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ABSTRACT

Z? The sound distribution everywhere within a wedge—shaped fluid overlying either
a slow or a fast bottom%’-:s—been studied, in-this-researeh:>Collecting all the results
of the previous works in this area and overviewing them has been the primary
purpose. All the cases reported earlier have been studied, and some new ones have
been added. The variation of the transition point distance with the shore distance
as a variable was observed. In additionythe isopressure patterns were verified by
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I. INTRODUCTION

Sound propagation in an ocean with a sloping bottom has received considerablce
attention during recent years. Both tHéoretI’&I/aX/s and expirimemalists have been
involved with this subject [Ref 1-19]. They have created a number of acoustic
models to predict the sound field within a wedge shaped fluid overlyving a penetrable
or a rigid fluid bottom.

The acoustic field in a wedge shaped shallow water duct with ideal boundary
conditions has been studied by Bradley and Hudimac[Ref. 1]. They have analyvzed
the case of an isospeed duct with one pressure release and one rigid surface. The
theoretical analysis has been carried out in both image theory and normal mode
theory. The relationship between the two has been explored for the case of a point
source. The image sum was transformed via the Poisson transformation formula to
the normal mode sum. The average acoustic field was then compared for the two
approaches with good results. Also the two theoretical approaches were compared
with experimental data from the west coast of Florida with fair results.

Kuznetsov [Ref 2] used the method of images to investigate the high—frequency
field in a wedge. He showed that the method of images is better suited to the near
field where, in addition to the normal modes of the discrete spectrum. the
continuous spectrum plays a significant role. At distances from the source greater
than ten times the laver thickness. the normal mode method works better. These
results are based on the idealized model of a2 wave channe] as a layer of water having

plane boundaries over a fluid half space. The sound field in a wedge was described




as the sum of the image—source fields taking account of the coefficient of all
reflections. A point source was used in a wedge with perfectly reflecting boundaries.

Kuznetsov in another study [Ref 3], has described the displacement of the
normal modes which takes place in the vertical plane and causes each normal mode
to emerge from the wedge into the half space at a certain distance, specific to the
normal mode, from the vertex line of the wedge.

In 1975 Graves, Nagl, and Uberall [Ref 6] used the adiabatic range variation
method, derived by Pierce and Milder [Ref 4,5], to perform an approximate
separation into normal modes for the problem of an under—ocean channel witl.
gradual range dependence of medium and boundaries. Their technique was
illustrated by application to the isovelocity ocean wedge with rigid ocean floor, and
compared with the exact solution of Bradley and Hudimac [Ref 1]. A good
agreement was obtained for moderately large wedge angles. even when mode
coupling was neglected.

In 1978, Coppens, Sanders, loannou and Kawamura [Ref 7]. using computer
models, predicted the acoustic pressure amplitude and phase in the upslope direction
at the bottom of a wedge shaped fluid layer overlaying a fast fluid. The slopes of
the wedges studied were about 2.4° or 2.7%. One of the models had infinite source
distance while the other had the source at finite distance. The program outputs
were compared with the experimental results using as variables the wave number
and density. There were significant differences between the simple model and the
experimental results because of the experimental limitations.

The results of shallow water acoustic experiments performed off the coast of

Corpus Cristi, Texas, have been compared with theoretical computations by Rubano




(1980) [Ref 8]. A four-layer, fluid, normal-mode model was used to predict the
group velocity dispersion and spatial amplitude distributions of the first and second
modes. The results show good agreement between the measured and theoretical
values.

In the same year (1980), comparison between experiment and theory was made
by Jensen and Kuperman [Ref 9]. They used the parabolic equation model to study
the modal cutoff during upslope propagation in a wedge—shaped ocean. They found
that the cutoff is not abrupt but takes place over a finite distance which essentially
provides an aperture for radiation of a beam into the bottom. Also the Gaussian
representation of a point source in the PE model has given very good results in the
presence of a bottom.

The modal cutoff during upslope propagation has also been studied by Pierce

(1982)[Ref 10]. Since the adiabatic mode theory for upslope propagation in shallow
water breaks down when the depth decreases to a critical value. he has used
matched asymptotic expansion techniques to yield the acoustic pressure in the
transition case. The derived characteristic critical—depth transition function give
results which are in accord with computations reported by Jensen and Kuperman
[Ref 9].
The same subject. the modal cutoff during upslope propagation, was studied by
Arnold and Felsen using the image theory as a convenient starting point for
collective treatment of ray fields and their conversion into local modes [Ref 11].
The numerical comparisons with the results of Jensen and Kuperman [Ref 9] showed
good agreement.

The sound field in an absorbing fluid substrate underlying a wedge shaped fluid

with higher sound speed has been studied by Coppens, Sanders, and Humpbhries in




1984 [Ref 12]. A Green's function extension of the image theory give the
opportunity of doing all the calculations on a computer. Two differem
approximation methods were used. The end—point approximation gave solutions
valid at great distances, and for absorptions representative of sedimentary
materials. The saddle-point approximation has given good results under the apex.
with no limit in the absorption.

