dimension
is calculated and exceeds INTEGER'LAST. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC_ERROR or CONSTRAINT_ERRCR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises no exception. (See
test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in 1its entirety
before CONSTRAINT ERROR 1s raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

. Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete tyvpe with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E381044.)

In assigning record types with <discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. {(3ee test C520134.)

Aggregates.

In the evaluation of a multi-Zdimensionzl aggregate, index subtvpe
checks appear to be made as choices are evaluated. (See tes<ts
CL32074 and CU3207B.)

In the evaluation of an aggregate containing subaggregates, not
all choices are evaluated before being checked for identical
bounds. (See test E43212B.)

All choices are evaluated before CONSTRAINT_ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test EY43211B.)

CONFIGURATION INFORMATION

Representation clauses.

An implementation might legitimately place restrictions on
representation clauses used by some of the tests. If a
representation clause is used by a test in a way that viclates a
restriction, then the implementation must reject it.

Enumeration representation clauses containing noncontiguous values
for enumeration ¢types other than character and boolean types are
supported. (See tests C35502I..J, C35502..N, and A39005F.)

Enumeration representation clauses containing noncontiguous values
for character types are supported. (See tests C35507I..J,
C35507M..N, and CS55B164.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE => 0, TRUE => 1) are not
supported. (See tests C35508I..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types are
supported provided that the size specified is at least 16 bits.
(See test A39005B.)

Length clauses with STORAGE_SIZE specifications for access types
are supported. {See tests A39005C and C87B62B.)

Length clauses with STORAGE_SIZE specifications for task types are
supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported. (See
tests A39005E and C87B62C.)

Record representation clauses are supported provided that the
components are aligned on 16-bit boundaries. (See test A39005G.)

Length clauses with SIZE specifications for derived integer tvpes
are supported. (See test C87B62A.)

Pragmas.

The pragma INLINE is supported for procedures. The pragma INLINE

is not supported for functions. (See tests LA3004A, LA3004B,
EA3004C, EA3004D, CA3004E, and CA3004F.)

Input/output.
The package SEQUENTIAL_IO cannot be instantiated with

unconstrained array types and record types with discriminants
without defaults. {(See tests AE2101C, EE2201D, and EE2201E.)

2=5

CONFIGURATION INFORMATION

The package DIRECT_IO cannot be instantiated with unconstrained
array types and record types with diseriminants without defaults.
{See tests AE2101H, EE2401D, and EE2401G.)

The director, AJPO, has determined (AI-00332) that every call to
OPEN and CREATE must raise USE_ERROR or NAME ERROR if.file
input/output is not supported. This implementation exhibits this
behavior for SEQUENTIAL_IO, DIRECT_IO, and TEXT_IO.

. Generics.

Generic subprogram declarations and bodies can be compiled in
separate compilations provided that the body is compiled before
any instantiations. (See tests CA1012A and CA2009F.)

Generic package declarations and bodies éan be compiled in
separate compilations provided that the body is compiled before
any instantiations. (See tests CA2009C, BC3204C, and BC3205D.)

Generic unit bodies and their subunits can be compiled in separate
compilations. (See test CA3011A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was
tested, 27 tests had been withdrawn because of test errors. The AVF
determined that U423 tests were inapplicable to this implenentation. All
inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported
by the implementation and 174 executable tests that use file operations not
supported by the implementation. Modifications to the code, processing, or
grading for ten tests were required to successfully demonstrate the test
objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TZST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A 2 C D |9 L

Passed 105 1046 1447 17 12 s 2672

Inapplicable 5 5 uoé 0 6 1 423

Withdrawn 3 2 21 0 1 0 27

TOTAL 113 1053 1874 17 19 up 3122

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 Q 10 11 12 13 14

Passed 190 494 536 245 166 98 141 326 132 36 232 3 73 2672
Inapplicable 14 78 138 3 0 0 2 1 5 0 2 0 180 423
Withdrawn 2 14 3 0 0 1 2 0 0 0 2 1 2 27

TOTAL 206 586 677 2u8 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 27 tests were withdrawn from ACVC Version 1.9 at the time of
this validation:

B28003A E28005C c340044 C35502P A35902C
C35904A C359048 C35A03E C35A03R C37213H
372134 C37215C C37215E C37215G C37215H
c38102C cu1u024 Ci45332A C45614C AT4106C
C87BO4B C85018B CC1311B BC31054 AD1AC1A
CE2401H CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplica%le fer a subsequent
attempt. For this validation attempt, U423 tests were inapplicalle for the
reasons indicated:

. C€35508I..J (2 tests) and C35508M..N (2 tests) use enumeration
representation clauses for boolean types containing
representational values other than (FALSE => 0, TRUE => 1). These
clauses are not supported by this implementation.

