WRDC-TR-89-3040 AD~A208 446 >

A COMPOUND SCALING
ALGORITHM FOR
MATHEMATICAL
OPTIMIZATION

V.B. Venkayya
V.A. Tischler

Analysis and Optimization Branch
Structures Division

February 1989 . D T l C

ELECTE gm
Juno021983 |l §

E

Final Report for the Period November 1988 to February 1989

[ Approved for public release; distribution is unlimited. J

FLIGHT DYNAMICS LABORATORY

WRIGHT RESEARCH and DEVELOPMENT CENTER

AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6523

89 6 01 054

D EE——— . EEEEEEEEEEEEERRNERRRm———,



NOTICE

When Government drawings, specifications. or other data are used for any purpose other
than in connection with a definitely Government-related procurement, the United States
Government incurs no responsibility or any obligation whatsoever. The fact that the
Government may have formulated or in any way supplied the said drawings, specifications.
or other data. is not to be regarded by implication, or otherwise as in any manner, as
licensing the holder or any other person or corporation; or as conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any way be
related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable
to the National Technical Information Service (NTIS). At NTIS. it will be available to the
general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

LY Yoloon BN

VIPPERLA B. VENKAYYA NELSON D. WOLF, Technichanager
Project Engineer Design & Analysis Methods Group
Design & Analysis Methods Group Analysis & Optimization Branch

FOR THE COMMANDER

Q] k.

%HN T. ACH, Chief
Analysis Optimization Branch
Structures Division

If your address has changed, if you wish to be removed from our mailing list, or if
the addressee is no longer cmployed by your organization please notify WRDC/FIBRA,
WPAFB, OH 45433-6553 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security consid-
erations, contractual obligations, or notice on a specific document.




e .,

UNCLASSIFIED
TFICATION OF THIS PAGE
Form A d
REPORT DOCUMENTATION PAGE OB No. 0704-0188
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
ED
23. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Approved for public release; distribution is
unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

WRDC-TR-89-3040
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
Analysis & Optimization Branch (If applicable)

. IStructures Division
6¢c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
WRDC/FIBRA

. JWright-Patterson AFB OH 45433-6553
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (if applicable)
Flight Dynamics Laboratory WRDC/FIBRA N/A
[ 8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO. NO ACCESSION NO.
Wright-Patterson AFB OH 45433-6553 61102F 2302 NS 06
1. TITLE (Include Security Classification)
A Compnrnd Scaling Algorithm for Mathematical Optimization
12. PERSONAL AUTHOR(S)
Vipperla B. Venkayya, Victoria A. Tischler
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT
n FROM Noy 88 o Feb 89 1989, February 47
16. SUPPLEMENTARY NOTATION
1p. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP
12 0l
). ABSTRACT (Continue on reverse if necessary and identify by block number)
This paper derives a compound scaling algorithm from a simple scaling algorithm for use with
general mathematical optimization problems. Compound scaling is necessary when the con-

- Jstrains are nonlinear and the variables do not all belong to the active set. Compound
scaling in conjunction with the optimality criteria method has practical applications in
large scaled multidisciplinary design. It will extend the scope of the optimality criteria

~ Jmethod to handle problems with thousands of variables and constraints. The development of
sjmp]e scaling is included as a basis for the development of the compound scaling algorithm.
Five problems were selected to demonstrate the effectiveness of the simplie and compound
scaling aiygorithms. /

i —
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
X uncLassiiepuNuMiTED  [J SAME AS RPT.  [J DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONEéIndudQ Area Code) | 22¢. OFFICE SYMBOL
Vipperla B. Venkayya 513-255-7191 WRDC/FIBR
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY _CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

e




FOREWORD

This report is prepared as part of in-house research under basic research Project 2302,
Task No. 2302N5, “Structural Dynamics and Controls,” and Work Unit 2302N506 of
the same title. The work was carried out in the Design and Analysis Methods Group
of the Analysis and Optimization Branch (FIBR), Structures Division, Flight Dynamics
Laboratory of the Wright Research and Development Center (WRDC) at Wright-Patterson
AFB, Ohin 45433-6523

The authors greatly appreciate and acknowledge the support and encouragement of
Mr. Nelson Wolf, Technical Manager of the Design and Analysis Methods Group.

The report was reviewed by a technical comnmittee headed by Maj R. Hinrichsen and
supported by two committee members, Maj L. Hudson and Capt R. Canfield. Their
thorough review and suggestions significantly improved the clarity of the report. The
authors sincerely thank the cominittee for its effort.

The time period of the research for this Technical Report is November 1988 - February
1989. The manuscript was released for publication in February 1989,

Accession For
I NTIS GRA&I
DTIC TAB

Unannounced 0
Justification PR
Cate N
By. oney !
Distributggp/ 'NEPT,H ®

Availability Codes
Avail and/or
Dist Special

A-l

i




SECTION
1.0
2.0
3.0

4.0

5.0

6.0

TABLE OF CONTENTS

TITLE

INTRODUCTION
MATHEMATICAL STATEMENT OF THE PROBLEM

DEVELOPMENT OF SIMPLE SCALING

3.1

3.2

3.3

CLASSIFICATION OF CONSTRAINTS

3.1.1 POSITIVE CONSTRAINTS z, > 0

3.1.2 NEGATIVE CONSTRAINTS z, < 0

3.1.3 CLASSIFICATION BASED ON A MARGIN OF
SAFETY (MS) DEFINITION

SCALE FACTOR DERIVATION FOR SIMPLE SCALING

3.2.1 CASE 1
3.2.2 CASE 2

INTERACTION FORMULA FOR THE SCALE FACTOR

3.1 CASE 1

3.2 CASE 2

3.3 LIMITATIONS
3.

3.
3.
3.
3.3.4 OPTIONS

COMPOUND SCALING ALGORITHM

L -
LN =

4.4
4.5
4.6

CONSTRAINT VALUES MATRIX -
CONSTRAINT GRADIENT MATRI)\ 1\
GENERATION OF THE 4 PARAMETERS

4.3.1 C

4.3.2 CASE 2
4.3.3 EXCEPTIONS
SCALE FACTOR TABLE

SCALE FACTOR ASSIGNMENT TABLE
APPROPRIATE SCALE FACTOR FOR EACH VARIABLE

RESULTS OF APPLICATIONS

SUMMARY AND CONCLUSIONS

PAGE

-1 O (1]

oo

10
13

13

18
18
18
19

22
23
23

24
24
24

25

26
27

44




LIST OF ILLUSTRATIONS

TITLE
Two Variable Space
Constraint Classification for Positive Constraints

Constraint Classification for Negative Constraints

vii

-1




LIST OF TABLES

TABLE TITLE PAGE
1 Format of the Constraint Gradient Table 23
2 Format of the Scale Factor Table 25
3 Format of the Scale Factor Assignment Table 26
4 PROBLEM 5: Constraint Gradient Matrix for Violated Constraints 40
5 PROBLEM 5: Scale Factor Table 41
6 PROBLEM 5: Scale Factor Assignment Table 41
7 PROBLEM 5: Values of the Variables Before and After Scaling 42
8 PROBLEM 5: Values of the Constraints Before and After Scaling 43
X