In 1984 Baek [Ref 13] predicted the pressure amplitude and phase, everywhere
within the wedge, in upslope direction, having a fast bottom. Three cases were
studied, pressure release bottom, rigid bottom, and penetrable bottom.

In the same year (1984) LeSesne [Ref 14] studied and compared two computer
programs using the method of images to determine the pressure and phase
distribution. It was concluded that an infinite source is not approached until the
source exceeds six hundred dump distances from the apex. All measurements were
taken directly upslope with source distance equal to forty dump distances and the
receiver on axis with the source. Comparison between the two programs show
similar results.

One year later, in 1985 Borchardt [Ref 15] experimentally measured the sound
pressure field evervwhere within isospeed water overlving a sloping absorbing
bottom. The experimental data were compared with the program developed by
LeSesne [Ref 14]. The results showed that the program successfully predicts the
on—axis upslope sound profile in a wedge—shaped medium. Particularly.
measurements showed good agreement for R2 <10, 4 = 9.5°, " /p2 = 1.1 and
Y0<50 . All the symbol definitions are given in the List of Symbols table.

A shallow water wedge with a slope up to 9° has been experimentally studied

by Tindle, Hobaek, and Muir in 1986 [Ref 16]. They presented experimental results




for downslope propagation and they defined the wedge modes as propagating normal
modes with wavefronts which are curved into arcs of circles centered on the wedge
apex.

In 1987 Kaswandi [Ref 17], studied the slow bottom case. The outputs were
taken for the on—axis case with wedge angles of 6°, 100, and 15°. Three kinds of
curves were observed, depending on the source distance.

At about the same time, a program with 3—D capabilities was used by Li [Ref
18] to predict the acoustic pressure distribution along the interface between a
wedge—shaped fluid layver overlying fast or slow bottom. It was concluded that the
major ciiaracteristics of the output graphs were insensitive to minor variations of
the bottom.

In 1988 Doolittle and Tolstoy presented experimental data obtained in East
Australian Continental Slope consistent with the theory of energetic horizontal
refraction due to multiple reflections from a sloping bottom [Ref 19). When viewed
from above, the path of the ray appears to curve. As a result,the exact position of
the source can be obtained from the details of this curvature.

The purpose of this research is to take all the outputs provided by the theses of
Kaswandi and Li and try to build a physical understanding of the acoustic field from
them. Also an attempt was made to obtain detailed comparisons between the
DSLOW and 3LS4 programs for the same inputs,and to further investigate the

transition point.




II. THEORY

The theoretical background of this research has been presented by Coppens.
Sanders, Joannnou and Kawamura [Ref 8]. What follows, in this chapter. is a
summary of the most important points of the image theory and its application to

the wedge—shaped ocean with penetrable bottom.

A. METHOD OF IMAGES

The assumptions that (1) the speed of sound is the same evervwhere within the
wedge and in the penetrable bottom and (2) the upper surface is a pressure release
surface makes the method of images an appropriate approach for understanding the
sound field in a wedge—shaped fluid. The sound paths are straight lines and the
plane wave Rayleigh reflection coefficients, discussed by Kinsler. Frey. Coppens
and Sanders [Ref 14, is a good approximation if the sound source is not too close to
the bottom.

The geometry of the model used to predict the pressure amplitude and phase
everywhere within the wedge is shown in Figure 1. For the wedge—shaped duct.
cylindrical coordinates are used with the shore line as the axis (Figure 2). The
images lie on a circle centered on the shore line.

In Figures 3 and 4, the relationship between the receiver and the nth image is

shown. The angle 6, of the nth image, measured from the bottom, is given by:

8, = B-(n-1)+G, for n odd

0p =B-n—G for neven




According to Sommerfeld's concept of an extended Riemann surface. the
extension of the # coordinate makes the number of images infinite. The tota!
pressure and phase at any field point within the wedge is found by coherent
summation of all spherical waves radiated from the infinite number of images. As
the number of reflections associated with a given image increases, the pressure
contribution of this image decreases. The infinite summation is approximated by

taking the sum over N images where
n = INTEGER (180 / 3)
Wedge angles of the form =/n have been used, where n is an integer. because

diffraction terms were eliminated [Ref 2].

The distance R, between the receiver and the nth image is given by:

R,,=j Ri2+ Ro? — 2.RyRa-cos(6a=D) + Yo

for the upper group of images, and

R,.=] Ry2+ Rs? — 2-RyRo-cos(fa+D) + Yo

for the lower group images.
The angle of incidence ¢np of the nth image on the m*® plane ( described by the

angle m-f) is




[Ry-sin(6,— m3)+ Rasin(m3 — D))
Rq

Sin¢nm =

The reflection coefficients R(f,) for the upper family of images and R(6,') for

the lower family of images for a plane wave are

(4181
paC
(1%

pcy T Vo

- \I’nm
R(bpw) =

and

p1€y
pacC2

10
%26'2‘ + ‘I’n‘m

R(bn'n) =

where

Won - /1 = (c1/c2)?c05*(um)
sin(fnm)

and

W' . /1 = (¢1/¢2)%c0s*(85'n)

sin(fn'm)

The resulting complex pressure from the upper family of images is




N
- M
Pu = Z L exp(~jkRp)-(-1)NTIO+D/2] 1 Rigy,)
=1

Rn m=0

N
: M
p=) ] exp(=kRa')- (DN TN Regyy)
=]

Rn m=0

The sound field radiated by each image has been multiplied by the plane wave
reflection coefficients corresponding to reflections encountered by the wave as it goes
from the source to the field point.