. C357024 wuses SHORT_FLOAT which is not supported by this
implementation.

3-2

TEST INFORMATION

A39005B uses length clauses with SIZE specifications for
enumeration types which are not supported by this implementation.

A39005G uses a record representation clause which is not supported
by this implementation.

The following 14 tests use SHORT_INTEGER, which is not supported
by this implementation:

Ccus5231B C45304B Cl5502B C45503B Cl455048B
CUSSOUE CUs611L C45613B Cus614B C45631B
Cus56328 B52004E CS5BOTB B55B09D

C45231D and BB6001D require a macro substitution for any
predefined integer types other than INTEGER, SHORT_ INTEGER, and
LONG_INTEGER. This implementation does not support any such
types.

CU45531M, CU5531IN, CU5532M, and C45532N use fine LB-bit fixed-point
base types which are not supported by this implementation.

C455310, CU5531P, CU55320, and CU5532P use coarse 48-bit
fixed-point base types which are not supported by this
implementation.

C46014A and CHAO12B expect code to be generated and executed for
operations which simply cause an exception and have no other
effect on the program. This implementation does not generate code
for such operations.

C86001F redefines package SYSTEM, but TEXT IO is made cbsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent c¢cn the package
TEXT IO.

C96001A assumes that SYSTEM.TICK <= DURATION'SMALL.

CA2009C, CA2009F, BC3204C, and BC3205D contain instantiations of
generics in cases where the body is not available at the time of
the instantiation. This implementation creates a dependency on
the missing body so that when the actual body is compiled, the
unit containing the instantiation becomes obsolete.

CA3004F, EA3004D, and LA30O4B use the INLINE pragma for functions,
which is not supported by this implementation.

AE2101C, EE2201D, and EE2201E use 1instantiations of package

SEQUENTIAL_IO with wunconstrained array types and record types
having discriminants without defaults. These instantiations are
rejected by this implementation.

3-3

TEST INFORMATION

. AE2101H, EE2401D, and EE2401G use instantiations of package

.DIRECT_IO with wunconstrained array types and record types having

discriminants without defaults. These instantiations are rejected
by this implementaticn.

. The following 174 tests are inapplicable because sequential, text,
and direct access files are not supported:

CE2102C CE2102G..H(2) CE210K CE2104A..D(4)
CE2105A..B(2) CE2106A..B(2) CE2107A..I(9) CE2108A..D(4)
CE21094A..C(3) CE2110A..C(3) CE2111A..E(5) CE2111G..H(2)
CE2115A..B(2) CE22014..C(3) CE2201F..G(2) CE2204A..B(2)

CE2208B CE2210A CE2401A..C(3) CE2401E..F(2)
CE2404 CE2405B CE2U064A CE240TA
CE2U4084A CE24094 CE2410A CE2U411A
AE31014 CE3102B EE3102C CE31034A
CE31044a CE3107A CE31084..B(2) CE31094A
CE31104 CE3111A..E{(5) CE3112A..B(2) CE31144..B{2)
CE21154 CE3203A CE3301A..C(3) CE3302A
CE33054 CE3U02A..D(Y4) CE3403A..C(3) CE3403E..F(2)
CE3404A..C(3) CE3405A..D(4) CE3406A..D(4) CE3U407A..C(3)
CE3408A..C(3) CE3U409A CE3409C..F(4) CE3410A
CE3410C..F(4) CE34114a CE3412A CE3413A
CE3413C CE3602A..D(4) CE3603A CE36044
CE3605A..E(5) CE3606A..B(2) CE3704A..B(2) CE3704D..F(3)
CE3704M..0(3) CE3706D CE3706F CE3804A..E(5)
CE3304G CE3804I CE380UK CE380uM
CE3805A..B(2) CE38064a CE3806D..E(2) CE29054..C(3)
CE3905L CE3906A..C(3) CE3906E..F(2)

. The following 201 tests require a floating-point accuracy that
exceeds the maximum of 15 digits supported by this implementation:

C24133L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y {14 tests) C35707L..Y (14 tests)
£25708L..Y (14 tests) C35802L..Z (15 tests)
CL5281L..Y (14 tests) Ci5321L..Y (14 testis)
C45421L..Y (14 tests) ClSg521L..2 (15 tests)
CU45524L..Z (15 tests) CLUs621L..2 (15 tests)
CU5641L..Y (14 tests) Cl6012L..2 (15 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

t is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and

3-4

TEST INFORMATION

confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

Modifications were required for nine Class B tests, one Class C test, and
one Class E test.

e following Class B tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B2T005A BA30064A BA3006B BA3007B BA30084A
BA3008B BA3013A

The following tests need a 'PRAGMA LIST (ON);' added at the beginning of
the source file in order to have a complete source/error listing.

B28001R B28001V E28002D
CH5651A requires that the result of the expression in line 227 be 1in the
range given in 1line 228; however, this range excludes scme acceptable
results. This implementation passes all other checks of this test, and the

AVO ruled the test is passed.

3.7 ADDITIONAL TESTING INFORMATION
2.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by
the Motorola Delta Series TeleGen2 Ada comriler was submitted to the AVF by
the applicant for review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests, and <the compiler
exhibited the expected behavior on all inapplicable tects.

3.7.2 Test Method

Testing of the Motorola Delta Series TeleGen2 Ada compiler wusing AZVC
Version 1.9 was conducted on-site by a validation team from the AVF. The
configuration consisted of a Motorola VME Delta Series, Model 2616 host
operating under Motorola UNIX System V/68, Release 3 and a MC68020 bare
machine target, implemented on a Motorola MVME 1334-20 board with a
standard MC6888% floating-point coprocessor. The host and target computers
were linked via RS-232.

A magnetic tape containing all tests except for withdrawn tests, tests
reguiring unsupported floating-point precisions, and tests involving
unsupborted file I/0 features was taken orn-site by the validation team for
processing. Tests that make use of implementation-specific values were
customized on site. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

3-5

TEST INFORMATION

The contents of the magnetic tape were nct loaded directly onto the host
computer. The contents of the magnetic tape were initizlly loaded onto a
Sun-3, The files were remote copied, via the Network File System, from the
Sun-2 to the Motorola Delta Series, Model 2616.

After the test files were loaded to disk, the full set of tests was
compiled and linked on the Motorola VME Delta Series, Model 2616, and all
executable tests were run on the target computer. Object files were linked
on the host computer, and executable images were transferred to the target
computer via RS-232. Results were transferred to the host computer via

RS-232 and were then remote copied back to the Sun-3 and printed.

To speed up the ACVC compiling and downloading process, the runtime and
ACVC support packages were partially 1linked to create a phantom load
module, and downloaded onto the target in a fixed memory location. When
each ACVC test was linked, the TELESOFT linker resclved any references to
the runtime and support routines into the phantom, and did not include
their code in the generated load module. This substantially reduced the
link time and resultant load module size. The 1loader, using its fast
checksum recovery mode, ensured that the phantom was intact prior to the
downloading and execution of each ACVC test.

The compiler was tested using command scripts provided by TELESOFT and
reviewed by the validation team. The compiler was tested using all default
option settings except for the following:

Class B tests

Option Effect

-c 29 Generate MC68020 code

-0 D See note below

-L Generate source/error listing
-V Specify amount of virtual space

Executable tests

Jotion Effect

-c 20 Gencrate MCH8020 code

-0 D See note below

-2 <filename> Use the additional options from the specified
linker options file.

-m Specify the name of the main unit

-V Specify amount of virtual space

3-6

TEST INFORMATION

Optimizer switch -0 D

The optimizer switch "-0 D" is equivalent to "-P -R -I <A" which has
the following meaning:

Option Effect

-P One or more of the subprograms being optimized
may be called from parallel tasks.

-R One or more of the subprograms interior to the

unit/collection being optimized could be called
recursively by an exterior subprogram.

-I Enables inline expansion of those subprograms
marked with an INLINE pragma or generated by
the compiler.

-A Enables automatic inline expansion of any
subprogram called from only one place, as well
as those marked with an INLINE pragma or
generated by the compiler.

Tests were compiled, linked, and executed (as appropriate) using a single
host and a single target computer. Test output, compilation listings, and
job logs were captured on magnetic tape and archived at the AVF. The
listings examined on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at San Diego CA and was completed on 16 June 1088,

3-7

APPENDIX A

DEZLARATION OF CONFORMANCE

TELESOFT has submitted the following Declaration of
Conformance concerning the Motorola Delta Series
TeleGen2 Ada compiler, Version 1.2.