1.0 INTRODUCTION

Constrained minimization/maximization problemns are of interest in many cngineering
disciplines as well as mathematics and physics. This problem. often described as opti-
mization, consists of a performance (objective) function to be minimized and a number
of inequality and equality functions which define the region of interest (constraint bound-
ary of the region). Both the objective and constraints are functions of a common set of
variables. Some of the constraints are derived from the system performance bounds, and
others are simply the limits on the variables themselves. This optimization problem is of
such generic interest that it has attracted significant attention in the research community
over the last forty ycars. As a result, a number of highly sophisticated lincar and nonlinear
programming algorithms are available at present for a variety of applications. Notwith-
standing these developments, there are serious shortcomings in the way of applications to
large scale multidisciplinary design. The optimality criteria method(! 4) has the potential
to extend optimization to problemns with thousands of variables and constraints. One of the
significant elements of the optimality criteria method is the concept of scaling. Scaling im-
plies changing the variables with the objective of bringing the constraints to the boundary.
The constraints can be brought to their boundaries either by adding differential quantities
or by multiplying the variables by scale factors. The latter is called scaling. This procedure
was originally proposed for constraints which could be scaled in a single step!'-2). Later
it was generalized for nonlinear functions(*%. In both cases. however. a simple scaling
algorithm was used, and it was adequate for structural optimization problems. On simple
scaling a dominant constraint can be identified. and scaling with this constraint generally
brings the remaining constraints into the feasible region. This is not necessarily the case
in general mathematical optimization problems, and a compound scaling is necessary in
order to extend the scope of the optinality criteria method. Another significant element
of the optimality criteria method is modification of the variable vector at the constraint




houndary by directly invoking the optimality as defined by the Kuhn-Tucker conditions(4).

The object of this paper is to give a comprehensive derivation of the compound scaling
algorithin with examples to illustrate its effectiveness in reaching the constraint surface
or the intersection of the constraints. The details of its application in optimization are
given laterl®). It is worthwhile pointing out, however, that it is tacitly assumed that the
optimuin in constrained minimization (or maximization) problems lies on the constraint
boundary or at the intersection of the constraint boundaries. All other cases belong to

unconstrained minimization problems, and they are not rclevant to the present paper.

It is often necessary in optimization problems to scale the constraint functions to their
boundary, since most optimal solutions in constrained minimization {or maximization)
problems are at the boundary of the feasible and nonfeasible regions. This can be accom-
plished by a numerical scarch in the context of nonlinear programmming. However, this
numerical search can be tedious and time consumning. A simple scaling algorithin, without
formal mathematical derivation, was first used in 1968(!) to locate the constraint bound-
ary in a single step. This simple scaling algorithm was generalized in 1988(34) to include
constraints that requirc more than one scaling step. A formal mathematical derivation,
starting with a first order Taylor Series approximation, was presented(®4). The algorithm
was still a simple scaling. because it was assumed that scaling with a single dominant con-
straint function would satisfy the remaining constraints. This is the case in most structural
optimization problems when all the variables belong to an active set. References (3) and

(4) define active and passive variables as well as active and passive constraints.




2.0 MATHEMATICAL STATEMENT OF THE PROBLEM

The constrained optimization problem can be stated mathematically as follows:

Minimize or maximize a function F(r)

F(z) = F(zy.rq....1,) (1)

subject to the inequality constraints

z(ry 1. xp) < g J =12,k (2)

and equality constraints

z,(ry,7g...0p) = 2 J k41 s (3)

The basic procedure for the solution of this numerical optimization problem is to de-
vise a scarch strategy to find the optimum, starting from a given initial solution. Most
successful search techniques are generally based on the constraint and objective function
gradient information. This gradient information is most meaningful (effective) when it
is determined at the constraint boundary (separation between the feasible and the infea-
sible regions - Fig.1), because the optimum is usually on this boundary in constrained
minimization (maximization) problems. As a result. constraint boundary location is ex-
tremely important. An efficient optimization algorithm should have the facility to reach
this boundary at a minimumn computational cost from any point in the n-dimensional

space. The purpose of the compound scaling algorithin is to provide such facility.
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The details of how to use this scaling algorithm for the solution of the optimization

problem are given in Reference 5. The discussion in this paper is limited to the following

problem. Given an initial solution z, how to scale z such that none of the constraints are

violated while at least one of the constraints is at the boundary.




3.0 DEVELOPMENT OF SIMPLE SCALING

The underlying assumption of simple scaling is that there exists a dominant (1most
violated) constraint and scaling with respect to this constraint will bring all the other
constraints to the feasible region. This is not true. in general, when the constraints are
nonlinear or when the variables do not all belong to an active set. In such cases a compound
scaling algorithm is necessary and it will be discussed in the next section. However. the
simple scaling is still the basis for the development of the compound scaling algorithm.
and its details are presented here for proper understanding. The simple scaling procedure
was discussed earlier® but will be repeated here for completeness.  Classification of
constraints based on their relationship to the constraint boundary precedes the application

of the scaling algorithin. The next subsection discusses the procedure for classification.

3.1 Classification of Constraints

The initial variable vector, r. is assumed to be given. Evaluation of all the constraints

with this variable vector results in three cases:
o CASE 1: Some constraints are violated.
e CASE 2: None of the constraints are violated.
e CASE 3: Some constraints are at the boundary and others are not violated.

The first two cases are the candidates for scaling. and it is usually not necessary to scale

in the third case.

The three cases can be discerned in an ecasy way by examining a set of 4 parameters

or target response ratios. The 3 parameter is defined as




where the subscript j indicates the j*» constraint (Egs. 2, 3). z, is the limiting value of
the constraint. z, is the computed value of the constraint with the given or the assumed

variable vector, z. Based on the B values the constraints can be classified into three

categories:
e Violated constraints - Infeasible region
e Active constraints - On the constraint boundary
o Inactive or passive constraints - Feasible region

The 8 values for these three cases are defined for various situations.

