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Editor's Preface

On 10-12 January, 1985, a symposium called "Perspectives in fluid Mechanics" was
held at the California Institute of Technology in Pasadena, California. The occasion
was the 70th birthday of Hans Wolfgang Leopold Edmund Eugen Victor Liepmann.
More than 350 persons attended the symposium. Sixteen invited papers were presented,
including three papers at a popular technical level as well as the dinner address by
Susan Kieffer. Financial support was provided by TRW, Inc., the Hughes Aircraft
Company, the NASA Ames and Lewis Research Centers, the Office of Naval Research,
the National Science Foundation, and Caltech. The symposium was organized by J.
Broadwell, D. Coles, P. Dimotakis, A. Roshko, and B. Sturtevant, assisted by a dis-
tinguished advisory committee. Arrangements were coordinated by the Caltech
Development Office.

Hans Wolfgang Liepmann's professional career has centered on his position since
1939 as faculty member at the California Institute of Technology and, from 1972 to
1985, as director of GALCIT (Graduate Aeronautical Laboratories). We could list
Liepmann's honors and awards, culminating in the U.S. National Medal of Science, but
we prefer to let the present volume speak for itself. Liepmann's choice of research
fields has always been wide-ranging and has often anticipated the development of new
technologies. He and his students were already publishing papers on boundary-layer
stability and transition in 1940, on turbulent shear flow in 1943, on transonic flow and
shock waves in 1944, on surface friction in supersonic flow in 1946, on aircraft buffet-
ing and other stochastic problems in 1947, on rarefied gas flow in 1956, on magnetohy-
drodynamics and plasma physics in 1957, on the fluid mechanics of liquid helium in
1968, on the chemistry of turbulent mixing in 1976, on active boundary-layer control in
1979.

Liepmann is a superb teacher. He is noted for delegating responsibility -- and credit
-- to able students, so that their own careers have the strongest possible beginning. Ten
of his first fifteen students are members of the U.S. National Academy of Engineering,
and two are also members of the U.S. National Academy of Science. Many of his more
than 60 Ph.D. students are senior faculty members at leading universities or have posi-
tions of major responsibility in industry and in government laboratories. Many hun-
dreds of undergraduate and graduate students at Caltech have taken Liepmann's courses
in thermodynamics, gas dynamics, stochastic processes, and other subjects and have
propagated Liepmann's style, especially his unvarying pursuit of clarity and excellence,
to far places.
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The papers in this festschrift reflect Liepmann's wide interests in science. Although
a few of the manuscripts were ready at the time of the symposium, several others had to
be produced by transcription from a tape recording, followed by extensive revision by
the author and editor. A few authors were not able to make time in their busy schedules
to complete their contributions. It was originally intended that the papers would be
published in a special issue of an archival journal, and some time was required to
establish that this plan was not practical. Springer-Verlag has generously agreed to
make the proceedings available in their series "Lecture Notes in Physics" as a significant
addition to the scientific literature. The publisher, editor, and referees share the view
that the contributions published in this volume are not and will not soon be out of date.

A symposium dedicated to the career of a leader in a field can be an effective
vehicle for exchange of information and ideas. There is a general atmosphere of
comradeship, community, challenge, and compatibility with the ambience of the
scientist being honored. The lectures can provide a valuable demonstration of the way
that various senior research figures function in the uncertain area where strategy merges
with tactics and knowledge merges with conjecture. The participants in the symposium
hope that this published record will preserve this atmosphere, including especially
exposure to unfamiliar problems that can stretch the interest and imagination of the
audience.

Donald Coles
29 July 1988
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Methods for Exploring the Large-Scale Ocean Turbulence

Walter Munk
Professor of Geophysics

University of California, San Diego, California 92093

I am pleased that the organizing committee has seen fit to ask a sailor to join this
celebration in honor of the Theodore von Karman Professor of Aeronautics. I am
inspired to recount my version of how von Karman invented the von Karman vortex
street, perhaps the best-known construction that bears his name. It was in G6ttingen in
191 1, and Prandtl had assigned to a candidate named Hiemenz the task of measuring the
pressure distribution around a cylinder immersed in a steady flow. When Hiemenz
attempted to make the pressure measurements, he found to his annoyance that they
fluctuated in time. He went back to Prandtl and asked, "What shall I do?," and Prandtl
said, "Maybe the cylinder isn't smooth enough; you better polish it." And so Hiemenz
polished it, to a German degree of perfection, but the situation persisted. As von Kar-
man told the story, he would walk by the laboratory every morning and ask Herr
Hiemenz, "Does it still oscillate?" ("Wackelt es noch?"), and Herr Hiemenz would say,
"Ja, ja, Herr Professor, es wackelt noch." So Herr Hiemenz would polish it again, and
the daily ritual was repeated, with Karman saying "Herr Hiemenz, wackelt es noch?"
"Jawohli, Herr Professor, es wackelt noch!" After a while, Prandtl suggested that
perhaps the boundaries of the tank were not sufficiently smooth; this took further time,
and the situation was unchanged. One day Karman got tired of the daily ritual. On a
Friday he went home and sa;i, "I really have to think about this," and he came back on
Monday with essentially a completed paper on the subject of the vortex street. I would
be more comfortable in telling you this tale if it did not have an oceanographic analog,
shown in Fig. 1.

The upper portion of Fig. 1 shows the ocean circulation in the north Atlantic I as we
were taught when I first came in contact with oceanography. There is a series of
streamlines going smoothly around a big gyre in the sub-tropical Atlantic. Where the
streamlines are crowded the velocities are high. It was vaguely understood that this cir-
culation was the result of a wind torque between the easterly trades and the westerly
winds. The east-west asymmetry is well understood to be a result of the rotation of the

earth. There were some difficulties with this simple picture of a steady circulation.
Occasionally people reoccupied a station that had previously been occupied (thus violat-
ing the first law of oceanography: never take a measurement over again). They would
find that the results were different from what they had been before. However, we

oceanographers always have a sufficient number of defects in our instruments to be able
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FIG. I. Top. The mean circulation of the Atlantic' as indicated by streamlines.
Crowding of streamlines indicates a high velocity. This simple pattern corresponds to
our general concept of ocean circulation as the concept existed 40 years ago. Bottomz.
A cartoon of the North Atlantic circulation at any given time. The Gulf Stream
meanders in space and time and the ocean is filled with mesoscale eddies.
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to blame some malfunction, the ocean wiggled because we had failed to polish our
instruments.

The situation became unbearable when an En ,,lish oceanographer, John Swallow,
invented a simple, elegant instrument known nowaddys as the Swallow float. This is an
aluminum tube weighted so as to be slightly heavier than water at the surface Since
aluminum is less compressible than seawater, the float eventually reaches some depth
and stays there in neutral equilibrium. Swallow wanted to confirm the classical view of

ocean movement, and he placed an instrumcnt in a position north of Bermuda, where (as
everyone knew) it would move to the southwest at one centimeter per second. Swallow
had an acoustic means for probing for the location of the instrument. There was a tran-

sponder on the instrument, and one could follow the float from shipboard for a month or
more. That was the plan. Well, the float, instead of going to the southwest at one -en-
timeter per second, went to the e-,t at ten centimeters per second. Even wiih large lim-

its of experimental error, this result was unacceptable as a confirmation of the heory.
What was even worse was that Swallow did not pay enough attention to the first law of
oceanography. lie placed two such instruments about 30 kilometers apart. They were,

of course, supposed to float together, and it would be easy for one ship to keep track of
both. Well, whereas the first floated east at ten centimeters per second, the second
floated north at an equivalent speed. The whole picture of a uniform smooth circulation

collapsed.

Today we regard the ocean very much more like the sketch' in the lower portion of
Fig. 1. The ocean is filled with eddies; the Gulf Stream meanders: there are big changes

in time and in space; and, what is more important, the fluctuating compo'ients associated
with these eddies contain 99 percent of the kinetic energy. The top figure might still

constitute a reasonable 5-year average, but it has nothing to do with what goes on at any
given moment. It is almost incredible that oceanographers should have held on to the
view in the top figure for so long. But so sure were we (before Swallow's experiment)
of this kind of picture that we put out pocket handkerchiefs during World War II that
showed downed pilots exactly how they would drift, and what tu do about finding a
haven. We did not tell the pilots that this picture is an average over a 5-year period, as
it was not our intention that the fliers were to make a Lagrangian jarticle experiment
over quite so long a time. I have such a handkerchief here, and I will jend it to Hans. I
have to add that this is a short-term loan. I gave this handkerchief to my wife when I
asked her to marry me.

Now the scaling of eddy formation in the ocean is a different matter from the tur-
bulent scaling that we heard discussed this morning by Professor Narasimha. The two
basic facts about the ocean are that it rotates and that it is stratified. The rotation is gen-
erally measured in terms of the Coriolis parameter f = 2 w sin0, which is twice the
rotation rate of the earth times the sine of latitude. At Caltech, near latitude 34 degrees,

that is a frequency of about one cycle per day. The stratification is generally measured
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in terms of the frequency that a floppy balloon would have if it were filled with water at
some given depth and then vertically displaced. It would oscillate with a frequency

= (g/p) dp/dz 11/2 radians per second. In a typical ocean environment that is one
to five cycles per hour, or 20 to 100 cycles per day. In the sense that tho stratification

frequency is much larger than the rotation frequency, you might say that the ocean is
more stratified than it is rotating. This comparison has an interesting implication,
because early theoreticians of the great Bergen school, V. Bjerknes and his son Jack,
worked for many years on a fluid that was rotating but (for the sake of simplicity) ,as

unstratified. In some sense, th-at simplification put the main emphasis backwards. Wc

have two parameters; ', one cycle per day, and N, 20 cycles per day; two basic

frequencies. The length scale that goes with rotation is the radius c," the earth, a =
6370 kilometers, and the length scale b that goes with stratification is commonly

defined by N = e -z/b, since the ocean is most stratified near the surface and least
stratified near the bottom. This gives a length scale t) = 1 kilometer. The diameter of
the eddies in Fig. I scales like 27rb NIf, and is 100 kilometers in the oceans. In the

atmosphere, wl re the stratification scale is more like 10 kilometers instead of I
kilometer, the typical _ddy size is 1000 kilometers. which is recognizable as the typical
scale of a storm. The time scale of these eddies goes like a/ANb, which is about three
months in the ocean and four days in the atmosphere. You see that this argument

properly scales the main eddy dimensions in the ocean a',d in the atmosphere and shows
why the two should be so different.

The discovery of eddy structure in the ocean came as a great shock, in more ways

than one. How were we to sample the ocean adequately for quantities thLt changed
vitally once every few months and that had length scales of the order of 100 kilometers?

For an ocean acre (1000 kilometers times 1000 kilometers) it would take 200 days to

sample adequately for 100-kilometer eddies. With a normal oceanographic ship, which

costs 10,000 dollars a day, that is a very expensive operation. What is worse, in 200
days the situation has changed. So there is a real problem in attempt;ng to sample
rneaoscale eddies vith traditional means. At about that time, Carl Wunsch from MIT

and I proposed 2 that remote sensing with acoustics might be one way to achieve
adequate space-time resol'tion. The key is that the ocean is an excellent propagator of
sound. One stick of dynamite can be heard at a dirtance of 1000 kilometers.

Figure 2 depicts an experiment that was p, rformed southwest of Bermuda a few

years ago 3 by a group of people whose names appear in the reference. At the bottom
left is a typical ocean sound channel, a plot of sound velocity against depth. The

outstanding feature is the minimum at a depth of about one kilometer. The minimum is
well understood. The sound speed varies with temperature, salinity, and pressure. The

sound speed increases upward near the axis because the ocean gets warmer. It increases
downward away from the axis because the pressure increases with depth. The result is a
minimum, which forms a wave guide. In he language of ray optic:;, rays that move
upwards are bent downwards, and vice versa. At the bottom right in the figure is a
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FIG. 2. A tomography experiment 3 conducted in 1981. The upper panel shows the
locations of four sources and five receivers, with all possible source/receiver paths. The
left bottom panel is a plot of sound speed against depth. The right bottom panel shows

some representative ray paths between source SI and receiver R3.

reasonably realistic picture4 of ray propagation between a source and receiver separated

by 300 kilometers at a depth of about 1.5 kilometers. Different arrival times are
associated with different rays. The earliest arrivals, perhaps surprisingly, are the

steepest ones: although they have farther to go they spend most of their time in high-
velocity zones. The latest arrival is the axial ray.

Our proposal was the following. Suppose we have a warm eddy in the upper part of

Fig. 2. Because the speed of sound is larger in a warm eddy, the ray traveling through

the warm eddy should arrive I little earlier than it would in the absence of the eddy.
When we put numbers in for typical situation, a single eddy might give an advance by

about 0.2 second, very easily measured. For a shallow eddy, only the steep ray path
would go through it and come in early, whereas the flat ray path would go beneath it,
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and would not come in early. Clearly, the pattern of perturbation in travel time can give
an indication of what is going on. We had four sources and five receivers, and we
measured the perturbation in travel time from each source to each receiver. Thus we
had a total of 4 times 5 times about 10 multipath arrivals, or 200 distinguishable arrivals
with which we could work to find out what is going on in that ocean volume. Think of
it as a 5-kilometer-deep slab, 300 x 300 kilometers in area. We measure the average
sound speed along 200 rather complicated curves through that slab. The problem that
we called ocean acoustic tomography is: given those 200 numbers, how can the data be
inverted to produce maps of sound speed as a function of x, y, z ? Since sound speed
in this context means mostly temperature, the experiment produces maps of temperature
as a function of x, Y, z. The main advantage over the traditional method is that the
information goes up geometrically, like the product of sources and receivers, whereas in
traditional moorings the information goes up linearly, like the total number of moorings.
This is a considerable advantage. However, as we have since learned, not only does the
information increase geometrically with the number of moorings but it also decreases
geometrically with the failure of moorings.

There were several questions as to whether or not this method would work. First,
can individual ray arrivals be resolved? If and when they are resolved, can they be
identified, so that we know how they have in fact weighted the ocean column? We need
that information for the inversion process. And finally, do they remain stable over long
periods of time, so that we can really work with time series'? The answer to all three
questions has been yes. Figure 3 (left) shows an observed arrival pattern 5 . A distance
of 300 kilometers means a travel time of about 200 seconds. Notice that the earliest
arrivals come at about 208 seconds, and the latest at 210 seconds, so that the dispersion
over this distance is only 2 seconds. Nevertheless, there is a series of peaks in the

measured predicted
21 Is - daily hourly

mean peaks

S+ 15,- 16 (non geometric)
210s +14 (715rn), -t5 (746m)

- +13(623m)
-13(640m) +12(561m)

"1- (415m) -12 (537m)
-ii (459m)

2s-1 0 ( 0 m)209 ~ ~ ~+ s --' --- (O )

+9 (190m, 304m)

208s t
Oh 24h

FIG. 3. A comparison of daily and predicted travel times5 . Rays are identified by the
number of turning points, by whether the launch angle is upward (+) or downward (-).

and by the depths of the upper turning paths.
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arrival pattern. The plot next to it shows the peaks for each hour of the day. The peaks

do remain stable and identifiable. On the right side of Fig. 3 is a WKB-computed

picture of when we would expect these arrivals according to ray optics. We can in fact

identify the arrivals and know which ones come in at what time. The method is much

like seismology applied to the ocean.

Are the results stable? Figure 4 shows the arrival pattern, where time is now plotted
from left to right. Successive plots are for successive days for a total of 100 days. The

pattern is in fact stable and recognizable.

The identification problem that I mentioned previously had to do solely with arrival

times; steep rays come in early, flat rays late. We have recently used some simple
vertical arrays so that we could also measure the angle of incoming rays to get an
independent check on identification. Figure 5 shows a picture of one particular ray that

172s 174S 176s l78

Travel Time

FIG. 4 The mean daily arrival pattern for a period of 100 days.
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FIG. 5. The inclination at the receiver for a selected ray.



happened to arrive with an angle of about 8 1/2 degrees. The result of that investigation
has been that the computed and measured arrival angles have always been consistent.

Recall that in my first figure I showed a meandering Gulf Stream. Instead of having
the ideal steady streamlines of the past, it wanders. It wanders not only in space but

also in time. We might therefore expect that a transmission across the Gulf Stream
should have travel times that wiggle in time, because the Gulf Stream separates cold
water to the left from warm water to the right. If a meander is displaced northward, as

shown in Fig. 6, there is more warm water along the path, and the arrival should be
sooner. This is a picture of measured changes in travel time over a period of two
months. There is a change of a total of about 0.8 seconds from the shortest travel time
to the longest travel time. We were fortunate to be able to compare this observed
measurement of acoustic travel time with the position of the Gulf Stream as obtained
from satellites. The dots give, on a similar scale, the position of the edge of the Gulf

Stream relative to the line along which the acoustic transmission took place. In this
instance the transmission was over a 2000-kilometer path. The total acoustic power that

is transmitted in our work is about 10 watts, so we can do very well over very large
distances. The agreement is good, suggesting the application of acoustic means to
measure the very-large-scale fluctuations that are characteristic of the ocean.

The intellectually most interesting part of this research is what the geophysical

community calls the inverse problem. Given 200 arrival times each day, can they be

converted into a series of weather maps? In medical tomography (from where we stole
the word), if x-rays are sent through a man's skull along different directions by rotating

source and receiver, each direction gives an image. A computer program puts these

+4M-c

C

0 E
0)

-200-Z

June July 1981

FIG. 6. Travel time between source and receiver at a 2000-km distance over a path
crossing the Gulf Stream 5 . Line segments designate departures in travel time from an
arbitrary mean. Dots give locations of the edge of the Gulf Stream as measured from
satellites.
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together into a single optimum picture. We have the same question: how do we put
these 200 different paths together into a single picture? Of course, the basic statement
of the problem is very simple. The total travel time is the reciprocal sound velocity, or
the sound slowness, S, integrated along the path. To make the problem as simple as
possible, take the ocean and break it up into a series of j blocks. Represent the sound
slowness in each block j by Si. Then the total travel-time delay Ati for ray i will
be the sum of the perturbations of sound slowness in block j multiplied by the
distance Ri that ray i has traveled in block j; At, = Z Rij St. The inverse

problem is solving for the perturbation in sound slowness. We need a formula whereby
the sound-slowness perturbation in block j is a linear sum of the observables;

ASj = R 1
t Ati . The perturbations in travel time of ray i are each multipled by an

optimum weight, which in some formal sense is the inverse of the Rij matrix.

Generally, the way that these problems are formulated involves more unknowns than

observables, more boxes than rays. The situation is ambiguous. We are familiar with

the case of 200 equations and 200 unknowns, a problem that is just determinate. We are
equally familiar with the overdetermined problem, where we use least squares to solve
for fewer unknowns than observables. Many people are less familiar with the remaining

case, which is the underdetermined problem. It is formally very similar to the least-
square problem, but it is ambiguous, and some hypothesis is needed in order to remove
the ambiguity. We are using the simplest imaginable hypothesis; we are asking for the
least wiggly ocean weather map that is consistent with the 200 observations, given the
uncertainty in each observation. In effect, we are assuming that the ocean has a red
spectrum, with more energy at low wave numbers. Given that hypothesis, the solution
is no longer ambiguous. In terms of a theological problem, we are following the
theology I learned in China; the sea is red. We can accept that as a statement of the
spectrum of disturbances in the ocean and on that basis carry out our inversions. It is
interesting that the medical profession adopts a different hypothesis. They consider a
man's skull to consist of uniform fabrics separated by sharp boundaries. If we adopted
that theology of the ocean, as is done by enthusiasts for frontal systems, we would get
quite different maps. We really should go through the exercise of using the same data
to produce maps under different theologies.

Figure 7 shows some early results (which are not as good as they should be) from
the 4-source, 5-receiver experiment southwest of Bermuda. These are maps of sound
speed at a depth of 700 meters at 3-day intervals, so they are snapshots of the ocean.
The results are poor during days when the moorings to which our instruments were
attached were leaning over because of strong currents. Furthermore, we found that the
precision of our resolution for separating nearby arrivals was not really sufficient,
because our acoustic sources did not have enough bandwidth. We have since improved
the sit-!ation, and today we can get better results. In any event, we were able to produce
these maps of eddy-like features. The maps are at 3-day intervals, which is unthinkable
if traditional methods are used. We can think of the acoustic method as using a probe
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that moves at 3000 knots. One cf the few things that has not changed since the earliest
days of oceanography is the speed of oceanographic vessels. It was 12 knots during the
days of the Challenger expedition, 100 years ago, and it is about 11 knots today.

Carl Wunsch and I, who were partners in this enterprise, think that the best use of
such an acoustic method is in concert with satellite observations. Figure 8 is a record of
the path of tho the satellite SEASAT over the north Atlantic over a period of 10 days.
The grid size is quite satisfactory for resolution of the eddy structure. Probably the best
quantity to measure from a satellite, if you are interested in the large-scale eddy
structure in the ocean, is the elevation of the sea. By measuring the time required for an
electromagnetic pulse to travel to the ocean surface and back, altimeters have now
achieved a precision of a few centimeters. The typical eddy signature is 10 centimeters.
The principal advantage of satellite altimetry is excellent horizontal resolution. But
there is no depth capability whatsoever, because the electromagnetic waves associated
with such observations penetrate only a few centimeters into the water. We think that a
combination of the satellite capability with an underwater acoustic scheme would
constitute a good strategy for making such measurements.

We have since used the acoustic technique reciprocally, by using co-located sources
and receivers to measure travel time from A to B and from B to A. The difference of

60

• 40

260 280 300 320 340 360
longitude/deg

FIG. 8. Satellite paths over the Atlantic over a period of ten days2 .
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the two is a measure of velocity. We can go through the same formalisms and produce

maps of currents. Our plans for 1986 are to set up an array with a scale dimension of

1000 kilometers just east and north of the Hawaiian islands (Fig. 9) and to attempt to

measure the variability of circulation in the ocean on a climatological scale. The array

will not resolve the eddies. Moreover, the problem is nonlinear, in the sense that as the

ocean changes, so do the ray paths. The simplest linear analysis is to interpret changes

in travel time in terms of changes in sound speed along the undisturbed path. The

nonlinearity produces a bias, and we have done a great deal of thinking about how one

can correct for the bias. It is not a negligible effect, and it poses some special problems

that we will have to solve.

..G. . Ts a. epmn i

FIG. 9. Two proposed sites 2 for a large-scale tomography experiment in 1986.
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Astrophysical Jets
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My subject is a topic in astrophysical fluid dynamics: specifically, the behavior of
the supersonic jets that are observed to squirt out of the nuclei of active galaxies, com-
pact stellar objects, and proto-stars. Some years ago, I had the good fortune to discuss
this topic with Hans Liepmann, who quickly recognized that astrophysical jets pose
some fascinating problems in fluid mechanics. However, he did not seem completely
confident about the ability of astronomers to solve them (apparently some of my col-
leagues had been publishing papers on turbulence). Both of these insights turned out to
be correct, as I hope to demonstrate in this talk.

Observations of extragalactic radio sources have recently been summarized and
interpreted in several conference proceedings and review papers 1- 6 and in one semi-

popular article7. Most of the original technical literature can be traced through these
references. Some of my figures in this paper are taken from a slide series 8 called "The
Radio Universe" and are published here by permission of the National Radio Astronomy
Observatory.

The fluid that I will discuss is a plasma, but it is one in which the effective mean
free path is so much smaller than the scale of the system that we believe that the contin-
uum approximation is excellent. This is partly because the Larmor radius is small, but
also because plasma instabilities will make the bulk properties resemble those of a fluid
in the usual sense. This is largely true in the solar wind, true in the interstellar medium,
and also, we believe, true in the intergalactic medium. It is this belief that motivates the
use of fluid mechanics in the particular problem of astrophysical jets. Actually, my sub-
ject turns out to be a bit more complicated than this, because these jets almost certainly
pose a problem in magnetohydrodynamics, not just fluid mechanics. In this paper I will
not emphasize the magnetic aspect. Nevertheless, I think the ultimate description must
be magnetohydrodynamic.

I shall be primarily concerned with extra-galactic double radio sources. The first
example of such a source, discovered in 1944, is known as Cygnus A. A modem map 9

is shown in Fig. 1. What is found is a pair of lobes of radio emission on either side of a
distant galaxy. The iegions of highest brightness are called "hot spots" and are found at
the outer edges of strong sources; Cygnus A is one of the most powerful sources we
know. This discovery of double radio sources was surprising, because the region of
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FIG. 1. A radio photograph 9 of the powerful double radio source Cygnus A (courtesy
of NRAO). Clearly visible are the large radio lobes, the hot spots, one jet, and the cen-
tral compact radio source identified with the nucleus of the associated galaxy.

radio emission was naturally expected to be located within the galaxy. However, it
occurred well outside the optical image, and the question naturally arose as to how the
underlying plasma came to be there. This is where jets come in.

Before I go on, I should say a little about diagnostics in this field and particularly
about radio interferometers like the Very Large Array in New Mexico. A radio inter-
ferometer is a machine for recording a Fourier transform of the brightness of the sky
and recreating the image numerically. This is the procedure that produces many of the
maps in this paper. The emission that we detect in these sources is believed to be syn-

chrotron radiation emitted by relativistic electrons spiraling in a magnetostatic field. By
analyzing the brightness of the image we can learn three things. Firstly, we can esti-
mate the pressure from the brightness and size of the source. Secondly, the polarization

tells us the direction of the magnetic field; not the sign, but at least the direction.
Thirdly, we get some partial density information from Faraday rotation measurements.

However, we have very inferior diagnostics overall, and we have a much less well visu-
alized flow than you are used to. In particular, we rarely have velocity information, and
this lack is one of the big obstacles to progress in this field.

From maps like the map of Cygnus A, made in the early 1970's, it soon became
apparent that what was going on was not, as was first thought, a massive explosion, but
instead a continuous process. We infer that there are pipelines or channels or jets along
which mass, momentum, and energy are transported in fluid form into the lobes. In Fig.

2 we can see, in a slightly better map'0 of a different source, a jet extending from the
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FIG. 2. A radio map1 ° of 3C219, a powerful extragalactic radio source in which one jet
is visible.

nucleus of the associated galaxy into the radial lobes. We now know of several hundred
examples of these jets.

Linked interferometers like the Very Large Array are not the only instruments we
have at our disposal. We can look in other parts of the electromagnetic spectrum, where
several optical and X-ray jets are known. We can also look at radio frequencies with
higher angular resolution, using the technique of Very Long Baseline Interferometry, in
which the telescopes are not in the same place, but are distributed throughout the United

States and Europe. By increasing the baseline we improve the resolution, so that we can
look at details or:n a scale of light years in distant radio galaxies.

The results of Very Long Baseline Interferometry are exemplified by the view 1 in
Fig. 3 of another radio source known as NGC 6251. First we see two large double

lobes, 3 million light years across. The jets are transporting mass, momentum, and
energy to the outer lobes from the nucleus of the associated galaxy. Next, we use VLBI
to see what is going on right in the nucleus of the galaxy, on a scale of 3 light years. In
these two figures we are looking at scales that span a range of a million to one. The

lobes have been interpreted for a long time as jet flows at high Mach number (M > 10).
The flow emanates from the nucleus of the galaxy and squirts out into the intergalactic
medium, where it is finally brought to rest through a strong shock, or Mach disc. It is
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the strong shocks that are identified with the hot spots. After passage through the shock

or Mach disk, there is a backflow that creates the cocoon, or the lobes of the radio
galaxy.

The examples that I have shown so far are strong radio sources. Figure 4 is an

example 12 of a weaker radio source associated with the galaxy M84. The galaxy is

again located right in the center. The two jets do not terminate in strong shocks (hot

spots) but appear to decay gradually with distance, petering out into a sort of plume
rising buoyantly in the galactic gravitational field.

FIG. 4. The weak radio source 12 associated with the galaxy MS- (,.uurtesy of NRAO).
This is believed to be a subsonic or possibly transonic flow emerging from the central
galaxy. Buoyancy in the galactic gravitational field may play a role in dictating the
shape of the radio source.
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One of tile first questions that was asked when maps like these became avaiianle
was: what is known in the laboratory about high-Mach-number, high-Reynolds-number
jets'? The answer is: not a lot. So perhaps we can turn the problem upside down and
think about using these observations of extra-galactic radio sources as laboratories for
studying flows at very high Mach numbers. Let me show a few examples with their
associated interpretations. NGC 1265 in Fig. 5 is an example 13 of a radio trail. Again
we see two jets emerging from the nucleus of the galaxy. This galaxy lies in a rich
cluster and is moving hypersonically through the surrounding gas. The jets behave as if
they were being swept back by the intergalactic medium. Indeed, although it is not
apparent in this map, the radio emission extends much further. The jets appear to bend
through an angle of more than 900 while retaining their integrity.

There are several interpretations of what might be going on in 3C449 (Fig. 6), which
exhibits 14 several sharp bends. We might be looking at instabilities, about which I will
have more to say. However, there is a crude reflection symmetry relating the two jets,
and it could be that this galaxy is moving in dynamical orbit about its companions. If
the jet has a very low velocity, then it can respond to acceleration of the source and may
produce the observed shapes. Perhaps we can use these jets as tracers of the motion.
By contrast, a radio map 1 5 of NGC 326 (Fig. 7) seems to exhibit inversion symmetry.
This type of source has been interpreted not as a translational motion or orbital motion.
but instead as a precessional motion of the source of the jet. The jet precesses about
some axis fixed in space. In the past, presumably, the jet pointed in another direction.

FIG. 5. The radio trail 13 associated with NGC 1265, which is believed to be an example
Of two anti-parallel jets propagating into a crossflow (courtesy of NRAO).
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FIG. 6. 3C449, a source1 4 exhibiting a crude reflection symmetry, possibly caused by a

rapid acceleration of the parent galaxy (courtesy of NRAO).

FIG. 7. The radio source 15 associated with the galaxy NGC 326 (courtesy of NRAO).
'l11C jets exhibit a crude inversion symmetry attributable to precession of their source.
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their associated Doppler shifts. By analyzing these Doppler shifts as a function of time,
we can infer that there are two outgoing jets moving at a quarter of the speed of light
while precessing on a cone with a semi-apex angle of 20 degrees. I will show some of

the data that support this interpretation. Figure 9 is a plot6 of Doppler shift against time.
The two sinusoids are what would be expected from two precessing jets. Thus SS433 is

a source about which we know a lot. It provides a small-scale, nearby laboratory for
studying more distant extra-galactic objects.

If astrophysical jets are interpreted as transonic or hypersnnic flows, we expect
shocks to be present. Figure 10 shows a famous externai galaxy 17 known as M87. It
lies in the Virgo cluster of galaxies and it contains the first jet ever discovered. If we

take an optical photograph of the galaxy, on a scale of several thousand light years, we
can see a jet emerging from the :enter of the galaxy. We see it in X-rays and in radio
waves as well. Now this jet has several features called knots. We suspect that these
knots are instabijities or shock fronts associated with outflowing gas in the jet. Figure
11 is a high-resolution radio map1 8 of the brightest of these knots, which indeed looks
like a shock front. Behind the shock there is dissipation of bulk kinetic energy into
internal energy, and synchrotron radio emission.
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FIG. 9. Doppler shifts 6 of the emitting gas in SS433 over the period 1978-1983. The
data are well fitted by a precessing-jet model. The emission lines are created much

closer to the origin than the radio components shown in Fig. 8.



23

FIG. 10. The radio jet 17 emerging from galaxy M87 in the Virgo cluster (courtesy of
NRAO). This jet is seen at optical and X-ray wavelengths as well.

FIG. 11. A higher resolution map 18 of the brightest knot in the M87 jet. This may be a
shock front.
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In addition to these internal shocks, there are also shocks in the surrounding gas.

Hercules A provides a good example 19 (Fig. 12). Intermittency in the jet may be
driving strong compression waves or weak shock waves into the surrounding gas,
highlighting the radio emission. The features here can certainly be interpreted in these
terms, although there are alternative possibilities.

If all of this complexity is not enough, there is one more feature that is important,
particularly in strong sources. As some of yot may have noticed, the jets in the strong
sources appear to be one-sided. We see the radio emission only on one side of the
nucleus, not on the other side. One explanation that I favor is that these jets are moving
at nearly the speed of light, and they beam their radio emission in the forward direction;

a jet that is coming toward us appears substantially brighter than a jet that is receding.
We have some circumstantial evidence for this interpretation in Fig. 13, which shows a

montage 20 of four successive VLBI maps of the quasar 3C273, the first quasar
discovered here at Caltech. We see features apparently moving outwards from the
origin of the jet, with the displacement increasing from 62 light years to 87 light years

during the period from July, 1977 to July, 1980. The motion is faster than the speed of
light. This observation is not a refutation of the special theory of relativity. Instead, we
believe that it is a kinematical illusion that can be understood in terms of light travel-

time effects. I won't go into that explanation, which is an exercise in freshman
physics, beyond remarking that it requires the jet fluid to move at relativistic speed. Not

only do we have to understand hypersonic high-Reynolds-number flow; it has to be
relativistic as well.

I have touched briefly on a lot of material. Let me try to summarize to this point.

Astrophysical jets are common and surprisingly persistent. Jets at high Mach number in

the powerful radio sources are harder to see. What this means, in crude terms, is that
they are less dissipative. There is less conversion of bulk kinetic energy into internal

FIG. 12. A negative image 19 of the radio source known as Hercules A (courtesy of

NRAO). Note the bright circular shells, which may be associated with shock fronts.
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FIG. 13. A montage 20 of the small-scale radio jet in the quasar 3C273 as seen at four
successive epochs. The bright features appear to be moving faster than the speed of

light.

energy. They are also frequently terminated by strong shocks, making the hot spots that

I alluded to earlier. The power levels are so high that we have to be very grateful for

the scaling laws that operate in fluid mechanics. By contrast, jets in the weak sources
appear to be transonic or subsonic. They may start out at low Mach number and then

eventually degenerate into plumes and bubbles. It appears to be characteristic of the
lower-Mach-number jets that they are much more dissipative, as you might indeed
expect. Because they are more dissipative, they are easier to study. Another reason, of

course, is that they are nearer to us.