-

DECLARATION OF CONFORMANCE

Compiler Implementor; TELESOFT
Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.9

Base Configuration

Base Compiler Name: Motorola Delta Series TeleGen2 Ada

: Version: 1.2
Host Architecture ISA: Motorola VME Delta Series, Model 2616
OS & VER #: Motorola UNIX SYSTEM V/68, Release 3
Target Architecture ISA: Motorola VME 133A-2C (MC88020)
OS & VER #: bare machine

Implementor's Declaration
p

[, the undersigned, representing TELESOFT, have implemented no deliberate extensions to the
Ada Language Standard ANSI/MIL-STD-1815A in the compiler(s) listed in this declaration. |
declare that TELESOFT is the owner of record of the Ada language compilers listed above and, as
such, is responsible for mairtaining said compiler(s) in conformance to
ANSI/MIL-STD-1815A. All centificates and registrations for Ada language compiler(s) listed
in this declaration shall be made only in the owner's corporate name.

(,-\\ / | A n [/7 ‘

S S AR A A Date. ' —1x_%7%
4_~ TELESOFT y
“1'* Raymond A. Parra, Director, Contracts/Legal

\

Licensee's Declaration

Motorola, inc. assures that all reasonable steps are taken by Motoroia, Inc. to maintain the Ada
language compiler(s) listed above in conformance to ANSUMIL-STD-1815A and agrees to the
public disclosure of the final Validation Summary Report. Motorola, inc. agrees to comply with
the Ada Joint Program Office policy on the use of the VALIDATED ADA certification mark.
Further, Motorola, Inc. declares that to the best of its knowledge the Ada language compiler(s)
and their hosttarget configurations are in compliance with the Ada Language Standarc

Dl D7

(MOTOROLA, INCORPORATED
Name and Title:_M il AL W YOS

D\r‘e,c:\-'bx‘ o= mi&*\ﬁc\

&s2°d GB5PESZETS JS-054 95:57 &2, ST N

APPENDIX B

APPENDIX F OF THE Ada STANDARD

Tne only allowed implementation dependencies correspond to implementatio.-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 12 of the Acda Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the Motorola Delta Series TeleGen2 Ada compiler, Version 1.2, are described
in the following sections, which discuss topics in Appendix F of the Ada
Standard. Implementation-specific portions of the package STANDARD are
also included in tnais appendix.

pacrage STANDARD is

tvpe INTEGER is range -32768 .. 32767;

type LONG_INTEGER is range -2147483648 .. 21474835u7;

type FLOAT is digits 6 range -1.G3U28E425 .. 1.03428E+25;

type ..ONG_FLOAT is digits 1
range ~2.5711008708

e
5
1

43BE+67 .. 2.57110087081438E+C 1

type SHORT FIXED is delta 2#7.0#E-15 range -1.0 .. 7.0-2#" .0#E-"4;
tvpe FIXED is delta 2#1.0#E-31 range -7.0 .. 1.C=-2#1.0#E-77;

type DURATION is delta 2#1.0#E-14 range -86400.0 .. BO400.0:

end STANDARD;

APPENDIX F

1. Predefined Pragma

pragma LIST(ON OFF):

It mav appear anywhere a pragma is allowed. The pragma
has the effect of generating the source compiiation.

The listing will begin at the first pragma list{ON)
statement if no previous pragma list(OFF) statement

was encountered. Otherwise, the listing will begin

at the top of the source.

Impiementation Dependent Pragmas

pragma COMMENT(<string _literal>):

It may only appear within a compilation unit.

The pragma comment has the effect of embedding the given
sequence of characters in the object code of the compilation unit.

pragma LINKNAME(<subprogram name>. <string literal>):

It may appear in any declaration section of a unit.

This pragma must also appear directly after an interface pragma
for the same <subprogram name>. The pragma linkname has the
effect of making string literal apparent to the linker.

pragma INTERRUPT(Function Mapping):

It may only appear immediately before a simple accept statement,
a while joop directly enclosing only a single accept statement,

or a select statement that includes an interrupt accept alternative.
The pragma interrupt has the effect that entry calls to the
associated entryv. on behalf of an interrupt. are made with a
reduced call overhead.

2. Implementation Dependent Attributes

There are no implementation dependent atiributes.