3.1.1 Positive Constraints z; > 0
For positive constraints four cases can arise:
1. 0<fB,<1 Violation for all Positive Constraints
2. B, =1 Active Constraint
3. B, >1 Inactive or Passive Constraint
4. B, <0 Inactive or Passive Constraint

These four cases are illustrated in Fig. 2.
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Fig:2 CONSTRAINT CLASSIFICATION
POSITIVE CONSTRAINTS
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3.1.2 Negative Constraints z; < 0
Here again four cases can arise:
1. B, >1 Violation for all Negative Constraints - Infeasible
2. B, <0 \Violation for all Negative Constraints - Infeasible
3. 0<f, <1 Inactive or Passive Constraint - Feasible
4. B, =1 Active Constraint

These four cases are illustrated in Fig. 3.
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Fig:3 CONSTRAINT CLASSIFICATION
NEGATIVE CONSTRAINTS

The following rules are recommended in order to facilitate the formulation and imple-

mentation of the algorithm. The first two rules pertain to the formulation, and the last

. two rules to the implementation.

Rule 1: The first step in classifving constraints is to formulate all the inequality con-

straints as

IA
!
-
—
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If there are constraints in the form z; > z,, multiply both sides of the inequality by —1.

Then these inequalities reduce to —z; < -z

Rule 2: If z; 1s zero. then take one of the terms from the left side of the inequality to

the right. If there is only one term on the lefthand side, then let z; = ¢ where

le| # 0.

Rule 3: If z; becomes zero, then write the inequality as

old Sold
Lold “2 “)
572 %3 (©)
! Lold Lold
Now the new :;"‘" = .:;’d ~ % and the new :;“"’ = % . The new z and z, are used in

the ;3 definition.

Rule 4: If B8 is zero or negative, assume a small value (positive) for 8 (.1 or less) and
scale first. Then evaluate the constraint and continuc scaling until 8 becomes

positive.

3.1.3 Classification Based on a Margin of Safety (MS) Definition

It is sometimes more convenient to classify the constraints based on the definition of

margin of safety (MS). The original inequality constraint is given as
3 <3 (7)
This inequality can be redefined in terins of MS as

M.S. = (’ - 1) >0 (8)

)
Now if z, /zJ is defined as /3. then

M. =(8,-1)2>0 (9)

]




Now three possible cases arise:
CASE 1: A > 1 Positive MS - Feasible Region
CASE 2: =1 At the Constraint Boundary
CASE 3: 3 <1 Negative MS - Infeasible Region

If all the constraints have a positive MS, then it i1s advantageous to bring the nearest
constraints to their boundary by scaling. If some of the constraints have a negative MS,
then it 1s necessary to bring them to the constraint boundary by scaling. When some of
the constraints are at their boundary and others are all with a positive MS, then no scaling

is necessary.

3.2 Scale Factor Derivation For Simple Scaling

The first objective of scaling is to bring all the violated constraints to the feasible region
or to the constraint boundary. If all the constraints are in the feasible region, then scaling
can be used to bring some of the constraints to the constraint boundary. The mathematical

basis for scaling can be derived from the first order approximation of a Taylor’s series.

The vector, r. is the given or assumed vector of variables. r is the scaled vector to
bring the violated constraints to the feasible region. The relationship between these two

vectors in simple scaling is assumed to be
r=Ar (10)

where A is a scalar multiplier for all the variables. Let the differential vector dr be defined

as

dr =r-r=(A-1)r (11)




T ——

If z, is the constraint function, the first order approximation of a change in z;, due to a
change in r can be written as

dJd:z Jz Jz
) Vdr, b )
(.)J_ldr, + ('.r-zd‘r‘ +--- 4+, Tdr, (12)

dz; = ) drp

Substitution of (11) into (12) gives an expression for dz; as

dz, = (A - 1)) N, (13)

1

where n in the summation represents the number of variables participating in the change.
It is assumed in this derivation that all the variables are participating. The constraint

radient N,, (differentiation of the 7% constraint with respect to the i** variable) is defined
A 1 p

as
)z
o (14)

My = o,

Now Eq. 13 can be written as

n

SIEITEIN

2y ]

N,,r
<Y 1
] (15)
<y
An examination of Eq. 15 presents two interesting cases which will be discussed in detail

in the next two subsections.

3.2.1 Casel

The first case. henceforth. will be referred to as the active case for distinction. This
designation comes from the discussion of active and passive variables in References 3 and

4. This case corresponds to

"\ ]V I
Y U <o (16)
| “)

In this case a parameter p, 4 is defined as
n v
~ ,].T,
Hya = — 24 ~ (17)

[ “1

10




With this definition Eq. 15 can be written as

dz,
z :(I"A]A)/']A “8)

Now the scale factor A, 4 can be written as

pa=1-B by (19)
= —_ = — 0
4 5y KA !
where b; is defined as
1 dz
b, = ! (20)
Hia =
Eq. 19 can also be written as
1 1
= ~1+4+b (21)
AMa  1-b J
by neglecting the higher order terms of & in a binomial expansion. provided
b, < 1 (22)
From Eq. 21 d;_" can be written as
d: u
7 74
.= ~ A 23
=N (23)
or
~ 4 l]: Iy
7 ] J
. = ~ A+l 24
2 A (24)

The constraint value z; corresponds to the variable vector, r. and z, + dz, corresponds to
the new variable vector r. If the object is to bring the constraint to the boundary. then it
can be written

D =z 4 dz (25)

From the definition of the 3 parameter (in Eq. 4). Eq. 24 can be written as

HjyA
/f] = Aj4 =i+ (26)




Solving for the scale factor, A, 4. from Eq. 26 gives

_ HiA
MA= g a1 (27)

Now r can be written as

Ir=Ajar (28)

The approximations indicated in Eqs. 21 and 25 are contingent upon two conditions.
The first condition is the first order approximation of a Taylor's series which limits the
application to small changes. The second condition is contingent upon the parameter |b)

being very small compared to 1. From Eqs. 26 and 21, b can be written as

|
b= i, —1 29
) u]A(/J ) (29)

OBSERVATION 1: It is interesting to note that for the case of p,4 = 1, the scale factor,
A 4. given by

(30)

is exact regardless of the range of 3;. The first order approximation in the Taylor’s series
expansion and the inverse first order approximation in the binomial expansion, Eq. 21,

appear to climinate the approximation altogether at least for the case of pjs = 1.

OBSERVATION 2: If all # terms in the summation in Eq. 17 are of the same sign and

the degree of nonlinearity is > I, then
soa > 1 (31)
OBSERVATION 3: The parameter u is a measure of nonlinearity of the constraint func-

tions. This fact was used to construct an interaction formula(*) which will be gencralized

later 1n this section.




3.2.2 Case 2

The second case, designated as the passive case. is when
’ g

n
DR
1 1 “1
A u parameter is then defined as
"N,z
N,z
u,p = L ; ‘
(| J

Then the scale factor A,p can be written as

1’] + oy p - 1

Ap =
) Hyp

(33)

(34)

OBSERVATION 4: The scale factor as derived from Eq. 34 is only valid for small changes.

consistent with the first order Taylor series approximation, except when g, = 1.