The total complex pressure distribution P is the sum of the Pu and Py:

P=Pu+P

B. NORMALIZATION

All distances are normalized in terms of the characteristic distance X.. This iz
the distance measured from the apex along the wedge interface to the point at whick
the lowest mode attains cut off as shown in figure 5 [Ref 20].

The characteristic distance is defined as the distance from the shore at which

the depth H is given by




For a fast bottom. the critical angle 6 is

LY - .
= cosf
since
. .
kH =
2sin b,
tan3 = H
X
) T
klk =

2 sin[d;] tang

The above formula gives the derivation of the characteristic distance X in the
case of a fast bottom (c1 < c2). When slow bottom case is studied (c1 > ¢,). the
characteristic distance can not be defined as above. A useful characteristic distance

for slow bottom can be defined by inverting ¢;/cs

kX = u
2 tan[arcos(c2/cl)] tanj

The advantage of working with normalized distances is that the analysis is
frequency independent.
A convenient normalization for the pressure amplitude is accomplished by
multiplying the pressure amplitude at one meter from the source by the source
distance (R1). This simplifies the interpretation considerably, especially in the case .

of large source—apex distance compared to X.

10




In the course of this research. a computer program has been created. the DEME
program. This computer program provides an additional normalization. It
normalizes all the pressure amplitudes to the first pressure measurement taken down
from the surface. This slope normalization makes the shapes of the curves

comparable, even if thev have been obtained at different distances.

11




IIl. COMPUTER PROGRAMS

Two programs have been used for the purpose of this research. Theyv are
improved and more documented versions of the programs discussed by Kaswandi
[Ref 17] and Li [Ref 18]. They use the same model but have different output

displays.

A. PROGRAM DEME

In the beginning of the study reported in this thesis, the DSLOW program was
obtained [Ref 17]. DSLOW is itself an improved version of the WEDGE and
XSLOPE programs developed by Kawamura and lIoannou [Ref 7], and LeSesne [Ref
14] respectively.

DSLOW was developed to run on the IBM 3033 main frame of the Naval
Postgraduate School. It uses the method of images to predict the pressure amplitude
and phase within the wedge fluid overlying a slow bottom.

DEME, created from DSLOW, uses the same model to predict the pressure
amplitude, and phase within the wedge fluid overlying a slow or a fast bottom.

The output is given in a table format or in a graph as shown in the Appendices.
The DISSPLA graphics package and the EASYPLOT program, both of them
available on the IBM 3033. have been used for the graphical outputs.

During this research, other versions of the original DEME program have been
created with different outputs. All of them have been stored under Professor

Coppens' account in the IBM 3033 in the Naval Postgraduate School.

12




The most important of these programs are:

1. Program S provides the pressure amplitude and phase at one specific point in
the field. It must be used with the "Record on" command of the IBM 3033 for
sending the results in a separate file.

2. Program SDF is a version of the DEME program which takes the input data
from an input file and transfers the output to another file. With this technique the
EASYPLOT program can be used to produce multiple graphs.

3. Program PREC uses double precision to reduce round—off errors. The outputs
of PREC can be plotted with any other graphics software except DISSPLA. The
DISSPLA package has some difficulty when applied to the output of double
precision fortran programs.

4. Program SLA1 generates graphs without the slope normalization.

B. PROGRAM 3LS4

This program gives alternate forms of data presentation. It uses the IBM 3033
and the DISSPLA package to generate a 3-D representation of the pressure
amplitude distribution on the bottom or along any plane (defined by the D) within
the wedge. It also provides a contour presentation of the same data.

Because of the large volume of numerical output, 3LS4 is ineffective for
recognizing details.

An important limitation of the program is that the array containing the data
must be initially dimensionalised to the exact size of the data file array. This

information is normally passed from the data file during the program.

13




IV. DISCUSSION OF THE RESULTS

The DEME and 3LS4 programs have been created using the same model.
Although they provide different output graphs they must agree at every point. The
3LS4 provides the pressure amplitude and phase on a plane defined by the receiver
angle (D). The DEME program provides the pressure distribution and phase along
a vertical line anywhere within the wedge. The programs were checked for both
slow and fast bottoms. For the same input data, they gave the same outputs. as
shown in Tables 1 and 2.

For a slow bottom (c; > ca). three different types of curves of pressure amplitude as
a function of depth have been observed. The same tvpes of the curves have been
noticed by Kaswandi [Ref 17] and are shown in Figure 6.