Let me mention some numbers designed to give a quantitative feeling for the scale

of these sources. A strong source like Cygnus A has a power of approximately 1038
watts and a thrust of 1030 Newtons. The magnetic fields within the radio lobes are

comparatively weak by terrestrial standards (< - 10 nT) but the total energy involved

(> - 1052 J) is the rest-mass equivalent of - 105 stars. The largest radio sources, some

10 million light years across, contain up to a hundred times more energy.

How can we learn more about these fascinating objects? Four lines of attack are

being followed. The first is to make simple numerical estimates of the levels of energy,
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power, magnetic flux, and so on, that are required to interpret what we see. This sort of
arithmetic is reasonably straightforward and correspondingly inaccurate. The second
method is an appeal to experiment. The third method, one that is just coming of age
and will develop rapidly in the future, is use of computer simulations. Finally, we can
perform analytical calculations that model equilibrium flows and explore their stability
properties. I have time to give you only the flavor of these four approaches.

One fundamental question to ask about astrophysical jets is: what is the ratio of the
density in the jet to the density of the surrounding gas? One way to inquire about this
is to perform experiments. Drs. Kieffer and Sturtevant have begun some work21 in this
direction. In Fig. 14a a jet of light gas, helium, is squirted into a heavier gas, nitrogen.
We see a bubble forming and the jet maintaining its integrity, with some back flow
around the sides. When nitrogen flows into nitrogen, as in Fig. 14b, we see a strong
vortex being formed as the jet breaks up. A heavy freon jet in Fig. 14c propagates into
nitrogen essentially ballistically. Features that are exhibited in these photographs have
morphological counterparts in the radio maps.

Next consider some numerical calculations22 , in this case carried out on a Cray
computer by Norman and Winkler. In Fig. 15 we see a propagating axisymmetric Mach
12 jet of a perfect gas, with different values for the density ratio. When the jet density
is much larger than the density of the external medium, the jet propagates more or less
ballistically. A light jet terminates in strong shock fronts, followed by backflow which
creates a cocoon-like structure. The whole pattern advances through the surrounding
medium and is bounded by a strong shock wave. I should warn you that there are some
difficulties in associating features in computed jets with observations, because the
computations use a very simple gas-dynamic model without dissipation, whereas what

a b e
FIG. 14. Laboratory experiments on starting jets21. (a) helium into nitrogen, (b)
nitrogen into nitrogen; (c) R22 (chlorodifluoromethane) into nitrogen (courtesy of B.
Sturtevant).
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FIG. 15. Numerical simulations 22 of Mach 12 jets carried out on a Cray supercomputer
(courtesy of Los Alamos Science). The density field is shown for different values of the
ratio of initial jet density to ambient density.

we are looking at in the radio maps is essentially dissipation, and even that is rather
imperfectly diagnosed.

We have known for a long time that the jets are unstable. In fact, the chief surprise
of this subject for many people has been that the jets persist for such a long distance,
whereas we might expect Kelvin-Helmholtz and other instabilities to disrupt them.
There has been a lot of analytical work on understanding Kelvin-Helmholtz instabilities.
Most of it has been confined to the linear regime, which means small perturbations that
cannot be seen by radio telescopes. Rather than reproduce the dispersion relations, I
will try to summarize qualitatively what appears to be going on. If we confine our
attention to the axisymmetric modes, then there are two basic types. One we call the
ordinary modes; these have no nodes inside the channel. The other modes are the so-
called reflecting modes, which involve waves propagating back and forth across the
channel. A speculation that appears to be borne out by numerical computation is that
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the ordinary modes are much more destructive than the reflecting modes. When we plot

the density ratio Tl as ordinate against the Mach number M as abscissa, as in Fig. 16,
then the four cases in Fig. 15 are the ones with M = 12. If we make a linear analysis
of flow conditions in a jet of given density ratio at Mach number M, then in the upper
left part of the diagram it turns out that the ordinary mode is more disruptive.

Essentially what happens is that a mixing layer spreads across the jet and decelerates it,

and this eventually leads to termination after something like 20 to 50 jet diameters.
Indeed, these computations are claimed to have considerable similarity to laboratory
experiments. The other case is at a lower density ratio. Here we believe that the less
disruptive reflecting modes are important. There is much less of a mixing layer, and we
g,. a lot of criss-crossing internal shocks inside such jets. Those ar, readily interpreted

as knots and bright features, but they turn out not to be particularly disruptive. When
we have a very high Mach number and a very low density ratio we see cocoons like

those in Fig. 15.

I hope I have given you some idea of the problems posed by astrophysical jets and
the techniques that are being brought to bear on them. To a physicist, the most
interesting question is: how are these jets made? Many people believe that the
production of jets is associated with gas flow around a massive black hole lurking in the
nuclei in most of these galaxies. In one of the most ambitious numerical simulations yet
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FIG. 16. Results of simulations 22 of numerical jets (courtesy of Los Alamos Science).
The jets that show ordinary-mode instability are disrupted more violently than those

showing reflection modes. The powerful jets associated with extragalactic radio sources
are believed to be highly supersonic and to have a low density ratio, and therefore lie in
the bottom right-hand comer of the diagram.
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FIG. 17. One frame from a computer-generated movie 23 showing accretion of gas with

angular momentum onto a black hole. Note the formation of funnels, which may be

related to the production of jets (courtesy of J. Hawley).

attempted, John Hawley has made a computer movie23 of flow about a black hole (Fig.

17). Using such simulations, we are slowly developing some intuition about the

behavior of gas flowing in these exotic environments. However, impressive as these

simulations are, I share Julian Cole's implied prejudice yesterday that compressible

flows are not just an exercise in computing. A judicious combination of observation.

analysis, experiment, and numerical work will be necessary before we properly

understand these fascinating cosmic objects. I promise to come back to Hans

Liepmann's 80th birthday celebration to report on progress.
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Natural and Artificial Flying Machines
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Summary

The advent of fossil-fuel engines has provided aeronautical engineers with a ten-fold
to hundred-fold increase in power-to-gross-weight ratios over the ratios available for
biologically-powered flight creations, such as birds and human-powered aircraft. The
tremendous achievements of engine-powered aircraft over the past eight decades have
tended to obscure the fact that numerous flight problems had already been elegantly
solved by birds many tens of millions of years ago. Recent projects in human-powered
aircraft, in bird aerodynamics, and in the development of a flying replica of a 1 -m span
pterodactyl have introduced us to the bird-airplane interface. The result has been an
increasing respect for "Mother Nature the Engineer," who derived efficient evolutionary
solutions for all of the factors involved in biological flight. Engineers and scientists also
have much to learn from nature regarding aeroelasticity as a factor in tailoring structures
to the varied demands of flight, including active-control technology, boundary-layer
control, and navigation.

I. Introduction

Early aviation derived its inspiration primarily from the role model of birds, and
some early flight attempts even involved feather substitutes and bird shapes. After the
successes of Cayley, Lilienthal, and the Wrights, the development of gasoline power
plants, and contributions to the theoretical foundations of the field by Lanchester and
Prandtl, man's aviation constructions raced far beyond those of birds, and the role
model became virtually forgotten. We all observe birds and admire their grace, beauty.
and freedom, but their role in aviation has been relegated more to worries about avoid-
ing ingesting them into jet engines or cleaning their signatures off wings than consider-
ing them as creatures offering useful insights to designers.

Basic research about birds and their evolution is increasing, but if we recognize at
all a connection to aircraft, the connection is likely to be only the after-the-fact realiza-
tion that many modem design solutions could have been anticipated by observing how
nature has been doing it for millions of years. Use of nature's designs to help us solve
new aeronautical problems is rare. Perhaps the appreciation for evolution as a master
designer of aeronautical form and function best suits the sailplane field. Sailplanes. like
soaring birds, must be very efficient and must be operated efficiently to utilize nature's
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invisible lift, and so sailplane pilots and designers still observe ' irds carefully and learn
something from them.

Considerable literature exists about natural flight. As general reviews, I recommend

the Symposium on Flying and Swimming in Nature l and the papers by Kuethe 2 and
McMasters3 , each of which has helpful reference lists. The latter two also make many
comnarisons of natural and artificial flying devices. The focus of the present paper is on
selected items not covered in these references, although some overlap is unavoidable.

Circumstances have involved me with the interface between natural flight (birds,

pterosaurs, insects. etc.) and artificial flight (airplanes). My explorations have been
stimulated especially through the subject of human-powered flight, wherein natural mus-

cle is integrated with artificial structure and mechanisms. These explorations have
emphasized low power loading, a focus enforced by the inefficiency of muscle as con-

pared with the internal combustion engine. The explorations have thus also emphasized

aerodynamic efficiency and light-weight structures, which permit flight with low power
loadings.

The outcome from all this for me has been a growing realization that Mother Nature

is a fantastic aeronautical engineer and has been so for many tens of millions of years.
Nature utilizes evolution to develop solutions for filling ecological niches. There are

continuing variations of creatures and continuing survival pressures. Statistically, only
winners survive to leave progeny. In contrast to scientific developments in civilization.

mistakes tend not to be respected as learning experiences, and second chances are rare.

Incompleted "projects" in nature cannot be rescued by a sponsor picking up overrun

costs. As a result, natural engineering is pragmatic, complete, and effective. Birds have

solved myriads of problems in aerodynamics and structures, including problems scien-
tists have not even recognized yet. Identifying and investigating these solutions
represent a fertile research opportunity.

II. Some background factors and perspectives

A number of events and projects have served to stimulate my enthusiasm for

nature's engineering of flight devices. A brief review hcre of these events and projects
will set the stage for the comparisons that follow of natural-vs-artificial aeronautical

dcvices, with the review illuminating some key points.

In the late 1930's, my hobby of model-airplane flying introduced me to the com-

parison of man's constructions with birds, and to an appreciation for the effectiveness of

birds in locating and using thermals. From 1945 to 1956. a commitment to sailplanes
and soaring as scientific research topics further fanned my interest in and awe of the
flight of soaring birds. A paper by Woodcock4 , titled "Soaring Over 'he Open Ocean."
made a deep impression on me because it seemed to be an ideal scientific experiment,
one which had significance and yet could be conducted without any special equipment.
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Woodcock watched soaring birds during a long ocean voyage- saw whether they soared
in circles, straight lines, or did not soar at all; noted the wind speed and temperature
difference between air and water, and found that the atmospheric flow patterns indicated
by the soaring techniques used for various winds and stability conditions were
analogous to the patterns of Benard cells in liquids, a problem which has long been
studied in laboratories and for which quantitative theory is well developed. Thus.
motions on scales of millimeters in laboratory liquids (involving molecular transfer) can

be related to motions at a millionfold increase in scale in the atmosphere (involving
turbulent eddy transfer), with bird observations providing the key data link.

Somehow, advancing science by watching birds soaring seemed to me to be an
elegant research technique. In 1976, on a rare family vacation driving across the U.S., I
realized that certain simple observations of birds in circling flight could provide
valuable information on their aerodynamic capabilities. In fact, even the average lift
coefficient of the airfoil in flight could be inferred. The vacationing study had two
fruitful outcomes, beyond an initial informal paper. For one, my comparison of flight
characteristics between birds of different species and hang gliders and sailplanes served
as the catalyst for the ideas behind the development of the Gossamer Condor6- 1

0. The

other outcome was a more careful investigation in 1980 and 1982 into the flight
characteristics of frigate birds, possibly the best of all natural soarers". This latter
study suggested that a) frigate birds may sometimes operate at a surprisingly high lift
coefficient, higher than we would have expected at the operative Reynolds number, and
b) the birds significantly alter the details of their thermalling flight mode with
meteorological conditions, as do sailplane pilots.

Our human-powered airplane projects (Gossamer Condor, 1976-1977; Gossamer
Albatross, 1978-1979; Bionic Bat, 1984-1985) focused our attention on the interrelation

between birds and airplanes. Henry Kremer's prize challenge was to use human power
to fly. A human has a low power-to-weight ratio, but one probably not greatly different
from that of a soaring bird. In any case, the ratios of power to gross weight for these
biologically-powered vehicles are about two orders of magnitude less than the ratios for
aircraft powered by internal-combustion engines. The low power-to-weight ratio is
compatible with flight with a low wing loading and hence low speed.

Attention to low-speed flight stimulates attention to the effects of atmospheric
turbulence on efficiency and controllability. Performance of the Gossamer aircraft
deteriorated rapidly with increasing turbulence. At a flight speed of only 5 or 6 m/s, a
gentle local upcurrent or downcurrent of 0.5 m/s means a local angle-of-attack change

of about 5 degrees, with consequent adverse effects on induced drag and parasite drag.
The effects on stability can be even more significant, as the effective angles of attack of
surfaces can exceed stall limits and the control limits of ailerons. Extreme care had to
be exercised in flying our solar-powered Solar Challenger at about 10 m/s in turbulence
near the ground. Similarly, operation of hang gliders near the ground, at comparable
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speeds, emphasizes control limitations in turbulence. Birds have the brain and muscle

to articulate their wings as dictated by the local airflow, and hence can fly without
problems in turbulent conditions that trouble these piloted aircraft.

Finally, my growing respect for and envy of nature as a designer of aeronautical
creatures got another boost recently as a consequence of my starting on a project to
create a flying replica of a giant (1 -rn wingspan) pterodactyl. Not only did the size go
well beyond the limiting size of natural flying creatures as inferred from extrapolation of
standard scaling laws, but the tailless flier probably had a wing that Was unstable in
pitch, and so the pterodactyl must have used some means of active control (wing
sweep?) to provide effective stability. A search for literature on bird pitch stability and
controllability was generally unfruitful. Birds such as the albatross, the gannett, and
even the sea gull in smooth slow gliding employ essentially no tails. Their active
control systems deserve study.

Starting with this background, it seemed reasonable to me to explore broadly just
what flight-related features nature may have developed prior to civilization's
technological aeronautical achievements.

III. Overview of natural vs artificial flight and fliers

There are several major areas where birds (or other natural fliers) cannot be
expected to be directly analogous to airplanes. One is in transonic and supersonic flight,
which is certainly man's prerogative alone (natural flight evolution was never concerned
with aerodynamic effects at the speed of sound). Another area is the power system.

The high energy density obtainable with fossil fuel, and especially the high power-to-
weight ratio, let airplanes achieve speeds, altitudes, and load-carrying ability that are
beyond consideration for birds. For the most part, the best direct correlations between
natural and artificial flight should arise from the larger natural fliers vs the smaller and

slower airplanes.

An obvious difference between birds and aircraft is that propulsion in birds comes
from flapping wings, while in airplanes it comes from rotating machinery (propellers,
either exterior to or integral with the engine). But for each propulsion method the
mechanical-aerodynamic propulsion efficiency during normal flight is usually within +

10 percent of 85 percent. Thus the one method does not offer any great advantage over
the other for propelling the vehicle.

The bird offers great features of versatility. For example, the loon is effective in

flying through the air, walking on the ground, and operating on and under water. No
doubt a manned airplane could be constructed to do the same, but the undertaking would

be formidable.

A bird's versatility is to some extent associated with the use of parts for multiple

functions. For example, a bird's wings are used for propulsion, lift, and stability and
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control, with variable geometry for different flight modes; they also serve for
ornamentation, and for insulation when retracted. With an airplane the function of each
part zcnds .3 be more specialized. For die ultimate in efficiency; e.g., a sailplane with a
best glide ratio exceeding 60:1, the separation of function is distinct. The wing handles
lift efficiently (and roll control), the fuselage handles the payload (and supports the
landing gear and tail), and the tail provides yaw and pitch stability and control. To use
the pitch-control device to contribute to lift (a canard), or to ask the wing to handle the
stabilizer-elevator task (a flying wing), compromises vehicle efficiency even though it
may offer benefits in other areas. For an airplane, the total flight system can be
modified to permit emphasis on efficiency where it is needed. A long runway permits
an airliner's design to emphasize cruise efficiency; if a bird-like takeoff from a tree or
from unimproved ground were required, the vehicle would be more like a helicopter or
Harrier jet, with much lower cruise efficiency and payload capability.

Nature has achieved full flight by at least four separate routes: birds, mammals
(bats), reptiles (pterosaurs), and insects. For more limited flight we can even include
flying fish and gliding animals and seeds. When filling a particular ecological niche
involving, say, a flying animal with a wing span of about one meter, the rules of
conservation of energy and momentum, the realities of viscous flow phenomena, and the
limits of biological power and biological structure dictate that nature finds rather similar
solutions no matter what the starting point. Figure 1 illustrates the different skeletal
solutions by birds, mammals, and bats to the problem of producing a wing1 2. Where
birds and insects overlap, as with a hummingbird and a hawk moth (hummingbird
moth), the appearance and function, both for flight and for feeding on the nectar of
flowers, are remarkably similar, although the inner structural details are quite different.

Human engineers face the same aerodynamic realities involving energy, momentum,
and viscosity as do flying animals, but the engineer can utilize structure strength-to-
weight and propulsion power-to-weight ratios that are many times those available to
biological systems.

IV. Birds vs airplanes

A. Long flights

Aircraft with air-breathing engines have stayed aloft 84 hours and covered almost
half the circumference of the earth without aeriai refueling. With refueling, the duration
rises to 64 days, and the distance to more than once around the world. Birds hold their
own in the duration and distance categories:

1. The sooty tem can stay aloft for years at a time. Of course it uses aerial
refueling, primarily by snatching food (fish and squid) from the ocean surface
without alighting.
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2. The arctic tern migrates from the Arctic to the Antarctic, covering thousands of
miles between landfalls and staying aloft days and weeks at a time.

3. The ruby-throated hummingbird migrates from Florida to Central America across
the Gulf of Mexico.

4. Some swifts stay aloft day and night.

B. High flights

Aircraft can exceed an altitude of 80,000 feet. Birds can't compete. Eagles have
been seen higher than 30,000 feet, but birds obtain their sustenance only from locations
on or near the ground, and there has been little evolutionary pressure to achieve high-
altitude flight.

C. Navigation

Aircraft navigate over long distances using dead reckoning, the magnetic compass,
many radio aids, and even inertial navigation.

Birds home over considerable distances, and also navigate effectively during long-
distance migrations. They apparently use a variety of clues and senses, including visual
geographic landmarks, celestial objects, sky polarization, and magnetic fields. Most

amazing, some migrations are conducted without the bird having had experience for the
particular flight. The destination must be genetically preprogrammed into the bird's
brain; this can be considered the biological equivalent of the navigation of a cruise
missile, except that the brain does the job with less material and more versatility.

It has been reported that birds do weather forecasting to pick the right phase of a
meteorological pressure system that will provide the tail winds needed to make the
migration possible.

Some birds use echo-location over short distances, and of course most bats do. This

is the acoustic equivalent of radar.

D. Flight maneuvers

Aircraft are flown in formation, perform aerobatics, and engage in dog fights.

Birds sometimes do the same. The formation flying of ducks and geese saves

energy and probably serves some function of social communication as well. Some birds
seem to do aerobatics just for the fun of it. I have observed a raven doing fast rolls that
had no obvious relation to saving energy or acquiring food. I watched a frigate bird

climb to a cloud base in a thermal, far too high to seek food, and then tumble to low
altitude like a flopping, limp rag, an inelegant descent mode that looked like "just for the
fun of it." In East Africa the Battleur eagle, with a miniscule tail, will intentionally
somersault in flight.
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As for aerial dog fights, these are common. Hawks will fight each other, and they
attack prey in the air as well as swooping down on ground-based prey. Small birds fight
off hawks to protect territory.

When birds, bats, and large insects catch small insects in flight, the detections and
the maneuvering on both sides resemble aerial combat with aircraft. There are stealth
techniques, camouflage, counter-measures, and communications.

E. Aerodynamics; airfoils

As airfoils have evolved by human engineering over the past hundred years, there
have been huge improvements in understanding and controllin~g boundary layers,
increasing lift, decreasing drag, and improving pitching moments. Man has refined
geometry; added slats; provided flaps and slots and multi-element airfoils; installed
boundary-layer trips, vortex generators, and fences; applied spoilers; and utilized
variable geometry to adapt a configuration to varying conditions.

Birds have engineered all of the same airfoil features as appropriate for the Reynolds
numbers of 10,000 to 200,000 at which their flying surfaces generally operate. At lower
Reynolds numbers, the birds' solutions may be better than man's. The frigate-bird

observations cited earlier suggested that a lift coefficient CL Z 1.8 is achieved at a
Reynolds number of about 50,000. Pennycuick13' 14, for a vulture, and Tucker and
Parrott 15, for a falcon, suggest that CL = 1.6 is probably obtainable, but the
measurements are not definitive. For slope-soaring birds, Pennycuick 16 computed
CL = 1.63 for frigate birds and 1.57 for black vultures. Eggleston and Surry 17 made
wind-tunnel tests on computer-designed airfoils for model airplanes and found a
maximum CL near 1.6 for Reynolds numbers in the range 34,000-50,000, with the
highest CL being 1.76 at Re = 36,000. Carmichael 8 and Pressnell and Bakin 19 show
the influence of boundary-layer trips and invigorators on maximum CL, and obtain
experimentally CL = 1.7 for an airfoil at a Reynolds number of 30,000. Dilly20 cites
maximum CL's reaching 1.8 (with very high drag) at Reynolds numbers up to 60,000.
Carmichael1 8 points out wide variations in measured characteristics in different wind
tunnels. Thus the available observations on maximum CL for both birds and artificial
wings at these Reynolds numbers are not definitive, but the data suggest that nature's
designs can be as good as the best of man's.

The cross-section of a vulture's primary feather in Fig. 2 shows a very sharp leading
edge. Wainfan 21 has investigated how the design of effective airfoils depends on
Reynolds number. He concludes that the leading-edge radius should be less than 0.25
percent of the chord at the Reynolds number of 35,000 at which this feather often
operates. The observed leading edge fits this criterion. Wainfan notes:

"Reducing the radius of the leading edge
turbulates the boundary layer early and
helps keep the flow attached. This effect is
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FIG. 2. Vulture primary airfoil; modifications under load. As load bends feather down,
B moves farther than A or C. Torsion also rotates feather.

enhanced if the airfoil has relatively little
curvature in the first 5% or so of the chord
aft of the radius. Turbulating the boundary
layer by sharpening the leading edge
increases the maximum lift of the airfoil
and decreases its drag dramatically."

A striking example of the effectiveness of nature's capability in aerodynamic design
is provided by Figure 3, which shows the cross section or airfoil of an insect's wing 22.
It is basically a thin sheet, wrinkled seemingly at random (presumably for both
structural and aerodynamic reasons). A conventional airfoil is also shown that encloses
the envelope of the wrinkled sheet. Wind tunnel results demonstrate that at a Reynolds
number of 900 the insect airfoil works as well as the man-made airfoil; at 450, nature's
insect airfoil works better than the man-made one. An aerodynamicist developing an
airfoil for a Reynolds number of 450 would do well to emulate the insect's shape, at
least as a starting point. Without knowing about the insect's solution, the
aerodynamicist would certainly not have evolved the sort of complex shape the insect
found so useful.
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F. Structure

The variable geometry that is readily obtainable with natural wings is the envy of

aerodynamicists and structural engineers. The bat's fingers (Fig. 1) can be controlled

for violent maneuvers. The primary feathers that are extended and separated in the

* Reprinted by permission from Nature 
Vol. 256 pp. 201-203

Copyright 1988 Macmillan Magazines Ltd
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wing of a vulture present, all together, a wide-chord, multiple-element airfoil for
minimum speed and high maneuverability. Their vertical spread may also diffuse
vorticity and benefit induced drag, in a manner somewhat analogous to that of winglets.

Examination of one of the primary feathers of a vulture emphasizes the elegance of
nature's design. Figure 2 shows the airfoil of one of the front two primary feathers that
bend up in gliding flight and additionally bend up and down from that position in
response to down and up flapping. The tapered rectangular-spar cross section is well
tailored to fit within the airfoil shape requirements while giving the desired bending
strength for up and down loads. The location, centered at about 20 percent chord,
provides a twist with lift loads, a load-alleviation technique. The feather construction,
with barbs pointing outward toward the tip, acts to vary the airfoil camber with load.
Incidentally, an inadvertent separation of the parallel barbs extending out from the spar
or shaft is taken care of perfectly by merely touching the previously adjacent barbs
together. Tiny hooked filaments lock together and the feather is returned to its original
condition; thus Velcro, designed over 100,000,000 years ago.

The hollow-feather spar (quill) construction fits the need for combining strength

with lightness. Some bird-wing bones are hollow tubes with lightweight internal truss
construction to prevent buckling of the thin walls. The wing bones of large pterodactyls
are tubes with extremely thin walls, a construction consistent with low wing loadings in
spite of the large wing span. In nature, the wing bones handle all wing torsion, bending,
and shear loads; the feathers or membranes provide the aerodynamic shape. With the
vertebrates, there is no D-tube construction for handling torsion loads. The exterior
would weigh too much. This design is analogous to that of lightweight aircraft; for
wing loadings under 10 kg/m 2, the spar (and perhaps associated struts or wires) handles
all the main loads, with an airfoil shape as a surrounding "glove" (for example, the
Solar Challenger 23). Higher wing loadings are usually associated with stressed-skin
construction to handle torsion.

The variable geometry of birds' wings and tails permits the configuration to be
adapted to various needs, both by muscle and by aeroelastic effects. The innate sensing
system and brain also tell the muscles how to alter the configuration. Thus the bird can
readily adjust to strong turbulence during landing. A rigid-wing airplane cannot; the
airflow angles can exceed those that can be handled by slats and flaps and ailerons.
There have been various attempts with aircraft to use twist in portions of wings. For
example, for the Guggenheim Safe Airplane Competition, in 1929, the Curtiss
"Tanager" used floating ailerons to achieve controllability even beyond stall of the fixed
biplane wings. The technique worked. A review of the subject and a modern variation
are presented by Jones24 . In 1983 we successfully tested a model glider in which the
outer half of each wing was automatically rotated in pitch by an attached tail to maintain
a specific lift coefficient. With a roll-rate-controlled servo providing the "brain," the
model functioned satisfactorily in turbulence.
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Natural wings of vertebrates all fold for maneuvering on the ground, analogous to
the folding of wings on carrier aircraft.

A final great structural feature of birds is the retractable landing gear, which is also
well adapted to rough-field operation.

G. Instrumentation

In addition to the sensing techniques required for navigation, birds have the ability
to monitor flight conditions in ways analogous to airplane instrumentation. They
certainly observe attitude and altitude and speed. They are masters at locating thermals
and moving to the strongest portion. The methods by which they find and use thermals
are not understood, except that sometimes one bird will observe another catching a
thermal and fly over to use the same thermal (as sailplanes use other sailplanes as
thermal indicators, and occasionally sailplanes use soaring birds, and birds use
sailplanes). Birds' "instrumentation" demonstrates remarkable effectiveness. A hawk
or vulture may cruise kilometer after kilometer at 20 m above trees, without wing
flapping, but with a great deal of maneuvering to translate turbulent ups and downs into
sustaining lift. The "instrumentation" is also remarkable in that it permits birds to grab
insects and other objects out of the air, to swoop down to the ground or water surface
and snatch a mouse of minnow, or, in the case of the pelican, to plunge accurately into
the water to catch a fish below the surface. The biological flier also certainly has the
ability to monitor "engine" temperature and assess the amount of "fuel" on board. fhe
visual acuity of hawks for finding prey is legendary. Vision may be one element of the
sensitive rate-of-climb indicator that a bird must have for assessing upcurrent details or
establishing relative height by parallax as the bird moves along its flight path; but this
cannot be the explanation for a frigate bird finding lift in a gentle convective cell over a
featureless sea.

H. Stability, control, maneuvering

As with all animals, birds have effective active control systems. For an extremely
efficient soarer such as the albatross or gannett, during normal flight there is essentially
no tail (the body is simply a streamlined low-drag shape) and yet probably the
undercambered wing has a negative pitching movement and so is unstable. Small
forward and backward movements of the wing may provide an active-control method to
produce stable flight. Pennycuick and Webbe 25 report that "moulting fulmars can fly
and maneuver at normal and high speeds just as well without a tail" and ascribe pitch
control to fore and aft movements of the wings.

During transient maneuvers such as taking off, landing, evading predators, and
collecting food on the wing, complex control is manifested, involving large motions of
wings and tail, and even body and legs. In a moderate wind, some birds (especially
small hawks) are seen to remain in an accurately fixed position relative to the ground.
Movies of such flights suggest that the head and eyes can remain rigidly positioned with
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an accuracy of a millimeter or so, even while the rest of the bird is moved violently
about. The head is thus a rigorously stabilized platform. The wings can be controlled
to provide yaw forces, and in some birds the horizontal tail, with lift on it, is rotated on
a longitudinal axis to augment yaw control (as with the Gossamer Condor).

V. Quetzalcoatlus Northropi (QN)

In late 1983, I felt that advances in composite construction, robotics, stability and
control, sensors and servos, and the theory of oscillating airfoils had reached the point
where one could make a full-size, radio-controlled, wing-flapping flying replica of QN,
the largest natural flier known, with a span of 11 meters. Some flightless birds were
much heavier, and the flying teratom (a six-million-year-old fossil suggests a bird
perhaps resembling a condor, with a 7.5-m span) was probably somewhat heavier, but
QN had the largest span. The National Air and Space Museum has sponsored our initial
studies for re-creating the QN.

The fossil evidence for QN is meager, and so most details of its shape and
appearance involve conjecture. The consensus of participants in a 1984 informal
workshop on the subject at Caltech was that QN resembled a mixture of an albatross, a
frigate bird, and a crane, enlarged more than six-fold. Figure 4 shows the consensus
dimensions of QN. The next section considers questions of size vs power.

Quetzalcoatlus northropi

Wing span 36 ft (11 m)
Mass 140 lb (64 kg)
Wing area 86 ft 2  (8 m2)
Wing loading 1.6 Ib/ft2  (78 N/m2)
Aspect ratio 15
Flying speed 25 mph (11 m/s)

* -humerus

Q 1

meter

FIG. 4. Plan view and side view of Quetzalcoatlus Northropi.
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The special problem with QN is to handle the pitch stability/control challenge of a
tailless flier, with a cambered-membrane wing that probably had a negative pitching
movement. In early 1985 we have been flying a 2.5-m span radio-controlled model with
swinging-wing control instead of elevator control. We are edging cautiously toward
active control based on use of an angle-of-attack vane and a pitch-rate gyro as sensors
to handle pitch stability when the horizontal stabilizer has been completely removed.
As pterosaurs evolved to the larger sizes, for which tails disappeared as efficiency
improved, the relative size of the brain increased, presumably partly in response to the
increased demands of active control.

Eventual flight of the full-size QN will bring back to life the long-extinct flying
reptile, and will help to interest people in evolution and in nature's engineering
capabilities. The species did not survive the "great extinction" about 63,000,000 years
ago, but nevertheless it probably was a success for much, much longer than man.

VI. Scaling laws

If we ignore Reynolds-number effects for a flight vehicle of a specific shape but
varying size (defined, say, by span b) and varying weight W, the power to fly, P, is
given by

P - w3/2 b-1

Since area A is proportional to b2, this equation transforms to

P/W -(WIA)" 2'

Thus the power per unit weight is proportional to the square root of wing loading, and it
follows that it is also proportional to the speed for minimum power. The constant of
proportionality varies inversely with glide ratio, and so large vehicles (nature's or
man's) operating at larger Reynolds numbers will be more efficient and require less
power per unit weight. However, the "square-cube" law means that, as size increases,
weight increases faster than area (in fact, given a square-cube-law relationship between
area and weight, P1W varies as W 1/6 or b 1/2). Figure 5 shows that, over a huge
range of size for natural and artificial flying creations (a mass range of 101 to 1), the
square-cube law relating area to mass holds rather well. Significant exceptions are the
pteranodon (related to QN) and HPA (human-powered aircraft). Both of these types are
crowding the limits of biologically-powered flight, and so feature specialized
construction with low weight for their size.

What the foregoing remarks suggest is that if large birds fly satisfactorily at wing
loadings of 5 to 15 kg/m 2, and if man can produce power-to-gross-weight ratios
comparable to those of birds, human flight should also be possible at comparable wing
loadings. The 30-kg human-powered Gossamer Albatross, with a 65-kg pilot, has a
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FIG. 5. The square-cube law; variation of wing area with mass (from McMasters 3 ).

lower wing loading, about 2 kg/m 2 , than large birds. For birds, flight muscle is about

one fourth of total weight, while for a human-powered vehicle the flight muscle is closer
to one tenth of total weight. However, for a short time a human can put out two or

three times the equilibrium power and so can be comparable to a bird, while the larger

human-carrying vehicle can be more efficient due to the aerodynamic and structural

options available to the human engineer. Taking all of the above points into

consideration, human-powered flight is not surprising. On the other hand, an
extrapolation from the flight of soaring birds suggests that the flight of QN is surprising,
if the square-cube law holds, because a six- or seven-fold increase in b would require

a proportional increase in wing loading and a 2.5-fold increase in PIW, far more than

could be made up for by slight aerodynamic improvement at increased Reynolds

number. Probably the wing loading of QN was very little higher than that of large

soaring birds, of the vulture and eagle variety, and hence a biologically reasonable
P/W was maintained.

These deliberations suggest that man is not the only non-flying animal that can
maintain flight through muscle power if a suitable vehicle is provided. Animal-powered

flight using a dog, a mouse, or even a fish is conceivable, with the size of the flight

vehicle being smaller than the size for which the square-cube law inhibits flight. At the

small-size end of the animal-powered flight spectrum, the efficiency arising from lower
wing loading (and perhaps from a higher P1W for short times, derived from faster
metabolism) is fighting the decreased aerodynamic efficiency due to Reynolds-number

effects. In summary, the dog-powered or rat-powered airplane is technologically

feasible, the main problems being the psychology of the animal and of animal lovers.
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VII. Nature vs man as engineer

Attention to biological flight, whether by birds, bats, pterosaurs, or humans,
emphasizes low-power aerodynamics and efficient structures. For manned and
unmanned aircraft using fossil fuel, the stimulus of biological flight can be to raise the

sights of designers. Non-refueled piloted flights with durations in weeks are achievable
with existing technology.