OBSERVATION 5: The scale factor in Case 1 is inversely proportional. while the scale

factor in Case 2 is directly proportional to the target response ratio, /3.

The second subscripts A and P in the definitions of the parameters y# and A are simply

for the convenience of distinguishing Cases 1 and 2. This distinction is very crucial for

identifying active and passive variables in scaling. The main point is not which case

represents the active or passive condition, but instead it is to recognize that these two

are distinctly different cases. and Case 1 should be handled as an inversely proportional

condition while Case 2 is a directly proportional condition.

3.3 Interaction Formula for the Scale Factor

The scale factors derived from the first order approximation of a Taylor’s serics, Egs.

27 and 34, represent an interesting generalization for nonlinear functions. However, the

nature of approximation is such that its usefulness is limited to a very narrow range of

13




about 10 to 15% on either side of the series expansion (§ value of 0.85 to 1.15). Beyond
this range the error of approximation is not acceptable, because it may take too many
scaling steps to reach the constraint boundary. To overcome this difficulty an interesting
interaction formula was proposed{®) in 1988. The purpose of this interaction formula is to
extend the range of application of the scaling algorithm from —oc to oo, while retaining
most of the accuracy accustomed to in linear scaling. After a brief discussion of the
motivation behind this interaction formula, a formal generalization will be presented with

the help of simple mathematical functions.

A ferwnula involving lincar and nonlinear interaction is written(*) for the special case of
a beam where axial deformation represents a linear condition and bending deformation a
nonlinear condition. An interaction formula is based on the assumption that exact scaling
formulas are available at the two extremne conditions: i.e. when the beam deformation is

entirely due to axial forces, the scaling formula is given by

A /11 (35a)

The other extreme is when the beam deformation is entirely due to bending. Then the
scaling formula is given by
1
l n
A x ( ) 35b
where the parameter n is a measure of nonlinearity represented by the bending. However,

when the actual deformation is a result of both the axial and bending forces, then an

approximate interaction formula can be written as
] Iy
7 4 n
A=t ) i) (35¢)
Hay \B/) "y \ B3
For the notation of the parameters in Eq. 35¢ see Reference 4.

The basis for generalization of the scaling algorithm can be established by examining

14




the p and 8 parameters of two simple constraint functions

5 = + +--- 4 SZ] (36)
I, I In
n=axteryt -tz <2y (37)
where z,,z5 - - - z, arc the variables and ¢y,¢5 - - - ¢, are a set of positive constants. The

quantities z; and z. are the limits of the inequalities. The 4 parameters in these two cases

are defined as

" N,r
IllA:‘L !_l ‘=1 (38)
r | ~1
n\ ]\r'.’_
mp =30 =1 (39)
[ <

Interestingly, the measure of nonlinearity in both these cases is 1, and it represents the

linear case. Now the parameters 3 are defined as

/= z: (40)
=" (41)
~2

It is easy to show that the exact scale factors in these two cases are simply

1
Aa= 42
1A ﬂl ( )
Ayp = (3 (43)

The first condition represents Case 1 and the second represents Case 2 in the earlier

discussion in Sections 3.2.1 and 3.2.2, respectively. A similar examination of two nonlinear

functions
3 €y ¢
z\l = _rv,u + J.'rzu +0 4 _1-;," (44)




= e + oo+ ey (45)
gives an interesting result. The ¢'s are again assumned to be positive constants. The u

parameters for these two cases are

Hipa =M (46)

Hap = M (47)

The measure of nonlinearity in these two cases is m. It is casy to again show that the

exact scale factors for these two cases are

1 \ma
sa= () (48)

H
Ayp = (By)mer (49)

Now an examination of constraint functions with both lincar and nonlinear terms

| ] Cn Cni Con

3y = P . oo <
=ttt L Il e S (50)
= OI eIyt Tt e 44 et <11 (51)

gives the basis for the interaction formula derived intuitively earlier® (Eq. 35¢). The
parameter g in these cases is no longer a constant, but instead it straddles between limnits
1 and m. i.e.,

1<pu<m (52)

This means that the measure of nonlinearity varies between the two extremes depending

on the values of the variables. For example. when the values of the #'s are very large

x> 1 i=1,2,...n (53)

16




the value of the u parameter for the the first constraint approaches the lower limit 1.

Conversely, it approaches the upper limit 7 when the £'s are very small.
r <! 1=1.2....n (54)

The sccond constraint, Eq. 51, represents the opposite case in the sense that the g pa-
rameter would be 1 for small values of r, and m for large values. It is assumed that the

elements of the normalized ¢ vector are not too far from one.

The suggested interaction formulae in these two cases are

() ()

1
Aap = ay () + az (o)™ (56)

where the first term represents the linear contribution while the second is the nonlinear

part. However, it turns out that these interaction formulace are equivalent to

1\ B}
AIA: (ﬂl) (5‘)
Agp = (By)#ar (58)

The scale factors given by Egs. 57 and 58 are far superior approximations than those
given by Eqs. 27 and 34. The range of their application is not limited to 10 to 15% on
either side of 4 = 1. However, they are not exact when the summation in the g parameter
definition contains both positive and negative terms. In such cases two scale factors are
defined for each constraint. These correspond to Case 1 and Case 2 discussed earlier. For

example, the two scale factors for the j'* constraint can be defined as
p

17




3.3.1 Case l

I y*a
‘\],4 = ‘/’] (59)

3.3.2 Case 2

Ap = (»”J) o (60)

The definition of g, 4 and g, p in Eq. 59 and 60 is as follows:

"N, r
pa =y (17a)
t | =1
and
" N,.r
D I (33a)
[ | )

The important distinction between the original equations (17 and 33} and their alternates
(17a and 33a) is that the two summations include only terms of the same sign. In other
words the sum in Eq. 17a includes only negative terms and similarly Eq. 33a contains

only positive terms.

The scale factor A, 4 is applicable to all the variables that contribute to the sum in Eq.

17a. Similarly. the scale factor A p is applicable to the variables in the sum in Eq. 33a.

3.3.3 Lumitations
The following limitations apply to the scale factor calculated from Egs. 59 and 60.

1. IfA;4 > lor < 1. then no scaling should be allowed. because such a condition
represents a pathological or asymptotic condition. and the scaling would be
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counter-productive. In such cases the defanlt is A, 4 = 1 which represents no
scaling.
2. The same rule applies to A, p as well.