When the source distance (R1) is much smaller than the characteristic distance
(X). the sound pressure is linearly dependent on receiver angle with the surface
pressure equal to zero and the bottom pressure a maximum (R1 = 0.1) When R1
approximates X , the curve develops considerable curvature (R1 = 0.7).

When the source distance (R1) is slightly different from the characteristic
distance X (R1 = 1.1), then a maximum and a minimum appear between the
surface and the bottom.

When the source distance (R1) is greater than the characteristic distance (X)
(R1 = 4), then the sound pressure has a maximum between the surface and the
bottom. No minimum appears in this kind of the curves. When the value of Rl is
much greater than X , several minima and maxima appear in the output curve

(R1=12).

14




Figure 7 shows the development of the second type of curve (R1 = 1.0) as the
receiver distance is varied.

For the same input data ( B = 10, G = 5, pl/p2 = 0.9), the fast bottom gave
entirely different curves as shown in Figure 8. When the source distance (R1) is
less than three times the characteristic distance (X), only the first mode is received
everywhere within the wedge (R1 = 0.3, 1.1, 1.3). When R1 > 3, higher modes are

excited and the curves are the superposition of several modes (R1 = 4).

A. TRANSITION POINT

For the slow bottom, when the source distance (R1) is about the same as the
characteristic distance (X), the curve has a maximum and a minimum. The
minimum is close to the bottom. A "transition point" has been defined by
Kaswandi [Ref 17] as the receiver distance, for which the pressure above a minimum
extrapolates to zero on the bottom.

Three examples are shown in the Figure 9 (R2 = 4.6, 6.4, 32). In all of them
the pressure above the minimum can be extrapolated to zero pressure point at the
bottom. The transition point phenomenon happens for source distances 1<R1<1.5.

For 1 < Rl < 1.5 the shape of the pressure curves as the receiver distance
(R2) is varied can be explained as follows: as the receiver is moved from (R2 = 1.5,
to (R2 = 30) the minimum pressure amplitude decreases in magnitude and the
first transition point is observed (Fig 7). With further increasing of R2. the
minimum pressure amplitude of the curves decreases to a minimum value, and then
increases arriving at a second transition point. For the receiver distances bet..een
the first and the second transition point, the extrapolation to zero pressure was

observed to be above the bottom (Figure 7). With further increasing of R2, a third




transition point tries to form but, since the R2 is so large round—off error appears
in the program output curve and the curve characteristics can not be easily
recognized. In the figure 10, the locus of the two detectable transition points are
shown as a function of R2 and the shore distance (Y0). Although it is not indicated
in the figure 10 the points lie on circular arcs centered at the source. This may
indicates that the transition point obeys the cylindrical spreading law.

The locus of the first and second transition points form curves which can be
approximated by arcs of circles centered at the source (figure 10)

The transition point as a function of the source angle (G) was studied using the
output data shown in Table 3. As the source angle changes, the transition point
moves to a different receiver distance. Two different wedge angles were observed.
The greater the source angle (G) , the smaller the receiver distance where the
transition point occurs.

A possible explanation is that, by increasing the G the source is placed far from
the angle value (D), where the minimum happens, so the absolute pressure values
become smaller as the source angle increases. In figures 10a and 10b the pressure
distribution of the bottom is shown for G = 2.5°. In figures 10c and 10d the same
case is represented with G = 7.5°. These figures are generated with the program
3LS4 [Ref 18].

In the fast bottom case no transition point was observed. In Figure 11 the fast
bottom case is shown when the shore distance (Y0) varies. This is the case of
downslope propagation in a wedge—shaped fluid overlying a fast bottom. At the
receiver's position (R2 = 32), as the shore distance is increasing ( 0 < Y0 < 80).

only a curve like the first mode appears and no minimum is observed.
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B. MORE CASES

For the fast bottom, when the source distance (R1) is bigger than 3, the higher
modes start to appear. In Figure 12, R1 = 6 . As explained by Kaswandi [Ref 17]
when R1 = 6 the first three modes are present. By increasing the source angle (G)
the output curve changes because at some source positions some modes are reduced
and some are amplified.

Some problems appear when the source is very close to the apex (R1 =0.1), as
in Figure 13. The program seems to fail close to the bottom. It may be a round—off
error of the computer because the absolute pressure values are very small. The
round—off error is clearly shown in Figure 14, where it starts to appear when the
source—receiver distance becomes too far. An attempt to eliminate this problem
was made in the PREC program which was a double precision version of the DEME
program. Also another try was made to run the DEME program in a 386 IBM
compatible personal computer with 16—bit memory. Both of the tries gave

smoother curves but they did not solve the problem.

C. SHORE DISTANCE AS A VARIABLE

Until now most studies were for on axis receiver positions (YO = 0). In the
following discussion the shore distance (Y0) is the variable. In slow bottom three
different source distances (R1) were studied (R1 = 0.5, R1 =1 and Rl = 5).