Mother Nature has been designing birds and other flying creatures for at least
150,000,000 years. The task has obviously been well done. Every design feature meets

a survival purpose, some by way of aerodynamic efficiency, others by way of biological
adaptability or sexual selection. Thus, birds have elegantly handled aerodynamic
problems such as boundary-layer control, stability, and sensors. Basic study of the
aerodynamic features of birds can be expected to yield valuable dividends to both
research aerodynamicists and engineers.
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The Role of Cartoons in Turbulence
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A cartoon was originally an outline or pattern drawn on cardboard to guide tle
weaver of a rug or tapestry. In more recent times a cartoon has come to mean a carica-
ture, a representation of something or someone that simplifies and deliberately exag-
gerates certain features of the subject for purposes which, at least in the mind of the
cartoon's author, can be summarized as clarification. The constructions that I will dis-
cuss are cartoons in both senses of the word.

A cartoon is a functional representation, in the sense that the nature of cartoons of
the same subject changes with their purpose. For example, a public figure is not drawn
in the same way when the object is to hold him up as an example of civic virtue as
when the object is to convince the viewer that the rascal ought to be thrown out. Simi-
larly, in physics we are familiar with two strikingly different cartoons of visible elec-
tromagnetic radiations. When our intent is to study the interactions of light with matter,
we take these radiations to be "very small bodies emitted from shiny substances", as
Newton put it, or quantized photons. in modem terms. But when we mean to focus on
the propagation of light, we are likely to represent it by waves.

I. Cartoons in fluid mechanics

In fluid mechanics, we make use of at least two types of cartoons.

The first type is exemplified by the few known exact solutions of the Navier-Stokes

equations. They apply to problems that have been simplified, geometrically or other-
wise. Examples of these are the Squire-Landau point-force solution for a jet or the
viscous flow toward a rotating (von Karman) or stationary infinite plane. One may
object that these are not at all cartoons, since they are exact solutions of a demonstrably
comprehensive and faithful mathematical representation of fluid motion. But this view
would miss the centrai role of examples of this kind as crutches for, or even foundations

of, our understanding of other flows for which these solutions apply only locally or
approximately.

The second type provides a short cut to the solution of the Navier-Stokes equations
-- but a short cut in which the essential physical processes are correctly represented.

albeit by a simplified mathematical description. This class of cartoons is far nore
numerous than the first. When we examine examples of these, we note immediately a
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certain overlap with asymptotic formulations. For instance, it is plausible, though
perhaps not historically verifiable, that Prandtl's boundary layer started out as an
inspired cartoon; it seems almost certain that the Oseen approximation did. Yet many
useful cartoons cannot be derived from the equations of motion by a limiting process.
Those that cannot run the risk of being found less respectable than those that can; since
they are not systematically derived, their accuracy is occasionally hard to assess. But
their lower standing (which is more evident among applied mathematicians than among
engineers) may have more to do with their unpredictable origin than with their merits.
They are partly products of fancy, and in this respect they are close cousins of non-
scientific cartoons. Examples of these are:

Thwaite's method' 2 for laminar boundary layers; Wedemeyer's solution 3 for the
spin-up from rest of the fluid inside a finite circular cylinder; Stewartson's integral
method4 for the semi-infinite impulsively started flat plate; and von Karman's point-
vortex model5 for the wake of a cylinder. Burgers' model equation 6 for the evolution of
a one-dimensional shock wave also belongs to this class of fluid-dynamical cartoons.
Perhaps because its mathematical structure serves as the primary paradigm. it is
esteemed even in the best circles. On the other hand, Turcotte and Oxburgh's
boundary-layer treatment 7 of mantle convection provides an interesting mixture of two
schools of cartooning, the asymptotic theory and the thumbnail sketch.

It should be evident from both definition and examples that a good cartoon extracts
from the physical situation a definite pattern or outline of the flow, physically tractable

and dynamically accurate in its essentials.

II. Cartoons in turbulence

When a flow is turbulent, we are torn between two conflicting views of it. The first
lends no face, no pattern, to the details of the flow, but only an infinite variety of
instantaneous realizations that we despair to characterize. According to this perspective

we should reserve reasonable expectations only to averages. No doubt this view itself is
an idealization, but one that has proved singularly difficult to exploit. The second view,
which has recently been bolstered by a number of observations, is that what appears as
infinite variety, shapeless in space or time, may in fact be a blurred image of the
superposition of just a few dynamical events, complex but recognizable, stochastic over
long enough times, but with a coherent evolution over shorter (though usefully long)
intervals. It is this second view, of course, that inspires cartoons of turbulence. These
have been used for more than a century by Taylor8 , Prandtl 9 , von Karman5 , Synge and
Lin'(, Burgers'", Townsend 2 , Corrsin 3 , Tennekes 14 , Frisch et al."5 , and many others.
We owe an intriguing recent cartoon to Lundgren 6 . Philip Saffman t7 has suggested
that a cartoon of turbulence should involve more than one type of elementary motion,
and he explored in detail the statistical consequences of several such special flows in his
Planck Institute lectures.



50

It is the prospect of enlarged and ambitious scope, such as the scope Saffman
envisioned for cartoons of turbulence, that I find exciting. For, while the number, nature
and predictability of successive bifurcations suffered by solutions is the object of
massive contemporary research, the typical structure of such solutions between
bifurcations seems to me to be at least as important. I have previously expressed the
(possibly foolish) hope that, at least for some turbulent flows, a cartoon can be made of
a short hierarchy of dynamically likely, nested special motions, and that such a
construction could be the basis of a statistical treatment of the flow. In other words, one
should eventually average over a suitable ensemble or scramble of the solutions
provided by this composite cartoon. There are two suggestions here; the first is that the
short term dynamics be approximately represented by the nesting of a few special
solutions, an extension of non-uniformly valid local solutions of simpler laminar flows.
The second is that their long-term effect be derived by averaging over a suitable
ensemble of the nested approximations. The guess is that it is far preferable to average
over an ensemble of functions that are somewhat more restricted than the true solutions,
than to average over completely unrestricted functions and to try to do the selection only
after the averages have been taken 18. The latter procedure seems either insufficiently
restrictive (i.e., everything that is known to be true is taken to be true only in the
average), or insufficiently motivated (as in closure assumptions).

The first task, and probably the major one, is to find the constituent cartoons and to
scaffold them properly into the small nested set, the Grand Cartoon, that describes the
evolution of the flow from some initial conditions over a finite but representative time in
a dynamically defensible way.

Perhaps to no one's great surprise, the Grand Cartoon has not been completed for
any turbulent flow in time for this conference. For the turbulent mixing layer I have
suggested a few of its pieces. But even for that one flow, many other pieces are still
missing. In particular, I have neither heard of nor found a convincing and explicit
dynamical path to what is believed to be the smallest possible scale of motion. While
failing to unveil the Grand Cartoon, I propose to describe a few less ambitious cartoons
that are meant to illustrate separate phenomena found in the motion of a turbulent shear
layer. Perhaps this will encourage others to climb the scaffolding.

III. A cartoon of Kelvin-Helmholtz instability

The cartoon in Fig. 1 of a free shear layer (which may be density-stratified) was
proposed by F. S. Sherman and me eight or nine years ago 19. Figure 2 shows the
outline of a typical spanwise vorticity distribution as the two-dimensional instability
develops Before we take up the idealization, there are a few facts to keep in mind.

First, the spanwise vorticity is initially found within a layer of finite and uniform
width. The vorticity is of one sign, and its integral over a suitable length, the
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FIG. 1. Kelvin-Helmholtz instability in progress, and its cartoon.

Zx

FIG. 2. The initial instability of a shear layer. The accumulation or depletion of vorti-
city depends on the layer orientation with respect to the positive strain axis.

circulation, remains constant for all times, even if vorticity is generated baroclinically.
As a consequence, vorticity can only be redistributed; sources and sinks of vorticity
must be of equal strength.

Second, the vortilty distribution is initially only a function of the cross-stream
coordinate z. As a consequence, there exists initially an almost perfect, although
precarious (in fact. unstable), local equilibrium between strain and vorticity everywhere
in the layer. This can be seen by noting that all material surfaces parallel to the center
plane of the layer are free from deformation as long as they are undisturbed. Once they
are disturbed, the stability problem consists in describing how the vorticity and the
associated strain redistribute themselves in space so as to achieve a new modus vivendi
(it turns out that they never do). A slight periodic excess of vorticity in the regions
called the cores in Fig. I will cause a slight lateral component of velocity in between the
cores. This rotates the central part of the vonticity layer slightly towards the principal
axis of positive strain, which makes a 45-degree angle with the streamwise or x-axis.
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This process starts a closed chain of events, the Kelvin-lHelmholtz instability, which the

cartoon will describe. As a result of the rotation, the central part of the vorticity layer
experiences a slight positive strain along its length, and this strain chases some vorticity

out its ends. Since the total amount of vorticity is conserved, vorticity accumulates in

the cores. This accumulation both increases the value of the principal strain rate and
further tilts the vorticity-losing layer (the "braid") towards the principal strain axis. Both

of these trends accelerate the transfer of vorticity from the braids to the cores. On the
other hand, the density of the fluid was originally stratified vertically, but is now
stratified across a sloping layer. This leads in the braids to baroclinic generation of
vorticity of the same sign as that of the layer, and in the cores, because of vorticity

invariance, to generation of vorticity of the opposite sign.

For long waves, if the braids being rapidly thinned by strain along their length are

treated as boundary layers (or velocity and density discontinuities), an integral of the
vorticity across a braid yields

as - as au+  - - + g  sin0 , (1)

where

S(s)-u+-u+ =- U f Qdrl

is the local shear along the braid; U = (u+ + u-)/2; 0 is the braid slope angle; and
g =- g Ap/po is the reduced gravitational acceleration.

The cartoon (Fig. 2) is going to approximate the terms of this equation. It will
remain faithful to the word description of the instability. In particular, it will assess

approximately how much vorticity is lost by the braids to the cores, how much is

regenerated in the braids by baroclinicity, and how much the gain in vorticity increases

the amplitude of the waves. But it does so by taking liberties with the representation of

the differential advection of vorticity. It assigns all of the vorticity to two separate

regions:

a) The cores centered at x = + (1/2 + n) X , around each of which the circulation is

FC ( t). Here X is the perturbation wave length.

b) The braids that pass through the points z = 0, x =+n X. These have a
circulation

L
rB = f S ds

-L

and a time-dependent configuration. Vorticity flowing out of the somewhat

arbitrary ends ± L of the braids is transferred to the cores according to the

relation
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F + c  r = X AU = constant.

These exchanges lead, by integration over s, to an ordinary differential equation
governing the temporal evolution of Fc;

d r c
d =r x B r cr - 2g P H . (2)

dt PO

The first term on the right represents the advective extrusion rate of vorticity from the

ends of the braid into the cores, assuming that the advective speed is proportional to F c

while the vorticity present at the end of the braid is proportional to FB. The accuracy

of both these postulates has been assessed separately by more ambitious calculation

schemes. The second term on the right is a rigorous estimate of the amount of vorticity
generated per unit time by baroclinicity in the sloping braid. In this term, the elevation

H ( t) of the end of the braid above its center can also be taken as a measure of the
wave amplitude or vortex radius.

A simple but adequate version of this equation is

dG = 1 G - oL2 G (2a)

where

nU TU _g _

G -rc/r; 0] = I ( -x*) I -2 ; -'- Xt AU 2

and U AU/2 is half the difference between the asymptotic velocities on the two

sides of the layer. The solution of Eq. (2a) is

G = exp(t) (3)

1 + C - exp(o1 t)

where the constant C is fixed by the initial condition
C 4HoIX

I -4Ho/X

It can be shown that G/4 = H X.

What does the cartoon achieve? I think that it does almost all one expects of a

theory. It gives approximate answers that are accurately rooted in causes that are easy

to comprehend and interpret. Note that Eq. (2a) superficially resembles a Landau

equation, but that, unlike the latter, its basis is squarely non-linear and requires no

amplitude restriction. Nevertheless, it gives a cut-off wave length for instability
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(X* = 1) which agrees (presumably accidentally) with linear theory for a long wave.
The model solution also selects the wave that can reach the largest amplitude for

specified velocity and density jumps across the layer. In addition, an examination of the

basis of the model allows the interpretation that the second prediction should also apply
in the case of a two-dimensional pairing instability, if this takes place, although in truth

the model does not provide a mechanism for the initiation of this instability.

IV. A cartoon for the transformation of vortex sheets into vortex tubes

My second cartoon explores another aspect of the interaction of strain with vorticity.

In a turbulent mixing layer, even though the initial flow is two-dimensional, with

vorticity perpendicular to the plane of the flow, there are several mechanisms that allow

components of vorticity perpendicular to the original direction to appear. All of these

mechanisms may not yet be known. At any rate, I do not know of a good cartoon to

account for them. But there is a cartoon to show that if the vorticity points in the

direction of the flow, and if it is strained in that direction, it will tend to behave as if the

strain were axially symmetric, and so will end up as Burgers vortices. In this cartoon
(Fig. 3), the deformation is assumed to be planar. The principal axis of positive strain

coincides with the constant direction of the vorticity and the strain is uniform. We shall

return to these restrictions later.

Figure 4, in which the initial vorticity distribution in (4a) may be imagined as the

result of a balance between strain and viscous diffusion, also reveals in (4b) the cause of

the evolution. Self-induction rotates the vorticity distribution, while inward strain limits

this rotation locally to a finite angle, leaving an unbalanced inward velocity component.
This focuses or shrinks the span of the sheet and, because the associated stretching
intensifies the local vorticity, allows it to rotate some more (Fig. 5). When the sheet has

been sufficiently foreshortened, the vorticity-laden fluid generally spins so fast that its

inertia prevents it from responding well to the rapid angular variation of the inward
strain which :::pF vc,. Instead, it behaves as if the strain were approximately axi-

symmetric and had an inward component equal to the average it sees over a revolution.

Fi

FIG. 3. The cartoon of streamnwise vorticity subjected to plane streamnwise strain.
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(a)
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(b)

FIG. 4. a) A simple strain-diffusion balance. b) Strain, diffusion, and self-induction;
early stage.

X/2

(V/) /2

FIG. 5. Collapse of a row of alternating vortex ribbons. The collapse time TC is pro-
portional to X2 y/ 2 (y = strain rate, a = sheet initial strength).

If the axial strain rate is y , this is y/2 , so that the vorticity should acquire
approximately the structure of a Burgers vortex.

This word picture, summarized by Fig. 5, can either be translated into a thumb-nail-
sketch type of mathematical cartoon 20 or it can be given an asymptotic treatment 2 1.
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Note that this cartoon (as well as the first cartoon) was originally suggested by
examination of the outcome of initial-value problems that were solved numerically by
the method of finite differences. Note also that the evolution described above would

also apply afortiori to a vortex subjected to a strain having two unequal components
perpendicular to the vortex axis, both negative.

The numerical experiments, the asymptotic theory, and the cartoon are in thorough
agreement. They all tell us that only for a maximum Reynolds number of the order of
unity or less can a vortex sheet be spared the eventual fate of collapsing into a tube, and
that the time C required for this essentially non-linear collapse to be completed is

TC 0C _ (4)
G

2

where -1 is the strain rate, c is the initial strength of the sheet, X is the length scale
for the gradient of a, and the constant of proportionality is substantially smaller than
unity.

It is worth asking whether a spatially non-uniform strain would lead to different
results. This is a particularly relevant question because very large strain fluctuations,
several times the average strain, are revealed by numerical calculations of the two-
dimensional strain that develops in the mixing layer along material surfaces that are
likely carriers of streamwise vorticity. Under these conditions, it seems reasonable to
suspect that additional phenomena, such as vortex breakdown, might modify in a
fundamental way the structure of freshly focused or collapsed vortices. The question
can be investigated with the help of a variety of considerations, including additional
cartoons 22 . One guiding idea is that if the velocity and strain are characteristic of the
large scales of turbulence, the Reynolds number associated with them must be high.
Additionally, if one assumes that the circulation around vortices is only a weak function
of the Reynolds number, one deduces that, as the Reynolds number increases, the
rotational flow is increasingly subcritical, in the sense that typical axial currents are a

decreasing function of the speed of propagation of inertial waves along the vortices.
Thus vortex breakdown should become impossible. In addition, cartoons that analyze

simple idealizations of a non-uniformly strained vortex show that, in the asymptotic
limit considered (small axial velocity next to peripheral velocity), variations in axial
strain on the appropriate time scale cause no new space scales and only small changes in
the structure of the vortex.

New features of the flow may arise from many other quarters, such as bending of
vortices, which leads to loops and hairpins that might be represented by tractable

analytical models. But let us consider another cartoon in some detail. It is one that
describes the interaction between two types of vorticity as an initial value problem. It
comes about in this way:
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V. A cartoon of vorticity interaction; the spanwise-vorticity amplifier

My second cartoon described the creation of concentrated streamwise vortices with
finite circulation and considerable vorticity. Typically, in a mixing layer these would be
found in the braids, where spanwise vorticity is almost absent, but also within the cores,
where spanwise vorticity is present although it may be a good deal more diffuse than the
strain-enhanced streamwise vorticity that is advected out of the braids and wrapped
around and in the cores (see Fig. 6). Thus the second cartoon may yield the essential
description of the braid. But in the cores we need to inquire how the two types of
vorticity interact. A third and last cartoon focuses on a central part of that question --
the effect of a strong streamwise vortex on the spanwise vorticity and streamwise
velocity associated with it. The initial state is described in Fig. 7, using obvious

geometrical and physical simplifications. The subsequent evolution of this state has
been given a systematic and illuminating asymptotic representation by Neu2 3. Another
recent solution with a different focus and range of conditions has been published by

Pearson and Abernathy24 .

The initial conditions shown consist of a uniform shear,

superposed on an axially-symmetric unstrained vortex,

U2 = e0V0 •

The cylindrical coordinates are x, r, and 0, the latter measured from the y axis.

Subsequently, V 0 (r, 0, t)= u 0 = V0 (r. 0,0), but U u e satisfies

_U+ - = vV2U , (5)
r N

CARTOON 3
RELEVANT HERE

(Spanwise
Vorticity
Present)

C=ARTOON 2
RELEVANT HERE

-/ ~~Almost No - --

- Spanwise (y)
Vorticity

FIG. 6. A sketch of a planar cut through a mixing layer. In the braids, only streamwise
vorticity survives; in the cores, streamwise and spanwise vorticity interact.
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FIG. 7. 'Me simplest cartoon of interaction between streamnwise and spanwise vorticity.
Thie initial state of the streamnwise velocity profile is shown.

where

V2 a2 I a a,

_r2 r ar r2 a02

Thus V0, the velocity induced by the streamwise vortex, is unaffected by the shear

field U. But U is coupled to V0 in a way which is best visualized by imagining the
inviscid evolution of the initially straight vortex lines (parallel to the v axis) that are
associated with the initial shear. As shown in Fig. 8, these material lines are eventually
wrapped around the streamwise vortex. Now when a vortex line is bent so that its
orientation differs by ir from its initial orientation, it induces a local velocity around
itself exactly opposite to the original one. Hence we should expect oscillations in the
shear U(r) to be associated with the wrapping of vortex lines by the concentrated
streamwise vortex.

It can be shown that if the vortex circulation is F, with F/v >> 1, the effect of the
vortex on U within the vortex radius is the same whether the latter is a potential line
vortex or a diffusive Oseen or Rankine vortex. Thus it is sufficiently general to assume

v 0 = F/2i r

for all times. Equation (5) becomes

aU + -= vV 2U , (6)
at 27tr 2 a0
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FIG. 8. The amplified and fluctuating shear is caused by the streamwise vortex, which
wraps spanwise vortex lines around itself.

with boundary and initial conditions

U ---) Qz as r-o: U = 2z at t =0 (7)

The inviscid version of Eq. (6) can easily be solved by the method of characteristics,

Ft
U = Qr sin(0 ) . (8)

2r r

The characteristics are given by
o~o + Ft

0 = 02 + t (9)
27r r

where 00 is a constant, either the value of 0 at the initial instant or the asymptotic

value as r - -. When the flow is inviscid, the value of U oscillates smoothly,
along any fixed radius 0, between tile extrema ± 2 r sin 01, which are reached

when

Ft
(01 2)=1/2+±n ) r • n =0. 1,2,3, (10)

21r r

whereas U = 0 on the two spirals
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Ft0 (c+ --t-2
4m r2

where ot = 0 or iT. The radial spacing between two neighboring arms of the same
spiral is

Ar =O{r3 /Ft} . (l1)

Note that the solution of Eqs. (6) and (7) depends on 0 and on a similarity variable
s =r/(S t)1 2, where 5 =v h( F/v) and h(3) is any smooth function of 3 chosen
for scaling purposes. The estimate (II) shows that the spiral becomes increasingly tight
as r decreases. Since we wish s to be O{ I1 where the spiral spacing is about equal
to a typical diffusion thickness (V t )1/2, we choose

3 -F 2/3 v1/3 
, (12)

and note that, where s = O[ }11,

r = O ( a t }11 2 = O {F13 v1 /6 1 1/2}  13)

At this radius, the inviscid estimate for U is

U =OIQ( t)112}

We thus define

Ut (3t) 112 i(s,0) "  3F-2/
3 v 1 /3 ; s -=r/( t)112 ; F (v/F) 1 /3

Then Eq. (6) becomes

"2" as I + _L ll + + . (14)227rE s 2as 2 s s - a,2

Now, according to Eq. (8), the inviscid variation of UIQ r is nil along the
characteristics. In the asymptotic case, P/v >> 1, we should be able to approximate

the elliptic problem defined by Eqs. (6) and (7) by a parabolic one in a coordinate
system for which one of the coordinates is constant along the characteristics.
Consequently we choose as new (non-orthogonal) coordinates s and 0o, where,

according to Eq. (9), 00 is the asymptotic value of 0 along a given characteristic and

thus designates the characteristic. In terms of s and 00 , Eq. (14) becomes

s = F V2a (15)

I~~~ asu-unn u u iu
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vi re

+ (16)a + s 7t FS 3 s0 2 ao2

is the Laplacian in (s, 0o) coordinates. Since the inviscid solution is continuous and

smooth for s >> 1, the diffusion thickness is

Ad = 0 {v t '=0 {Ars 3}

As s --4 , viscous stresses become negligible, so that the solution must tend to that

given by Eq. (8). This limit yields the boundary condition

U -s sin 0o  as s ---00 (17)

This boundary condition obviates the need ior an asymptotic expansion for the outer

part of the spiral. Alternatively, use of an outer expansion (for the loosely wound part

of the viscous spiral) and matching with the inner expansion reveals that the inner
expansion (s = O{ 1}) is uniformly valid.

In the limit ---) 0, the leading-order approximation to Eq. (15) is the parabolic

equation
lI . - _ 

61 0 0 20 t

__ f (18)

aI t2 6  o2

Thie solution of Eqs. (17) and (18). by separation of variables, is

= s exp( - 1/3 2 s6 ) sin 00

or

U r expI (6t)/3nt2 r(I sin 0 - 2 (19)

For small values of s, the exponential term gives negligible values for U, because the

positive and negative values in the inviscid approximation alternate over such small
radial increments at a given 0 that viscosity erases them effectively. Farther out ( s =
0{1 }), the excursions of U are attenuated but not erased. Still farther out (s >> I).

the inviscid solution is recovered.

The variation of U with r for 0 = /t/2 is sketched in Fig. 8.
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VI. Cross-stream vorticity

Let the vorticity be 0) = eX co + (o', where co is the component associated with the

prescribed streamwise vortex and

a3u au

We refer to 0' as the cross-stream vorticity and note that it can readily be obtained

from Eq. (19). Thus, as C, -- O, and to O{F-11,

I)'I Q2 exp(- 1/31r2 s 6)1 cos 0 12 (20)

For c = 1/30, this quantity is shown as a function of s along a radius 0 = 7t/2 in Fig.

9. Note that the maximum amplification of the spanwise vorticity by the streamwise
vortex is about (2c)- .

Thus large spikes of cross-stream vorticity have been created by the streamwise
vortex, and these are associated with a rapidly oscillating shear profile. The radial

I &
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FIG. 9. The magnitude of the component of vorticity perpendicular to x as a function

of non-dimensional radius along an arbitrary radial direction.
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region over which this large amplification of vorticity has occurred is about

i r(2/ 3 v 1/ 3 t)1/2; i.e., larger by a factor Of l/e) than the radius that the primary vortex

would have acquired if it had been allowed to diffuse. So the perturbations are large,

widely spread, and have a relatively small spatial scale. We may express our results in

terms of the parameters of a mixing layer in Fig. 10, where we have taken as L the

diameter of a typical spanwise vortex and we have assumed that the circulation around a

streamwise vortex is

F= oU L

cc being a constant of order unity. As Fig. II suggests, the newly created vorticity

layers are surely highly unstable and will create ring-like vortices in a very short time:

i.e., Of Ico'l-}. These in turn must have an interesting (although so far unexplored)

evolution.
U

L

SaUL 
U

FIG. 10. Amplification of cross-stream vorticity. The new shear layers have thickness

d -LRe- 2 ; shear U' - URe-t 6 ; vorticity I1'l - (UIL)Re11 3 I/growth time for

instability; and local Reynolds number - Re 1/3 If new streamwise vortices are created.

their diameter - (v/) t /2 - LRe - 213 .

AXIAL !

VORTEX-

I''.,.1N IT IA LLY STRAIGHT

MATERIAL LINE CARRYING
SPANWISE VORTICITY

FIG. 11. A sketch of the layers of alternating streamwise velocity, suggesting their

susceptibility to shear instability.
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In conclusion, cartooning in turbulence is not at all new. But experiments are
providing us with a fresh focus and giving us powerful encouragement to continue our
cartooning. Meanwhile, numerical experiments are supplying the cartoonist with both
qualitative and quantitative guidance. But at the same time they are holding the

cartoonist to much stricter standards of dynamical plausibility.
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Early Transonic Ideas in the Light of Later Developments

J.D. Cole
Professor of Applied Mathematics

Rensselaer Polytechnic Institute, Troy, New York 12180

I. Introduction

In this paper I want to outline some early ideas about transonic flow with which
Hans W. Liepmann was associated, and show how they look in the light of later
developments. The earliest ideas can be traced back to studies in gasdynamics; for
example, Chaplygin's paper' in 1902, which treated planar gas jets by the hodograph
method. Modern theoretical work connected to aeronautics dates from the papers of
von Karman 2, Guderley 3, and Frankl, who all derived the approximate equation of
transonic flow around 1946. Early experimental work was carried out by Stack and
Dryden at NASA Langley in the early 1940's.

Karman's paper represented the velocity potential 0 for flow past an airfoil (as in
Fig. 1) as a uniform flow at the critical speed a* plus a small disturbance,

a a * X -+ -r.7 'y

Assuming that a/-i >> a/ar, in view of the transonic nature of the flow, Karman
derived the equation

0(1)
a

This basic nonlinear equation of changing type is at the heart of all transonic theory.
Karman also (effectively) noted the similarity parameter

K - I(2)8 2/3 ,

where

SHAPE

U, MCOr ()

C- FIG. 1. Transonic flow past an airfoil.
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8 = t/c , M - U = Mach number at infinity = flight speed
a_ sound speed

Karman provided scaling rules for airfoil flows. Liepmann, Ashkenas, and Cole4

gave a more detailed derivation and showed that including dilatational viscosity can
yield a viscous transonic equation having smooth solutions even when shocks are
present. The shocks were shown to be thin; i.e., Re, = Reynolds number of the shock
1l.

Topics of considerable interest were the possibility of obtaining shock-free mixed
subsonic-supersonic flows by use of the hodograph method; the physical significance of
the limiting line; and the effects of the viscous boundary layer on the inviscid flow,
especially in shock-wave/boundary-layer interactions. These topics are discussed
below.

Another significant achievement of von Karman was to bring Hans W. Liepmann to
Caltech, where he stimulated and influenced a whole generation of students and created
an early interest in transonic flow.

II. Transonic small-disturbance theory

The equations of transonic small-disturbance (TSD) theory can be regarded as part
of a systematic limit-process expansion. The starting point is the Euler equation for
inviscid compressible flow together with the Rankine-Hugoniot jump conditions for
shock waves, including the condition that the entropy can only increase. A typical
geometry is shown (in transonic coordinates) in Fig. 2, where a vortex sheet trails
downstream from a lifting wing. The asymptotic expansion has the form5

q (1 +8 21 3 u(x, z;K)+8 4 3 u 2 + "'')ix +6v +5/ 3 v 2 + "'" (3)

v =(v,w)

I--- + +5 2/3 p  + "-
P _

-B VORTEX SHEET

U , moo-o

Z FIG. 2. Three-dimensional wing.
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The limit process has 8 0, M 2  I K1-K2 3 -- 1, with x, y =81/3y, Z =z 1/3Z'

and K = (1 - M!)/82 3 all fixed. Lengths are measured in terms of a typical wing

chord c. The span b should grow as 5 --> 0 such that B = bS /3 is fixed. Timman6

and Krupp and Cole 7 showed how these ideas can be extended to unsteady flow, using a
dimensionless time coordinate

U t (4)

C

The representative point (x, y, z) runs far from the body as 6 - 0, M_, -- I for
fixed (x,y, -), expressing the fact of large lateral extent for disturbances when

M_ = 1. When the limit-process expansion is substituted into the basic Euler system it

is found that, to this order, a disturbance potential 0 (x, y, , ) exists such that

u =,X, V= , (5)

This disturbance potential vanishes at upstream infinity and satisfies the basic TSD
equation

I K - (-1+ 1) + - 2 0 (6)

The pressure coefficient c, = 2(p - p _)IpU 2 is found from

cp =-2 2/3 • (7)

Some properties of the TSD equation

[K -(y + 1) 0, 1 Ox, =0 (TSD equation) (8)

can now be summarized for steady flow in two dimensions. The equation (8) is of
changing type;

elliptic if (y+ 1) 0 < K

hyperbolic if (y+ 1) x > K

with flow that is locally subsonic or supersonic, respectively. The condition K = 0
corresponds to sonic flow at infinity (M_ = 1). The local Mach number M, can be

shown to be given by

K - (y+ 1 ) Ox 
=  2/3

III ni2/3



69

- - - FIG. 3. Flow field for transonic airfoil.
CHARACTERISTICS

SONIC

SHOCK

WA
0I

The typical structure of flow at high subsonic Mach number is shown in Fig. 3, where
local supersonic (hyperbolic) regions appear over an airfoil. Each supersonic region
contains Mach lines or characteristics given by

Ad = ± 1 ) / 9
I& ((y+ 1) , - K)

and is terminated by a shock. The shock conditions are contained in the conservation
form corresponding to (8),

{Kox - + l ix +( $5)5 2  , (10)

which is a version of the continuity equation. The shock is a discontinuity surface
across which ox and 0, jump. The jump conditions are given by the integrated form

of (10),

I K0, + 1 d -(6 0 I ,trs = o a)

and by the condition that 0 is continuous,

0Ol=0 or IOI -, +I$-dc, =0 . (1ib)

lere (dx s , ds ) are line elements in the shock surface, and

I = jump =)b-)

where

()b = quantity behind shock

()a = quantity ahead of shock

Further, the mass flux in the x-direction is
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MASS FLUX x-DIRECTION FIG. 4. Mass flux.

SUB SUPERSONIC

SONIC

K

Iq + 84/3 (KO,- 02)+'' (12)

pU 2 x

so that there is maximum flux at local sonic speed (cf. Fig. 4). This maximum in the
mass flux corresponds to the fact that stream tubes have throats at local Mach number
unity. The TSD equations thus contain all the essential features of the flow.

III. Early GALCIT experiments

A small 5-cm by 50-cm transonic wind tunnel was constructed in 1944-5 at
GALCIT by Hans W. Liepmann. and a series of productive experiments were carried
out in this facility4 . Some of these are mentioned here and some in later sections.
Experiments were carried out in flow past a series of circular-arc airfoils having
dimensions as in Fig. 5. Surface-pressure distributions were recorded and schlicren
pictures were taken. Figure 6 shows a typical pressure distribution at zero angle of
attack. The local supersonic zone is shown clearly, as is the substantial difference

between flows with laminar and turbulent boundary layers on the surface. Turbulence
was induced with a trip wire. For the turbulent case, for which the boundary laver is

thinner, the shock wave terminating the sonic region is very evident. These features are
visible also in the schlieren photographs reproduced in Fig. 7.

-- FIG.5.cWinbtunne = 20 in.

Z/////////,/ //,,,/,,,///// /"//,/ . FIG. 5. Wind-tunnel geometry.
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1.4

LIEPMANN DATA 1946 0

0

1.2 - 0

0

z S

< 0

1.0

012% CIRCULAR ARC AIRFOIL 0
0LAMINAR S.L.

0 TURBULENT 8.L.
0 Re z862,000

0.8 M z.914 (NOMINAL)
0 a =0

0 20 40 60 80 100

PERCENT CHORD

FIG. 6. Experimental pressure distribution -- circular arc.

4-0.9 15, (x 00, knife edge vertical, laminar boundary layer.
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M_= 0.915; ct 0' , knife edge horizontal, laminar boundary layer.

Moo = 0.915, cz -00, knife edge vertical, turbulent boundary layer.

FIG. 7. Schlieren photographs

of circular-arc airfoils4.

M_ 0915, a = 0', knife edge horizontal, turbulent boundary layer.
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IV. Numerical methods

At the time of these experiments, no reliable numerical methods existed for

calculating the ideal flow, although Emmons carried out some relaxation calculations for
flows with local supersonic regions. Emmons's method was inherently unstable and did

not resolve shock waves. In the late 1960's Emmons's method was revised8 to

eliminate these drawbacks, and since then the method has undergone substantial
development. Th,. use of multigrids has speeded convergence, and the basic ideas have

been extended to the Euler equations. Here we describe the original idea and present

the results of a few calculations.