3. A reasonable quantitative limit for A, is as follows (in order 1o avoid large

changes in the variables):

(0.01 < A, z(or Ap) < 100 (61)

These limits are good for the first scaling where the initial variable vector is selected

arbitrarily. In subsequent scalings this range can be reduced even further

0.1 < Ajafor Ajp) <10 (62)

As stated earlier scaling is not allowed outside this range which mmeans A, yor A;p = 1.0

This generalization of assigning more than one scale factor leads to the concept of com-
pound scaling where cach variable can have a separate scale factor.

3.3.4 Options

When the two scale factors A, 4 and A;p are computed for each constraint. two cases

can arise:

1. One of the scale factors is out of bounds (as defined by Egs. 61 and 62). in
which case the other scale factor is the only one valid for scaling. Although the
possibility of both scale factors being out of bounds is very remote. it indicates

that scaling is not possible from that point.

2. Both scale factors are within the bounds in which case they are both valid for
scaling. In this case two options must be examined.

19




OPTION 1: Both scale factors arc used for scaling. The active scale factor A, 4 is used for
scaling the variables that contributed to the negative sum in the g parameter definition,
while A;p is used for the other variables. In such a case, movement towards the feasible or
infeasible region is fast and may result in overshooting the constraint boundary. Additional

scalings using the two scale factors may result in oscillation about the constraint boundary

and in too many scaling steps.

OPTION 2: Only one scale factor is used; i.¢. only the active or passive variables (cor-
responding to A, 4 or A,p) are allowed to participate in the scaling. The overshooting
problem is mitigated in this case. Now the question is which one is a better choice? This
decision is based on determining whether this constraint is basically governed by Case 1
or 2 (inversely or directly proportional to #). This determination is quite simple when
A, 4 and A)p are determined with equal values for all the variables. The largest of the two
A's ()4 or Ayp) is the governing condition. This condition (active or passive) remains
the same regardless of what happens in subsequent solutions. For example, if both A’s
are within the bounds in the solution with equal values for all the variables, and A, 4 is
the largest of the two, then A, 4 is the governing condition in this and all the subsequent
solutions. Scaling for this constraint remains an active case even if Ajp is greater in subse-
quent solutions. This conclusion is based on the assumption that when all the variables are
equal (with no bias), the g parameters describe the funetion behavior more realistically.
If the solution is not with equal values for all the variables, then the decision has to be
deferred until one of the two scale factors goes out of bounds. Once A, 4 or A, p goes out of
bounds. it is an indication that it will not be the governing condition for this constraint.
If both scale factors remain within the governing condition is by computing A; 4 and A;p

with equal values for all the variables.

Another important case that needs attention is when g is very small (says 4 < 0.01)
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and onc of the scale factors is out of bounds. In this case the same scale factor should be
applied to all the variables. This condition differs from the case when 3 is not too small
(/7 > 0.01) and one of the seale factors is ont of bounds. In such a case sealing is applied
only to the variables belonging to the scale factor in bounds, and the variables belonging

to the out of bounds scale factor are left at their current values (no scaling).

So far the discussion has been in the context of a single constraint. An extension of
these ideas to the environment of multiple constraints leads to a formal derivation of a

compound scaling algorithm in the next section.
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4.0 COMPOUND SCALING ALGORITHM

The compound scaling algorithin is a further generalization of the scaling algorithm
presented in the previous section. It is assumed that there is no single dominant constraint,
and the scaling has to be applied for multiple constraints in order to bring them to the
feasible region or to the constraint surface. To put it succinctly, “scaling is a process by
which the variables are adjusted such that the constraints are brought to the constraint

surface or into the feasible region™.

The compound scaling algorithm requires three important tables or rectangular arrays.

All three tables (arrays) are of the same dimension n (rows) x $ (columns), where n

represents the nuinber of variables and s represents the number of active constraints.

The first table is the constraint gradient matrix. )V, ., which is either given or a facility
exists for its generation. It is also assumed that all the constraints can be c¢valuated for
a given variable veetor . To reiterate, the following information is necessary in order to

develop the compound scaling algorithin.

1. Constraint values - matrix z, ., for a given r
2. Constraint gradieat matrix N, for a given r
3. Scale factor table (matrix)
1. Scale factor assigniment table (matrix)

The last two tables are gencrated from the information given in the first two tables. The

first two tables are generated from an analysis of the system.

4.1 Constraint Values Matrix - 2,
For a given variable vector, . all the constraints can be evalnated by an analysis of the
system. All the constraints that are candidates for scaling are identified. This list includes
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all the violated constraints and those close to the constraint surface (within 5 to 10 7).
The nutnber of constraints used for sealing is s.

4.2 Constraint Gradient Matrix - N, ..

The elements of the N matrix, N,;, are defined as

a:z

~ 9%
N, = dr, (63)
This information is also assumned to be available from an analysis of the system. The

format of the constraint gradient matrix is shown below.

TABLE 1 TFormat of the Constraint Gradient Table

Constraints — 2 .29 .o 2,
Variables
Ly N, 1 N] 2 . . . Arl s
Z }\721 }V“ Ce . 1\.2 5
In ]an J,VnQ - Arns

4.3 Generation of the 4 Paramcters

Fromn the constraint gradient matrix a set of g parameters is generated. The p pa-
rameter set consists of 2 X s entries. That is, cach constraint is associated with two p
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parameters, and they are defined as follows:

". N, T
~ Ny d,y
Hya = — L - (64)
1 ] J
where the above sum includes only negative terms.
".N,r
~ Vg3
wp =) (65)
1 | “J

where the above sum includes only positive terms. The subscript j represents the jth
constraint. The sccond subscripts, A and P. represent the active and passive designation

rorresponding to Cases 1 and 2. respectively, in simple scaling (reference Egs. 17 and 33).

Now for cach constraint compute two scale factors corresponding to the two y param-

eters.

4.3.1 Case 1

1 )44
A]A = (/}]) (66)

4.3.2 Case 2

A= (5)r (67)

The interaction formulas discussed in 1988(* are the basis for Egs. 64 and 65.

4.3.3 Exceptions
o If 3> 1 and y;p < 1 or calculated Ajp > 1, set Ajp = 1O

o If 3 <1 and p,4 <1 orcalculated Ajp > Loset A4 = 1.0
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e For all other cases use the calculated quantities.

If the scale factor becomes too large. say A; > 100, it indicates a pathological condition
and by setting A;p or A, 4 = 1 the scaling is by-passed for that condition. The scaling is
by-passed for that condition. The other conditions can scale the variables.

4.4 Scale Factor Table

The format of the scale factor table is simiiar to the constraint gradient table.