The first case is shown in Figure 15, where the source is close to the apex (Rl=
0.5). At receiver position R2 = 4 , only the linear pressure curve is observed at all
values of YO (0 < Y0 < 60).The effect of larger values of source and receiver
distance (R1= 1, R2= 6) is shown in Figure 16. As YO increases, the curve forms a

transition point at Y0 = 3 and then becomes a straight line at Y0 = 10.
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Figure 17 illustrates the case when the source distance is greater than the
characteristic distance ( R1 = 5). Curves for four different values of YO0 are shown.

The same cases were studied also for the fast bottom. The outputs are shown in
Figure 18 when the source distance is close to the apex(R1 = 0.5), in Figure 19
where R1 = 1, and in Figure 20 where the R1 = 5. What is clear to be observed in
these cases is the uncertainties, which are present in great distances. Also when

R1> 3 the higher modes start to appear.

D. ANGULAR OUTPUTS

Examination of the contour plots revealed a general hyperbolic or elliptical
pattern, therefore another try was made to understand the physical structure of the
acoustic field by searching at some particular angle off the axis ( arctan[YO0/R2] ).
As shown in Figure 21 output data were calculated every 10° off the axis. The
acoustic field was studied for two different source positions, for a small source
distance(R1=0.5) and for a source distance greater than the characteristic distance
(R1=10).

The bottom pressure distribution is shown in Figures 22 through 25. The slow
bottom as well as the fast bottom has been studied. From the contour plots
(Figures 23 and 25) it would appear that large values of the axis angle were more
interesting, because the isopressure curves seem to be asymptotic to the axis angles.

In the Figures 26 through 28 , the pressure distribution along three different
angles are shown for the slow bottom. The curves are unnormalized.

The fast bottom graphs for the same inputs are shown in Figures 29 through 34.
Many different axis were studied from 0° to 90°. All the curves from 0° up to 70°

seem to be the superposition of the first five modes (Figure 29, 30.and 31). From
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752 axis angle and for big receiver distances (R2) the graphs begin to have only the
first mode. That means that the higher modes have been cut off. At 80° all the
outputs appear to be in the area where only the first mode is received. The R2 in
all the graphs was varied between 10 and 60.

The slow bottom curves for any angle off the axis were observed to have
uniform vertical pressure profiles as shown in Figures 26 through 28. The fast
bottom curves for angles up to 80° were observed to have complicated profiles as

shown in Figures 29 through 32.

D. THE OTHER PARAMETERS
Variations of the other parameters such as the velocity ratio c¢;/co and the
density ratio 3 /p2 were studied by Kaswandi [Ref 17] for on axis measurements.

The results showed no strong variation of parameters studied.
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V. CONCLUSIONS AND RECOMMENDATIONS

In this research, the 3—D propagation of sound has been studied using the image
theory. Two computer programs were used to provide the pressure amplitude
distribution and phase everywhere within a wedge—shaped fluid overlying a fast or a
slow bottom.

The DEME and the 3LS4 programs were checked for the same input data and
they provided the same outputs for the same acoustic field points. After this check.
it was concluded that the programs were consistent with each other.

The transition point, present only over the slow bottom, was studied at various
places inside the wedge. It was found that all the curves could be approximated by
concentric circular arcs, having the source at the center.

As the source angle (G) increases, it was concluded that the transition point
distance decreases as it is shown in Table 3 .

When the source position is 1.1< R1 < 1.5 then two transition point curves
were formed. Sometimes it was possible to have also a third one, if the computer
could work with very small numbers (16 or 32 bit Bus).

The off axis data were taken along many angular axes. The slow and the fast
bottom were studied for the same angles of axis. The slow bottom data showed very
small variation of the pressure amplitude values as the receiver distance was
increased. The fast bottom curves showed very clearly the wave guide cutoff
phenomenon. In all the axis angles up to 80% the curves were observed to be
irregular with many variations and unique for each R2. At the angle of 80° or

more, no major variations were observed as the R2 was increased. This observation
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was found to be consistent with the contour plot output data taken from the 3LS!
program.

This research was another phenomenological theoretical step toward elucidating
features of the wedge problem. Some experimental data must be compared with the
two programs DEME and 3LS4 to have some confirmation of the programs
capabilities. The most interesting case seemed to be the slow bottom case.

Current thoughts [Ref 23] suggest that these features can be studied from
another point of view based on a collection of dipoles. The source and its first
image form a dipole as do other associated pairs of images (Figure 1). If all these
pairs of images are considered, then the field can be considered to be formed from
the near cancellation of equivalent dipole pairs lying at slightly different distances

from the receiver.
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APPENDIX A

TABLE 1

B =10° G = 5% Y0 = 50, R1 = 40, R2 = 10, p1/p2 = 0.9, c1/c2 = 2

RECEIVER OUTCOMING PRESSURE AMPLITUDE
ANGLE D DEME 3LS4

00 0.5073 0.50728
01 0.8683 0.86828
02 1.4251 1.42509
03 1.8969 1.89691
07 1.8491 1.84912
10 0.0000 0.00000
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NSISTENCY OF THE DEME AND 31.S4 PROGRAMS (FAST BOTTOM!