Finite-difference methods are used to solve numerically the boundary-value problem

for 0 corresponding to flow past an airfoil. The best results are obtained by using the
conservative form (8),

(KO, 02)x + (0 ) =-0 (13)

2 x

and a corresponding conservative finite-difference form. The essential boundary

conditions are (i) tangent flow at the airfoil surface;

O(x, 0) =F'u (x), 0< x < I (14)

where y = 6 F, 1(x) represents the upper or lower surface, respectively: (ii) vanishing

of perturbations at infinity;

2 -2 1/Ox , 0y -4' 0 X2 +Y21/ 00_ oo;15}

and (iii) the Kutta condition that the flow leaves the trailing edge smoothly. In TSD this

requirement is equivalent to zero pressure loading at the trailing edge. or (cf. (7))

(,0+) =4(1,0-) . (16)

The boundary-value problem is shown in Fig. 8, where in addition it is noted that there

is a jump in 0 across the wake;

( 0(,O+)- 0 (r,0-) ",(17)

where F (u dx + v d ) is the circulation. It is also noted that an asymptotic far

field exists which for subsonic flow has the form of a circulation,

-+ + . , e=tan-1 K (18)

Finite-difference calculations are carried out on the (i, j) mesh indicated. A

conservative form is derived by considering fluxes around a central box. This reasoning



74

- SHOCK FIG. 8. Boundary-value problem for

SWEEP -" SONIC calculations.
. . CHARACTERISTICS

(MACH WAVES)

f.
!C

-

0: " =0•

is extended so that the shock waves, which appear spread over three or four mesh

points, are consistent. For stability, the difference scheme must be chosen to be type-

sensitive. The solution at (i, j) can be influenced only by upstream points if the flow
is locally supersonic (ox > KI(y + 1)), but by both upstream and downstream points if

the flow is locally subsonic. In the finite-difference approximations, 0 at (i, j) can

be calculated from a centered formula 0c) involving (i + 1, i - 1) or a backward

formula 0(b involving (i,i - 2). When these agree, an (i, j) can be designated

subsonic or supersonic as indicated in Fig. 9. For subsonic points, (13) provides an

explicit equation for Oij in terms of neighbors on all sides; see the computational star

in Fig. 9. For supersonic points, however, an implicit scheme is used, involving only

'P.1 0 .b) TYPE STAR

ELLIPTIC U--'

( S U B ) t I. ..

HYPERBOLIC X
> > (SUPER) 0 X 0 tij)

X

> < SONIC X
X

SHOCK PT. x
< > (STRONG) a X K 0

FIG. 9. Table of difference operators.
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line where thle flow accelerates, and "shock" for points Ml ere thle flow decelerates, to
subson0i1c Speed through a shock, are also sho% n.
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I(1 1.(idlclatd preCssure diribuitawi



76

1FIG. 12. Flow field features -- parabolic arc.

2 -SONIC / "/!/ K = .81

/ TAIL
/ S HOCK4,

0 SHC WAKE SHOCK

I -2

well as the surface pressure. Figure 12 shows the flow-tield features 9 for a higher free-

stream Mach number where the main shock has moved aft of the airfoil and a fishtail
shock pattern appears.

V. Shock-free supercritical flows

The possibility of shock-free flows past airfoils with local supersonic regions was of
considerable interest in the early days of transonic research. This interest was
stimulated by Ringleb's exact hodograph solution l (analogous to incompressible flow
around a half-plane), which has a smooth transonic region. Experimentally it was
possible to produce a small shock-free supersonic zone in the flow around a simple
shape. For example, see Fig. 13, where some of Lieprnann's results 4 are reproduced.

Other exact solutions, analytical and numerical, were derived from hodograph
considerations and gave shock-free flow past special airfoil shapes. The hodograph

equations are linear, so that solutions can be obtained immediately and the airfoil shape
found later. For the TSD system, the hodograph equations are obtained by a direct
interchange of dependent and independent variables. Rewrite (8) as the system

SHOCK FREE FLOW LIEPMANN DATA 1946

SONIC / N
/

/
/x

SHAPE OF SUPERSONIC ZONE 6% CIRCULAR ARC

M. = 1.064 TURBULENT G.L.

FiG. 13. Shock-free flow4 .
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")w= V j (19)

where

w =(y+ 1)4i) -K, v =(y+ 1) -

Then

-rV = W 
(20)

since w, = Y/J, etc., where J = Jacobian = a(x, )/J(w v ). From this it follows
that the approximate stream function , (w, v) is a solution of Tricomi's equation,

wYV, -56w =0. (21)

This is the simplest linear equation of mixed type; elliptic in the subsonic region w < 0,
hyperbolic in the supersonic region w > 0. The exact potential equation can be
transformed in a similar way to produce Chaplygin's equation, which has properties
analogous to (21).

Some special exact solutions for mixed flow past an airfoil were given by Tomotika
and Tamada' 2 . Recent advances have occurred in the work of Nieuwland 13 , who used
Chaplygin functions to represent families of airfoils analytically, and Garabedian and
Kom 14 , who used a finite-difference hodograph method to obtain numerical solutions
for airfoil flows. The latter employ real characteristics in the hyperbolic region and
complex characteristics in the elliptic region, using a sufficient number of parameters to
generate families of shapes with local subsonic zones. A typical airfoil and its pressure
distribution in shock-free flow are shown in Fig. 14. The pressure distribution is shown
calculated according to TSD theory with a fully conservative relaxation scheme (FCR),
as described in Sec. IV, and a non-conservative scheme 15 (NCR). together with the
result of a calculation by Garabedian, Kom. and Jameson ' . The drag coefficient, which
is theoretically zero (see the next section) is evaluated on several different control sur-
faces Is

The smooth hodograph solutions are seen to be isolated solutions, since a smooth
mixed flow can no longer be found when the boundary conditions in the physical plane
are changed slightly (Morawetz17 ). An early paper by Guderle,Is suggests a singularity
of a perturbation in the downstream comer of the sonic region. These are isolated
solutions in the same sense as for the Busemann supersonic biplane. When tle condi-
tions are changed slightly, a neighboring solution is found with a shock wave, An
example of a calculation of such a flow appears ii, Fig. 15, where the shock wave is
apparent. Experiments verify these features.
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FIG. 14. Pressure distribution and
drag coefficients for Kom airfoil at
M = 0.80. O = 0' (design condi-

-o .5_ tion).

-0
- NCR

GKJ

CP0

0

FCR NCR GK.J
COB .0007 .0008 .0 024

CO C .0006 .0007 .0005

0 0.2 0.4 0.6 0.8 .0

x

PRESSURE DISTRIBUTION AND DRAG COEFFICIENTS

FOR KORN AIRFOIL AT DESIGN CONDITIONS

Guderley 3 suggested that the shocks in the local supersonic region are initiated by an
envelope formnation of the compressive reflection of Mach lines from the sonic line. A
detailed inspection of the calculations underlying Fig. 10 verifies this idea 9. Thlus a
shock-free airfoil is one for which the shape of the sonic line is Just right so tl'.'! no

envelope is formed.



79

-1.0 FIG. 15. Pressure distributions and

drag coefficients for Korn airfoil at
FOR M_ = 0.81, a 0' (off-design con-

- o.5 dition).

0-

Cp 0 GKJ

0-

0.5 FCR NCR GKJ
CDB  .0023 .0026 .0058

CDC2 .0019 .0010 .0008

1.0-

I I iI I I

0 0.2 0.4 0.6 0.8 1.0

PRESSURE DISTRIBUTION AND DRAG COEFFICIENTS

FOR KORN AIRFOIL AT OFF DESIGN CONDITION

MCD .0.8I , a = 0*

VI. Shock waves and drag

The connection between shock waves and drag was made explicit by Liepmann1 in

1950 in a study of linearized supersonic flow past an airfoil. By considering weak

shock waves in such a flow, a correction was made to the Mach angle for shock angle
and location, and the formula was found

drag/length = , T_ f I Sd (22)
shocks

where I S I = jump in specific entropy across a snock wave. Drag is directly related to

entropy production. Similar results appear later in works by von Karman2 0 and

Oswatitsch2
.
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Analogous considerations apply to TSD flow. Germain22 gave a derivation of a drag
formula for TSD theory starting from a local conservation law in two dimensions. The
generalization of this law to three-dimensional flow 5 reads

K -!i22 + 2  J±31 U 3 x+(uv) +(uw)- =0 (23)

This conservation law follows easily from the three-dimensional version of (8) and the

equation of irrotationality. The values of (uv) on Y = 0 are proportional to the incre-

mental drag for a planar system, since the pressure increment is proportional to u and

the airfoil slope to v. Integration of (23) over a control surface, as shown in Fig. 16.
yields a formula for drag. Since (23) is not a physical global conservation law, it is not
valid across shock waves. As the control surface grows to infinity, contributions from

the shock and vortex sheet remain. The final result is

b drag lim 2+W) d__ d + 1 [ u d d-. (24)

1 84 /3 C2 x - i ,+ - 1 "

The first term of (24) is the familiar expression for vortex drag in terms of the kinetic

energy in the wake. The second term, the wave drag, is a scaled version of the
Liepmann formula. The jump of 0, across the shock is [ u I and the entropy change

is proportional to I u j3. Thermodynamic considerations for weak shocks show that

+ I ffIuI'd. d - pT_ f I SId, dZ (25)
12

It should be noted that these simple results do not carry over for stronger shocks.

The drag-entropy formula (24) can be used to provide a check on the consistency of

numerical TSD calculations 15 . In Fig. (17), the shock and flow field for a parabolic-arc
airfoil at M_ = 0.909 are shown. The quantity f u 13dy - .f[ ct, 13dr is plotted also.

and the drag coefficient is computed both from the surface pressure integral and the

entropy jump. The result is

/

VORTEX SHEET

SHOCK

z CONTROL SURFACE FIG. 16. Control volume for drag.
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Y 1,5 FIG, 17. Drag and entropy.

1.0 
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0 .0 0 ol 0.2
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X 4B

PARA OLIC ARC M, 0.909

CO 0.03t5 ISURFACE PRESSURE)
CC) 0.0320 (SHOCK INTEGRATION)

SLOTTED 
WALL

A EXPT. DRAG

0 ,Al

0.7 0.8 0.9

M O

FIG. 18. Drag rise.
64A010 AIRFOIL I

CD = 0.0315 from surface pressure integration (26)

CD = 0.0320 from shock entropy integration

Careful calculations of TSD flow enable the wave drag to be found. An example of an
application is the flow past an NACA 64A010 airfoil in a slotted-wall wind tunnel- see
Fig. 18. The drag rise due to shock-wave formation (CD,= friction drag) is fairly

well represented.
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VII. Sonic flow and the law of stabilization

The special structure of flow at M_ = 1 was first elucidated by Guderley and

Frankl. In order to understand this flow, consider the sequence of flow patterns past an

airfoil or body at free-stream Mach numbers close to one, as shown in Fig. 19. At high

subsonic Mach numbers, a large supersonic zone is terminated by an oblique shock near

the trailing edge and by the fishtail shock, as calculated in Fig. 12. At M_, = 1, the

supersonic zone in the sequence of steady flows grows to infinity and the fishtail shock

moves to downstream infinity. A limit characteristic or Mach wave appears which at
infinity is asymptotically parallel to both the sonic line and the tail shock. This limit

characteristic divides the flow field into an upstream and a downstream part. Any

(infinitesimal) disturbance to the flow in the supersonic region, for example, can send a

disturbance downstream which eventually reaches the sonic line and affects the entire

subsonic region. Any disturbance originating downstream of the limit characteristic

-- SHOCK

• " i -- SONIC

STREAMLINE ....... MACH WAVES

Mco< 1, K > 0.

M<IK>OI

Mw=[, K=O

MIlw>1, K<O

HIG. 19. Qualitative flow structure, M_ 1
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cannot affect the upstream flow. The flow in the upstream section, up to the limit
characteristic, thus has an elliptic nature and must be calculated all at once. It is

effectively independent of the flow downstream of this characteristic. Downstream of
the limit characteristic the flow can, for example, be calculated as in a hyperbolic region
by the method of characteristics. When the free stream becomes slightly supersonic a
detached shock wave, with subsonic flow behind it near the axis (.- = 0), appears ahead

of the body. The flow becomes supersonic near the airfoil and terminates again in an
oblique tail shock. It can thus be appreciated that the flow in the neighborhood of the

body does not change qualitatively very much, since the oncoming flow is always close
to a uniform subsonic flow.

For M_ = 1, the far field is a similarity solution. With K 0, (8) becomes, for

the planar case,

y+ 1) OXOc - 0 = 0 .(27)

The far field can be thought of as being produced by a singularity at the origin. In view
of the non-linearity, the far field can be represented in the form

(,y+ I) o(., v)= v3 -
2 f( 'i). = --- ,8)

which gives a one-parameter family of smilarity solutions. Thus
Sl)x =2K -2f,( ) (y+ I)0 =O+ 2 f"(,) (29)

where f ( c ) is found from

(f- f- 5K (1- K) f' +3( 1-K)( 3K - 2)=,- < ,<5t ' 3-

The coordinates are illustrated in Fig. 20. The flow starts at infinity, decelerates and
spreads around the body, and then accelerates smoothly through sonic speed and

through the limit characteristic. It can be seen from (29) that the sonic line (f' 0,.
LIMIT
CHAR.

7K FIG. 20. Similarity curves.

iy
_mmm mm m,,m mm mmS
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as well as the limit characteristic and the tail shock, must lie on similarity curves ,.

and s, respectively. The characteristic condition (29) becomes (+)

2L •(31)

Also, 0 must be symmetric in , since the apparent-thickness effect dominates the

flow at infinity. This occurs because both acceleration and deceleration of a sonic flow
produce a widening of stream tubes (cf. Fig. 4). One constant of integration remains if
integration is started at 4 = - o, and two conditions must be satisfied at the limit
characteristic if f"( L) is to be finite. Thus the solution exists only for a special value

of K. Guderley showed from the hodograph solution that

K)=4/5 for the planar case (32)

and by numerical integration that K = 4/7 for the analogous axisymmetric case. The
latter result was later shown to be exact by various writers . Equation 30) has a group
property, so that the solution can be written

f 3 F(A A =constant (33)

The scale factor A depends on the size and shape of the body. Thus the far field cal

be standardized to have 4L = 1. By considering shock jumps, the solution can be
continued to downstream infinity. A particularly useful representation of the solution
was given parametrically by Frank124 ;

f s a 3/5  s 1/ 5  1- -S a -  2953 (34)
1 5

4( ) an 1/5s - 215 (S - I ,
2

where the following relationships are noted;

4 -- 0 4* L4

(35)
s 0 1/2 1 4/3 (5",/3 + 8)/6

Frankl produced this result by clever observations about special hodograph solutions: an

analogous result has been derived by inspection in the axisymmetric case.

A useful extension of the far field (28) is to regard it as the first term of an

expansion of the form

I+ 1 x, y ) =2/5 -3 f(A) + C o  f(a) + 3(A) (36)
A 3 A3 A
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This expansion is valid as Y -- - for fixed. The perturbation functions f g,

i = 0, 1, satisfy the variational equation (with ai ao),

(f,- _162 g + f"+±( 2(x--1) g' -a(cc-1)g =0 (37)
25 5 5 j

It g = s- C2 h (t), t = 3s/ 4 , (37) becomes a standard hypergeometric equation,

t -t) h"+ -(- (5ox+4)t h' +-- -o(5a- 2)h =0 (38)

in the interval - 4 _ _ = 1, 0 < t !5 1. The two linearly independent solutions

around t = 0 are

hl =F(25 --(2 - 5oc):- ), t(39)
2 6 2

1 5 3
ht F ( 12 (-6 );

Thus solutions that are smooth on passing throught the limit characteristic are given by
the spectrum

3 2 1 2 8 11 14
5 ", 5 , 5 ,0 , 5 40 ,

For the expansion near infinity, OT) = 0, a, = - 115, and the fi are simple functions.

The solutions just discussed can be used to relate a flow at a free-stream Mach
number close to unity to a flow at Mach number unity. In TSD form, this relates a flow
with small I K I to a flow with K = 0. For flow that is subsonic at infinity, the
dominant term in the far field is the circulation term, basically the solution that decays
most slowly for

K r', +  0, r 0 (41)
)IT

But for K =0 the far field is given by (26) with Y = 4/5. Thus there is a non-
uniformity at infinity in 0 (x, 5; K) as K -) 0, and inner and outer expansions are
needed. For the inner expansion, valid near the airfoil, the first term is sonic flow past
the airfoil, and corrections are sought. In early work, Liepmann and Bryson 25 proposed

that near M_ = I the local Mach number on a body does not change as the free-
stream Mach number changes, because of the qualitative ideas outlined above. The Law
of Stabilization proposed by Ryzhov and Lifschitz2 6 , and the more detailed work by
Cook and Ziegler2 7 using the method of matched asymptotic expansions2 8 , give a
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deeper and more precise description of this Mach-number freeze. The starting point is a
solution at M_ = i. Several are available; for example, Guderley and Yoshihara3 gave
the result for a wedge, while Tse 29 worked out lifting airfoils at M_ = 1. Both of these
methods rely on a hodograph formulation. Let 0* (x, 5) represent the sonic flow past
an airfoil with the far field (28). Then the flow for K > 0 is represented as an inner
expansion, generated from a limit process K -- 0, x, 5 fixed,

(x,; K)= (_x, )+K x-+ E(K)(Oc(x, )+ ' (42)
y+1

tlere F; ( K) is the order of magnitude of the correction that is sought, and . (x, 5) is

the correction potential. The quantity 0* (x, 5 ) satisfies the sonic TSD equation (25)
and its boundary conditions, while 0, (x, y ) is found from the variational equation

(^Y+ 1)(OX x + OXX0, )-0, _0 .(43)

The expansion (42) is not valid near infinity, so that an outer expansion in rescaled
variables is sought:

0(x,.Y;K)=(K) xY) + .-. (44)

The associated limit process has x, fixed as K -4 0, x, i-- o, that is,

X' =Pt( K),. T = v(K) Y, Pv-40

The condition that the rescaled equation be subsonic at infinity but still nonlinear and of
changing type produces a one-parameter family of flows,

with v=pK12 (45)

p(K)

with the resulting version of the TSD equation,

1(.y +I) OXI0 IL+ OYY= 0 .(416)

The inner and outer expansions must match in a simple way as x,.v -N , x, N -- 0.
Now 0* is defined along similarity curves which then must match:

x K 2/5  7
-4/5 119 415

Thus K 2 , = x, ' K= K 5 /2 . The general appearance of the flow in outer
variables is shown in Fig. 21. Higher-order terms in the flow near infinity for the inner
expansion (42) and the flow near the origin in the outer expansion (45) then depend on
the spectrum associated with (37).
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FIG. 21. Outer flow -- law of stabilization.

LSONIC

SHOCK

OUTER FLOWj

These expansions can be written (with the scale factor A I)

K) 1 15 f( ) +0 + f i) + - (47a)

Kx
y+

I+ T25f + -+CI-) 1K y+ I I' .15ff (47b)

A comparison of these two expressions as x, v --* 0, x. v- along similarity
curves shows that 01 (x, N ) has the similarity form at infinity and that

(I -M2)
3

F( K) = K = - (48)

This weak dependence of the potential and the pressure distribution on the deliation
from M- = I is the essential part of the Law of Stabilization. The term K xI( 7 + 1)
in these expansions represents the change of the flow at infinity and adds a constant
pr.ssure level to the ,'Iution. Germain 22 derived a conservation-law formula for the
scale factor A, relating it to properties of the solution (not known in advance) on the
body surface. Cook and Ziegler 27 have extended these ideas to find C 1 . The
boundary-value problem for the inner correction solution is sketched in Fig. 22. An
empirical fit of the Law of Stabilization to some experimental drag measurements by
Vincenti 3° is shown in Fig. 23.
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FIG. 22. Boundary-value problem FIG. 23. Law of stabilization (data
for 0,. from Ref. 30).

VIII. Concluding remarks

TSD theory and calculations have made great advances in the last ?5 years,

following the work of the pioneers in the field. The inderstanding of the physical
phenomena that has been thus achieved enables us to go forward with more elaborate

calculations and to include more physical effects. We can only admire the deep insight
of H.W. Liepmann and other early workers in this area.
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Perspectives in Vortex Dynamics
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1. Introduction

Interest in vortices and whirlpools goes back to prehistory, and the vortex is a fairly
common old religious symbol. In more recent times, philosophers and artists have been
attracted by vortex motion. Beautiful drawings of vortices in turbulent flow were made
by Leonardo da Vinci at the beginning of the 16th century. Van Gogh's painting
"Starry Night" suggests that he was familiar with the phenomenon of vortex pairing.
For further examples, see Lugtt .

The mathematical study of vortex dynamics starts with Helmholtz's great paper of
1858 and continues with the work of Lord Kelvin and other i9th-century scientists.
Vorticity is well described, in Kiichemann's phrase, as "the sinews and muscles of fluid
motion." Vorticity is clearly central to the motion of a relatively inviscid, incompressi-
ble fluid and is always being studied; but it appears to become particularly fashionable
every 50 years or so, and we now seem to be in such a phase. We can list four reasons
for the interest:

1. Vortex dynamics is a promising approach to turbulence.

2. It is crucial to the understanding of separated flow and aerodynamic control.

3. It provides a physical example of a strongly non-linear, infinite-dimensional
Hamiltonian system (at least when v =-0), and is therefore of interest in connection
with modem work on dynamical systems and chaotic phenomena.

4. It poses the intellectual challenge of difficult mathematical problems that stretch
the available analytical and numerical resources.

Although all real flows must contain some vorticity, vortex dynamics is generally

understood to mean the creation, structure, stability, interaction and evolution of regions
of concentrated vorticity. It is a consequence of the Helmholtz laws of vortex motion
that the equations for the evolution of the vorticity are closed, and it is sufficient to take
as unknown variable the vorticity itself. In a two-dimensional inviscid flow with velo-
city v&Ltor q -(u[x, y, t1, v[x, y, :'], 0) and vorticity vector o = (0,0, o[x, ', t]),
the evolution equation is ihe simplest possible differential equation.
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d)o)

dt

which says that vorticity is conserved following the fluid. In three dimensions, the
evolution equation is not so simple, having the form

d. o = (a) V) curl , (2)
dt

where the right-hand side describes the amplification of vorticity due to stretching of

vortex lines. Note that the right-hand side can be written in tensor notation in the form
eij o)j, where eij is the rate-of-strain tensor and is independent of the value of co at
the point. Thus, vorticity does not actually stretch itself. This fact is responsible for
major difficulties in estimating the growth of vorticity and in determining if the three-
dimensional equations of hydrodynamics are well posed.

Of course, these equations only give the magnitude of the vorticity. To determine
its position relative to a fixed frame, it is necessary to replace the material time
derivative d/dt by the Eulerian derivative a/t through the relation

d ad + curl - V . (3)
dt 3t

We write the velocity as curl - t o to emphasize that the velocity field is determined by
the vorticity distribution. The actual evaluation of the inverse curl operator involves
integrating over the vorticity and finding additional irrotational velocity fields needed to
satisfy boundary conditions. In any case, the two-dimensional situation is now not quite
so simple. But two dimensions are still orders of magnitude simpler than three
dimensions, and the main body of work on vortex dynamics is restricted to two
dimensions. Phenomena such as the Karman vortex street and the quasi-two-

dimensional structures of the turbulent mixing layer provide some justification for this
initial (100 year!) interest. Moreover, slowly varying, three-dimensional flows such as
vortex-sheet roll-up and trailing-vortex formation behind lifting bodies can be

approximated as evolving two-dimensional flows.

II. Basic problems in two dimensions

Vortex motions in two dimensions can be conveniently separated into problems
involving the motion of points, sheets and patches. We discuss these in turn.

Points. This case is a simple representation in which the vorticity is described by a

collection (finite and enumerable) of delta functions,

W = Ij Fj 8(r - r1(t)) , (4)

where r = (x, Y). Each vortex then moves under the velocity induced by all the

others;
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dzk / dt =(i/2rt) Fj/(z k - z . (5)

where zk = . k + iYk. The prime means that J = k is omitted from the sum, and *
denotes complex conjugation. If appropriate, irrotational velocity fields produced by
boundaries are added to the right-hand side of (5). In this way, we have reduced the
problem of fluid motion to a set (possibly enumerably infinite) of non-linear, coupled
ordinary differential equations. Note, incidentally, that we are dealing not with just a
numerical approximation but with a weak solution of the Euler equations.

This problem is perfect for computation with modem digital computers. and a con-
siderable amount of electricity is being consumed computing solutions of (5) and related
equations. In fact, the most popular way to investigate the motion of sheets and patches
is to replace them by a large number of point vortices. The validity of this approach is

an important unresolved question in numerical analysis.

Further, the system (5) is a Hamiltonian system with xj and vJ as canonical con-

jugate variables. This statement remains true in the presence of solid boundaries2 . The
motion of vortex points can therefore provide pretty examples of the behavior of
dynamical systems having few degrees of freedom, as well as problems in statistical

mechanics in which the number of vortices is very large (these problems are still essen-
tially unsolved, or at least the solutions have not been presented in easily understandable
form).

Sheets. A vortex sheet is a surface (in two dimensions, a curve) across which the
tangential velocity is discontinuous, or equivalently a surface on which the vorticity is
infinite with a finite integral. An extension of (5) can be given to describe the motion of
a two-dimensional sheet. Let Z ( F, t) be the parametrization of the equation of the
curve, where F is the circulation between Z and some origin on the curve. Then the
evolution of Z is described by the Birkhoff-Rott partial singular integro-differential

equation,
caZ (F,t) i p f d F '6

at =21T [Z(r)-Z(F')]*"(6

where P denotes the Cauchy principal value. If appropriate, a further irrotational velo-

city field can be added to the right hand side of (6) to represent the effects of walls or

other vortices.

The evidence is now extremely convincing that initial-value problems for the evolu-

tion of vortex sheets (the simplest is finite-amplitude Helmholtz instability of a straight

uniform vortex sheet) are ill-posed; i.e., an initially smooth curve whose motion is
described by (6) will develop a singularity (probably a cusp) in a finite time t, , say.

An excellent review of this hard problem (which still awaits rigorous solution) has been
given by Moore3 , who was also responsible for the first solid evidence of the
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singularity 4 . It is uncertain whether special classes of problems (such as the Kaden
formulation of the roll-up of a semi-infinite vortex sheet into a spiral 5 ), which can he
reduced to ordinary singular integro-differential equations in a similarity variable, have
solutions. An asymptotic analysis of the spiral center for the Kaden problem has been
given by Moore6 , and numerical results have been presented by Pullin 7, but attempts to

improve the numerics or confirm their accuracy have so far failed 8 .

Since vortex sheets are used to describe ihe separated flow past bluff and lifting
bodies, the ill-posedness has serious consequences, as it implies that all numerical
attempts to calculate sheet motion for more than a finite time will give results that are
method-dependent, and criteria for "good" methods are subjective.

The singularity can be removed by replacing the :,heet by a vorteA layer of small but
finite thickness 5, say, containing large but finite vorticity. It has been proved

mathematically, and is physically obvious, that the solution is unique and exists for all
time. (Global existence for the corresponding problem in three dimensions, where
vorticity can be amplified by the stretching of vortex lines, is another matter.)
Presumably, for t < tc, the position of the layer will tend to the sheet whose evolution

is described by (6). But what happens for t > t, ? A rumerical study of the evolution

of a vortex layer has been carried out by Pozrikidis and Higdon9 . The results suggest as
a definite possibility that the limit of the layer is a fractal that is, the limit is a curve
dense in a finite area with "dimension" greater than one. The smoothing of the fractal
(by viscosity, in practice) will produce a vortex patch. There is, therefore, some
mathematical justification for considering vortex patches produced by roll-up of vortex

sheets, even though the process by which the patches are formed is not understood. and
calculations of their initial structure are sensitive to the method used.

Patches. A vortex patch in two dimensions is a connected finite area (not
necessarily but usually simply connected) containing vorticity. It is completely
surrounded by irrotational fluid. Further, the vorticity in the patch is usually taken to be
constant. Physically, this is probably a bad approximation, being based on experiment
and on sheet roll-up calculations, but it is almost essential for analysis and numerical
study of patch dynamics. How physically realistic the results of constant-vorticity patch
calculations are is an open question.

The first non-trivial patch caiculation was the 1876 solution by Kirchhoff for the
steadily rotating ellipse. This solution was generalized by Moore and Saffman t for a
steady elliptical patch (containing constant vorticity o ) in a uniform strain. Their

results demonstrated the important concept of vortex fission by showing that steady

solutions could not exist if the rate of strain F, exceeded 0.15 w.. A numerical study
(in which vortex patches were replaced by a large number of point vortices) indicated
that a patch would be tom apart if placed in too large an irrotational straining field.
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One of Lord Kelvin's motivations for studying vortex dynamics was his vortex

theory of matter. It is curious that fusion also occurs for vortex patches. This behavior
was demonstrated by Roberts and Christiansen 1 , who showed that two equal circular

vortex patches would amalgamate if placed too close together. Again, the method was

that of replacing the patches by a cloud of point vortices, except that, instead of

summing (5) to find the velocity field, a fast Poisson solver was employed to calculate

the stream function. Perhaps the vortex theory of matter should not have been discarded

quite so early!

A major advance in the analysis of patches was made by Deem and Zabusky's

application of the water-bag method of plasma physics 12 . They showed that the velocity
induced by a patch could be written

UF log I(z -z')Idz' (7)

as an integral over the boundary of the patch. Hence a partial singular integro-

differential equation is obtained for the shape of the patches. The kernel in (7) is less

singular than the kernel in (5), and there is no question here of ill-posedness. Deem and
Zabusky successfully exploited this approach to generalize Kirchhoff's ellipses to find
patches of triangular, square, etc., symmetry, and to calculate the shapes of co-rotating
and counter-rotating vortex pairs. Other applications to vortex arrays were made by the
present author and colleagues. Recently, the method of Schwarz functions (suggested

by J. Jimenez) has been employed successfully 13 .

A number of interesting results have been found in these calculations, and

applications have been made to vortex fission and fusion and to the study of the
properties of an infinite linear array of patches that models the turbulent mixing layer

and a double staggered array that models the wake. More remains to be done; there are
some open questions concerning bifurcation and new solutions, about which there is

some mild controversy; but the problems here are primarily problems of detail and are
resolvable. The main objection is to the assumption of constant vorticity in the patches.

Patches with sheets. A case of non-uniform vorticity is the uniform patch bounded

by a vortex sheet. A special case, o o = 0, is sometimes called the stagnant or hollow
vortex, since all the vorticity is concentrated in a sheet on the surface. The velocity of

the fluid in steady motion is then constant on the boundary, from Bernoulli's equation

(neglecting surface tension in the case of the hollow vortex), and the methods of free-

streamline theory can be applied. Pocklington 14 found closed-form analytical solutions

for a counter-rotating pair of stagnant vortices. Baker, Saffman and Sheffield 15

examined the structure and two-dimensional infinitesimal stability of a linear array of
hollow vortices. All results are similar to those for uniform patches, except for details

of certain limiting cases.
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When coo 0, the steady motions can be called Prandtl-Batchelor flows, after their

theorem that the limiting process t -4-o followed by v -- 0 produces (o = constant
in a region having closed streamlines. Existence now again becomes a difficult problem
and is open in the case of flows with boundaries. In the absence of boundaries, a
solution was presented by Sadovskii 16 for a touching vortex pair of counter-rotating
vortices. Instead of the pair being roughly ellipsoidal, as is the case for touching

patches without vortex sheets 17, there are now cusps at the ends. Prandtl-Batchelor
solutions have been computed by Tanveer 18 when the vortices do not touch, but so far
all attempts to confirm or repeat Sadovskii's calculation for the touching pair have
failed. Accurate representation of the singularity at the cusps is the main stumbling
block. This question is important in connection with the infinite-Reynolds-number limit
of steady laminar flow past a bluff body, since Fomberg' 9 in 1982 suggested, on the
basis of his numerical solutions of the Navier-Stokes equations, that this limit might be
a huge wake in the shape of a Sadovskii vortex.

III. Stability of steady vortices

One of the major advances in the current cycle of activity has been the ability to
study the stability of vortices, using the new power to solve complicated equations or
perform many iterations provided by large computers. This power, not available to

scientists of earlier generations, can be and is misused to crunch numbers with no clear
purpose, and usually with no increase in knowledge; but it has the potential to solve old
problems and to open up new fields by discovering new phenomena.

Given a steady configuration of vortices, there are essentially three approaches to
stability:

1. Linear theory can be used to find the spectrum of eigenvalues of infinitesimal

disturbances. This procedure has the advantage that it can be done for both two- and
three-dimensional disturbances, and it leads to linear eigenvalue equations that can

usually be solved, with enough effort. A disadvantage is that it is limited to small

disturbances and gives no information about the evolution of non-linear disturbances or
about possible final states. Also, in inviscid systems, linear instability means
oscillations, and weakly non-linear disturbances can still be unstable.

2. Initial-value calculations can be carried out numerically for a specified initial
disturbance, and growth, decay, or boundedness can be observed. The advantage of this

approach is that it deals with non-linear disturbances and gives information about long-
term behavior. The disadvantages are, firstly, that the wrong kind of initial disturbance
might be selected, and more unstable ones overlooked; secondly, that computations in
three dimensions are not really possible by well-tested methods with available

computing resources; and thirdly, that non-linear numerical instabilities may give
spurious results.
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3. Global analytical methods can attempt to establish stability to arbitrary

disturbances by use of variational principles and related analytical ideas. This method
originated in the work of Lord Kelvin. It was applied in a non-rigorous manner to the
two-dimensional stability of arrays by Saffman and Szeto 20 and to the vortex pair by
Saffman and Szeto 2 1. These latter results have been criticized by Dritsche122 , who cast
doubt on the validity of energy methods. These criticisms seem inappropriate. The
problem in claiming global stability is the need to know the energies of all the steady
states, and the possible error in Saffman and Szeto's work seems to be due to their
incorrect calculation of the energies of steady configurations, and to their omission of
some non-synmnetric solutions, rather than to the concept itself. Rigorous applications
by Wan and Pulvirenti2 3 have shown the L stability of the circular vortex patch to
two-dimensional disturbances. Since the patch is of constant area, and its radius of
gyration is conserved as a consequence of conservation of angular momentum, this
result is no more than an application of Schwarz's inequality. In any event, L-
stability is of more physical interest, and is an open question.