3. Specification of Package SYSTEM
PACKAGE System IS

TYPE Address is Access Integer:
TYPE Subprogram _Value is PRIVATE:

TYPE Name IS (TeleGen2);

APPENDIX F. Cont.
System Name : CONSTANT name := TeleGen2:

Storage Unit : CONSTANT := &
Memory Size : CONSTANT =2 ** 31) -1:

-- Svstem-Dependent Named Numbers:

Min Int : CONSTANT :=-(2 ** 31):

Max Irt : CONSTANT := (2 ** 31) - I

Max Digits : CONSTANT := 15;

Max Mantissa : CONSTANT := 31;

Fine Delta : CONSTANT := 1.0/ (2 ** Max_Mantissa):
Tick : CONSTANT := 10.0E-3:

-- Other System-Dependent Declarations
SUBTYPE Priority IS Integer RANGE 0 .. 63;
Max_Object Size : CONSTANT := Max Int:
Max _Record Count : CONSTANT := Max Int;

Max_Text lo_Count : CONSTANT := Max_Int-1;
Max_Text lo _Field : CONSTANT := 1000:

PRIVATE
TYPE Subprogram_Value IS
RECORD
Proc addr : Address:

Statiz_link : Adaress:
Global frame : Address:

END RECORD:

END System:

4. Restrictions on Representation Ciauses
The Compiier supports the following representation clauses:

Length Clauses: for enumeration and derived integer types 'SIZE
attribute (LRM 13.2(a))
Length clauses: for access types 'STORAGE SIZE attritube (LRM13.2(b))
Length Clauses: for tasks types 'STORAGE SIZE attribute (LRM 13.2(c))
Length clauses: for fixed point types 'SMALL attribute (LRM13.2(d))
Enumeration clauses: for character and enumeration types othe: than
character and boolean (LRM 12.3)

B-3

. 1. O Package Characteristics

APPENDIX F, Cont.

Record representation clauses (LRM 13.4)
Address Clauses: for objects and entries (LRM 13.5(a)(¢))

This compiier does NOT support the following representation clauses:

Enumeration ciauses: for booiean (LRM 13.3)
Address clauses for subprograms, packages. and tasks (LRM 13.5(b))

Note: The Delta 'E68k compiler contains a restriction that allocated
objects must have a minimum allocation size of 1€ bits.

. Implementation dependent naming conventions

There are no implementation-generated names denoting
implementation dependent components.

. Expressions that appear in address specifications are interpreted

as the first storage unit of the object.

. Restrictions on Unchecked Conversions

Unchecked conversions are allowed between any types unless the
target type is an unconstrained record or array type.

Instantiations of DIRECT 10 and SEQUENTIAL 1O are supported with

the following exceptions:
* Urconstrained array types.

* Unconstrainted types with discriminants without defauit
valiues.

* In DIRECT 1O the type COUNT is defined as follow:
tvpe COUNT is range 0..2_147 483 647:

* In TEXT 10 tne type COUNT is defined as follows:

type COUNT is range 0..2 147 483 645:

.

9.

APPENDIX F, Cont.
* In TEXT IO the subtype FIELD is defined as follows:

subtype FIELD is INTEGER range 0..1000;

Definition of STANDARD

STANDARD is not an Ada package with a specification in our implementation. Our
compilation svstem does not compile any source corresponding to the predefined
package STANDARD. In fact. STANDARD cannot generally be written fully using
standard Ada because the definitions of predefined numeric types like INTEGER and
FLOAT require specification of properties that cannot be defined by means of Ada
type declarations. it would probably be more appropriate for the AVO to request
implementations to provide the names of all predefined numeric types and the values
of the'r various attributes instead of asking for some artificially constructed source
for STANDARD, especially since the predefined numeric types are the only
declarations of allowed variation within the package. The generation of package
STANDARD in our implementation is achieved by means of a special text file that
specifies the names and certain attribute values for the various numeric types
supported by the target configuration.