TABLE 2

B =10% G = 5% R1 =40, R2 =35, p,/p, = 0.9, C;/C, = 0.9

REC.ANGLE SHORE DIST.

PRESSURE AMPLITUDE OUTPUT

D YO DEME 3LS4
00 00 9.5446 9.54476
00 30 2.5776 2.57740
00 50 3.2210 3.22089
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TABLE 3

WEDGE SOURCE SOURCE RECEIVER
ANGLE (B) ANGLE (G)  DIST.(R1) DIST.(R2)
10° 2.5° 1.0 33.0

10° 5.0° 1.0 24.0

10° 7.5° 1.0 22.0

06° 1.5° 1.3 5.9

06° 3.0° 1.3 5.7

06° 4.5° 1.3 5.4
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Figure 1

APPENDIX B
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APPENDIX C
DEME PROGRAM

— s e wmn e e e S e - e S ey e S e e e m—
E—E—Er— =S — I — IR — I — - —

This program calculates the pressure amplitude and phase everywhere within
a wedge shape gmd overlying a penetrable bottom. It is a modified version of the
DSLO am, which was written by CASWANDI. It has been modified by
LT.D. PALIAsl“SOS on March 89. This program is working for fast or slow bottoms.
The output data are given by a table or by a graph usmg ISSPLA.

® ok K WK K kK ok Kk kK K kKK KKK XX

INTEGER A,LII,M,N,S1,52,N1,J, K

REAL*4 B,CC,C2,D.D1,D2,G,PL,P1,P2,Q1,R1,R2.T,

. T4,T6,W0,W1,Y0.Y1,Y2,Z1,73.23,74,25.26,

. T1(80),R8(80).R9(80),5(30).C(30),E(30),

. F(30),Y,Z,R3,AL,PZ(30),DZ(30),V,DX,XP,DD,PN(30)
REAL*4 TQQ,TQQI,7QQ2,TQQ3

PI =ACOS(-1.0

C********************) 353k 3 3k 3k 3K 3k 2k 3k 3k ¢ 3 2k 3k 3 3 3k 3k 2k 3 2 2k 3 ke 3k 3k 2 3K K K 3 3K A 3K 3k 3k 3 ok K 9k 3K 2k 3 3K K kK ok K

C INPUT PARAMETERS
C*********************************************************************xx
B = WEDGE ANGLE (DEG)
G = SOURCE ANGLE (DEG)
D = RECEIVER ANGLE (DEG)
N1= # OF IMAGE POINTS
R1 = SOURCE DISTANCE (IN DUMP DISTANCES)
R2 = RECEIVER DISTANCE (IN DUMP DISTANCES)
Y0 = APEX DISTANCE (IN DUMP DISTANCES)
D1 = RHO 1/RHO 2
CC = C-1/C-2
AL = ALPHA/K?

= # OF RECEIVER POSITIONS

C****t******************************************************!*******i**x

C INITIAL INPUT RELATIONS

C*****!*l***************************************************t********!*!

oleoleolelvivivlvieolele]

B =55

G=275

D = 00.0

Rl =13

R2 = 9.0

Y0 = 2.0

DI = 0.80
¢ DO P=14

YOU MUST GIVE THE INFORMATION ABOUT THE OM, THA
C MEANS YOU MUST CHOOSE SLOW OR FAST BOTTOM BY GIVING
¢ SOME VALUE TO THE SPEED RATIO CC = C1/C2. ]
C~CC=C1/C2
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CC =11
AL = 0.0001
A=10

Cxx****************k*********t***************************x:*x*:Kxxxxn:x:x

MAIN PROGRAM
C*******t********************!****************************************K
K=0
N1 = INT(180./B)

T6 = 180./PI

B = B/Té6

G=G/T6

C2 = CC**2

D2 = (Y0*Y0)+(R1*R1)+(R2*R2)

R3 = 2. *R1*R2

T4 = PI (2":TAN(ACOS(1/CC))*TAN( )
TQQ = TAN(B)

' DECISION ABOUT SLOW OR FAST BOTTOM

IF (CC.LT.1) THEN
TQQ! -ACOS(CC)
TQQ2 = SIN(TQ 1%
C ELg‘é = P1/( 2*311\ OS(CC))*TAN(B)) ***** FAST CASE
TQQ1 = ACOS(1/CC)
TQQ2 = TAN(TQQ1)
C ENTD<}; PI/2*TAN(ACOS(1/CC))*TAN(B) **** SLOW CASE