TABLE 2 Format of the Scale Factor Table

Constraints — 2 29 Co z
Variables
I) A|A or Alp A‘zA or Azp e . Agq 01 Asl'
F 23 Ajqor App Ayp 0r Agp e A4 0r Agp
T AIA or Alp AZA or A'HJ e AsA or Asp

Each of the entries in the j'® columnn is either A, 4 or A;p depending on the variable’s
contribution either to the sum u, 4 or u,p. This table gives s possible scale factors for each
variable. Which one of the s scale factors is relevant to the given variable is determined
with the help of a scale factor assignment table and the constraint gradient table.
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4.5 Scale Factor Assignment Table

The format of the scale factor assignment table is similar to the constraint gradient

and scale factor tables.

TABLE 3  Format of the Scale Factor Assignment Table

Constraints — 2 zy Co 2
Variables
Iy { o Coe tys
Ty 12 t22 tas
Iy lnl fn'l coe tns

The entries £, in this table are calculated one column at a time where

EN,].r,i

L~ I
[ | i

Ly, = (68)

The parameter ju,;, belongs to y;4 or yu,;p depending on whether the argument in the
absolute value is negative or positive. The table is completed when all the s columns are

filled. The values of the entries in the seale factor assigninent table vary from zero to one.
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4.6 Appropriate Scale Factor for Each Variable

Now all the information is available for the selection of an appropriate scale factor for

each variable from the list of s scale factors.
Ezample: Appropriate scale fac tor for the i" variable.
Rule 1: From the scale factor assignment table select the largest entry in the P row.

For Example: If {;; is the largest entry in the scale factor assignment table, then the

appropriate scale factor for the ith variable is the A,; scale factor from the scale factor
table.

Rule 2: If there is more than one entry equal to the largest entry. for example: f,; is
the largest entry in the scale factor assignment table, but {,; and t,, are also
equal to t,;. Then the appropriate scale factor is any of the three (A, or Ay
or A,’().

Now complete this process of sclecting appropriate scale factors for all the variables. Then

the scaled variables for x, are computed by

Fhev — I?’dAg'] 1=1.2...n (69)

where A,; is the appropriate scale factor for the ith variable as determined by the two rules.

The next step is to evaluate all the constraints with the new variable vector. If there are

any violated constraints, the scaling algorithm is repeated.

The results of the compound scaling algorithm are presented in the section on results
when applied to specific examples. These examples do not address the complete optimiza-
tion problem. Ouly the scaling aspect is addressed. The complete implementation of the

optimization algorithm is given in Reference 5.
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5.0 RESULTS OF APPLICATIONS

Five problems were sclected to demonstrate the effectiveness of the simple and com-
pound scaling algorithms. The first three problems are well suited for demonstration of the
simple scaling algorithm. The last two problemns demonstrate application of the compound

scaling algorithi.

PROBLEM 1. The inequality constraint function is defined as

10 15 25 40
ar)=+ 7+ 7+ <10 .
Yy o Fp Iy Iy

The gradients of the constraint function are given by

. 10 . 15 25 40
Ny =- 2 Ny = - 2 N:n:—l N41=-’2
Iy Iy T Ty

CASE 1: The initial solution is assumed to be

.’1'1212:.1'3:1'4:1.0

For this solution () = 90 which is a significant violation of the constraint. For scaling,

the p parameter is calculated from Eq. 64 as

4 .
Ny
;l:—LJ:l':-l.()

[} “1

which implies that the measure of nonlinecarity is 1. as noted carlier. The 3 parameter is
computed by Eq. 4 as .
1

4= 90 = 00111111

The scale factor is given by Eq. 66

A = (90)/! = 90
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The new variables are given by
Sy =Tp=T3=1r4 =90

For this solution

5(x) = 1.0

The constraint boundary has been reached in a single step, and the scaling is considered

to be exact.

CASE 2: The initial solution is assumed to be

I =1 .’1'2:2 .’1'323 rs =4

For this solution z;(r) = 35.8333 which is a violation of the constraint.

4
- AT
p==3 0002
t 1 “l
and
f = 35 8333 — 0.0279
Thus, the scale factor is given by
1AM
A - ( ()279) = 35.8333

The new variables are

Iy = 35.8333 Iy = 71.6667 Ty = 107.5 Iy = 143.333

For this solution

a(r) = 1.0

Once again the constraint surface has been reached in a single step.
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PROBLEM 2. The purpose of this problemn is to show that the scaling can be exact under

certain conditions. even when the measure of nonlinearity is greater than 1.
The inequality constraint function is defined as

30 2 108 47
()= L+ L+ o+ <10
roor, 1y xy

The gradients of the constraint function are given by

. 90 . 6 . 324 141
J\“ = = 4 ‘\2| = - 4 ‘\‘3] = - 4 ‘V4| = - 4
I T, Iy T4

The initial solution is assumned to be

Iy Ty =r3 = T4 = 1.0

For this solution z;(r) - 187 which is a violation of the constraint.

4 v
<N
u= - 'JT' = 3.0
1 1 “
i.e.. the measure of nonlincarity is 3.0.
d = P 0.0053476
T ey T

The scale factor is given by Eq. 66

A= (187)" 7 = 5.718479
The new variables are
Ty = Ty = Iy = IFgq = 5.718479
For this solution z;(r) = 1.0

Once again the constraint surface is reached in one step.

PROBLEM 3. The third problem is designed to show that the scaling is not exact when
there is a possibility of a variation in the degree of nonlincarity. In such cases scaling
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can take more than one step. Still. it would be significantly faster than any search. The

constraint function is defined as
10 30 15 2 25 108 40 4
+ 7+
Iy

alr) =+ T+ 8 ‘
ryooat oy ry Iy ory I

Gradients of the constraint function are given by

, 10 90

‘\ll = — 2 -— 4
Iy o

15 6

Ny =~ 45~ 4
r; Iy

, 25 324

Ny = _.'r_f{ - ;4
) 40 141

Na= - 2~ 4
Ty I

The initial solution is assumed to be
r=ry=r3=ur4s=10
For this solution z((x) = 277 which is a violation of the constraint.