For this target system the numeric types and their properties are as follows:

Integer types:

INTEGER
size = 16
first = -32768
last = 32767

LONG _INTEGER

size = 32
first = -2147483648
-2147483647

B
[

Floating-point types:

FLOAT
size = 32
digits = 6

'small = 2.58494E-26
'large = 1.93428E+25

APPENDIX F, Cont.

machine radix = 2
machine mantissa = 24
machine emin = -125

machine_emax = -127
LONG_FLOAT

size = 64

digits = 15

‘small = 1.94469227433161E-62
large = 2.57110087081438E-61
machine radix = 2
machine_mantissa = 53
machine_emin = -1021
machine_emax = +1023

Fixed-point types:
SHORT FIXED

size = 16

delta = 2#1.0=e-15

first = -1.00000

last = -1.0-2=1.0%e-15

FIXED
size = 32

delta = 2=1.0=e-31
first = -1.00000

last = —1.0-231.0=e-31
DURATION
size = 32

delta = 2£1.0ze-14
first = -86400
last = —-86400

B-6

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such

as the maximum length of an input line and invalid file names.
makes use of such values is identified by the extension .TST

in

A test that
its

file

name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.
Name and Meaning Value
$3IG_ID? (1..199 => 'A', 200 => '1')
Identifier the size of the
maximum input line length with
varying last character.
$BIG_ID2 (1..199 => 'aA', 200 => '2")
Identifier the size of the
maximum input line length with
varying last character.
$BIG_ID3 (1..700 | 102..200 => &', 101 => '3')
Identifier the size of the
maximum input line length with
varying middle character.
$BIG_IDU (1..100 | 102..200 => 'A', 101 => '4')
Identifier the size of the
maximum input line length with

varying middle character.

$BIG_INT_LIT

An integer 1literal of value 298
with enough 1leading zeroes so
that it 1is the size of the

maximum line length.

(1..197 => 0,

198..200 => "298")

TEST PARAMETERS

Name and Meaning Value

$BIG_REAL_LIT (1..194 => 'Q*', 195,.200 => "69.0E1")
A universal real 1literal of
value 690.0 with enough leading
zeroes to be the size of the
naximum line length.,

$BIG_STRING1 (1 =>) 2,0101 => Ay, 102 => tmr)
A string 1literal which when
catenated with BIG_STRING2
yields the image of BIG ID1.

$BIG_STRING2 (1 => v 2,100 => 'A',
A string 1literal which when 101..102 => minnn)
catenated to the end of
BIG_STRING1 yields the image of
BIG_ID1.

$BLANKS (1..180 => ' ")

A sequence of blanks twenty
characters 1less than the size
of the maximum line length.

$COUNT_LAST 2147483645
A universal integer
literal whose value is

TEXT_IC.COUNT'LAST.

$FIELD _LAST 1000
A universal integer
literal whose value is
TEXT_IO.FIELD'LAST.

3?ILE_NAME_WITH_BAD_CHARS BAD-CHARSX)]18#4"&~V
An external file name that
either contains invalid

characters or is too long.

sFILE_NAME_WITH_WILD_CARD_CHAR WILD-CHAPR® NAM
An external file name that
either contains a wild card
character or is too long.

$GREATER_THAN_DURATION 131_073.0
A universal real 1literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

Name and Meaning

Value

TEST PARAMETERS

$GREATER_THAN DURATION_BASE_LAST
A universal real literal that is
greater than DURATION'BASE'LAST.

$¢TLLEGAL CYTERNAL FILE NAME?
An external file name which
contains invalid characters.

$ILLEGAL_EXTERNAL_FILE_NAME?
An external file name which
is too long.

$INTEGER_FIRST
A universal integer 1literal
whose value 1is INTEGER'FIRST.

$INTEGER_LAST
A universal
whose value is

integer literal
INTEGER'LAST.

$INTEGER_LAST_PLUS 1
A universal integer 1literal
whose value is INTEGER'LAST + 1.

$LESS_THAN DURATION
A universal real 1literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS_THAN DURATION BASE FIRST
A universal real literal that is
_ess than DURATION'BASE'FIRST.

$MAX DIGITS
laximum digits supported for
lozting-point types.

R

$MAX _IN_LEN
Maximum input line length
permitted by the implementation.

$MAX_INT
A universal integer 1literal
whose value is SYSTEM.MAX INT.

$MAX_INT_PLUS 1
A universal integer 1literal
whose value is SYSTEM.MAX_ INT+1.

10_000_000.0

BADCHAR®" /4

(1..256 => 'A")

-32768

32767

32768

-100_000.0

L}
)
N
Q
-~
w)
Q

w

200

27147483647

2147483648

TEST PARAMETERS

Name and Meaning

Value

$MAX_LEN_INT BASED_LITERAL

A universal integer based
literal whose value is 2#114#
with enough 1leading =zeroes in
the mantissa to be MAX_IN LEN
long.