TQQ3 = 2.*TQQ2*TQQ
T4 = PI/TQQ3
C KiX= PI/(2*TQQ*TQQ2)
D2 = Y0*Y0+R1*R1+R2*R2 |
Q1 = 1/DSQRT(2.0D00)
csoo FORMAT(' NOP ',7X,'THETA(N) ',7X, IMGE SR R§ ',7X,
C * 'IMGESRR9')
C  WRITE (6,300)
800 FORMAT(5X,'/REC.POS',5X,' REC.ANGLE ',5X,'PRES.AMPLITUDE ',5X.
* 'PHASE ANGLE ',5X,'NORM.PRESS')
WRITE (6,800)
DO 10 M =0A
= M*B/A
DD Bé
_2*1/
IF}DL \\/) GOTO 110
IF(D.GE.V) GOTO 120
10 DX=D
DO15 J=1,10
D = DX+(J-I;*B/ 10%A)
DD = B/(10*A
120 S1=1.0

QOon O
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DO 20 N =1,N1
IF&SI.GT.O) T1(N)=(N-1)*B+G
g’ Sl.Lg‘.O) T1(N)=N*B-G

1=-31
R8(N) = SQRT D2—R3*COS$T1$N§—D))
RO(N) = SQRT(D2-R3*COS(T1(N}+D))

C310 FORMAT(3X,I2 ,5X,F5.2.4X F6.4,6X F6.4)

C  WRITE (6,310) N,T1(N),R8(N),R9(N)
20 CONTINUE

P1=10.0
P2 =0.0
922 SNy
= (-1 Y N
W1 = 2*C2*AL
11 = INT((N-1)/2)
DO40 I=111
S(I) = ABS{R1*SIN(T1(N)—-2*I*B)
. +R2*SIN(2"‘I*B—D2)/RS(N)
C(D) = SQRT(I~(S(1)"S(1)
T = 5(1)/D1
Wo = (—cz+(0(1)*0(1)2)
Y = SQRT((W0*W0)+(W1*W1))
7 =ABS(WO0)
IF(Y.LE.Z) Y = Z
Y1 = QI*SQRT(Y+WO0)
Y2 = —Q1*SQRT(Y-W0)
21 = T-Y2
Z2 = =Y1
C Z212= CMPLX(Z1R,Z2]
73 = 71/ zrzuzz*zzf
74 =-72)(Z1*21+22*72)
Z1 = T+Y2
22 =Y1
C Z13= CMPLX(Z3R,Z41)
25 = 21*13-72*74
26 = Z1*24+72*73
C Z14= CMPLX(Z5R,Z6l)
E(I) =175
F(I) = Z6

C400 FORMAT(' NOP ',5X,'1",5X,' ARSIN(S(1)*T6)",5X,'E(l)’,

C * BX,F(I)'5X,

C * ' DSQRT(E(I)*E(I)+F(I)*F(I))",5X,'T6*ATAN(F(I)/E(1))')

C WRITE (6,400)

C420 FORMAT(3X,12,6X,12,5X,F6.4,10X,F6.4,3X,F6.4,3X,F6.4,10X,F7.4)

C WRITE (6420) N1 ASIN(S(1)“T& E() F(I)

C = SQRT(E()"E()+F()*F(D)ATAN(F()/E(®D)

40 CONTINUE
21=0
Z2=0
23=0
Z24=0
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75 =1
76 = 0
IF(N.LE.2.00) GOTO 50
DO45 I=1,11
71 = E}I;
72 = F(1
73 =75
74 = 76
75 = Z1*23-72*74
76 = Z1*Z4+72*73
45 CONTINUE
50 Z21=125

72 = 76
T = T4*R§(N)
73 = COS(T)
74 = —SIN(T)
75 = Z1*23-22*74
76 = Z1*Z4+22*Z3
P1 = P1+52*Z5/R8(N
P2 = P2+52*Z6/R8(N

C500 FORMAT(' NO.OF LP ' 3X,'RE(REFL)= ' 3X,'IM(REFL)= ")

C  WRITE (6,500)

C510 FORMAT(3X,12,6X,F6.4,6X,F6.4)

C  WRITE (6,510) N.,S2*Z1,52°72

C600 FORMAT(' I',5X,'ARCSIN(S(1))*T6=",3X,'E(I)' 5X,'F(1)",5X.'EF",

C *  5X,'AN2")

C WRITE (6,600)

I=l1+1
DO601=1,1I1

S(I) = ABS(R1*SIN(T1(N)—2*(I-1)*B)
. + R2*SIN(2*(1-1)*B+D))/R9(N)

C(I) = SQRT(1-5(1)*S(I))

T = S(1)/D1

W0 = -C2+C(I)*C(I)