The parameter u is given by

4 .
~N,r
p= =) 0T L 235018
N
t 1
The paraneter /3 is given by
1
g = 977 = 0.00361
]

The scale factor from Eq. 66 is

A= (277)4 = 10.94645

The new variables are given by

N R =R Y 10.94645
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For this solution the constraint function z(r) = 8.36441. The constraint is still violated.
Necond Scaling
The constraint gradients with the new variables are given by
N, = —0.0897
Ny = —0.1256

}v“ = —-0.2312

Ny = -0.3436
The parameter g is given by
4 .
~Nyr
p=-) T = 03400
[ | -
The parameter 3 is given by
3= 836441 = 0.11955

The scale factor is given by
1
A = (8.36441)» = 7.79879

The new variables are

Ly = ry - Iy - Iy = 85.3690

and the new constraint value for this solution is
i(r) = 1.05455

One more scaling should bring the constraint to the boundary. In the next step p will be
reduced to 1.0. This means that in the first step the cubic terins dominated and gave the
g value as 2.35018, and in the second step the p value was reduced to 1.03409.
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PROBLEM 4. This problem is designed to demonstrate the compound scaling algorithm

with a single constraint. The constraint is defined as
zi(z) = 180x; +20x,—-3.1r3+ 0.2y - 50 194 370 734 8.70 )0y - 3ryrg - ().l:f.r,+().()()l.rf:,
+95r 0% ~ 8lryrd + xy - 6.2 + 0.48r% + 225 < 1.0
The constraint gradients are given by
Ni, = 180 — 5z + 37z3 — 0.27,75 + 9513 + 312
Ny =20 - 5z, + 8.7z4 — 0.1z% + .002z,7; - 18.6r3

Ny = =3.1 + 377, — 354 4+ 0.00112 — 162r4r; + 1.441}

N4| =0.2+ 8.71‘2 - 33’3 + 1903'1.1'4 - 811'21 + 66.’1’3

The initial solution is assumed to be
Iy =Ty =&y = T4 = 1.0

For this solution z;(r) = 265.981 which is a violation of the constraint. The constraint
gradients are

N, = 309.8

Ny, = 5.002

N3, = —129.659

]\74] = - 180.90

The parameters i are computed separately for negative, Eq. 64, and positive, Eq. 65.

SUIms.
N.
g = - 7T = 0.487475
<}
~ N, r
pp= Y M7 =1.863674
124 !
The parameter 8 is given by
B =" =0.003759
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1
Arp = (J)mr = 0.0499905

The parameter A} 4 > 1 represents a pathological condition, and it is ignored. So the
variable 23 will not be scaled.

The new variables are
£y = 0.0499905

£y = 0.0499905
Ty = 1.0
4 = 0.0400905

The constraint function value is now given as

5i{r) = 5.06174

SNecond Sealing
]V” = 216994:)

A\.2| = 9()1383
‘\.;“ = --8.0588
Ny = —82.7253

~ Nyr
pia=-— ) ':'l ' = 2.40910

1 34

< Ny
wp =Y ':"" = 2.34196
v 1.2

The parameter J is given by
4 = 0.19756

]
Aia = (5.06175) 14 = 1.96042
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i
Avp = (0.19756)“1# = 0.500344

The new variables are
7, = 0.0250124

7, = 0.0250124

I3 = 1.0
74 = 0.0499905
The constraint function for these new variables is z;(z) = —0.8649050.

Third Scalz_'ng

Nyp = 217.1140992
Ny = 20.29820597
N3, = —8.08206822
Ny = —83.1798822

~~ N J '
ma=— Y - 68657883
t 1,2 <1

-~ AY
mp= Y "1 < 15103772

<
34 “1

Calculate the § by scaling up to —0.1 in order to avoid a negative J (sce Rule 4 sec 3.1.2)

01
1
A4 = (8.6490503)#14 = 1.3692072

1
A;p = (0.1156196)*1r = 0.8676250

The new variables are:

7, = 0.02501241

7 = 0.02501241
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Ty = 0.86762503
Iy = 0.04337299

The constraint function value is now given as

21(x) = 0.6929182

Fourth Scaling
Ny = 2121575314

N;“ = "73169668

A',“ = -62.8296117

-~ N
wia=— Y T = 13.0046068

t 3.4 “1

- N ’,
mp= Yy ['II’ = 8.3889252
112 ©

The parameter ;3 is given by:

J=1.4431718

I

1
Ay = (0.6920182)%14 = 0.9723739
1
Ap = (14431718)mir = 1.0446997

The new variables are:

Iy = 0.0261305
ry = 0.0261305
Iy = 0.8676250

ry - 0.0433730
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The constraint function vahie is now given as

() = 0.9527436

Fifth Scaling
Ny, = 212.1521012

’ Ny, = 20.2339696

il

N;“ = -7.2755990

Ny = —62.8106710

~ Nyr
a= - Y T = 0.4850052
~1
t 3.4
<~ N,yr
mp= ) 'z’| ' = 6.3735460

r 1,2
The parameter 3 is given by:

B = 1.0496003
Aj4 = 0.9949092

Ayp = 1.0076243

The new variables are:

7y = 0.0263297

1y = 0.0263297

rq = 0.8676250

14 = 0.0433730
The constraint function value is now

z1(x) = 0.9990408
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which is within 0.096% of the constraint surface.

PROBLEM 5. This problem, a gear reducer example, is designed to demonstrate the com-

pound scaling algorithm with multiple constraints. A detailed deseription of the problem

is given in Reference 6. In this example there are 7 design variables and 25 constraints.

The constraints are defined as:

z(z) = nfén <1.0

2(a) = M5 <10

- - 1.93

eg(.’l’) = 12’32312 S 1.0

-~ —_ 1.93

2(0) = 1, <10

z5(r) = f < 1100.0 |
_ {(m4524\ ¥ o)/’

Ay = ((795)"+ (16.9)10

B, = 0.1r¢
zo(r) = f# <8500

2 1/2
Ay = (( ) + (157.5)10“)

B, = 0.1s}

7457
I2ry

:7(1') =TTy S 40.0
z(r) = S <-50
29(1’) = ;: < 12.0

Zlo(J') =TI S 3.6

()= -1r<-26
212(r) =2, <08
2y3(r) = -0y £ -0.7
siq(r) =13 < 28.()
2i5(r) = —23 < ~17.0
216(r) =ry <83
2pp(r) = —ry £-73
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sya(r) =15 <83
2yglr) = =1y < =73
20(r) = 1 < 3.9
ap(r) = -2 <29
2pp(xr) =77 <55
2(r) = —47 £ -5.0

:24(1_) — (1.5)';3‘0].9) <1.0

‘_—'25(:) — (»I.Iz;sol‘!)) S 1.0

The initial solution was selected as the average of the minimum and maximum values
defined for each variable: (constraints zyy thru 253). For this solution constraints 5, 6. 8. 9
and 10 were violated. Only one scaling was necessary to bring all the violated constraints
to the feasible region or to the constraint boundary. The constraint gradient matrix -

N7 .5, the scale factor table and the scale factor assignment table are given for this scaling.