$MAX_LEN REAL_BASED LITERAL

A universal real based literal
whose value is 16:F.E: with
enough leading zeroes 1in the

mantissa to be MAX_IN_LEN long.

$MAX_STRING_LITERAL

A string literal of size
MAX_IN_LEN, including the quote
characters.
$MIN_INT
A unjiversal integer 1literal
whose value is SYSTEM.MIN_INT.
$NAME

A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG_INTEGER.
$NEG_BASED_INT
A Dbased
highest

whose
bit
bit

- -

integer literal
order nonzero
falls in the sign
position of the representation
for SYSTEM.MAX INT.

(1..2 => "2, 3..197 =>
198..200 => "11:")

lOl’

(1..3 => "16:", 4..196 => '0',
197..200 => "F.E:")

(1 200 => ")

=> "M 2..199 => 'AY,

-2147483648

NO_SUCH_TYPE

164FFFFFFFE#

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform ¢to
the Ada Standard. The following 27 tests had been withdrawn at the
time of validation testing for the reasons indicated. A reference of
the form "AI-ddddd" is to an Ada Commentary.

. B28003A: A basic declaration (line 36) incorrectly follows a later
declaration.

E28005C: This test requires that "PRAGMA LIST (ON);" not appear in
a listing that has been suspended by a previous "PRAGMA LIST
(OFF):"s the Ada Standard is not clear on this point, and the matter
will be reviewed by the AJPO.

. C34004A: The expression in line 168 yields a value outside the
range of the target type T, but there is no handler for
CONSTRAINT_ERROR.

The equality operators in 1lines 62 and 69 should be
y operators.

H ee
(34

. A35Q02C: The assignment in line 17 of the nominal upper bound of a
fixed-point type to an object raises CONSTRAINT_ZRROR, for that
value lies outszside of the actual range of the type.

. C35904A: The elaboration of the fixed-point subtype on line 28
wrongly raises CONSTRAINT_ERROR, because its upper bound exceeds
that of the type.

. C35904B: The subtype declaration that 1is expected to raise
CONSTRAINT_ERROR when its compatibility is checked against that of
various types passed as actual generic parameters, may, in fact,
raise NUMERIC ERROR or CONSTRAINT ERROR for reasons not anticipated
by the test.

WITHDRAWN TESTS

. C35A03E and C35A03R: These tests assume that attribute 'MANTISSA
returns O when applied to a fixed-po.nt type with a null range, but
the Ada Standard does not support this assumption.

[y
4]

C37213H: T™e subtype declaration of SCONS in line 100
incorrectly expected to raise an exception when elaborated.

. C37213J: The aggrecgate in line 451 incorrectly raises
CONSTRAINT_ERROR.

. (£37215C, C37215E., (C37215G, and C37215H: Various discriminant
constraints are incorrectly expected to be incompatible with type
CONS.

. €38102C: The fixed-point conversion on 1line 23 wrongly raises
CONSTRAINT_ERROR.

. CU14024: The atiribute 'STORAGE SIZE is incorrectly applied to an
object of an access type.

CU53324A: The test expects that either an expression in line 52 will
raise an exception or else MACHINE OVERFLOWS is FALSE. However, an
implementation may evaluate the expression correctly using a type
with a wider range than the base type of <the operands, and
MACHINE OVERFLOWS may still be TRUE.

. Culsgilicy The function call of IDENT INT in line 15 uses an zrgument
of the wrong type.

ATLi06C, C85018B, C87BOLB, and CCi311B: A bound specified in a
fixed-point subtype declaration lies outside of that calculated for
the base type, raising CONSTRAINT_ZRROR. Errcrs of this sort occur
at lines 37 & 5%, 142 & 143, 16 & U8, and 252 & 253 of the ‘our
tests, respectivelv.

t
t
o
o
[&]
o

. BC2105A: Lines 150 through 168 expect error messages, Lo
lines are correczt Ada.

AT A -
t

CONSTRAINT ERROR

AC7A: The declaration of subtvpe SINT3 raise
i oe 10 or greater.

myo-

. s
mplementations which select INT'SIZE to o

for
. CE2401%H: The record aggregates in lines 105 and 117 contain the
wrong values.

. CE3208A: This test expects that an attempt to open the default
output file (after it was closed) with mode IN_FILE raises
NAME_ERROR or USE_ERROR; by Commentary AI-000LS, MODE_ERROR should
be raised.