Y = SQRT((W0*W0)+(W1*W1))
Z = ABS(W0)
IFY.LEZ)Y=12

Y1 = QI*SQRT(Y+W0)
Y2 = —Q1*SQRT(Y-W0)
Z1 = T-Y2

72 = ~-Y1

23 = Z1/(Z1*21+72*72)
74 = — %/(ZI*ZI+Z2*Z2)
Z1 = T+Y2

22 =Y1

25 = Z1*23-22*724

26 = Z1*Z4+422*73

E(I) = 25
F(1) = Z6

AN1= ASIN(S(1))*T6

EF = SQRT(E(I)*E(I)+F(I)*F(I))
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AN2= ATAN(F(I)/E(1))*T6
C610 FORMAT(2X.12,5X,F6.4,5X F6.4,5X F6.4,5X,F6.4,5X F7.4)
C WRITE (6,610) 1,AN1,E(I),F(I),EF,AN2
60 CONTINUE
Z1=0
72 =0
73=0
74 =0
75 =1
26 = 0
DO80I=11
71 = E?g
72 = F(I
73 = 75
74 = 76
75 = Z1*Z3~72*Z4
26 = Z1*Z4+72*73
80 CONTINUE
71 = 75
72 = 76
T = T4*R9(N)
Z3 = COS(T)
74 = —SIN(T)
75 = Z1*Z3~22*Z4
76 = Z1*Z4+72*73
P1 = P14+52*Z5/R9(N
P2 = P2+52*Z6/R9(N
C700 FORMAT(' LOWER PATH NO=',3X,'RE(REFL)= ',3X,'IM(REFL)= ')
C WRITE ( 6,700)
C710 FORMAT(6X.12,12X,F6.4,12X,F6.4)
C WRITE (6,710) N,S2*71,52*Z2
30 CONTINUE
K=K+1
DZ(K)=D*T6
PZ(K)=SQRT(P1*P1+P2*P2)*RI
C WRITE (6,810) K.DZ(K),PZ(K),ATAN(P2/P1),PN(K)
C810 FORMAT(6X,13,11X,F5.2,129X F7.4,12X,F7.4,10X,F7.4)
15 CONTINUE
10 CONTINUE
DO 31 L=1,29
XP=PZ(28)
PN(L)=PZ(L)/XP
WRITE (6,811) L,DZ(L),PZ(L).ATAN(P2/P1),PN(L)
811 FORMAT(6X,I3,11X,F5.2,12X F7.4,12X F7.4,10X,F7.4)
31 CONTINU
C250 FORMAT(' WEDGE ANGLE = 'F5.2,1X,' SOURCE ANGLE 'F4.2.
C * 'SOURCE DISTANCE=',F4.2,1X,'RECEIVER DISTANCE= '".F4
C * 'SHORE DISTANCE='F4.2)

67




C WRITE (6,250) B*T6,G*T6,R1,R2,Y0

C270 FORMAT(' =~ RHO1/RHO2='F5.25X,  Cl1/C2='F5.2.5X."

AIPHA /K2="',F8.4)

C WRITE (6,270) D1,CC,AL .

C YO =YO0+2

C R2=R2+2

C Rl =RI1+2

90 CONTINUE *
B = B*T6
G = G*Té6

C STOP

C END

C*********************************#*************************x**x*xxx:x

C A PROGRAM FOR PLOTTING BY TEK618 OR SHERPA
C***********************************************************K*****x*xz
CALL MEDBUF
CALL TEK618
C CALL SHERPA('SLOWDEM1','A',3)
CALL NOBRDR
CALL PAGE(15.,12.)
CALL PAGE(8.5,11.)
CALL HWROT('AUTO")
CALL AREA2D(09.,5.)
CALL AREA2D(09.,7.)
CALL AREA2D(8.5,6)
CALL AREA2D(6.0,8.5)
CALL HEIGHT(.2)
CALL XNAME('NORM. PRESSURE AMPLITUDES',24)
CALL YNAME('RECEIVER ANGLE(DEG)$',19)
CALL YTICKS(5 .
CALL XTICKS(5
CALL GRAF(0.,2.0 ,10.0,0.,1.0,6.0)
CALL GRAF(0.,1.0,05.0,0.,1.0,06.0)
CALL DOT
C CALL GRID(2.2)
CALL HEADIN('REC.ANGLE VS. NORM.PRESSURES$',-100,1.8.1)
CALL MESSAG('WEDGE ANGLE =$',100,8.,7.)
CALL REALNO(B,2,10.2,7.
CALL MESSAG('"RHO1/RHO2 =$',100,8.,6.5)
CALL REALNO(D1,2,10.2,6.5)
CALL MESSAG('C1/C2 =$',100,8.,6.0)
CALL REALNO(CC,2,10.2,6.)
CALL MESSAG('SOURCE ANGLE= §',100,8.,5.5)
CALL REALNO(G,2,10.2,5.5)
CALL MESSAG('SOURCE DIST.= §',100,8.,5.)
CALL REALNO(R1,2,10.2,5.)
CALL MESSAG('REC.DIST. = $',100,8.,4.5)
CALL REALNO(R2,2,10.2,4.5)
CALL MESSAG('SHORE DIST.= §',100,8.,4.)
CALL REALNO(Y0,2,10.2,4.) '
CALL MESSAG('PRESS.AMPL.(X=1) = §',100,7.0.3.5)

QO a o
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CALL REALNO(XP,105,10.2,3.5)
CALL RESET(‘ALL')

CALL PARA3

CALL NOCHEK

CALL CURVE(PN,DZ,29,1)
CALL ENDPL(0)

CALL DONEPL

STOP

END
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