There are now a number of interesting initial-value calculations (method 2) that have
been done for a variety of different configurations. The 1972 pair calculation by
Roberts and Christiansen"t has been followed by many studies of pairs and arrays. The
situation with regard to three-dimensional calculations is not so satisfactory. These are

almost entirely Biot-Savart-law calculations for vortex filaments, neglecting core
deformation and possible change of core structure (vortex breakdown). The first careful
calculation of this type was done by Moore2 4 for the long-time evolution of the
irlstcbility of tr-iling vortices. The most interesting phenomena occur, however, when
the vortex filaments get close together or become highly curved, and this situation is not
describable by the Biot-Savart equation. For example, the fascinating joining and
breaking of vortex rings described by Oshima and Asaka 25 is not describable by the
thin-filament approximation. The origin of superfluid turbulence may be one field,
however, which is describable in terms of the dynamics of vortex filaments 26.

Spectral calculations (method 1) have now been carried out for a number of

configurations. For two-dimensional disturbances, there is a curious result for the
stability of the finite-area Karman vortex street. In a frame moving with the street,
relative to which the undisturbed vortices are stationary, the stream function for the
steady state plus an infinitesimal normal-mode disturbance can be written

Y (x, Y, t)= T+(x, y) + e3 t e21cipx/LO(x. v) , (8)

where L is the streamwise distance between vortices, p is the subharmonic wave
number of the disturbance, 1(x, ')- (,x + L, v) is the spatially periodic

eigenfunction, and o is the unknown eigenvalue. The equations of motion imply an
cigenvalue for o of the form



T= (F/L2) (p, hL A/L2). (9)

where Y is a dimensionless function of its arguments, h is the distance between the
rows, A is the area of each voi tex, and ± F is its strength. We denote the aspect ratio

h IL by K and the relative area A IL2 by ct. The circulations of the vortices in the
rows must be equal and opposite. but the areas can be unequal. It is assumed that the
rows are staggered, with each vortex opposite a point midway between vortices in the
other row. The case ot = 0 was analyzed by Karman, who showed that p - '/2 gave
the most unstable disturbances and that ReY_ 0 (i.e., there is instability) for all K

except Kc 
= cosh-1 2 = 0.281. There remains the question of the effect of finite (X on

this result. Saffman and Schatzman 27 argued erroneously that p = 1/2 was always the
most unstable disturbance. For this case they showed that, for aX > 0. there exists a
finite range of K for which ReX = 0, i.e., there is linear stability. These results are in
agreement with initial-value calculations (method 2) by Christiansen and Zabusky 5 .
However, Kida 29 showed by a perturbation analysis that the most unstable disturbance

has p # 1/2 when a > 0, but he still found a stabilizing effect. (Kida's method
appears to be equivalent to the elliptical-vortex approximation 30 combined with the Betz
result 31 that the centroid of a vortex patch moves with the average of the velocity over
the patch.) A detailed recalculation of the eigenvalues by Meiron, Saffman and
Schatzman 13 for arbitrary p and arbitrary ox led to the remarkable conclusion that
Karman's result for at = 0 is qualitatively true for ax > 0, except that K,. = K, (t).

and the p of the most unstable disturbance varies with ax for K * K,.. Remarkably.
this result remains true when the rows are of unequal area 32 . A general result of this
kind should have a simple analytical proof that does not rely on extensive calculations
and computations, but none has yet been found. It is unlikely that these results could
have been obtained using method 2 only. On the other hand, method I leaves nonlinear

stability as an open question for finite area.

There have been some three-dimensional spectral calculations, but results are not yet
extensive. The most significant are the calculations by Pierrehumbert and Widnal133 on
a mixing layer with a smooth but spatially peiiodic distribution of vorticity, and by
Robinson and Saffman 34, who examined stability of arrays using the Biot-Savart
approximation. The three-dimensional stability of a strained vortex was studied by
Robinson and Saffman3 5.

IV. Three-dimensional effects

As mentioned at the beginning of section II, attention has been concentrated on the
case of flow in two dimensions because it is simpler mathematically, and because there
appear to be real flows that can be modeled realistically with two-dimensional vortices.
Recent work is beginning to cast doubt on this assumption by indicating that three-
dimensional effects may in fact always be crucial.
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Consider the Karman vortex street. Recent experiments by Couder, Basdevant and
Thome 3 6 in soap films produce what is probably a genuinely two-dimensional wake.
The observations show pairing instabilities and the formation of vortex couples (a pair
of counter-rotatino vortices) in laminar wakes at a Reynolds number of 950. This
phenomenon is not seen in wind or water tunnels. Recent wind-tunnel smoke pictures
by Cimbala37 , whose work was done in collaboration with H. Nagib and A. Roshko,
show turbulent wakes at comparable Reynolds numbers. What is more interesting, at
lower Reynolds numbers, where flow visualization has always shown a long street,
Cimbala finds that the street decays quite quickly. The far-wake phenomena, such as
the wake pairing reported by Taneda38 , appear to be due to instability of the parallel
wake that exists after the initial street has decayed. The implication of these two
experiments is that real wakes are controlled by three-dimensional effe,,ts, and that
two-dimensionality occurs only when the viscosity is large enough to damp three-
dimensional instabilities.

A related matter is the fact that a turbulent vortex is expected to produce negative

mean vorticity 1'
4 . Thus the use of uniform vortex patches to model turbulent vorticity

distributions, as is done for turbulent mixing layers or trailing vortices, may be
particularly bad; the behavior of vorticity distributions containing vorticity of both signs
may be qualitatively different from the behavior of flows where vorticity of only one
sign is present. A start has been made on establishing the fundamental properties of
three-dimensional vorticity distributions, but it seems that work on this subject will be a

major task for the 21st century.
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Appendix: vortex methods

It is perhaps appropriate to say a few words about the so-called vortex method, as
there may be misconceptions about its relation to vortex dynamics. The vortex method
constitutes a gnid-free numerical approximation for the Euler or Navier-Stokes
equations, with the vorticity field replaced by a linear sum of vorticity patches whose
centroids move according to given equations. The patches are of constant shape (or are
evolving in a predetermined manner) and are in general overlapping. See, for example.
the application by Kuwahara and Takami 4t to patches and sheets. The method has
attracted attention because there are convergence proofs that show, in appropriate limi's
and under sufficiently restrictive conditions, that the numerical approximation tends to
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the exact solution42 . However. there has not yet been any convincing demonstration
that the method is better than alternative numerical representations, or is a practical
improvement for plane flows over the method of point vortices. The latter vortices have
the property that they are a weak solution of the Euler equations, so even if they are not
a good approximation to a continuous flow field, they have some interest in their own
right. The available evidence suggests that the vortex method is rather inaccurate in
practice. This is particularly so for the random-vortex method used to model the effects
of viscosity at large Reynolds numbers, a method suggested in 1969 by D.W. Moore but
not pibli ,hed because tests at that time showed large errors. Later work confirmed that
the relative error in the calculation of the viscous diffusion is large unless the number of
patches is large compared with the Reynolds number.

Vortex methods can be applied, of course, to the numerical calculation of initial-
value problems in vortex dynamics. but to call an invariant patch that overlaps its
neighbors (and does not deform) a vortex may be inappropriate and misleading.
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Dynamical System Theory and Simple Fluid Flow

Albert Libchaber
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University of Chicago, Chicago, Illinois 60637

I have a close friend from Ecole Normale who used to visit Caltech, and who told
me of the magnetism of Liepmann and how attractive his scientific personality is. I
have not known Professor Liepmann very long, but last year I met him in Japan and I
got caught too.

What I want to talk about today is non-periodic flow described by deterministic

equations. Yesterday, Dr. Narasimha said that I may shed some light on the problem of
turbulence. I am not too optimistic. Physicists have often tried to understand tur-
bulence in the past, from Heisenberg to Landau to Feynman, but physicists come and go

and the problem of turbulence remains. What I hope to show in this historical sketch is
that deterministic systems leading to chaotic behavior are interesting in themselves and
perhaps are relevant for the coherent structures that are observed in many flows.

The subject itself is not a new one. Among partial differential equations, the famous
Burgers equation has interesting chaotic solutions. In Sommerfeld's textbook1 there is a
beautiful analysis of the problem, with Sommerfeld himself asking questions about the
relation of these solutions to turbulence. As far as I am concerned, the subject first
attracted my interest with the conjecture by Ruelle and Takens in 1971 about strange
attractors. Ruelle has written a clear paper 2 on the subject. What it is about is the fol-
lowing: In the Landau picture of turbulence, as the control parameter is increased, the
fluid is stressed more and more. More and more limit cycles or oscillators are destabil-
ized, and eventually the system becomes chaotic. The conjecture by Ruelle and Takens
was that if we have a three-torus, which means a system where we have destabilized
three oscillators, we could be close to what they called a strange attractor. This is true
only for dissipative dynamical systems that contract in phase space. A strange attractor
is an attractor that is very sensitive to initial conditions. If we have two very close
nearby trajectories, as close as we want, they will diverge exponentially with time. This
sensitivity to initial conditions leads to chaotic behavior in the solution of the problem.
The conjecture by Ruelle and Takens triggered a lot of interest in the physics commun-
ity. Then Gollub and Swinney, in the United States, found in a Couette flow experi-
ment 3 that, after two oscillators were excited, as they increased the control parameter
they entered into a chaotic regime, defined by the appearance of broad-band noise in the
experimental Fourier spectrum.
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That was our knowledge to begin with. We also knew about the beautiful work
done in 1963 by the meteorologist Lorenz4 . In a paper which is about deterministic
non-periodic flow, he presented and explained in a clear way the strange-attractor idea.
What Lorenz did was to try to create a model of the atmosphere. He simplified the
equations of the Rayleigh-Benard problem by truncating them to obtain a set of three
ordinary differential equations with three parameters; the Prandtl number of the fluid, a
control parameter, and a wave number of the convective roll structure. Working with
these three coupled equations, Lorenz showed that indeed one can have a chaotic
solution and that strange-attractor-like behavior is present. Consider a Benard
experiment, with a fluid layer heated from below, and suppose that the heat diffusivity
is not too large. Physically, what Lorenz was saying was that hot spots may develop in
the fluid at a given value of the control parameter. These hot spots are advected by the
motion, and, if the convection is fast enough, they have no time to cool down near the
top plate before they descend again. But a hot spot moving downward is unstable, and
the result is the Lorenz chaotic attractor. We thus have a physical model which shows
that something is relevant in the Ruelle-Takens conjecture. If we start in a very simple
way in a controlled experiment, by changing the constraints, we can destabilize limit
cycles, and we can reach a chaotic state with a small number of limit cycles.

A further important step was the Feigenbaum analysis of period doubling in terms of
mapping theory. This period-doubling model is not a new one. In France, at the
beginning of the century, Fatou and Julia did a lot of work on non-linear mapping.
During the war, for example, the same mapping considered by Feigenbaum was used by
von Neumann and Ulam 5 to serve as a random-number generator for early computers.
The important discovery by Feigenbaum6 was that the transition to a chaotic state is
equivalent to a second-order phase transition. Wilson entitled his article 7 in Scientific
American about second-order phase transitions, "Problems in physics with many scales
of length." In the transition to a chaotic state through period doubling we have instead a
problem with multiple scales of time.

How is this relevant to experiments? Suppose we have an experiment with one
bifurcation, say a Hopf bifurcation to a time-dependent state. What is the relation to the
evolution of fixed points? We know the importance of the limit cycle from the early
work of Poincare8 . If we read the "Mrcanique Celeste," we find that everything I have
to say is more or less in germ in that book. If we have a limit cycle and make a cross-
section, what is important is that the intersection point is a fixed point. Each time the
cycle comes back, it comes back to the same point. When we go from one point to two
points, the trajectory takes twice as much time on the average to come back. This is the
beginning of period doubling.

All this is very nice, pure mathematics. From Poincar6 to Arnold there is an
enormous amount of mathematical work on this problem. Is this relevant to
experiments? One of the simplest possible experiments 9 is the Rayleigh-Benard
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experiment. I feel close to it because in 1900 Benard was in an institute nearby the
Ecole Normale. In the Benard experiment, we heat a fluid from below, and we get a
first bifurcation, from heat diffusion to heat convection. As we keep increasing the
control parameter (the temperature difference) we find other bifurcations, whose theory
has been developed in a remarkably complete form for all types of fluids by Busset ° .

Then we had a surprise. What turns out to be very relevant in the problem is: What

is the size of the box? How many cells do we have in our experiment, a small number
or a large number of cells? In the Fourier spectrum shown in Fig. 1, for example, we
have on the y-axis the logarithm of a temperature signal or a velocity signal. If we have
a small number of cells, we have a very sharp, well-defined peak, with one or two
oscillators, quasi-periodic or locked, and essentially no noise. But if we move to a

large-aspect-ratio cell, we find that as we increase the control parameter what we have is
still a well-defined oscillator, which in this case arises from the oscillatory instability
predicted by Busse, but then a lot of noise comes into the problem. It becomes a
problem with a large number of degrees of freedom, and this is accomplished by
changing the aspect ratio, the size of the cell.
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FIG. 1. Large-aspect-ratio convection in liquid helium. Power spectra (log scales) for

various Rayleigh numbers. The curves have been translated along the vertical axis for

clarity. The 0.0 curve shows the I/f noise of the bolometer. The broad peak is asso-
ciated with the oscillatory instability.
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Now I come back to Benard's historical experiments with his collaborator. In 1913
Dauz~re) published pictures of Benard cells. The pictures have nothing to do with an
ordered convective state. They are full of curvature and dislocations; in fact, they might
be the first observation of dislocations in science. It is these disordered patterns that lead
to noisy behavior at onset. Now we know, from experiments done by a number of
physicists, that a real picture in a large-aspect-ratio convective cell would look very
disordered 2 . We have a lot of defects: dislocations, grain boundaries, and various
structures. We can try to simplify them and work with one dislocation. But the
problem remains complex. There is a disordered pattern in space. What we wanted was
an ordered pattern in space. Again I go back to Benard, who published in the 1930's a
paper in which he wanted to show the relevance of convection to meteorology, so he
worked in air. He was able to realize large ordered patterns even in a large-aspect-ratio
cell. In order to do this, Benard added a very small flow field in the horizontal
direction. By doing tricks like this, or by having a small aspect ratio, we can align the
pattern, and with an aligned pattern we can play our game of a small number of
dimensions. Now Benard, as he increased the control parameter, found that his
structure changed to an oscillatory pattern. This was the first encounter with the
oscillatory instability that has since been analyzed by Busse. Essentially, what we want
to do is start with a small number of rolls and look at the dynamics. To test dynamical
system theory we need a small-aspect-ratio cell with perhaps six cells as a maximum.

Let me say immediately that the evolution can follow different paths. Figure 2 is an
amusing picture drawn by Paul Martin at one of our conferences that illustrates a lot of
what I will say. It shows the general evolution of a system as it goes from a quiescent
state, say Ra = 0, to a very large Rayleigh number, up to developed turbulence.

In our game we talk about Poincar6 maps, return maps, and so on. But the main
problem is many degrees of freedom and few degrees of freedom. Many degrees of
freedom means that we have structure that is disordered in space. Few degrees of
freedom means that we start from a structure that is ordered in space.

Remember the period-doubling regime, which is universal in the sense that it has
specific scaling properties and also shows robustness to changes in the mapping. This is
the first thing we studied. We did experiments with helium, then mercury, and then
potassium. In all cases we used small cells, with aspect ratio of at most six. What we
see in real time, as we increase the temperature difference, is that we get a well-defined
oscillation. This is a transverse motion of the convective rolls. As we increase the
temperature difference further, period doubling starts, and a number of bifurcations
occur. We can see up to 4 period-doubling bifurcations. Always, when we play with
the Fourier spectrum on a logarithmic scale, we can blow up everything. We start from
a situation where we have essentially no noise, say 70 db signal-to-noise ratio. We
increase the control parameter and see the first period doubling. We increase the control
parameter further and find the next bifurcation. We can see up to four bifurcations, as
shown in Fig. 3.
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FIG. 3. Fourier spectra of the cascade of period doubling for a Rayleigh-Benard experi-
ment in liquid mercury.

Essentially, what we observe, when we carry out a Poincar cross-section, is that we

have a fixed point which doubles four times. The prediction of Feigenbaum was that
this is a well-defined transition with scaling properties, and there is a universal

parameter at the onset of each bifurcation which follows a geometric progression. Our

experiment confirms that prediction within ten percent. The next thing was to look at
the amplitude of the subharmonics at each bifurcation. Each period-doubled signal is

smaller than the preceding one, theoretically by about 13 db. We were getting 14 db.

Another thing the model shows is that once the flow is chaotic it can become
laminar again. As we increase our control parameter, there are windows where the

system becomes laminar again. This relaminarization can also be seen in our

experiment. We could see various periods appearing as we increased our control

parameter, while the noise disappeared completely. Finally, to show that the small fluid

cell was well behaved, we know that this picture is always self-similar. For example,
when we are in the laminar region, we get out of the laminar region by period doubling

again. The same picture reproduces itself for any window. That could be seen, for

example, in the region where period three appeared in the experiment.
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Clearly the problem in terms of the dynamical-system approach is more
complicated. When we have a limit cycle and we change the control parameter, the
system can destabilize by period doubling. But, in fact. if we look at Fig. 2 we see that
when we have a few degrees of freedom, we have three main roads. These three main
roads are very well understood mathematically. They correspond to three types of
bifurcations that can happen to a limit cycle. If we have a limit cycle, which is an
oscillation in time, and look at a Poincare cross section, we find a fixed point. The first
possibility is that this fixed point becomes two points. The second possibility is that the
fixed point disappears, which means that we lose our limit cycle, and we lose our
oscillation. It disappears by interaction with an unstable fixed point. The result is what
is often observed in fluid mechanics; intermittency. As we come close to the
disappearance, when those two points interact, we find that there are bursts of noise.
But before I show that, let me say what is the third possibility, once we have a limit
cycle. When we increase the control parameter, this fixed point can bifurcate through
Hopf bifurcation to a limit cycle. In that case, we are in a quasi-periodic state. This is
the beginning of the old Landau picture of first oscillator, second oscillator. These are
the only three possibilities.

These three possibilities are shown in Fig. 2. There is universal period doubling.
There are n-torii states, which means quasi-periodicity. There is annihilation of the
attractor, because the limit cycle loses stability. This intermittency in the case of
dynamical systems was explained by Pomeau and Manneville 3, and there is an
elementary case where we can understand the process. If we again think of a mapping,
we can have a situation where as we iterate we have a fixed point which is stable, and
another fixed point which is unstable. As we iterate, we move away from one point and
toward the other. When we change our control parameter, we move the curve with
respect to the bisectrix. Finally, we can reach a state where the two points have
coalesced. When we are in this situation, as we do our iteration we stay a very long
time near what was a fixed point. Then we go somewhere else in a complex trajectory,
and when we come back we stay again a long time near this fixed point. We will have
intermittency in the sense that the laminar regime will be present, but as we increase our
control parameter and move away we find less and less laminar period. For example,
we observed this phenomenon in liquid helium, as shown in Fig. 4. Intermittency also
has scaling properties, which were developed by Pomeau and Manneville and have now
been found in a large number of systems. Remarkable work was also done by Berge
and his group on the question of intermittency. Outside of period doubling and
intermittency, a large class of experiments will fall in a regime of quasi-periodicity.

Once we are in a quasi-periodic state, the regimes we can get are extremely
numerous. But, in general, the result of all the observations so far is that when we do
an experiment of this sort, as we increase our control parameter it is very hard to go
beyond three or four limit cycles and we always fall in a chaotic state.
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FIG. 4. Intermittency in liquid helium. Evolution of the time signal near the chaotic
transition. The motion is quasi-periodic between the noisy bursts.

There are very many interesting problems in this quasi-periodic regime.
Mathematically, one of the most interesting is what happens with two incommensurate
frequencies when we keep the ratio of the two frequencies constant and increase our
control parameter. We have a system with two incommensurate frequencies. They are
not locked. We try to keep this ratio fixed and we change the control parameter. There
is again a transition with scaling exponents. The theory of this transition was done by

two groups 4 . I will not go into it, but will say that recently we have observed this
15transition and measured the exponents

In these problems with a few degrees of freedom, we can see that there are three
elementary bifurcations, and from there we can reach a chaotic state. In this chaotic
state, following again the Poincar6 cross-section, we can look at the strange attractor
and the dimensional fit, and obtain a fractal dimension. This is being done currently in
different laboratories. The whole concept seems to be quite relevant.

Finally, I would like to say something about the problem of turbulence. The game I
have played here is just simple dynamical-system mathematics. In a situation where we
start from an ordered state in space, this dynamical-system approach is valid. It could
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very well be that in some problems in turbulence; for example, in the origin of coherent
structure, we will find some of this behavior. I said at the beginning that when we have
disorder in space, we have a difficult problem. We already have noise at onset, with a
large number of degrees of freedom. What we would like to understand now is the
problem of many degrees of freedom.

A lot of research work now is applied to understanding phase instabilities. Suppose
we have a number of clocks that are weakly coupled in phase, and we want to
understand the evolution of the one-dimensional problem in space. There is a book by
Kuramoto that describes such problems. Many physicists are working now with the
Kuramoto-Sivashinsky equation, which deals with very-large-a. e,:t-ratio one-
dimensional problems. It is an equation that can describe the evolution of the phase of
the structure.

Let me conclude by saying that in Lord Rayleigh's book 16 "Theory of Sound," there
is a chapter on nonlinear differential equations where, for the first time, parametric
amplification is discussed. Lord Rayleigh had everything in his hand. We can imagine
what our understanding might be now if he could have pushed a little further at that
time.
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I. Introduction (WCR)

Our task is to describe recent progress and present prospects for research in tur-
hulence using numerical methods. This is quite a challenge, because we know that
Liepmann has not been a strong, advocate of computational turbulence, or "compulence."
as it has sometimes been called -- the incompressible version presumably being "incom-
pulence." We want to recognize several objectives in exploring turbulence by numerical
methods, and to order these in priority as follows:

To gain understanding and insight into the physics of turbulence. so as to comple-
ment the insight obtained from experiments and analysis: for example, by helping
the experimentalist to understand what it is that has been observed experimentally.
and by helping the analyst to explore solution space in more detail.

2. To provide special "data" for guiding, evaluating, and calibrating simpler predic-
tive models of turbulent flows.

3. To predict turbulent flows by numerical simulation.

We believe that too much attention has been paid to the last of these objectives,
whereas the real profit is more likely to come from work aimed at the first two.

In the words of Don Coles, "A computation that predicts a flow is not an explana-
tion. What is required is an explanation." We hope to show that explanations can
come, have come, and will come from research on turbulence by numerical methods.

We will present a series of selected examples to illustrate our points. We will

emphasize three aspects of this work:

I. How does one learn from numerical simulations'?

t Present address: California Institute of Technology, Department of Aeronautics 301-46,
Pasadena, California 91125



What can be learned from numerical simulations'?

3. What miht be learned from numerical simulations'?

Tony will begin by discussing what has been learned by study of some special.

simple flows that would be very difficult to set up in the laboratory.

II. Interacting vortex rings (AL)

It is well known that an isolated vortex ring with a thin core in an ideal fluid will

propagate at constant speed. As discussed below, certain fat vortex rings will also move
at constant speed. What happens when two vortex rings collide along a common axis?
We can simulate this process to very high accuracy for a special class of vortex rings.
those whose core is defined by a patch of vorticity within which the vorticitv is

proportional to the distance r from the axis of symmetry, In this case, the vorticity
transport equation,

D (o/r =t'

Dt

is satisfied exactly for all interior points. All we need to do is to track the core

boundaries, which are closed curves in the (r, x) plane. Thus we can reduce a two-
dimensional problem to the problem of tracking the one-dimensional boundaries of the
patches. By doing so, we obtain a considerable increase in resolution with the same

computational resources. Starting with the Biot-Savart law, Shariff et al., (and
independently Pozrikidis 2) have shown that the equations of motion for these bounding

curves can be reduced to the form
ax,( ,t)aXj( t)

a~( t) fGi ( r ,r', x-,x) dr' (2)

where and ' are Lagrangian coordinates and the kernel G is composed of corn-
plete elliptic integrals. Similar methods have been used in the planar case to investigate

unsteady 3 4 and steady 5 6 flows.

Some time ago, Norbury7 computed, by a different technique a one-parameter

family of vortex rings in steady translation with the property (o - r. The core shapes of
some members of the family are shown in Fig. 1. At one extreme of the family is lIill's
spherical vortex, and at the other extreme are vortex rings with nearly circular cores of

vanishing cross-sectional area.

Using marker points to track the boundaries, together with suitable interpolation and
integration schemes, we can integrate Eq. (2) and determine what happens when two

vortex rings collide. In a computation especially commissioned for this symposium, K.
Shariff computed the evolution of two identical Norbury rings approaching each other
along a common axis. From simple argument, based on the Biot-Savart law for thin
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7F1G. 1. Boundaries for some members of Norbury's family of steady vortex rings

cores, we know that the rings will slow down and increase in radius, and that their cores
will decrease in area as they approach each other. But what happens during and after
the collision'? flow do the cores of the vortices deform? What is the final asymptotic
state (if there is one) of the interaction'? Figs. 2a-2g show some results of the simulation
that bear on these questions. Before the interaction, the cores are slightly elongated in
the direction of travel (Fig. 2a). During the interaction, the major axes tilt and
eventually rotate 90 degrees from their original direction (Figs. 2c, 2d). The two cores
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FI1G. 2. Collision of two vortex rings (computation by K. Shariff).
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then propagate roughly as a vortex pair in the radial direction, except that a significant
spike of vorticity is left in the wake (Figs. 2e, 2f, 2 g). The primary cores appear to
pinch off the spike and leave it behind. Of course, because the spatial derivatives of the
velocity are bounded, the spikes cannot really pinch off. The two bounding curves
cannot actually touch, but they can become exponentially close. Analysis of the
energetics of stretching indicates that the generation of spikes will continue. That is, a
self-similar core shape cannot persist without ejecting vorticity into its wake.
Experiments by Oshima8 support these observations.

At the time of the symposium we thought that core oscillations observed during the
collision were merely of intellectual interest, with no relevance to experiments.
However, Shariff et al. 9 have recently argued that these oscillations play a major role in
the acoustic signal produced by vortex-ring interactions. This is because the far-field
acoustic pressure signal at low Mach number'() is proportional to

d3 2ff ,2o ddr (3)
dt

3

The signal depends on oscillations involving the ellipticity of the core and its
orientation, as well as the motion of the core centroid. Acoustic pressures computed
using Eq. (3), together with the results of contour-dynamics calculations, show much
better agreement with the colliding-ring experiments of Kambe and Minota'l than
pressures computed on the basis of a circular core of variable diameter.

What about the spikes that result from the interaction? They are commonly
observed in unsteady contour-dynamics calculations both in planar geometry4 and in
axisymmetric geometry"12. Are they simply an artifact of two-dimensional flows with
vortex patches, or are they important small-scale features in three-dimensional flows'?
We do not yet know the answer to this question.

III. Homogeneous turbulence (WCR)

Homogeneous turbulence was, at first, the only real problem we could do, because
periodic boundary conditions could be used. These flows have been simulated by
several investigators. In particular, the isotropic decay problem has been done many
times. The retum-to-isotropy problem is one that we have been studying recently.
Other problems that we have studied include rotation of turbulence, homogeneous shear.
homogeneous strain, axisymmetric or plane strain (and various combinations), and
compression, all possibly with scalar transport.

Let us review what has been learned using simulations of these flows. First, we
consider rotation. Some nice experiments have been carried out by Wigeland and
Nagib 2 , in which they subjected isotropic turbulence to solid-body rotation. With no
rotation, they obtained the middle curve in Fig. 3 for the decay of turbulence intensity.
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FIG. 3. Decay of rotating homogeneous turbulence according to experiment 12 (sym-
bols) and numerical simulation 13 (solid lines). Initial dissipation rate varies from case
to case (courtesy of Journal of Fluid Mechanics).
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f1G. 4. Decay of rotating homogeneous turbulence by numerical simulation 13 (courtesy
of Journal of Fluid Mechanics). Same initial conditions for all cases.

When they rotated the turbulence at 20 radians per second, they obtained the top curve.
Then they rotated it faster and obtained the bottom curve. It was not clear from these

experiments what really was happening. This example illustrates what often can be
done with computations that can not be done with an experiment. In particular, it is
easy in the computations to control the initial conditions. Shown in Fig. 4 is the result
of a large-eddy simulation by Bardina 13 in which he starts all the computations with
exactly the same initial conditions. Now we can see that the rotation reduces the rate at
which the energy decays; i.e., rotation reduces the dissipation rate. The question is,
how? What rotation does is apply a gyroscopic torque to the vortex filaments, making
them line up with the main axis of rotation. This action increases the length scale along
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the axis of rotation, and the increased length scale slows the energy transfer to the
smaller eddies. Consequently, the dissipation rate is reduced. This explanation was
initially suggested by a detailed study of the simulations.

Now, let us discuss scalar transport14 . In a homogeneous shear flow, we must have
a velocity gradient; we can also have a temperature gradient. Stan Corrsin found
experimentally that the u'T' correlation, which is the essentially the axial heat flux in
this flow, is actually a little more than twice as large as the cross-stream heat flux,
v'T'. In this situation, we have a strong cross-gradient heat flux in the x-direction

being driven by a temperature gradient in the y-direction. I know that gradient-
transport theory is not loved here at Caltech. However, dimensional analysis is, and if
we do a dimensional analysis for this problem we soon convince ourselves that the
correlations have to scale on @T/x. There is no other way that they can scale. What
we can do with direct simulations is to study the anisotropic form of the diffusion-
coefficient tensor. The gradient law suggested by dimensional analysis does not
necessarily mean that the process is gradient diffusion. As we will see, the process is
really vortex transport.

Joel Ferziger and his student C-T. Wu studied homogeneous compression' 5 , and
their conclusions are short and simple. If we compress the fluid relatively slowly, so
that the product of the strain rate times the energy divided by the dissipation rate is
small, say one-tenth or smaller, then the time scale for the turbulence is k/c, as
turbulence modelers always assume. However, if we impose larger but still modest
dimensionless deformation rates of order unity for this parameter, then the time scale is
quite different from k/c. Modelers should worry about that.

Next I will discuss simulations done by Moon Lee 16 , with help from Bob Rogallo,
of homogeneous turbulence with strain. These were done on the Cray X-MP, using a
128' mesh deforming during the computation. The Reynolds number based on the
Taylor microscale is about 50, which according to Narasimha 1 7 is the beginning of real
turbulence. The strain stretches the vortex filaments and lines them up with the
direction of positive strain rate. We then shut off the strain rate and watch the vortex
filaments try to return to a state of isotropy. Whatever measure of anisotropy is used,
the vorticity anisotropy is very, very large. Of course, we should expect this. If we pull
vortex filaments out by straining the flow, we essentially make the vorticity one-
dimensional. Presumably, the vorticity would like to be three-dimensional. Strain
causes a very rapid increase in the vorticity anisotropy and a corresponding increase in
the anisotropy of the Reynolds stress. The lore of the subject tells us that when we
remove the strain rate the small scales will relax toward isotropy very quickly while the
large scales will relax toward isotropy at a much slower rate. The simulations show that
the vorticity starts to relax very quickly, but after a while the vorticity anisotropy
becomes locked to the Reynolds-stress anisotropy, and the two of them decay at the
same rate. Thereafter, the small-scale anisotropy, as reflected in the vorticity, is in fact
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a little larger than the large-scale anisotropy, as reflected in the Reynolds stress. The
small scales are decaying at the same rate as the large scales, not at a faster rate as
turbulence lore would suggest. I think this is the most interesting result that has come
out of these simulations. What it suggests is that small-scale structures are really a
much more important dynamic part of large-scale structures than we may have thought.
We will come back to this point later.

Now to shear flows. These have been studied by Rogers and Moin 18 , again using
the Rogallo code. A s"ear flow is simply a plane strain and a rotation, and we have
seen that rotation tends to turn the vortex filaments and to align them with the axis of
rotation. At the same time, the strain tends to pull them out along a 45-degree line. The
question is, what does the structure of the vorticity field in a shear flow look like,
particularly along a plane inclined at 45 degrees to the flow direction? A vorticity-
vector plot (Fig. 5) shows zig-zag vortical structures that are really not very much
different from the kind of vortex structures we see in the mixing layer. Rogers has
made this observation quantitative by constructing a histogram of the vortex structures,
with each sample weighted by the magnitude of the vorticity. We see in Fig. 6 that the

predominant vorticity is aligned at 45 degrees or - 135 degrees to the flow direction.
Thus vortex filaments in a shear flow, even a homogeneous shear flow, are strongly
anisotropic and are aligned with the major principal axis of the strain tensor. This result
suggests that large-scale structures in shear flows might be thought of as a lot of small-
scale structures moving as a unit.
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FI1G. 5. Homogeneous shear flow. Vorticity vectors in a 45-degree plane' 8 (courtesy of
Journal of Fluid Mechanics).
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FIG. 6. Homoge,.eous shear flow. Histogram of the vorticity-vector inclination
angles 8 (courtesy of Journal of Fluid Mechanics).
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(b)

FIG. 7. Homogeneous shear flow. Typical vortex lines displaying a hairpin-like struc-
ture 18 (courtesy of Journal of Fluid Mechanics): (a) 3-D view; (b) end view; (c) side
view.
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We can do other useful things with simulations of this kind. We can locate vortex
filaments, even though the computation is grid-based, and not a vortex-tube calculation,
by integrating along vortex lines. Then we can visualize the structures. Shown in Fig. 7

are three views of a group of vortex lines displaying a hairpin-like structure in a
homogeneous shear flow.

IV. Transitional pipe flow (AL)

A curious phenomenon can exist in pipe flow in a narrow range of Reynolds
numbers around Re = 2200. Once generated by a sufficiently strong upstream
perturbation, long turbulent structures surrounded by laminar flow travel down the pipe
without growing or decaying 19 . Lindgren 20 has produced elegant flow visualizations of
these so-called turbulent puffs.