TABLE 4 PROBLEM 5: Constraint Gradient Matrix for Violated Constraints

z— 5 6 8 9 10

T

|

1 0.0000 0.0000 -1.3333 0.0000 0.0000
2 -9.7511 -.8703 5.5111 0.0000 0.0000
3 -.3250 -.0290 0.0000) 0.0000 0.0000
4 9376 0.0000 0.0000 -.1151 0.0000
5 0.0000 0837 0.0000 0.0000 -.1262
6 -926.1200 0.0000 0.0000 1923 0.0000
7 0.0000 -495.7786 0.0000 0.0000 1410
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TABLE 5 PROBLEM 5: Scale Factor Table

) 6 8
1.000000 1.000000 1.200677
984560 1.006856 .826667
9841560 1.006856 .826667
1.000000 1.000000 .826667
1.000000 1.000000 .826667
984560 1.000000 .826667
1.000000 1.006856 .826667

1.160126
1.160126
1.160126

.897436
1.160126
1.160126

1.160126

10

1.021703
1.021703
1.021703
1.021703

983974
1.021703
1.021703

TABLE 6 PROBLEM 5: Scale Factor Assignment Table

5 6 8
0.000000 0.000000 1.000000
006968 000752 1.000000
006968 000752 0.000000
006968 0.000000 0.000000
0.000000 000752 0.000000
3.000000 0.000000 0.000000
0.000000 3.000000 0.000000
40

0.000000
0.000000
0.000000
1.000000
0.000000
728571

0.000000

10

0.000000
0.000000
0.000000
0.000000
1.000000
0.000000

752443




From the scale factor assignment table, the scale factor table, the constraint gradient
table, and the rules enumerated carlier, the appropriate scale factor for each variable was
determined. Table 7 gives the values of the appropriate scale factors, the scaled variables

and the adjusted variables when they exceeded the limits,

TABLE 7 PROBLEM 5: Values of the Variables Before and After Scaling

Variable Original s Scale Factor Scaled Variables Adjusted Variables
I 3100005+ 01 120968E+ 01 .375000E+01 .360000E+01
Ty .750000E +00 .826667E 1 00 .620000E 400 .700000E 400
T3 .225000E +02 .984560E +00 .221526E+02 .221526E+4-02
T4 .780000E +01 .897436E+01 .700000E +01 .730000E+01
zg .780000E + 01 J983974E+00 .767500E+01 .767500E+01
Ig .340000E +01 .984560E +00 .334750E 401 .334750E401
I .525000E+ 01 -100686E+ 01 .528600E+01 .528600E+01

Table 8 gives the values of the constraints before and after scaling.

11




TABLE 8 PROBLEM 5: Values of the Constraints Before and After Scaling

Constraint No. Initial Value Limit After Scaling
1 .6882 1.0 .6909
2 4503 1.0 .4592
3 .4061 1.0 .3856
4 0714 1.0 0721
3 1049.6000 1100.0 1099.9000
6 867.6120 850.0 850.0560
7 16.8750 40.0 15.5068
8 -4.1333 -5.0 -5.1429
9 4.1333 12.0 5.1429
10 3.1000 3.6 3.6000
11 -3.1000 -2.6 -3.6000
12 0.7500 0.8 7000
13 -0.7500 -0.7 -.7000
14 22.5000 28.0 22.1526
15 -22.5000 -17.0 -22.1526
16 7.8000 8.3 7.3000
17 -7.8000 -7.3 -7.3000
18 7.8000 8.3 7.6750
19 -7.8000 -7.3 -7.6750
20 3.4000 3.9 3.3475
21 -3.4000 2.9 -3.3475
22 5.2500 5.5 5.2860
23 -5.2500 -5.0 -5.2860
24 0.8974 1.0 19481
25 0.9840) 1.0 1.0052

These five exatnples illustrate the power and mechanics of the scaling algorithm. Complete

details of how to use this sealing algorithim are given in Reference 5.
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6.0 SUMMARY AND CONCLUSIONS

This paper is organized into six sections, inclusive. The first two sections explain
scaling and its intended purpose in the context of constrained mathematical optimization.
They also contain a brief history and 1wotivation for the development of the compound

scaling algorithim.

The third section generalizes the simple scaling discussed carlier*#*) with additional
observations and options. The subsection on classification of constraints contains a comn-
prehensive description of most of the constraint types encountered in mathemnatical opti-
mization and provides guidelines for effective implementation in scaling. The interaction
formula for the scale factor was originally derived™) in the context of application to
beam problems. The beam deformation can be separated into axial and bending parts
when there is no coupling between them. The axial part is characterized by linear behav-
ior while the bending part is governed by nonlinear behavior. This paper derives the basis
for this concept in the context of general mathematical functions while extracting a much
simpler relationship. This relationship in turn leads to the compound scaling algorithm
discussed in Section 4. In essence the compound scaling algorithin is an clegant extension

of simple scaling to multiple constraints,

The compound scaling algorithm requires basically two matrices. The first is the
constraint values matrix. 2. The dimension of this matrix is ¢ x 1. where s represents
the number of active constraints. The second is a matrix of constraint gradients (table).
N. The dimension of this matrix is n x s, where n is the number of variables and
represents the number of active constraints. These two matrices are generally obtained
from an analysis of the systemn. From this information two additional matrices A and { are
generated. The dimensions of these two matrices are identical to those of the N matrix.

The first is designated as the matrix of possible scale factors (table). while the second

I3
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is called the scale factor assignment matrix (table). The information from the last three
tables is the basis for an orderly derivation of individual scale factors for all the variables.

Then the relationship between the scaled and the unscaled variables is given by
ro= A, 1= 012...n

The scaled variables are closer to the constraint boundary.

Section five contains the results of application to simple mathematical functions. The .
first two examples show that the scaling can be exact no matter how far the design is
from the constraint boundary. This means that the constraint boundary can be reached
in a single step. In these two examples the parameter g remains constant throughout the
n—dimensional space. and the scaling is exact. The third example shows that this is not the
case when the parameter g varies in the n—dimensional space. In such cases scaling would
be significantly faster than any scarch. The fourth example illustrates application of the
compound scaling algorithin to a single constraint. The last example is an application to
multiple constraints. These exatuples not only illustrate the advantages and the limitations

of the scaling algorithm but also the details of application.
The characteristics that make this compound scaling algorithm most attractive are
outlined as follows:
1. The constraint surface can be reached very rapidly from anywhere in the n—dimensional
space.
2. All the decisions in scaling are tied to the values of two key parameters g and j3. ,

3. Determination of these two parameters is extremely simple and computationally in-
significant when the constraint and gradient information are available from an analysis
of the system.

1. Sclection of appropriate initial values for the variabies is no longer an issue.
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5. The need for directional searches and move limits 1s eliminated.

6. The step size determination is automatic and is tied to the values of the parameters p

and 3.

7. Algorithm implementation is simple and straightforward, because computational over-

head beyond an analysis of the system is almost insignificant.

Future research in optimization should concentrate on the behavior of the mathematical

functions through the study of these non-dimensional parameters.

This compound scaling algorithm constitutes a significant breakthrough in the evalu-
ation of the optimality criteria approach for large scale optimization (with thousands of

variables and constraints) in a multidisciplinary setting.
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