In an attempt to unravel some of the mysteries of these objects, we began a program
to study transitional pipe flow by numerical simulation. Some of the questions we
hoped to answer were: By what mechanisms is the turbulence maintained? Is three-
dimensionality important? What vortical structures dominate? As in the case of
homogeneous turbulence, the application of spectral methods seemed again to be a good
choice for this relatively low-Reynolds-number flow in a relatively simple geometry.
We used expansion vectors that were divergence-free and satisfied the no-slip condition

at the wall. 2 1 Thus, the velocity field was assumed to have the expansion
(± "t) X "'-(r) exp ( ik~ + il 0) ,(4)

u(r,O,x,t)= I, n,k ln

nk,l

where the (+) and (-) represent the two independent vectors per mesh point required
for incompressible flow. The determination of suitable basis functions for the radial
coordinate was not a trivial matter. We wanted the Xn 's to satisfy the no-slip
condition and the divergence condition, to have the correct analytical behavior at r = 0,
and to allow efficient computations. After a long search, we found that combinations of
Jacobi polynomials P(O° 1)(2r2_ 1) and their derivatives worked well and were, in fact,

the best choice by far. In particular, the Laplacian operator becomes equivalent to a
tridiagonal matrix.

Note that u is periodic in 0, which is an obvious requirement, but it is also
assumed to be periodic in x. Don Coles originally suggested the turbulent puff as a
candidate for numerical simulation because puffs may be generated experimentally as a
periodic train of disturbances, each one separated from its neighbors by laminar flow.
Thus periodic boundary conditions along the axis of the pipe are an appropriate choice.

In our first series of computations, the development in time of a number of nonlinear
axisymmetric disturbances was investigated. All decayed in relatively short order to a
parabolic Poiseuille flow. But a particularly interesting transient structure evolved
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during one run in which the initial condition consisted of a counter-rotating vortex ring;
i.e., a ring containing vorticity opposite in sign to that of the parabolic flow. This
structure had many of the features of a turbulent puff; sharp trailing edge, conical
leading edge, and a speed of about 0.9U (see Fig. 8). These features are consistent

with the observation that the disturbance includes vorticity shed from the counter-

rotating vortex into its wake as it attempts to swim upstream. The shed vorticity moves
downstream with the local axial velocity and decays; hence the conical leading edge.

Ii an attempt to obtain a self-sustaining, puff-like structure, a three-dimensional
simulation was initiated with the axisymmetric, counter-rotating structure of Fig. 8 but

1/ R
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FIG. 8. Evolution of a counter-rotating, axisymmetric vortex ring in a pipe. Re = 2200.
Contcr.i of c;) ( r, .. ._
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with a low-level background of random, three-dimensional perturbations. The results,
shown in Fig. 9, are very suggestive of a turbulent puff. The number of Fourier modes
was Nk = 240 and N, = 32, and the number of radial polynomials was N, = 49, for

a total of approximately 0.4 x 106 points in spectral space. The number of points in
real space was 1.5 x 106, the number required to eliminate aliasing. Even so, the axial
dimension of the periodic domain had to be restricted to only 18 diameters, somewhat
short of the 40 diameters or so that is characteristic of laboratory puffs. The simulation
was run on the Cray X-MP/12 at NASA Ames. The program was written in the
VECTORAL language of Alan Wray.

As can be seen in Fig. 10, during the early stages of development, t < 20, the total
energy of the disturbance decays fairly rapidly, but the axisymmetric structure is
unstable to three-dimensional perturbations, so that the non-axisymmetric energy grows
rapidly during this time. The disturbance seems nearly to settle down as a quasi-steady
three-dimensional object for 60 < t < 80, but then roughly three more periods of
growth are experienced, each one less vigorous than the previous one. The non-

axisymmetric energy peaks during the first of these additional growth periods but then
levels off.

Although the analysis of this simulation, which took about four hundred hours of
cpu time over a period of ten months, is far from complete, we can make the following
preliminary observations:

1. Three-dimensionality is vital to the maintenance of the puff. Recall that all
axisymmetric disturbances that were tried decayed initially. To further test this
hypothesis, we can take advantage of the fact that we are performing numerical
experiments and restart the three-dimensional velocity field at t = 80 with all
non-axisymmetric modes (I t 0) set to zero. The result, shown in Fig. 11,
should be compared with the three-dimensional result shown in Fig. 9. It is seen
that the axisymmetric continuation in time decays rapidly to Poiseuille flow.

2. A mechanism necessary to the maintenance of the turbulent puff is the passag oJ

co-rotating vortex tubes through the axis to become counter-rotating vortex
structures. The argument is as follows. A feature of all turbulent puffs is a
deficit in streamwise velocity along the axis; see Fig. 12, where we show a typical
trace from the simulation and one from experiment. The total integrated deficit is
equal to the circulation of the disturbance,

fJU.,dx =fw(%dr & =~ Q (5)

By integrating the transport equation for the disturbance vorticity, we find that

dt Q (O0'u r ' - Uo'0)r')r o dx + viscous terms (6)
dt
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FIG. 10. Growth rate of the three-dimensional disturbance in a pipe.

where the primed quantities denote non-axisymmetric components. By
kinematics, the primed terms above must come from components I = + I and
represent the flux of o' (or, equivalently, (o') vorticity across the r = 0 axis.
We see evidence for activity of this sort in Fig. 9 at t = 87.5 and t = 95 at the
rear of the puff on the axis. We suspect that there is a significant inviscid
contribution to d Q/dt; i.e., a co-rotating vortex tube is starting to pass through
the origin. This suspicion has been confirmed by studying contour plots of
wo (I = 1) and ur (I = 1) and computing the change in Q during this time,
87.5 < t < 95. The inviscid contribution to 0 was negative, while the viscous
contribution to Q was positive and about one-third the magnitude of the inviscid
contribution during the same period of time.

We have seen that a train of vortex riags in a pipe, when subjected to three-
dimensional disturbances, can lead to a train of turbulent puffs. Next we shall see what
happens for the case of a train of vortex rings in free space; i.e., an excited round jet.
The results are quite amazing.

FIG. 9. Snapshots of the three-dimensional disturbance in a pipe. Re = 2200. Contours
of 1 2t

0 (rx)= -f o(r,x,O)dO
0
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FIG. 12. Axial velocity along the pipe center for the three-dimensional disturbance.
Inset: experiment of Ref. 19 (courtesy of I. Wygnanski).

V. Excited round jets (WCR)

My latest favorite subject is the bifurcating and blooming jet22 . Figure 13 is a
picture taken when I was here at Caltech in 1983-84. This jet has a Reynolds number of
the order of 8000 and is being excited by axial disturbances and also by orbital
disturbances caused by wiggling the nozzle very, very slightly. There is a about a 15-
percent amplitude in the orbital excitation and a few percent amplitude in the axial
excitation. Under certain conditions, explained below, the jet bifurcates and can be
made to spread with a large spreading angle. The jet actually becomes two jets, and if
we look at the flow far from the origin we can convince ourselves that the two legs of
the jet are diverging faster than either leg is spreading. It follows that the far field of
this jet can never become the far field of a normal jet, in spite of "principles" that claim
otherwise. Figure 14 is an axial view of the same flow. Evidently the sidewise
spreading is normal: it is the transverse spreading that is abnormal.

Another possible outcome with this sort of exitation is the blooming jet shown in

Figs. 15 and 16. Basically, the jet is composed of a shower of vortex rings. With the
right kind of excitation, this jet can have a spreading angle as large as 135 degrees. The
one shown has almost a 90-degree spreading angle. There is tremendous mixing in the
jet plume. We have measured the velocity decay in this jet, and found it to be
exponential. So it is a very rapidly decaying and mixing jet.
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FIG. 13. Side view of bifurcating jet22 showing two diverging legs.
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FIG. 14. Axial view of bifurcating jet22
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FIG. 15. Side view of blooming jet22
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FIG. 16. Axial view of blooming jet

We can also study and try to understand such jets by using numerical simulations
based on vortex filaments. A student, David Parekh, and I enlisted Tony to assist us
with the simulations. We began by mapping out the regimes in which we could observe
these different effects. We generate a bifurcating jet when the axial excitation
frequency is twice the orbital excitation frequency. Two vortex rings are shed per orbit,
and these separate, each going into one of the two downstream legs of the jet. The
blooming jet is obtained for the range of parameters shown in Fig. 17. The purpose of
the simulations was to understand better the underlying processes. We used three-
dimensional vortex filaments to represent the flow, adding a vortex ring whenever one
was shed as a result of the axial excitation. The rings are put in slightly eccentrically,
so that they are slightly off-axis from one another. What happens? From Fig. 18,
which displays the results of the simulation, it is apparent that the vortex rings are
indeed tilting, as in the laboratory experiment.
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FIG. 17. Regimes of the perturbed round jet as determined by experiment2 2 .

What have we learned? First, we have learned that the controlling mechanism is
vortex induction. The phenomena of tilting and splitting were discovered in the
laboratory, but the explanation was provided by the simulation. Second, the simulation
predicted that if we keep the ratio of frequencies fixed at two, but increase the
frequency, then the spreading angle will increase. We predict spreading angles up to 50
degrees, as shown in Fig. 19. Then we reach a critical condition beyond which we
cannot get a bifurcating jet. What happens is that the axial excitation controls the period
of the rings, and the orbital excitation controls their eccentricity. So if we increase the
frequencies but keep the ratio equal to two, the rings move closer together. The closer
together they are, the more they tilt each other; but if they are too close to each other,
they become tangled before they can separate. This result was discovered by the
numerical simulation and subsequently confirmed in experiments both at Caltech and at
Stanford.
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FIG. 19. Spreading angle of the bifurcating jet as a function of Strouhal number, from

Parekh's numerical simulation.

VI. More wall-bounded flows (WCR)

We return now to the area of full simulations of wall-bounded flows. Tony will
describe the recent work of Spalart on turbulent boundary layers23 , and I will describe
Moser's simulations of curved channel flow 24. But we are running out of time, so we
will have to go to parallel sessions.

WCR: Moser studied a curved channel flow, using a full simulation of all of the
important scales of turbulence. The channel flow is attractive because periodic
boundary conditions can be imposed in the flow direction. Even so, the development of
an efficient spectral method for this curved geometry was a non-trivial task.

AL: Spalart had an idea for dealing with non-periodic boundary conditions in the
flow direction, and he wanted to try this idea out on a spatially-developing boundary
layer. He also had to develop a spectral method to deal with the semi-infinite geometry.



135

WCR: In the large-eddy simulations (LES) of Moin and Kim 25 , the wall-layer
structures were too large, and Moser wanted to see if the right scales would emerge
from a full simulation.

AL: Moser did establish that a full simulation would give the right scales in the
wall region, and Spalart wanted to see if it would in the boundary layer, too.

WCR: Here are the mean profiles (Fig. 20)...

AL: ... and here are the turbulence profiles (Fig. 21).

WCR: Note that the mean profiles are in excellent agreement with experiments

AL: ... as are the turbulence profiles.
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FIG. 20. Full simulation of wall-bounded flows. Mean profiles for: (a) curved channel
flow 24 (courtesy of Journal of Fluid Mechanics); (b) turbulent boundary layer2 3. Exper-
irnental data in (a) from Ref. 30.
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WCR: Moser found the Grtler vortices that are seen in experiments, and was able
to isolate them in his data. He found that they contribute as much as forty percent of
the Reynoldi sl-aring stress which is why standard models of turbulence fail so badly
in curved boundary-layer flows.

AL: Spalart is not as far along in his work, but he has been examining an old debate
as to whether the Reynolds stress u'v' varies as y3 or y4 at the wall. After he
answers this question, he wants to explore the near-wall structure in boundary layers as
a function of Reynolds number and pressure gradient. Spalart has completed a series of
these calculations 23 and has made a number of curious discoveries. Each one, however.
leads to new questions that should be answered. Two examples are: (1) a log layer in
the sink boundary layer that has an unexpectedly large extent, and (2) a two-dimensional
mixing-layer-like character in the outer part of Stratford's separating boundary layer.
Moreover, Spalart has found that turbulence profiles near the wall and in the wake
region have a complex dependence on Reynolds number, indicating an urgent need for
improved scaling laws.

WCR: Moser wants to identify structures in his flow, as Moin and Kim have done
recently with their LES fields. He also wants to see if he can identify strange attractors
in his flow, and perhaps use his fields as a way to evaluate some new ideas about chaos
and turbulence.

AL: It is quite clear to Bill and me that this sort of full turbulence simulation will
be an important new way to study the physics of turbulence. Rapid advances in three-
dimensional graphics make this approach especially attractive. A turbulence researcher
can now sit at a three-dimensional animated display console, like the one Hesselink is
pioneering at Stanford, or at a powerful graphics work-station with special software, like
the software written by Buning26 at NASA Ames, and view vortex filaments, pressure
peaks, and so on, from all sorts of different angles, in an effort to gain understanding of
the flow.

WCR: Finally, we will conclude our discussion with some remarks about
computations of flows of practical interest. For the first of these we have chosen a
simulation of the time-dependent flow through a set of acoustic baffles proposed for the
inlet of the 80-foot by 120-foot test section at NASA's Ames Research Center. These
calculations were designed to find out if the pressure losses would be acceptable.

VII, Separated flows (AL)

We come now to our final topic -- flows with large-scale, unsteady separation at
high Reynolds numbers. We will confine our discussion to flows in two dimensions,
where a number of reasonably successful simulations have been achieved. (A number
of failures have been achieved also.) Although these flows are two-dimensional, some
are of considerable engineering interest. Needless to say, when reliable computational
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methods become available for three-dimensional geometries, interest in these methods

should increase dramatically.

For constant-density flows past solid bodies, we observe that vorticity is generated
only at the no-slip boundaries of solid Nuifac,:s. At hitch Reynolds numbers, once the
vorticity separates from the boundary layer, it moves with the fluid with very little

diffusion. This observation suggests that we again use a vortex method, in which
parcels of vorticity move with the local fluid velocity, to simulate the dynamics of the
wake. But two important elements must be added to complete the picture:

1. Satisfy the inviscid boundary condition at the solid surface; i.e., no flow through
the walls, and

2. Determine the locations of the separation points in time and the flux of vorticity
into the outer flow.

The first element is rather easy to take care of. We can simply use a boundary integral
method, one form of which is the panel method, where vortex tiles are laid along the
boundary and the circulation of each tile is determined from the solution of a linear
system representing the mutual influences of the tiles. As an alternative procedure for
simple geometries (i.e., any shape that can be transformed to a circle by conformal
mapping), the method of images may be used. The second element is, in general, much
more difficult. Here we have to compute the unsteady mechanics of the separating
boundary layer. If we want to simulate a flow having a turbulent boundary layer, we are
limited to available models for these flows. However, if the boundary layer is laminar,
we should in principle be able to compute what is required. This computation has been
done at several levels of sophistication with considerable success2728,29 but more work
needs to be done.

Figure 22 illustrates an application of the method by Spalart to predict the total-
pressure loss for flow past a set of acoustic baffles proposed to be located upstream of

the inlet to the 80-foot by 120-foot test section. It had been estimated previously that
the design shown would lead to an acceptable pressure-loss coefficient of approximately
5 to 10. Spalart's simulation predicts a much higher loss coefficient of 86. This
pessimistic result was confirmed later in an experimental study by John Foss, who found

a value of 82.

Unfortunately, such simulations do not always agree with the corresponding
experiments on two-dimensional geometries. For example, force coefficients may be off
by as much as fifty percent. We find, however, that if there exists some phenomenon
that promotes two-dimensionality or spanwise coherence in the experiment, such as an
oscillation of the body, then the agreement tends to be much better. Thus, three-
dimensionality of the flow past a two-dimensional object may well be to blame when
substantial disagreement is observed.
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FIG. 22. Vortex simulation of two-dimensional flow through a set of acoustic baffles.

Method of Ref. 28.

Our final example is designed to be of immediate use to H. W. Liepmann, perhaps

during a sailing excursion with Paul Dimotakis, and is illustrated in Fig. 23. Perhaps the

real three-dimensional Liepmann will discount our primitive attempt to simulate such a

complex flow, but we hope that he will applaud our efforts and encourage us to do

better next time.
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FIG. 23. Vortex simulation of unsteady, separated flow past a two-dimensional
Liepmann. Method of Ref. 28.
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Geologic Nozzles'

Susan Wemer Kieffer
U.S. Geological Survey, Flagstaff. Arizona 86001

Abstract

Sonic velocities of geologic fluids, such as volcanic magmas and geothermal fluids,
can be as low as I rn/s. Critical velocities in large rivers can be of the order of 1-10
in/s. Because velocities of fluids moving in these settings can exceed these characteris-
tic velocities, sonic and supersonic gas flow and critical and supercritica shallow-water

flow can occur. The importance of the low characteristic velocities of geologic fluids
has not been widely recognized and, as a result, the importance of supercritical and
supersonic flow in geological processes has generally been underestimated. The lateral

blast at Mount St. Ilelcns. Washington, propelled a gas heavily laden with dust into the
atmospher'e. Because of the low sound speed in this gas (about 100 m/s), the flow was

internally supersonic. Old Faithful Geyser, Wyoming, is a convergine-diverging nozzle
in which liquid water refilling the conduit during the recharge cycle changes during
eruption into a two-phase liquid-vapor mixture with a very low sound velocity. The
high sound speed of liquid water determines the characteristics of hannonic tremor
observed at the geyser during the recharge interval, whereas the low sound speed of the
liquid-vapor mixture influences the fluid-flow characteristics of the eruption. At the
rapids of the Colorado River in the Grand Canyon, Arizona. supercritical flow occurs
where debris discharged from tributary canyons constricts the channel into the shape of

a converging-diverging nozzle. The geometry of the channel in these regions can be
used to interpret the flood history of the Colorado River over the past 103-105 years.
The unity of fluid mechanics in these three natural phenomena is provided by the wkell-
known analogy between gas flow and shallow-water flow in converoine-diverging noz-

zles.

I. Introduction: geologic nozzles

An eruption of Old Faithful geyser, a flood on the Colorado River. and a lateral blast
from Mount St. lelens do not, at first glance, appear to be related. A geographic map

of the locations of these three places certainly does not reveal any underlying geologic
unity (Fig. 1). However, a fluid-dynamical unity is revealed when the "locations" are
shown instead on a schematic diagram 2 of gas flowing through a nozzle or shallow
water flowing through a flume (Fig. 2). The analogy between the flow fields for

compressible gas and shallow water is semiquantitative and was thus widely explored in
the early days of wind-tunnel development3 . In modern times the analogy his been
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FIG. 1. Index map of the geographic locations of Crystal Rapids (Grand Canyon,

Arizona), Old Faithful Geyser (Yellowstone National Park, Wyoming), and Mount St.
Helens (Washington).

primarily a teaching too14 and has never been used by geologists to explain large-scale
natural phenomena. The purpose of this paper is to show the basis for invoking nozzle-
flow theory for interpretation of complex geologic events and to provide a perspective
on geological problems in which the importance of supercritical and supersonic flow has
been underestimated.

A major reason that geologic events have not been viewed from the particular
perspective of fluid mechanics presented here is the subdivision of fluid mechanics and
its applied fields into the specialties of compressible and incompressible flow-, for
example, aeronautics versus hydraulics. This subdivision arises from the need to
simplify the complex momentum and continuity equations in order to solve practical
problems. 'Me momentum equation for a viscous fluid moving in a gravitational field
under the influence of a pressure gradient is complex because of dimensionality and
nonlinearity:
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FIG. 2. Four diagrams showing the behavior of gas flowing through a converging-
diverging nozzle, or of shallow water flowing through a converging-diverging flume,
arranged vertically. The nozzle walls are shown by the heavy lines and heavy shading
at the left; the flow direction is indicated by arrows, and the velocity magnitude is indi-
cated schematically by the length of the arrows. The reservoir of gas or liquid is on the
left: P 1, P 2 .... represent increasingly larger reservoir .pressu- s, and H 1. H, .

represent increasingly larger values of hydraulic head, compareu to ambient or down-

stream conditions on the right. At the exit of the nozzle (or channel) on the right, the
structure of the flow field in the departing fluid is shown schematically by medium shad-
ing. Shock and rarefaction waves (alternatively, positive and negative normal and
oblique hydraulic jumps) are indicated by the lightest shading. Relative flow conditions
are shown schematically by the position of the lettering at the right: Old Faithful is sub-
sonic (a) or weakly supersonic (b), Mount St. Helens is strongly supersonic (d), and
Crystal Rapids involves all conditions (a-d) from subcritical io strongly supercritical.

Du VP +V.tr+pg . (1)

In this equation, p is the fluid density, DIDt is the material derivative, u is the
fluid velocity, VP is the pressure force acting on the fluid, V.T is the viscous
force, and g is the acceleration of gravity. The continuity equation for mass is
generally simpler, but is still difficult to apply in a geometrically complicated problem:
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/ -p =-9(V.u) . (2)
Dt

In many cases these two important equations can be considerably simplified by
consideration of the fluid properties or the boundary conditions of the problem. For
example, if pressure changes are relatively small, compressibility can be neglected, so
that p - constant and V u = 0. Such an assumption underlies all of hydraulics, and
geologists with interests in hydraulics or related geomorphic problems typically diverge
at an early stage of their education from advanced studies of compressible fluid
dynamics.

Alternatively, in many flows the pressure gradient may be great enough so that
compressibility is important but gravity is not: g - 0. This latter condition is assumed
in most of gas dynamics and, because of the prominent role of gravity in most geologic
processes, few geologists are exposed to a rigorous gas-dynamics curriculum.

Although the subjects of nozzle gas dynamics and of shallow-water hydraulics
evolve from very different approximations to the conservation equations, important
concepts common to both subjects have been recognized because, when reduced to
suitable nondimensional variables, the conservation equations in the two subjects

become identical. (Readers familiar with this identity can skip directly to Section II.)

Examine first the mass and momentum equations for a perfect gas. For simplicity.

assume that the flow is quasi-one-dimensional along a coordinate direction r. The
equations of mass and momentum conservation for flow of a compressible gas are

ap ap ax+ U - + p-- 3

and
au au 1 DP
- +  - + - - O (4)
at a.- P ax (4

For a perfect gas and isentropic flow,

P V = R T (5)

and

P V7 = PoV'Y = constant , (6)

where P is pressure, V is volume, R is the gas constant, T is temperature,
and y is the ratio of specific heats (the isentropic exponent). The subscript o indicates
a reference state (typically one where the fluid is at rest with velocity u = I o = 0). For

a perfect gas, Eqs. (3)-(6) can be combined to give
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aut al ' y-2 00u ,u Yo =o. (7)at7 +  ax + PJ Y - ax(7

For water flowing from one infinite reservoir into another with lower head, the
equations of motion that can be directly compared with Eqs. (3) and (7) are

a ll a ll /I a ll 00-7 "  +  = o(8)

and
all oil all
a+ - + = 0, (9)

where h is the water depti.. In these cquaticqc, and in the figures in this paper, it is
assumed that in a vertical cross section (containing the coordinate z ), the bottom of the
water is at the channel boundary, = 0, and the water has a free surface at Z = h.
"Ihe free surface is assumed to be at constant atmospheric pressure, Pa, but its
elevation can vary along the channel and with time. The velocity of the water can also
vary with position along the channel, but is assumed constant over any vertical cross
section. The viscosity and compressibility of the water are ignored. Again, as with gas
flow, quasi-one-dimensional flow is assumed -- the contours of the channel walls must
be gradual, and vertical accelerations of the water must be small compared with the
acceleration of gravity, ,

The shallow-water conservation equations (8) and (9) are identical to the
compressible-gas conservation equations (3) and (7) ij (1) water depth, h, is
analogous to gas density, p, and ") the isentropic exponent, y, of the gas is equal
to 2 (a value which, unfortunately, is never attained in real gases, so that the
mathematically equivalent flow fields cannot be physically realized). Examination of
the conservation equations and the equations of state for a perfect gas shows that hz is
also analogous to T, and h 2 is analogous to P. Hence, within the context of all of
the simplifying assumptions, tlow of gas in a nozzle and flow of shallow water in a
flume are governed by the same conservation equations. Identical flow fields therefore
occur when the proper nondimensional variables are considered.

The illustrations in Fig. 2 represent the flow conditions at different ratios of
upstream (reservoir) and downstream (atmosphere or tailwater) conditions. If the figure
is interpreted as representing a cross section of a horizontal nozzle through which gas is
flowing from left to right, the different parts of the figure represent the flow field from
different high pressures (P P , . . .) in the left reservoir. The gas flows into an
infinitely large reservoir (not shown) at lower pressure on the right. Alternatively, if
Fig-. 2 is interpreted as representing a map view of a horizontal channel in which
shallow water is flowing from left to right, the different parts of the figure represent the
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flow field from reservoirs of different depth. The driving energy for the flow is tile
elevated depth of water in the left reservoir compared with the right. The water has a
potential energy, Hr called the head and generally expressed as a depth, indicated

as 111 , 112 .... in the parts of Fig. 2.

With this introduction, let us reexamine the sense in which each of the geologic
problems mentioned above is a nozzle problem5 . The nozzle of the Colorado River is
the river channel, a converging-dive rging nozzle formed by debris flows that constrict
the main channel, and the fluid is shallow water. The "geologic twist" that complicates
simple application of flume concepts is that the walls and bed of the channel are
erodible, and the channel can therefore change shape in response to changing conditions
in the flow. The nozzle of Old Faithful geyser is a fissure of irregular (and largely
unknown) geometry extending more than 20 m into the ground. The geologic twist in
this problem is that the fluid is much more complex than a perfect gas: hot, liquid water
stands in the conduit between eruptions, and then boils and changes through a complex
unloading process into a droplet-laden steamy aerosol during an eruption. The nozzle of

the Mount St. Helens lateral blast was a huge vent created when a landslide caused by
an earthquake opened a vertical scarp nearly 0.25 km 2 in area and exposed a hot,
hydrothermal, magmatic system. The erupting fluid was a hot vapor heavily laden with
ash, rocks, ice fragments, and tree debris. As these three examples show. the scale of

the geologic nozzles is large, the nozzle shapes are irregular, and the thermodynamic
properties of the flowing fluids are complex.

11. Sound velocities and critical velocities: their influence on the flow field

The most important result from the above analogy is the recognition that
characteristic velocities control flow behavior in shallow water and gas flow. For small
disturbances, the equations of momentum (Eqs. (7) and (9)) can be linearized and
written as

-i2 ao -
)2  = 0 (perfect gas) (10)

@t 2 0ax 2

and

a 2-_ g /t o 2 2 =0 (shallow water). (11)

These are the well-known wave equations, from which it can immediately be seen that
small disturbances propagate with characteristic velocities proportional to the square
root of the coefficient of the second term. In compressible gas flow, the characteristic
velocity is the sound velocity, a o , the velocity at which small perturbations in density
or pressure propagate through the fluid:
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a2 = P is' (12)

where the derivative is taken at constant entropy, S. In shallow-water flow, the
characteristic speed is the critical velocity -- the velocity of a gravity wave of long
wavelength and infinitesimal strength:

c 2 g h (13)

In both cases, the nature of the flow field depends on the magnitude of the fluid
velocity compared with the characteristic velocity. The Mach number, Al, of a
compressible gas flow is the ratio of the mean flow velocity to the sound speed:

Al =u/a (14)

The Froude number of shallow water flow. Fr, is the ratio of the mean flow velocity
to the critical velocity:

Fr = u/c . (15)

The local flow variables are determined by these dimensionless ratios, which, in
turn, depend on reservoir conditions and geometry. For gas flow, the important
parameters are the ratio of the pressures in the driving and receiving reservoirs, the area
ratio along the axis, and the gas equations of state (particularly R and y for a perfect
gas). For shallow-water flow, the important parameters are the ratio of upstream to
downstream energy and the area ratio of the channel. Depending on the values of these
parameters, the flow field can have dramatically different properties, as illustrated in
Fig. 2.

Consider, first, that Fig. 2 represents the flow of gas through a nozzle. When the
pressure P1 in the reservoir is "low" 6, the fluid accelerates from the reservoir into the
constriction and decelerates in the diverging section (Fig. 2a). This is the classic venturi
tube, and the flow is everywhere subsonic.

If the pressure ratio is higher (Fig. 2b), the fluid accelerates from the reservoir into
the converging section and can reach sonic or choked conditions (M = 1) in the throat:
it can be rigorously shown that sonic conditions can only occur in the throat. At one
particular pressure ratio the flow can decelerate back to subsonic conditions in the
diverging section, but for higher values it will accelerate to supersonic conditions in the
diverging section. Strong nonlinear waves -- shock and rarefaction waves -- can be
present and are, in fact, usually required to decelerate the flow back to ambient
conditions in the exit reservoir. At pressure ratios for which supersonic flow conditions
are obtained, a normal shock stands in the diverging section and the deceleration to
ambient conditions occurs within the nozzle between the shock and the exit plane (Fig.
2b). At still higher pressure ratios (Figs. 2c and 2d) the shock is "blown out" of the
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nozzle, ,ind a complicated flow field consisting of oblique and normal shocks and mixed
regions of subsonic and supersonic flow exists within the exiting jet. Because the
decelerating waves are nonlinear, the jet "overshoots" ambient conditions and multiple
shock and rarefaction waves are required to achieve the pressure balance 7.

Consider alternatively that Fig. 2 represents shallow-water flow. When the head
difference between the reservoirs on the left and right is "small" 8, the flow is subcritical
everyvwhere -- the fluid accelerates in the converging section and through the
constriction, and decelerates in the diverging section (Fig. 2a). The flow field is
analogous to that in a venturi tube. The word streaming is often used for subcritical
flow.

If the head ratio is greater, as indicated in Fig. 2b, the flow accelerates from the
reservoir througlh the converging section and can reach critical conditions (Fr = 1) in
the constriction. At the critical value of head ratio the flow can decelerate to subcritical
conditions in the diverging section, but for other higher values it will accelerate to
supercritical conditions in the diverging section. The word shooting is often used for
supercritical flow. Strong nonlinear waves, in this case called oblique (or slanting) and
normal hydrauldic jumnps, are generally required to decelerate the flow back to ambient

conditions in the downstream reservoir. Depending on the head ratio and the severity of
the constriction, waves can stand in (Fig. 2b) or downstream of (Figs. 2c and 2d) the
diverging section 9.

The flow fields shown in Fig. 2 are a subset of possible flow conditions, for they do
not show possible wave structures that arise if fluid enters the constricted part of the
nozzle in a supersonic or supercritical state. Such conditions can, in fact, be obtained
geologically. For example, if a change in river-bed elevation causes water to accelerate
to supercritical conditions before a lateral constriction is encountered, the flow can be
supercritical as it enters the convergence, rather than subcritical as illustrated in Fig. 2.
For simplicity, this complexity is ignored in this paper.

Supersonic or supercritical conditions are amazingly easy to obtain in geologic
settings. If the ratio of reservoir pressure to atmospheric pressure in a gas nozzle is
more than about 2, sonic and supersonic flow will occur in the nozzle; for comparison,
the ratio of pressure in a volcanic reservoir to atmospheric pressure is often around
100: 1. If shallow water flows from one reservoir to another that has less than 2/3 of
the head of the source reservoir, critical conditions can be obtained in the throat; for
comparison, backwater depths on the Colorado River may exceed downstream tailwater
depths by a factor of 2. Thus, the existence of supersonic or supercritical flow fields in
geologic settings is conceptually reasonable.

Our intuition, however, generally fails to prepare us for the possibility of such flows
in the natural world. We commonly think of supersonic flow in terms of modem
aeronautics: objects obtain high Mach numbers by moving very fast through air, which
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has a high sound speed. Geologic fluids rarely move at the speeds characteristic of

modem aircraft (except in some volcanic eruptions), but the entire spectrum of flow

behavior from subsonic to supersonic (and subcritical to supercritical) can occur in
geologic flows because the fluids can have very low characteristic velocities. Fluids

with low sound velocities can develop internally supersonic flow fields while still

moving subsonically with respect to the surrounding atmosphere. That is, there can be

standing shock or rarefaction waves internal to the flow, but no standing waves in the

external medium.

Fluids in geothermal and volcanic settings typically have low sound speeds: water

that contains gas bubbles (e.g., air or C0 2) or steam bubbles (boiling water) has a very

low sound speed, because the gas bubbles dramatically increase the compressibility of

the mixture, c . An alternative form of the definition of sound speed, a = (11/¢s) 1/2 ,

shows this dependence clearly. The sound speed in an air-water mixture can be as low

as 20 m/s. The sound speed is further decreased in a mixture in which the bubbles are

of the same composition as the liquid (e.g., steam bubbles in boiling water), because

exchanges of mass and latent heat accompany passage of a sound wave- these exchange

processes also decrease the sound velocity. Sound speeds as low as I m/s are possible

for boiling water

The dependence ot sound 2cz'd on phase, and on pressure and temperature, can be

shown on an entropy-density (S-p) phase diagram t ' (Fig. 3). This representation is

suggested by the definition of sound speed given in Eq. (12) above: on a graph of

density versus entropy, sound speed is proportional to the vertical gradient of isobars.

Such a graph can be read as an ordinary topographic map on which "flatlands" represent

low sound speeds and "cliffs" represent high sound speeds (shown schematically in the

inset in Fig. 3). The S-p representation shows the wide range of sound speeds

characteristic of simple one-component substances. If such fluids flow from high to low

pressure (e.g., in eruptions or in geo-thermal wells), the phase of the fluid can change

from liquid to liquid + vapor, or from vapor to vapor + liquid. A hypothetical

decompression path appropriate to Old Faithful (and discussed later in Section IV) is

shown as the vertical line (a) in Fig. 3. Note that along this decompression path the

sound speed can change by several orders of magnitude. If the fluid is in a two-phase

state, flow velocities of only a few tens of meters per second can give a wide range of

Mach numbers, including sonic (M = 1) and supersonic (M > I) flow.

Mass loading of vapor with solids or liquid droplets also produces fluids with low

sound speeds. No data or theories exist for the fluids encountered in volcanic problems,

where, for example, the mass ratio of solids to vapor can exceed 100, and particle sizes

within a single flow can range from microns to meters. At present, we can only apply

simple pseudogas theory to this problem to obtain characteristic sound speeds (Fig. 4).

Sound speeds of 50 to 100 m/s are plausible. Flow velocities in gassy volcanic

eruptions are commonly on the order of 100 m/s and can exceed 500 m/s. Therefore, a
wide range of Mach numbers, including M > 1, can be obtained.
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Finally, note that the critical velocity in shallow-water flow plays the same role as
the sound speed in determining transitions between linear and nonlinear flow regimes.
Critical velocities in rivers can be of the order of the flow velocities, even in major
rivers where large depths increase the critical velocity (Eq. 13). In the Colorado River
in the Grand Canyon, for example, water depths of the order of 10 m are common; the
corresponding critical velocity is 10 m/s. In most calm stretches of the river, flow
velocities are on the order of 1 m/s, and Froude numbers are less than 0.1. In major
rapids, however, where the water becomes shallow and fast, the flow velocity can
exceed the critical velocity (Fr > 1). Supercritical flow is not common in rivers"-, but
when it does occur, the geologic consequences can be great; one such case is discussed

in the following section.
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Pseudogas Sound Speeds
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FIG. 4. Sound speed, a, of pseudogas versus mass ratio, m, of solids to vapor
(steam). Curves foi three different temperatures spanning the range of geothermal and
volcanic interest are shown. The sound speed of pure liquid water is indicated. The

isentropic exponent, 'y, varies with m as indicated at the bottom of the graph.
Because the mass loading is high (of order 10, say) in many volcanic eruptions, y is
near unity.

Many simplifications have been made in the discussion above, and these, as well as
others, will be used in the analyses below: e.g., thermodynamic equilibrium: isentropic,

quasi-one-dimensional flow; steady flow; and perfect gas or pseudogas behavior. One
additional major simplification in the following analyses is that the flow fields are
assumed to be either compressible and gravity-free (M > 1, Fr > 1), or gravity-

dominated and incompressible (Fr < 1, M <1 ). The assumption of incompressible
shallow-water flow is good for the Colorado River. However, compressibility and
gravity are probably both important for the flow fields of Old Faithful and the Mount St.
Helens lateral blast (i.e., M > 1, Fr < 1)13. This complex problem is only beginning
to be addressed as the capabilities of modem supercomputers are being turned toward
the problem.

III. Crystal Rapids: subcritical and supercritical flow in an erodible channel

A. Geologic setting and the events of 1983

The Colorado River is the largest of the great rivers in western America. In the
400-km stretch through the Grand Canyon, numerous debris fans have been deposited
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FIG. 5. (a) and (b) Crystal Rapids at two dramatically different discharges. (c) and
(d) Keys to features in (a) and (b). (a) June 16, 1973 (U.S. Geological Survey Water
Resources Division air photo). The discharge in (a) was about 283 m3/s (10,000 cfs):
the discharge in (b) was 2,600 m3/s (92,000 cfs). The rise of the river shoreline from
the lower (southern) end of the debris fan in (a) to the base of the old alluvial terrace in
(b) represents a stage change of about 5.5 m. Note the constriction of the river channel
as it passes downstream from left to right through the debris fan, and the expansion
downstream of the debris fan. In the downstream region (beginning approximately at
the inflection point on the right half of PP' and extending past P' in (a)). the channel
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FIG. 5. (continued)

bottom is littered with boulders (the "rock garden" whose origin is discussed in the text).
Rocks in the rock garden are visible at 283 m3/s (10,000 cfs) as shown in (a). cause
subs!nti6l waves at 30,000 cfs, and are submerged at 2600 m 3/s (92,000 cfs) as shown
in (b). PP' was the preferred navigation route prior to 1983. The normal hydraulic
jump of interest in this paper (indicated by NW in (c) and (d)) is not easily visible in the
two photographs, both because of the large area covered by the photos and because
turbulence and many small waves cause variations in the reflectivity of the features on
the water. The wave can be seen in detail in Fig. 7. (c) Schematic cross-sections. The
relative widths are correct; the vertical scale is arbitrarily exaggerated. The important
points to note from the cross sections are the small cross-sectional areas at BB' caused
by high velocities in the constricted part of the rapid, and the greater depth in CC'
caused by the hydraulic jump (shown schematically as an exaggerated wave on the

water surface).

by flash floods in tributary canyons (Fig. 5). Flash floods in the tributaries can carry
boulders many meters in diameter into the path of the Colorado River, because the
gradient of the tributaries is quite steep. When emplaced, the large debris fans
temporarily obstruct the path of the river, damming it until the debris deposit is
breached and a new channel carved. The major rapids on the Colorado River are
located where the river passes through these debris fans.
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The channel of the Colorado River resembles a converging-diverging nozzle in the
vicinity of these debris fans (note the constriction of the channel in Fig. 5). Typically,
the channel narrows from a characteristic upstream width of about 100 m to a narrowest
point in the "throat" of the rapid, and then diverges back to a downstream width about

equal to the upstream width (e.g., Fig. 5). The ratio of the width of the river at the
throat to the width at an average upstream section is the constriction of the river; I will
also refer to it as a "shape parameter." Constrictions at the debris fans in the Grand
Canyon are remarkably unifon at a value of about 0.5 (Fig. 6). There is no a priori
reason to believe that the debris fans themselves were emplaced in such a way that, by

coincidence, half of the main channel was blocked. What, then, is the significance of

this characteristic nozzle shape? It must be telling us something about the ability of the
Colorado River to erode its own channel, i.e., to contour its own nozzle.

Because the.debris fans are generally very old (of the order of 103 to 105 years) and

because the flash floods that create and renew them are rare, we have little hope of
observing the processes that create the balances between tributary floods anu ,iain

channel erosion. However, a unique series of events spanning the two decades from
1966 to I986 has given us a glimpse of these processes. In January. 1963. Glen Canyon
Dam at Page, Arizona (Fig. 7) was closed, and the discharge into the Colorado River

through the Grand Canyon became controlled by demands for electrical power and
water storage at the dam, rather than by natural flooding. About four years after the

dam was closed, a flash flood down Crystal Creek emplaced a large debris fan across

the river about 175 km below the dam (Fig. 5). There were no witnesses to this event:

30 I I I I
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FIG. 6. Histogram of constriction values (shape parameter) for the Colorado River as it

passes 54 of the largest debris fans in the 400-km stretch below Lee's Ferry, Utah.
These values are based on the widths of the surface water in the channel in 1973 air

photos (such as shown in Fig. 5).
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by the time observations %%ere made, the Colorado Ri\ er had carved a channel throueh1
thle distal (south) end of' thle debris tIan. When hIrst masliredl (on the 1973 air

photograph shown in Fig. 5), thle constriction of the river channel through the fan 14was

roughly 0.33, substantially more severe than thle constrictions of' the more mature fanls
along- thle Colorado River. From 1966 to 1 983. the Lischar es throuch thle damn were
held below 850 m3is ( 30.00(0 cubic f'eet per second (c cis) 15. and the constriction
remnained at about 0.33.

The water surfa'ce of' the Colorado River became very rough and turbulent a,; it
passed through tile Crystal debris fan -- this stretch of w-ater, nearly I kml long, is
known as Crystal Rapids. The boulders, waves. anLI eddies in Crystal Rapids made it
ooe of the two most dif'licult stretches of thle river for raft navigation, even at the nomial
levels of controled discharees between 1966 and 1983 (1401) m/ s (5.000 cf's) to 850

iI / 30,000 c's )). Trhe rapid is a major hazard f'or recreational raft inc. anl activ itv inl
the Grand Canyon involving about 10,0)00 People ecWii year. Between 1960 anLd 1983,
the major na vigoational obstacleC occurredl where- wVater poured over a laroe rock into a
Llcep hole and emerged thrtough a sharp-crestedl wave in the niarrowest part of' thle rapid.
11liis feCature was knowit 1 as thle ''Crystal I lole'' t( lv location of- thle Crystal I fl I is shown 1
in Fig,. 5, buit thie f'eature itself is too small to showv at the scale of, this photograph).

At lowv (ischaries, a rock about 2 i hi-lh was seen as the cause of' this hydraulic
teaLi3[re. andI the si cii icance of' this rock relative to the sioi icatncc of' thle sev ere
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constriction was, in hindsight, overestimated. Many waves in the rapids of the Colorado
River are caused by large rocks. River guides who ran the river before Glen Canyon
Dam was closed, when large natural floods reached 2,300 to 3,600 m 3/s (80,000 to
125,000 cfs) annually, reported that, in most rapids, the waves became very weak or
disappeared ("washed out") at high discharges because the obstacles causing them
became submerged ("drowned"). There was, however, no record of the behavior of
waves in Crystal Rapids at discharges exceeding 850 m3/s (30,000 cfs), because the
rapid -- in its modern severe form -- did not exist before construction of Glen Canyon

Dam.

In 1983, rapid snow melt in the headwaters of the Colorado River forced the Bureau
of Reclamation to increase discharges through Glen Canyon Dam to 2,600 m3/s (92,000
cfs) to prevent Lake Powell from flowing over the dam. As discharges increased above
850 m 3/s (30,000 cfs) -- a level that had not been exceeded for two decades -- the waves
in most rapids disappeared, as expected. The rapids "drowned out" and the river ran
smooth and fast through most of the Grand Canyon.

This was not the case at Crystal Rapids: as the discharge reached 1,700 to 2,000
m 3/s (60,000 to 70,000 cfs), a wave reported by experienced boatmen to have been as
high as 9 m, and photographically documented to have exceeded 5 m. stood across most

of the river channel (Fig. 8). At greater discharges the height diminished -- at 2.600
m3/s (92,000 cfs) the wave surged only between 3 and 5 m. Because typical river rafts
are 5 to 11 m in length and 2 to 4 m in width, the wave was a severe obstacle to
boating. One rafter was drowned, and dozens of others were seriously injured. The

National Park Service closed the rapid to commercial boating until the discharges were
decreased. The existence of this large wave at high discharges, and its evolution with

changing discharge, provided clues about the relation between the Colorado River and
its debris fans.

B. Results of analysis of shallow-water flow

Certain aspects of the flow in the rapids of the Colorado River can be analyzed in

terms of conservation of mass and momentum for flow in a converging-diverging
channel16. As discussed in the context of Fig. 2, the shape of the channel, and the

upstream and downstream reservoir heads, must be specified. The river channel, which
is actually very irregular in shape (Fig. 5c), is simplified to be rectangular in cross-
section for the analysis. This simplification causes the shape parameter (the average
constriction) to be 0.25, instead of the value 0.33 measured from the surface width of
the water.

Six different flow zones can be identified, as shown in Fig. 9a: (0) an upstream state

of unconstricted, uniform flow; (1) the convergent section of the channel upstream from
the constriction; (2) the constriction; (3) the beginning of the divergence; (4) the end of
the divergence; and (5) a downstream state of uniform flow not influenced by the
constriction. Regions (3) and (4) may be separated by a hydraulic jump.
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(a)

(b)

FIG. 8. River raft (a) entering and (b) trapped in the large wave at Crystal Rapids on
June 25, 1983, when the discharge was approximately 1,700 m 3/s (60,000 cfs).
Photographs copyrighted by Richard Kocim: reprinted with permission. The pontoons
on the raft are each I m diameter; the midsection is about 3 m diameter. More than 30
passengers are on board, one head is visible on the lower left side of the raft in (b). To
aid the reader in distinguishing the water surface in the foreground and near the boat
from turbulent water in the background, a white line has been drawn along the
approximate surface of the water upstream from and through the hydraulic jump in (a).
From the scale of the raft, the trough-to-crest height of the wave can be estimated to
exceed 5-6 m.

Water flows through the rapid because the upstream reservoir is higher than the
downstream reservoir. In a notation slightly changed from that used in the general
equations of Section I, to be consistent with Fig. 9b, application of the Bernoulli
equation to any two cross sections 1 and 2 gives the total energy balance as

z + D + - z-, + D 2 +- +E, (16)2g, 2g,
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FIG. 9. (a) Schematic map view of the river and the debris-fan configuration at Crystal

Rapids. The debris fan at the bottom of the map emanates from Crystal Creek. SC
indicates the position of the other tributary, Slate Creek. The regions 0. 1, 2, 3, 4, 5 are

defined in the text. HJ indicates a possible hydraulic jump. (b) Schematic longitudinal
profile, showing the notation used in the energy relation given in the text and in Fig. 10.

where E is the energy dissipated between sections 1 and 2. (The change in convention

from the variable h used in Section I for water depth to the variable D is required to

account for a sloping channel bottom by referencing both the channel bottom and the

water surface to a datum plane, as in Fig. 9b). For simplicity, and because of a paucity

of data, the energy change due to the change in bed elevation (ZI - z 2 ) is assumed to

be compensated by energy dissipation in the flow, E. This assumption allows the flow

to be considered at constan-t spccific energy (D + u except across hydraulic
jumps. For the analysis, the discharge variation of the specific energy of the

unconstricted flow upstream of Crystal Rapids was estimated from measurements at a

U.S. Geological Survey gage station 16 km upstream at Bright Angel Creek (Fig. 10a.

heavy line, /,). The flow below Crystal Rapids was assumed to return to this same

specific head.

The flow entering the rapid can have the ambient specific head. Hr if and only if

all of the discharge can be accommodated through the constriction. If the constriction is



161

Discharge (1000 cts) Discharge (1000 cfs)100

0 20 40 60 80 0 20 40 60 80 100
18 1 1 11 I 14

(a) Specific head (1') Height .

16 - 12

14 -0 10

128

0"

10 60

8 '

42

4 (c) u. (solid). u.(dashed) (d) u, .1 12

18 -10

16

14

, 5

C12 - (e) Au through jump Ol. 10

10 8

86

0 25
" _N ~- _s..-- .

2 0
0 20 40 60 80 0 20 40 60 80 100

Discharge (1000 cfs) 100 Discharge (1000 cfs)
[ I I I I I I I I I

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

Discharge (m 3
/s) Discharge (m3/s)

FIG. 10. Summary of the shallow-water flow calculations for Crystal Rapids given in

Kieffer 16 Subscripts on the various parts of this figure refer to regions defined in the

text and shown schematically in Fig. 9; e.g.. u 2 is the flow velocity in flow zone 2. In
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all sections of this figure, the curve appropriate to the initial constriction at Crystal
Rapids, 0.25, is shown by a heavy line. (a) Specific head, Hr, of the unconstricted
river versus discharge. The curves labeled Hb are the backwater heads that develop
upstream of Crystal for conditions of critical (choked) flow. The backwater head
depends on the constriction and is given for values ranging from 0.20 to 0.425, as
labeled on the curves in this and all other parts of the figure. (b) The curves show the
calculated height of the hydraulic jump that separates regions 3 and 4 when supercritical
flow occurs; the constrictions are indicated on each curve. The bars are values observed
during the 1983 flood. (c) The solid curves (top) are calculated values of the flow
velocity in the diverging section of the channel (region 3) immediately upstream of the
hydraulic jump. The dashed curves (bottom) are calculated values of the flow velocity
in the diverging section of the channel (region 4) immediately downstream from the
hydraulic jarn-1p. The horizontal dashed line at 9 m/s indicates the velocity at which
larger boulders at Crystal Rapids can probably be moved by the current. (d) Calculated
Calculated values of velocity in region 2, the constriction. The flow is subcritical where
the curves are dashed. (e) Calculated decelerations through the hydraulic jump that
separates regions 3 and 4.

too severe, the ambient head of the flow, Hr , may not be sufficient to allow the
discharge to be accommodated through the constriction. In such cases, critical
conditions occur in the constriction, and a backwater is required upstream. The
deepening of the backwater increases the specific head of the flow over that in the
unconstricted part of the channel and pemiits a greater discharge per unit area through
the constriction. The calculated backwater head, 11b, compared to the ambient river
head, Ilr, is shown as a function of discharge, Q, and constriction value in Fig. 10a.
Note from this figure that, for a constriction of 0.25, a backwater head is required for all
discharges over about 300 m3/s (- 10,000 cfs) 17 . This means that supercritical flow
will occur in the rapid at discharges above this value.

Solutions of the shallow-water flow equations (Figs. 10 and 11) show that Crystal
Rapids went through the entire spectrum of nozzle behavior shown in the sketches of
Fig. 2 as discharges increased during the 1983 flood"8 . At discharges below about 300
m3/s (- 10,000 cfs) the flow was essentially subcritical1 9 (curve A in Fig. 11). At
higher discharges the flow became critical, and then highly supercritical (curves B-E in
Fig. 11).

A hydraulic jump is required in the diverging section of the rapid to decelerate the
supercritical flow and to drop its energy from the backwater head, t l b , back to the
ambient downstream head, Hr . Thus, the model suggests that the large wave that stood
in the diverging section of Crystal Rapids at high discharges can be interpreted as a
normal hydraulic jump arising from the severe constriction of the channel (Fig. 2). In
hindsight, this wave can be recognized as having been present all through the 1966-1983
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FIG. 11. Schematic longitudinal water profiles at Crystal Rapids for the 1983

discharges up to 2,550 m3/s (90,000 cfs), showing the effect of channel widening and
bed erosion on the height of the hydraulic jump. The parts of the rapid defined in the
text and in Fig. 9 (regions 0-5) are shown schematically by the labels below the graph.

Each curve represents a different discharge and may be related to a different bottom
level, depending on the erosion presumed to have taken place. For example, curves A

and B are for discharges of 283 m 3/s (10,000 cfs) and 850 m 3/s (30,000 cfs),
respectively, and show the water surface relative to the top of the movable bed labeled

A,B. Curves C, D, and E are for discharges of 1,400 m 3/s (50,000 cfs), 1,700 m3/s
(60,000 cfs), and 2,550 m3/s (90,000 cfs), respectively. Each curve shows the water
surface relative to the bed labeled with the same letter; the base level of the bed changes

because of erosion, as discussed in the text. Each curve is labeled with the constriction
assumed to apply during the 1983 discharges. For the conditions under which
supercritical flow occurs (curves B-E), the height of the hydraulic jump and the velocity
change across it are given beside the vertical line representing the jump.

phase of Crystal Rapids. However, because the large rock in this vicinity acted like a
small-scale natural weir, the energy change of the flow around the rock contributed
substantially to the energy of the wave at low discharges, so that the role of the
constriction was not recognized. Only when the wave strengthened with increasing
discharge, rather than washing out, was the role of the constriction recognized.

As the discharge through Glen Canyon Dam rose from 850 m3/s (30,000 cfs) to

about 1,700 m 3/s (60,000 cfs) in June, 1983, the height of the wave increased, as would

be expected for a hydraulic jump in a channel of fixed geometry (Fig. 10b; compare the

left four data bars with the heavy curve). At higher discharges, however, the height of

the wave decreased, rather than increasing as predicted by the calculations (Fig. l0b:
compare the right data bar with the heavy curve).
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This puzzling observation can be explained if the magnitudes of the flow velocities
in the constriction and upstream of the hydraulic jump are examined (Figs. 1Oc and IOd;
see also the profiles in Fig. 11). In supercritical flow, water accelerates in the
converging section of the nozzle, reaching critical velocity, 112, in the throat. The

water continues to accelerate out the diverging side of the constriction, reaching a
maximum velocity, u 3, immediately upstream from the hydraulic jump. A sudden

deceleration to velocity u4 occurs across the hydraulic jump as the flow deepens. For

example, at a discharge of 1.400 m3/s (50,000 cfs), witfl a constriction of 0.25, the
calculated velocity in the constriction, l12, is 9 m/s and the velocity increases
to 13 = 14 m/s just upstream from the hydraulic jump (Figs. 10c and 10d). The

velocity decreases to 114 - 3 m/s just downstream from the jump.

Considerati ri of the Hjfilstrom criterion for particle movement and of unit stream
power shows that water moving at 9 m/s can move boulders that are 1-2 m in diameter,
the characteristic size of the large boulders of the Crystal debris fan. Therefore, when
velocities reached this magnitude (at discharges in the range of 1,400 to 2,000 m3/s
(50,000 to 70,000 cfs), as shown in Fig. 10), large scale erosion began: that is, the river
was able to begin contouring its own nozzle. Material was eroded from the sides of the
channel and from the river bottom. Vertical erosion scoured the channel in an upstream
direction (headward erosion); lateral erosion increased the width of the throat. An
observer standing on the shore could not see this erosion taking place, but could hear
loud, bass booms as boulders moved in the current.

Channel widening at the throat can account for the observed decrease in height of
the hydraulic jump. Comparison of the observed wave height with that predicted for a
normal hydraulic jump as the discharge changed from 1,700 m3/s (60,000 cfs) to 2,600

m3/s (92,000 cfs) suggests that the channel widened from a shape parameter of 0.25 to
about 0.40-0.42, a widening of 12-13 m (Fig. 10b). The location of this erosion is
shown in the photograph of Fig. 12.

In summary, a fascinating, and often tense, feedback process involving meteorology,
river hydraulics, and engineers began in June 1983 and continued into early July as the
discharge increased: this process can be followed on the curves of Fig. 10. As snow
melted in the Rocky Mountains, engineers raised the discharge through the dam higher
than the 850 m 3/s (30,000 cfs) released during the previous two decades. At the tightly
constricted spot in Crystal Rapids, a large hydraulic jump formed because the flow
became highly supercritical. As the discharges approached 1,700 m 3/s (60,000 cfs), the
river began eroding its channel through the Crystal Creek debris fan. In response to the
widening, the flow velocities decreased. If the discharge had been held constant, the

6,UUACi alld hiy-udUl;. ACatures of the flow would have stabilized when the channel
became wide enough to reduce flow velocities in all sections below about 9 m/s.
However, more snow melted in the headwaters of the Colorado River, and engineers
were forced to increase discharges through the dam toward 2,600 m3/s (92,000 cfs). In
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A

FIG. 12. (a) and (b) Comparison of the shore line at Crystal Rapids (a) before and (b)
after the 1983 high discharges. The arrow indicates a large rock visible for reference in
both photos. The discharge in (a) is about 283 m3/s (10,000 cfs); in (b) it is about 170
m3/s (6,000 cfs). Note the widening of the channel immediately downstream (right) of
the indicated rock. Even though the discharge is lower in (b) than in (a), boats can be
seen in an "alcove" in (b) which they could not have reached under the conditions
present in (a). The shore where this erosion has taken place is the channel bou.,dary
along regions 2 and 3 where the flow velocities were the highest during 1983. In the
field, a cut bank nearly 2 m in height can be traced from the left side of (b) to the boats.

response to the increased discharge, flow velocities again increased, and erosion of the
channel continued; by the time of peak discharge, enough lateral erosion of the channel
had occurred that the height of the hydraulic jump had decreased. It is not clear at this
time whether the high flows were sustained long enough for the channel to take on a
shape in equilibrium with the high discharge.

C. Implications for geomorphic evolution in the Grand Canyon

Even after the channel was widened by the high discharges of 1983, the constriction
of 0.40-0.42 at Crystal Rapids is still significantly below the value of 0.5 characteristic
of the mature debris fans along the Colorado River (Fig. 6), and the rapid is significantly
different in hydraulic character from rapids at locales where the constriction is 0.5. This
observation suggests that most debris fans in the Grand Canyon have been subjected to
floods larger than the 1983 flood. With proper recognition of the simplicity of the
model and the paucity of data, extrapolation of calculations at Crystal Rapids can be
used to estimate the magnitude of flood that might have been required to enlarge the
constrictions to the value of 0.5 observed for most debris fans (Fig. 6). A flood of
11,000 m3/s (400,000 cfs) is estimated 16. This is not an unreasonable estimate, because
it is known that a flood of 8,500 m3/s (300,000 cfs) occurred in 1884.



166

The calculations also indicate that when constrictions of the Grand Canyon debris
fans reach the value of 0.45, the flow will be essentially subcritical1 9 at all discharges.
Although some standing waves and local regions of supercritical flow exist in most of
the rapids of the Grand Canyon because of smaller-scale changes in bed elevation
(including large rocks) than are considered in this simple model, the wave at Crystal
Rapids was unique: other rapids that are less tightly constricted do not have strong
normal waves (river rafters might disagree, because many of the existing waves are
strong enough to flip rafts, but, at the scale of convergent-divergent constrictions
considered here, these are local features.)

Over geologic time, the flow in Crystal Rapids can change from subcritical to
supercritical (or vice versa) in two ways: (1) as discharge changes from season to
season in a channel of fixed constriction, flow may pass from subcritical to supercritical,
or vice versa; or (2) as channel constriction changes with time because of erosion
during large floods or because of tributary debris flows. This evolution is summarized
in Fig. 13, a version of Fig. 2 appropriate to Crystal Rapids that shows explicitly the
response of channel shape and flow structures to changes in discharge. The sequence
shown represents but one cycle in recurring episodes in which debris fans are enlarged
by floods in the tributaries and then modified by floods in the main channel.

The beginning of the sequence is arbitrarily chosen as a time when the main channel
is relatively unconstricted (Fig. 13a). The river is suddenly disrupted and ponded by
catastrophic debris-fan emplacement (Fig. 13b), forming a "lake" behind the debris dam.
The surface over which water pours across the freshly emplaced debris fan is called a
"waterfall" in this model. As the ponded water overtops the debris dam, it erodes a
channel, generally in the distal end of the debris fan (Fig. 13c). This is the beginning of
evolution of a "rapid" from a "waterfall." Observations of naturally emplaced earth
dams suggest that the breaching of the Crystal debris dam probably happened within
hours or days of its emplacement.

Unless the debris dam is massively breached by the first breakthrough of ponded
water (that is, unless enough material is removed so that the shape parameter is initially
greater than 0.5), the constriction of the river is initially severe. Floods of differing
sizes and frequency erode the channel to progressively greater widths (Figs. 13c, 13d,
and 13e). Small floods enlarge the channel slightly, but constricted, supercritical flow is
still present (e.g., as in Crystal Rapids from 1966 to 1983). Moderate floods enlarge the
channel further, and the geometry observed at any instant reflects the largest food in the
history of the fan. Rocks from the debris fan are transported as far as 1 km downstream
by the high-velocity water in the convergent, constricted, and divergent regions to form
the "rock gardens" that lie below many such debris fans (Fig. 5a shows the Crystal rock
garden).

Mature debris fans that once blocked the Colorado River and now have channels cut
through them have progressed with time from the bottom to the top of Fig. 2 (or,



167

(a) Initial channel (b) Side-canyon flood
geometry 90 ned

,7 'rapd c .

W. d debi

%fan

(d) Erosion: moderate flood,
(c) Erosion: small floods supercritical flow

w2 O.4w2

HI HJ

~ P1 ock arden

(e) Erosion: large flood, M Longitudinal cross-sections
subcritical flow c f te i wat ercalll

cfigu 3 cetcisration of theacmet ndolderaio o debris fans.tisaeoeoralzhwv, tha the

altrn teCannel modthed river sothbeoe okered ortih CnstRictd byuributary6
floodsH indcftue yrui up e h etfradsuso f()()

gf eomphologiftheiClcro iegive trush ohn haroe o lid ma-echncsi

geologayro Firg the itreton ofe) beaus ajoralfdave asaeydaui juparg enotg fro
ackute furomiar-chae channe geoty uperoiesca differentipespctfonre
mitohrig andhrouhetng evntsn a nwl fotrm ryaapids sctv evaluae orh
Naonuaio Par Sevie ofdeiciabs conene ith naiaweoetioaliey Anyevra nel
fonred bylaers foma exhibit60 3/ hydrauli frs) difren fromen to senificn

atrechannel o thro ler dris asdi because bofcted seregh constrictonb thatarb

preset Theerpiveds houl bmintoredaosel f unuhsually hih dshadrgeis arepu

thrughmGlenoCay o (ae

FG.ooy First Schei illtreation of eaemowen ad mohdfiaulion of derisfsing ntho
Gan rCanon bumfodlre-dafter thaneger proobrvde at Crsadiffn drpig 1966
mon, ito in n dict vs a hyrui njmew fo e rapid for a perspcsion ofvalle fo

(f)ormbyai lonitin ross mayeciont hrougic ftres ainffaneltfose in ()()

cychally, thromug. 13ae todebrsfn, because ofatura flosve beeticn harg en to
creaet.e rapidsl channl frme onitiadloly upernusuialy costictios.Charestrolled
dicgsthrough Glen Canyon Damwl o emtCytl aist vlet h

conigraio o th ode dbrs fns I i aesoe o eaiz, hweer tatth



168

Second, the interpretation of critical flow in the constriction and supercritical flow

downstream from the constriction predicts erosion in quite different places than would
be found in a subcritical nozzle, and the interpretation of this shape allows modeling of
sizes of ancient floods. Interpretation of the flow in this way also allows a mechanism

for transporting large boulders a significant distance downstream from the original
debris deposit into rock gardens, because of the high velocities that can occur
downstream of the constriction in supercritical flow. Without such a mechanism,

geologists are faced with the dilemma that tributary debris flows from side canyons are
building weirs across the canyon, and downcutting through these weirs is difficult

because only local abrasion or chemical solution can be invoked to get rid of the rocks.

The relative roles of local abrasion, solution, and downstream transport of large particles

must be understood before quantitative models of infilling versus downcutting of the

Grand Canyon can be formulated.

Finally, the framework of supercritical to subcritical evolution of the rapids with

time and through flood events of different sizes suggests new directions for geologic and
hydraulic observations at the rapids: searches for geologic evidence of the estimated

8,500 m3/s (400,000 cfs) prehistoric flood; evaluation of the relative roles of lateral con-

striction versus vertical topography on the channel bottom; documentation of wave
behavior as discharge changes; laboratory experiments on the three-dimensional shapes
of hydraulic jumps in flumes of converging-diverging geometry; development of criteria
for transport of large boulders ( >1 m) by fluids (a research topic that will be discussed
again in the concluding section of this paper on the Mount St. Helens lateral blast): and

evaluation of the relative frequencies of tributary versus main stem floods in determin-
ing the rate of downcutting by the Colorado River within the Grand Canyon.

IV. Old Faithful geyser: a two-phase nozzle

A. Geologic setting

Reports of geysers and hot springs in the land that is Yellowstone National Park

began in the early part of the 19th century. Old Faithful Geyser has since become a
familiar symbol of the western lands of the United States and their national parks (Fig.

14). More recently, Old Faithful became an important focus of scientific studies 'hen
striking resemblances between a peculiar type of volcanic seismicity known as "har-

monic tremor" and the seismicity of the geyser were noted and explained 20 (Fig. 15).
Harmonic tremor is a relatively monochromatic seismic motion that often precedes or

follows volcanic eruptions; as a precursor, it has been invaluable in forecasting erup-

tions, even though no theory has adequately explained its origin. Harmonic tremor is
also an important component of the seismic noise characteristic of geothermal fields.

and it is thus potentially an important prospecting tool for geothermal energy sources --
sources that may provide only a few percent of the total energy requirements of the

United States, but that could provide a substantial and critical portion of the energy
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FIG. 14. Old Faithful geyser, Yellowstone National Park, in eruption. The column is
about 30 m high. Note the discrete elements of fluid in the eruption column. These are
the "surges" referred to in the text. Photo by G. Mendoza.

requirements of many countries surrounding the Pacific Basin. In this section, I sum-
marize my observations and theory for the origin of harmonic tremor at Old Faithful,
the importance of fluid properties in interpretation of the data, and my ideas about the
complex process that occurs when the geyser erupts.

For perspective, fluid dynamicists might imagine Old Faithful as a vertical, open-
ended, two-phase shock tube with variable cross section. In addition to the compressi-
bility effects that normally dominate shock-tube dynamics, gravitational (hydrostatic)
effects strongly influence the fluid properties in the geyser. because each meter of liquid
water (providing approximately 0. 1 bar pressure) changes the boiling temperature of the

fluid by about 2°C. Thus, in contrast to a shock tube in which initial conditions are
usually isothermal and isobaric, the initial pressure and temperature conditions in Old
Faithful are not uniform. The recharge cycle of the geyser is analogous to the process

of filling a shock-tube driver section with a volatile liquid -- such as liquid Freon -- that
can boil upon decompression, except that there is no physical diaphragm to contain the
fluid; the natural diaphragm is the highest water in the conduit that maintains a
temperature of 93 'C (the boiling temperature at the 2200-m elevation of Old Faithful)
and sufficient pressure to keep deeper water from massive boiling and eruption. And
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FIG. 15. (a) A seismic record from Karkar volcano, Papua New Guinea (courtesy of C.
McKee and R.W. Johnson 2 1). The white bands are strong seismic activity at a
frequency of 2-4 Hz that recurs at intervals of about 70 minutes. (b) A seismic record
of about one day of eruptions at Old Faithful, showing II complete eruption cycles (a
higher-resolution record of one complete eruption cycle is shown in Fig. 20). The
seismometer that obtained this record was a few tens of meters from the vent. Note the
similarity to the Karkar record. The time marks in both records indicate I-minute
intervals. Each active period of the seismicity of Old Faithful ends with an eruption and
a characteristic eruption coda; a good example of an eruption coda is on line 11,
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beginning between the first and second time marks and extending to the fourth. A
similar coda at the end of the active times on the Karkar record suggested to McKee and
Johnson that underground eruptions were occurring at Karkar.

whereas in laboratory shock-tube experiments we worry about the "cleanliness" of
eruption initiation over time scales of micro- to milliseconds, at an eruption of Old
Faithful we may be lucky to forecast tile initiation time to within 10 minutes!

Study ot this complex shock tube must be done under very restricted conditions.
Whereas a major problem in the study of the Colorado River discussed in the preceding
section is inaccessibility, an equally major problem in studying Old Faithful geyser is its
accessibility and public visibility. Observations close to the vent must be made on the
few days of the year when work will not detract from tourists' enjoyment of the geyser
(namely. when Yellowstone Park is closed for snow-plowing of the roads in late
winter), and experiments or observations must be designed to avoid even the slightest
dama,,e to the geyser ('or example, no hole can be din, to allow positioning and

anchoring of a seismometer). Thus, the challenge in studving Old Faithful is t, learn as
much as possible about the inner \, orkings of a complex no /le ronm very limited
observations. The basic data set consists of' float and thernioctLpI Ic n ,easuremlent:,

made in 1949. seismic and movie data 2 1 taken from I)76 to 19,4. and iunplUblisiled

pressure and temperature data 2>2 that J. \Vesitphal an 1 obtaiillCd ill 1()0 i-ALd I 91+4.

B. The recharge and eruptiom c cle

Old Faithful erupts into a tall, c0antinuous \ rtic 'l ct oI \\,atc! wd ste,in Fim 14.
Tl11e llaximLum height of tile geyser ranges bet,. ecu 3() .nd 5(1 in. depend ,_l motlv otl
Wind velocity and, to a cer'aill CIct. humidit,\ s, hich affectS the iiilit, vapor i
the eruption). Eruptions last for 1.5 to 5.5 minutes and occur c\cr',- 4! to It Hi minutes
(Fiu. 16). Measurements, of' total discharee sugest that abOut H.1 14 m", (1 1 k,,s:
180 it gal/mmn) are erupted during the initial and ltad\,-flo,, stage' of the cruption 13.

Robertson. U.S. Geological Survey, private Commun11tlt1iCationl. 197 7,.

The con(Luit of tile geyser, or the no/le, is a fissure that is lared at the surlace,
narrows to a constriction at ahbol.lt I 1n dpth. an1d probabl\ diVerges into one or more

caverns below tiils depth (Fig. 17 ). About (). Ill bclo.,s the riri of tile Lcs ser. thc i.,:s.,rc
is 1.52 x 0.58 nl, ,nd I will take these as the dimcisions of' the exit plane of the fluid

because tie actual ceyserite surface is very irrenulal inchldh>e. a petrified tree stump
visible as the knob onl the left side of, the cone in Li. l1). Probe ,, ork b\ J. \\ estphal.

R. I luttchinson and nC W ttpllhli,,hCd d1a1 su1sts that the ollrictioll dInensuon, are
approximatelv I. I x 1 .5 in. 'lhe dpthtt of' the c'tmlduit tha:t can be relche.d b\ a probe, the

iitetdiate rt(rinir, is i . although iis ptausblc Ilat kater trg ,reater depths is
ejected during a long eruption. \\ater fills the coduilt onl\ to within 6 mt ,f the srface
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FIG. 16. (a) The relative frequency of intervals between eruptions of Old Faithful. (b)
The relative frequency of eruptions of various durations. All data are for the year 1979;
the vertical scale is arbitrary. Unpublished data provided by R. H-utchinson, U.S.
National Park Service, from analysis of 3,308 eruptions, 1983.
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constant rate of recharge. The time until the next eruption is indicated at the top The
important points to note from these sketches are (1) the gradual reciarge of water over
the interval prior to eruption (the levels A-I represent inferred depths of the surface
water at different times): (2) the addition of heat via hot water and/or steam bubbles at
the base of the recharging column: and (3) continuous boiling of the near-surface water.
Collapse of steam bubbles within the liquid zone is inferred to be the cause of
seismicity.

(Fig. 17). The maximum length of the water column in the immediate reservoir prior to
an eruption is therefore about 16 m.

For nearly a century after its discovery, Old Faithful maintained a fairly regular
pattern of eruptions, with intervals between eruptions averaging 60 to 65 minutes.
During most years, Old Faithful exhibited two types of eruptions: "shorts," which were
2.5-3.5 minutes in duration, and "longs," which were about 5 minutes in duration.
During the 1970's, the length of the repose interval, 1, following an eruption was quite
closely related to the duration of the eruption, D. The empirical formula

I = 10 D + 30 /, 1) in minutes) (17)

proved very useful to the National Park Service for predicting when eruptions would
occur.

In the past few years the duration-interval behavior has changed dramatically.
although changes in the observable eruption characteristics of the geyser during an
eruption (such as height versus time) have not been documented. Intervals averaged
over a month commonly exceed 75 minutes and individual intervals have sometimes
exceeded 100 minutes. The interval-duration equation no longer applies to the same
statistical accuracy; in 1987, short eruptions ceased for a while, and only long eruptions
occurred (R. lutchinson, National Park Service, private commununication, 1987). The
my:,teries of geyser eruptions have long intrigued scientists (the original theory of the
inner workings of geysers was published by Bunsen in 1846), but questions about the

inner workings of Old Faithful have taken on a new urgency because of these dramatic
,hanges in behavior.

C. The recharge process: clues to geothermal seismicity

After an eruption ceases. the conduit is empty (or nearly so) and Lmust be recharged
with both water and heat. Estimates of total volume erupted and conduit dimensi,
give an approximate recharge rate of 6 kg/s (liquid water) (see Ref. 20. p. 661. A
working model for recharge of fluids and heat to the geyser is based on measurements
of depth and temperature versus tine22 . Water rises slowly up the conduit during the
recharge interval (Fig. 17). I)uring the rise. temperatures range from 93-C at the
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surface to 116°C-118°C at the bottom of the immediate reservoir (Fi. 18.

temperature-depth-time curves). The hottest water at the bottom is about 7-9 'C below
the boiling temperature for the total pressure at the bottom (0.08 Mpa (0.8 bars)
atmospheric pressure + 0.14 Mpa (1.4 bars) hydrostatic pressure). Because the deep
water is hotter than the shallow water, heat for the recharge cycle is most likely supplied

by the addition of hot water or steam at the base of the immediate reservoir.

Time, minutes
45 40 35 30 25 20 15 10 7.5 5 2.5 1.5sec

ae f ' -
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b c d 
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FIG. 18. A histogram of the number of seismic events per minute through a recharge
interval at Old Faithful, supplemented by data on the depth of water in the conduit at
various times (the graphs above the histogram) and the temperature of the water relative
to the reference boiling curve (the top curve in each graph). The temperature-depth data
were not taken during the same eruption as the seismic data: for details of the

construction of the correlations shown here, see Kieffer 2(. On the bottom axis, time = 0
is taken at the beginning of an eruption that was about 4.5 minutes long: a 66-minute
interval followed before the next eruption. The first appreciable seismicity starts at
about 21 minutes (45 minutes before the next eruption), and the associated
temperature-depth conditions are indicated by the left box labeled "45 min." Successive
graphs labeled with decreasing times (40, 35, 30 min .... to 1.5 see) show the gradual
filling and heating of the geyser and the correlations with seismic details.
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Two processes probably contribute to the mixing of the hot deep water with the
cooler surface water: convection and migration of steam bubbles. It is not clear that the
two processes can be distinguished using available measurements (note the erratic
temperatures at any fixed depth; e.g., at 18 m in Fig. 18). Much of the deeper water is
too cool to boil under the total pressure (hydrostatic + atmospheric) at any given time;

compare the measured temperatures with the reference boiling curve given in each box
in Fig. 18. However, since the temperature of the deeper water exceeds the atmospheric
boiling temperature of 93 'C, this water is superheated relative to the boiling point at

atmospheric pressure. If such superheated water is convected upward, steam bubbles
form as the pressure decreases below the saturation pressure of the water. For example,

3 percent of the deep water at 116'C will transform to steam when the total pressure
decreases to 0.1 Mpa (1.0 bar). As steam bubbles rise, however, they encounter cooler
water and may collapse. Although this process cannot be directly observed in the

depths of Old Faithful, it is easily observed in a pot on a stove, as well as in other
geysers, such as Strokker in Iceland, where the steam bubbles rise into a diverging
surface pool and can be observed both to collapse before reaching the surface, and to
reach the surface and explode into a beautiful fragmenting shell (Fig. 19). In geysers
where the bubbles can be directly observed, they frequently occupy the full diameter of

the conduit, which may be of the order of, or more than, I m. Collapse of the bubbles,
and release of their latent heat, is probably a major process by which heat is transferred
upward in the water column2 4 , and the collapse of these bubbles is believed to cause the
individual seismic events observed.

The collapse of a vapor bubble in a liquid of its own composition can occur within

milliseconds2 5, and pressures in the collapsing cavity can be as large as a few to tens of

FIG. 19. Bubble erupting from the vent of Str6kkur geyser, Iceland, through a surface
pool of water. The bubble diameter is about 2 m. Note the fine-scale structure on the

bubble surface. Photo by H. Kieffer.
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megiapascals (tens to hundreds of bars) ,26 The high pressures generated by the bubble
collapse decay quickly with distance, becoming seismic-level disturbances at distances
of only a few bubble radii.

The acoustic noise of collapsing steam bubbles can be detected by seismometers
placed around Old Faithful (Figs. 15a and 20). The seismic codas of two eruptions,
labeled A and B, are shown in Fig. 20. These codas are primarily due to water falling
back from the top of the erupting column onto the ground (this fallback was just
beginning to occur when Fig. 14 was taken; it is visible on the right side of the
photograph). Short, discrete bursts of seismicity occur throughout most of the recharge
interval (four such events, indicated in Fig. 20, are shown enlarged in Fig. 21). The
number of seismic events per minute increases as the geyser fills and the fluid becomes
generally hotter (Fig. 18, histogram).

Two characteristics of this seismicity are the relatively high frequency content of the

individual events (a few tens of llz) and the characteristic damping time of a few tenths
of a second. The envelope of these signals is remarkably similar in shape to those
obtained by flentsche127 in laboratory experiments on collapsing bubbles, although the
geyser signals are much longer in duration (tenths of seconds compared with hundreds
of microseconds), presumably because of the much larger size of the geyser bubbles.

A collapsing bubble could cause the observed seismicity by generating waves within
the fluid column, as illustrated in Figs. 22a and 22b. These waves set the fluid in the
conduit into resonance; that is, the conduit is an organ pipe filled with liquid water and
is set into resonance by the occasional (or frequent) collapse of a large steam bubble.
Detailed treatment of the disturbance caused by a single bubble as a hydraulic
transient 2

0 accounts for the distensibility of the conduit walls and allows the damping of
the signals to be calculated. To first order, the frequency of the oscillation induced is
assumed to be that of - 'losed organ pipe:

f =a!4L , (18)

where L is the length of the fluid column in the conduit, and, in this equation. the
sound speed, a, is the effective sound speed of the fluid modified for the distensibility
of the conduit walls2 . Whereas a is 1,440 m/s for pure water, it decreases to 1,385
in/s if the distensibility of the walls of the conduit is accounted for.

The length of the fluid column in the conduit, L, depends on the time in the
recharge cycle (note in Figs. 17 and 18 how slowly the recharge process occurs): L is
estimated to be 8 m when the seismicity is first detected and 16 m when the conduit is
full near the time of an eruption (Figs. 17c-17e and Fig. 18). The corresponding
resonant frequencies obtained from Eq. (18) are 43 and 20 liz, values that
approximately span the range of measured frequencies during the recharge interval (Fig.
21). From hydraulic transient theory, the characteristic damping time is 0.12 to 0.46 s,
in good agreement with the duration of the observed pulses (Fig. 21).
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FIG. 20. A seismic record of one eruption cycle of Old Faithful. Details of the four
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FIG. 21. Details of four impulsive seismic events from Old Faithful as indicated in Fig.

20. Note that the dominant frequencies range from - 20 to - 40 Hz.
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FIG. 22. Schematic drawing of waves propagating in a standing column of water of

depth L. (a) The collapse of a steam bubble in the base of the column is indicated by

an asterisk. (b) One cycle of compression (C) and rarefaction (R) waves due to bubble

collapse in the bottom of the conduit.

The resonant frequency associated with individual seismic events, and tile duration

of each event during the pre-eruption seismicity at Old Faithful, can be explained, to

first order, as arising from hydraulic transients in a slowly recharging column of liquid

water. If the fluid in the conduit were, for example, a boiling, two-phase mixture, the

sound speed would be dramatically lower, and the observed seismicity could not be

V
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explained so simply as arising from resonances of the liquid column standing in the

immediate reservoir. In the next section, I describe the thermodynamics of the

transformation of the recharged liquid in the conduit as an eruption occurs, and show

how the associated change in sound speed of the fluid influences the resonant

frequencies of the conduit.

D. Eruption dynamics and thermodynamics

An "eruption cycle" of Old Faithful consists of one eruption and one recharge

interval. By convention, the start of an eruption cycle is taken as the onset of an

eruption, although te first p,,,i of an cruption actually begins below ground level and

cannot be monitored (see the discussion of preplay below). The visible flow field and

its variation with time during an eruption are collectively referred to as the "play" of the

geyser. The play consists of four parts which can be distinguished on a graph showing
the height of the eruption column versus time (Fig. 23).

The first part of an eruption (the part that begins underground) is preplay, the

ejection of water intermittently prior to the actual eruption (the last few episodes of
preplay before the eruption, from -15 s to 0 s, are shown in Fig. 23). Episodes of
preplay last for a few seconds, and water is thrown to a height of a few meters or

occasionally a few tens of meters. During preplay, water ejected upward into the
atmosphere is cooled by expansion and entrainment. When it falls back into the

conduit, it mixes with the heated conduit fluid, and the resulting cooling of near-surface
water can delay the onset of an eruption until the fluid has been reheated to initiation
conditions.

During initiation and unsteady flow the eruption column develops and rises in a

series of bursts (typically I to 8 in number) to a maximum height of about 30 m to 50
m. This part of the eruption is typically 20 to 40 s long. Two minor bursts and four
major ones occurred during the first 20 s of the eruption documented in Fig. 23.

30
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FIG. 23. A record of height versus time for a short eruption of Old Faithful, showing

the four stages of eruption discussed in the text. The light line is the height of the
water-steam column; the heavier line traces individual pulses of water, visible in Fig.

14, in order to obtain the frequency of surging (approximately 1-2 Hz).
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Stead' flow is an interval of about 30 s during which the column stays near
maximum height. During this time, surges are observed in the eruption column at a
frequency of about 2 llz in short eruptions and 1-1.5 liz in long eruptions (Fig. 24b).
The surges are shown photographically in Fig. 14, and graphically from 20 to 45 s of
the eruption documented in Fig. 23.

The declining part of the eruption begins rather dramatically, after roughly 30 s of
steady flow, with a drop in column height. The decline can last up to 3 min, and during
this time the height of the column drops to about 10 m and play continues at low levels.

Differences between long and short eruptions are threefold: the frequency of surging
during the steady-flow stage; the duration of the decline stage; and the seismic pattern
following the eruption. Analysis of height-time data (such as shown in Fig. 23) for
many eruptions reveals that there is no correlation of maximum height obtained,
duration of maximum height, or number of bursts in the initiation stage with eruption
duration (Fig. 24a). The only measurable differences in eruption play between long and
short eruptions are the frequency of the surges (Fig. 24b) and the duration of the decline
phase, which is simply truncated at about 2-3 min for a short eruption. Seismically, a
period of about 20 min of quiet follows a long eruption (Fig. 20). whereas seismicity
begins immediately after a short eruption. After short eruptions, we are able to hear
water splashing in the bottom of the immediate reservoir, which suggests that it is not
completely emptied during short eruptions and that the seismicity arises within the
immediate reservoir.

Water near the surface of the recharging column boils nearly continuously, and
vigorous boiling can accelerate fluid several meters upward. Early in the recharge
cycle, the fluid is too deep in the conduit for vigorously boiled water to be ejected over

50 -a. •4 b.
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FIG. 24. (a) Graph of duration of steady-flow stage (maximum height) versus duration
of eruption of Old Faithful geyser, showing no correlation. (b) Graph of frequency of
surges versus duration of eruption, showing inverse correlation.
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the rim. Thus, even though vigorous boiling and splashing occur within the conduit, the
pressure distribution at depth remains unchanged because fluid is not removed from the
conduit and an eruption cannot begin. An eruption therefore begins when two criteria
are met: (1) the water must have risen high enough in the conduit so that vigorous
boiling can discharge some water over the rim, thereby reducing the hydrostatic
pressure on the fluid by removal of some mass; and (2) the underlying water must be
hot enough that the mass unloading triggers a positive feedback process.

As the recharging fluid rises to within about 6 m from the top of the conduit, boiling
can eject fluid out onto the cone of the geyser. This removal of mass reduces the
pressure on the underlying fluid. If the underlying water is sufficiently close to the
boiling curve, and if enough water is removed to start the cascading process of
decompression, the unloading results in a positive feedback process whereby more
boiling, and hence an eruption, occurs. If the underlying fluid is not sufficiently close to
the boiling curve -- e.g., if relatively cool surface water has been recently overturned by
convection -- the unloading may simply result in a burst of preplay and no eruption.

A simplified diagram of Old Faithful modeled as a layered shock tube is shown in
Fig. 25, so that the words "enough" and "sufficiently close" in the above paragraph can
be semiquantitatively defined. In the example shown, I have arbitrarily divided the fluid
in the column into six cells of different, but uniform, temperature (cells B, C, D, E, F,
G); these might be thought of as simplified convection cells. These cells mimic the
temperature curve measured by Birch and Kennedy 22 15 s before the onset of an
eruption (Fig. 18, last temperature-depth graph). The top zone, A, I m in length, has
been assumed to be continuously boiling and to be the mass of water that is ejected out
of the conduit to start the eruption (Fig. 25a). I chose the length of I m for this zone
somewhat arbitrarily after watching the onset of about 200 eruptions and estimating the
amount of water ejected.

When A is ejected out of the conduit, the pressure on the underlying water is

everywhere reduced by the weight of the ejected fluid (assume this to be about 0.1 bar;
SI units are abandoned temporarily here for ease in following Fig. 25). Relative to the
reference boiling curve, therefore, the initial temperature distribution curve is elevated
toward the boiling curve by 0.1 bar. It it is assumed that no large-scale temperature
inversion exists (such as J, Fig. 25), some underlying water is now superheated with
respect to the boiling temperature at the new pressure; specifically, any water that was

originally within 0.1 bar of the reference boiling curve. In the example shown, the
water between B and B' will boil (Fig. 25b). When this water is erupted, more
underlying water will boil: any water that was originally within 0.2 bar of the reference
boiling curve. In Fig. 25, this is only the water between B' and B". although the water
at the top of cell C is now very close to the reference boiling curve (Fig. 25c). When

this water has been unloaded, the pressure is everywhere 0.3 bar less than the initial
pressure, and water between B" and B"', as well as between C and C'. will boil. Note
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FIG. 25. Old Faithful modeled as a shock tube containing layers of fluid at different
initial pressures and temperatures, shown in their position relative to the reference
boiling curve in the right figure, (f). In (f) the initial temperature is assumed constant
within six convection cells (labeled B, C, D, E, F, and G). The fluid between A and B
is ass- led to be at pressure-temperature conditions on the boiling curve in order to
trigger the eruption. (a)-(e) Five stages in the unsteady unloading process of an
eruption of Old Faithful: release of each of the five convection cells would presumably
correspond to a "burst" observed as the geyser evolves into steady flow (see Fig. 23).
The segments shown with large "bubbles" are boiling: the segments shown as a fine

mist" are erupting from the conduit: and the three segments shaded black are liquid
1120 because of the relations of parts of cells D, E, and F to the reference boiling curve
during the unloading process. The thermodynamic path of the unloading process is

discussed in the text.

that, because of the weight of B"-B"', the fluid between B' and C cannot boil until
some of the fluid in B"-B' erupts from the conduit. Presumably, as the water between

B" and B' erupts, and as C-C' boils and expands, the liquid water between B' and C
will be pushed up and will boil as the pressure decreases. Slugs of liquid water trapped
between slugs of boiling froth should be expected because of the different possible
relations of the fluid temperature to the reference boiling curve (Figs. 25c-25e).

When fluid has been erupted down to level C', 6 m of water will have been ejected.

and the pressure in the column will be everywhere 0.6 bar less than the initial pressure.
Except for small amounts of fluid between E' and F and F' and G (Fig. 25e). the fluid
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will be everywhere on the reference boiling curve, and the conduit becomes nearly
completely filled with a two-phase mixture. The fluid is probably a boiling liquid at
depth, grading upward into the steamy aerosol that emerges at the surface.

Further details of this unloading process are unknown- depending on the
constriction, shock and rarefaction waves may play a prominent role in ejecting the
different layers of water 2° , or choked flow may be more important in controlling the
mass flux rate (see below). Resolution of this question may only arise from detailed
theoretical or laboratory modeling, because of the extreme difficulty of field
measurements of conduit geometry and time history of the fluid flow.

At the onset of an eruption, liquid water is present everywhere in the conduit except
in the boiling zone at tie surface. Boiling to progressively deeper levels decreases the
amouit: z liquid present and replaces it with a two-phase mixture (Fig. 25). Because
the initial pressure-temperature curve at the onset of an eruption lies no farther than 0.05
to 0.07 Mpa (0.5 to 0.7 bar) below the reference boiling curve, the whole column of

fluid in th, coIduit lies on the reference boiling curve after unloading of only 5 to 7 m
of the water. Thus, when about half of the vertical length of the water column has been
unloaded, the pie-eruption "organ pipe" filled with liquid water has been transformed
into a steamy two-phase nozzle. (Note that if the conduit is perceived as a nozzle, the
original standing water only occupied 16 m of length, whereas the erupting fluid fills the
full 22 m, and extends into a jet 30 to 50 m high outside the conduit.) It is likely that

the "bursting" observed during the unsteady initiation of the eruption represents the
eruption of progressively hotter parcels of water, and that the transition from unsteady
bursting flow to steady surging flow observed in the behavior of the eruption column
(Fig. 23) occurs when the whole immediate reservoir is filled with a two-phase fluid.

As the water in the base of the reservoir is decompressed to atmospheric pressure,
some of the enthalpy stored in the hot fluid is converted to kinetic energy. The hottest
water, at 116'C, has an enthalpy (relative to the triple point) of 486.72 kj/kg and an

entropy of 1.4842 kj /(kg.K). If this fluid decompresses isentropically to 93 'C. at 0.08
Mpa (0.8 bars) pressure, 4 percent of the liquid is converted to vapor. The final

enthalpy of the mixture is 482.83 kj/kg, so 3.89 kj/kg are available for kinetic energy.
This is sufficient energy to accelerate the fluid isentropically to a velocity' of 88 m/s.

Although the velocity at the exit plane of the geyser has not been directly measured.

a simple ballistic calculation of velocity based on the height of the eruption column can
be used to estimate ejection velocity 2

0. This calculation, using xm = u wh/1, v4lere

xm is the maximum height, uo is the exit velocity, and g is the acceleration of

gravity, gives uo = 31 m/s for xm = 50 m. If the acceleration is presumed to begin at

the base of the conduit, xm could be about 70 m, and uo from this model is 37 m/s.
However, because an eruption of Old Faithful produces a jet rather than a "ballistic
billiard ball", the simple ballistic equation may not accurately estimate the exit velocity.
Experiments on the dynamics of negatively buoyant plumes 29 give the relation
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x, = 1.85 F112 D (19)

where F is the densimetric Froude number:

" F = o [(Pa -po) , 1  (20)

In this equation, p0 is the fluid density, pa is the density of the fluid into which the

jet is emerging, and D is the diameter of the jet, assumed axially symmetric.
(This F is comparable to (Fr)2, with Ft- defined as in Eq. 15). The absolute value
of the density difference is used in Eq. (19), where the square root of F is needed. For
the exit plane at Old Faithful (1.5 m x 0.6 m fissure), take D = 1.1 m. Assume
that po = 11.23 kg/im3 (4 percent vapor) and Pa = 0.7 kglm 3. The above equations

then give u o = 78 m/s, a value in surprisingly good agreement with tile velocity of 88

im/s predicted simply from the enthalpy change of the fluid.

The low-frequency surging - 1-2 flz) observed when the geyser is in steady flow
(Figs. 14, 23, and 24) could be the resonances of the conduit filled with the two-phase
mixture. The sound speed of an 1-1,0 mixture that is 4 percent vapor is 57 m/s at 1 bar
pressure and does not vary significantly between 0.8 bar atmospheric pressure and 0.18

Mpa (1.8 bars) vapor pressure for the fluid boiling at I 16'C at the bottom of the vent
(the sound speed would decrease dramatically as the vapor fraction approaches zero, as
shown in Fig. 3, vertical line (a), but I assume that the vertical rane over which this
occurs is small). The resonant frequency of a 22-ni closed pipe with this sound speed
would be 0.64 lIz, corresponding to a period of 1.5 s. This frequency is about a factor
of 2 lower than that measured for a long eruption ( 1-1.5 1Iz). but it probably' must be

considered in satisfactory agreement, given the simplicity of the model, the unknown
geometry of the conduit, and the extreme diffliculty of measuring each individual
eruption surge.

Because we have no reason to believe that the soutnd speed of the fluidt is any
different in long versus short eruptions, the change in sUrge frequency with eruption

duration can be interpreted as representing an effective change in the length L of the
resonating column. The possibility that multiple chambers containing fluid exist cannot

be excluded, and emptying of different numbers of such chambers could account for an

effective change of L. Another possibility is that water is vaporized to different levels
in the eruptions of differing durations. During a long eruption, for example. all water in
the immediate reservoir is converted into a two-phase mixture, and the immediate
reservoir is completely emptied (evidence for this consists of lack of any' audible

splashing within the reservoir for about 20 minutes after such an eruption, and lack of

seismicity during this time). For the long eruptions, the bottom of the conduit is
probably truly the geyserite bottom reached by probe, and L is the measured 22 n.
During a short eruption, only part of the water in the immediate reservoir appears to be
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discharged (as evidenced by audible splashing in the conduit immediately after such an
eruption ceases, and concurrent resumption of seismicity). There is, therefore, probably
a level below which water does not vaporize during short eruptions. In these eruptions,
the surface of the unvaporized water would be the effective bottom of the reservoir,
because of the large difference in acoustic impedance between boiling and liquid water;
that is, the length L would not be the conduit length, but a shorter value equal to the
length of water column vaporized. This could accouit for the higher surge frequencies
observed during short eruptions (Fig. 24b). The mechanism whereby the water, which
was at 116'C at the beginning of the eruption, is prevented from vaporizing under
pressure reduction remains a mystery. The most common speculation is that cold water

can occasionally enter the reservoir during an eruption, but there is no proof of this.

E. Speculations and summary

Is the flow from Old Faithful choked'? Is there supersonic flow anywhere in the
eruption jet? There are too few data to permit firm conclusions. A few speculations can
be offered, although calculation of choking conditions in two-phase flow is a notoriously
difficult problem, even in well-designed pipes30 .

The highest vapor pressures in the reservoir will be generated as the hottest water
boils -- 0.175 Mpa (1.75 bars) as the 116'C water boils. Equilibrium expansion to
atmospheric pressure of 0.08 Mpa (0.8 bars) produces a fluid that is about 4 percent
vapor. Given a maximum reservoir pressure of 0.175 Mpa (1.7. )ars), the choke
pressure can be calculated from theoretical considerations to be , 0.13 Mpa (1.3
bars) 3 1. Experimental evidence 32 suggests that this calculated choke pressure is too
high and that the choke pressure could be as low as about 0.55 of the reservoir pressure,
about 0.09 Mpa (0.9 bar). The near similarity of atmospheric and estimated choke
pressure suggests that the flow could be choked when this hottest water is flowing, but
that supersonic flow in the diverging part of the conduit will be weak. The discussion
above of the decompression process suggests that choked flow would be most likely
during the steady-flow stage, beginning 20 to 30 seconds into the eruption.

Assume that choking occurs at conditions very close to those seen at the exit plane;
that is, at 0.1 Mpa (I bar) pressure when the fluid is about 3 percent vapor. The mass

flux is given by

m = pA a*, (21)

where a* is the sound speed, 45 m/s for equilibrium. The density of the fluid is 19.68
kg/m 3 (3 percent vapor), and the choke area is about 0.15 m2 . The calculated mass flux
is 132 kg/s (2100 gal/min). This is satisfactorily close to the measured value (114 kg/s;
1800 gal/min), given the extreme difficulty of measuring the discharge accurately and
the relatively large uncertainty of the choke area, A.
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If, as calculated above, the exit-plane velocity is - 80 m/s, and the equilibrium
sound speed at the exit plane is 57 m/s, the implied Mach number at the exit plane
is - 1.5, barely supersonic within the uncertainties of the modeling. It is therefore not
surprising that shock features such as Prandtl-Meyer expansion, visible shock waves, or
noise originating from shocks within the plume are not observed at Old Faithful. In
contrast, Beehive Geyser (Fig. 26a), which sits just a few hundred yards from Old
Faithful and erupts too erratically to be monitored, sounds like a jet engine and, with a
little imagination, can be envisioned to contain internal shock waves. These shocks are
similar to those observed at weakly supersonic geothermal wellheads (Fig. 26b).

In summary, Old Faithful is a complex two-phase nozzle, possibly sonic or weakly
supersonic, and certainly large enough in scale for both gravity and compressibility to

FIG. 26. (a) Beehive geyser in eruption; the cone is about 1 m high. The arrow points
toward three white diamonds in the center of the flow, interpreted as shock-wave wave
structures within a supersonic flow. Photo by Jeremy Schmidt3 3 . (b) Photo of
geothermal well MG-5, Tongonan, Philippines. Photo by Charles Darby, KRTA Ltd.,
Auckland, New Zealand.
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be important. Although available data still do not permit a detailed model for the
eruption dynamics, they have served to point out new directions for experiments and
observations, some of which are now in progress. One of the most important directions
of research focused on by these discoveries relates to the similarities in seismicity
between geysers and volcanoes that exhibit harmonic tremor (Fig. 15). Harmonic
tremor has for decades been attributed to magma motion in volcanoes, but the
quantitative nature of the mechanism causing it has been elusive. The geyser study
suggests that bubbles in ground water contained in fissures or pockets surrounding hot
magma could be the source of tremor20 , and quantitative studies of this mechanism are
now in progress 34 . Because we know neither the dimensions of the conduits containing
the fluid nor the nature of the fluid that is causing the seismicity at volcanoes, this is a
very difficult problem. The study of Old Faithful, where at least constraints can be put
on the fl, 1h and on the conduit dimensions, has been important in developing the
volcanic ideas. Fluids proposed for the source of volcanic tremor (undersaturated
magma, gassy magma, water) can have sound speeds that differ by nearly three orders

of magnitude, and the above discussion suggests that there wijl be an ambiguity in
decoupling the effects of conduit dimensions from fluid properties in any analysis of
volcanic harmonic tremor. This is an active area of research in volcanology because of
the regular occurrence of volcanic tremor at some volcanoes near heavily populated
areas where forecasting has enormous implications for life and economy; e.g., at Ruiz
Volcano in Columbia. Fluid dynamicists can potentially contribute important ideas and

measurements to this problem: laboratory studies of the dynamics of large collapsing
bubbles and of two-phase flow in long pipes of variable area are needed. In particular,
theoretical and experimental work on the dynamics of compressible flow with
gravitational effects will be required to deal with problems involving these fluids at
geologic scales.

V. Mount St. Helens: a supersonic jet

A. Geologic setting

Mount St. Helens became famous as an "active volcano" on May 18, 1980.
However, that eruption was heralded by nearly six weeks of precursor activity during
which eruptions were strikingly similar in scale, frequency, and fluid dynamics to
eruptions of major geysers like Old Faithful. On March 27, 1980, after a repose of one
century and ominous seismicity for a week, an unobserved eruption created a small
crater in the summit of the mountain. For a few weeks, eruptions of steam and ash
emanated from the summit (Fig. 27). Studies of deformation of the mountain, and later
events, strongly suggest that magma was being intruded into the edifice from depth at

this time (Fig. 28a). Water near the magma was heated and convected upward,
emerging in eruptions that were geyser-like in scale (hundreds of meters to a few
kilometers high), duration (minutes to tens of minutes), and frequency (every few
hours). These early eruptions were driven by heated ground water -- no magma was
involved.
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FIG. 27. A geyser-like eruption of Mount St. Helens. April 1, 1980. An ash-laden
density flow rolls down the southwestern slopes (to the right in the photo) from the
summit crater at about 2,930 m (9,670 ft) elevation, while steam separates and rises to
about 4,500 m (15,000 ft). The fluids in the density current and in the dusty steam
might be quite well modeled by pseudogas approximations, because they are relatively
dilute. Photo by H. and S. Kieffer.
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FIG. 28. (a) South-to-north cross section showing schematically the conditions inside
Mount St. Helens during March, April, and early May, 1980. Magma has moved high
into the mountain. Water heated by the magma has risen through fractures and erupted
(a typical eruption is shown in Fig. 27), creating a conduit and summit crater. Crushed
rock, ice, ash, and water that intermittently choked the conduit were reworked by
successive eruptions. (b) Reconstruction36 of the initiation of the lateral blast on May
18. The mountain failed along three major faults (indicated by arrows). Magma was
present in each, but appeared to emanate mainly from slide block 2 (shown in motion)
and slide block 3 (indicated on top of the south part of the mountain). (c) Schematic
drawing of initial conditions assumed for the fluid flow model. The complex structure
of the landslides has been simplified, and the reservoir is approximated as a single
volume whose dimensions are given in the text. In spite of the complicated time history
of the landslides, the triggering is assumed to be instantaneous for modeling purposes.
The material erupted was partially magmatic and partially hydrothermal. Only the top
part of the source shown in (a) and (b) would have been erupted into the lateral blast.
The remainder was erupted into a tll vertical eruption column during the several d-ys
after the lateral blast. The magma properties are assumed homogeneous at initial
pressure, Po, temperature, To, density, p,, and sound speed, ao (calculated for a

pseudogas with mass loading m).
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Although these eruptions were more geyser-like than "volcanic," they differed

thermodynamically from eruptions of most geysers because the erupting vapor carried a

heavy load of particulate material -- crushed rock and ice gouged from the conduit and

crater (this particulate material gives the lower part of the eruption plume in Fig. 27 a

dark color). The mass loading by this material affected the thermodynamics in two

ways: the entrainment of solid fragments increased the bulk density of the fluid, and

heat transfer between the solids and the expanding gas altered the expansion of the gas

from that which would be obtained by a two-phase mixture or vapor alone. In the

pseudogas approximation discussed in Section 11, mass loading is taken into account as

an increased molecular weight of the mixture (see the equations at the top of Fig. 4).

Heat transfer from hot particles to cooler vapor is accounted for by a decrease in the

isentropic exponent of the perfect-gas law. The expansion of a mass-loaded vapor is

contrasted with the expansion of a vapor alone, or a decompressing liquid, in Fig. 29.

As can be seen from this figure, under some circumstances mass loading can simplify

the fluid dynamics by preventing phase changes -- the entropy of a gas phase is

increased by heat conducted from solids, and thus formation of a condensed phase is

suppressed. However, complications of heat transfer, drag, and interparticle interactions

arise. No theoretical models yet handle these effects realistically for the range of

particle sizes, particle shapes, and mass loading typical of volcanic eruptions.

The north flank of Mount St. Helens was badly fractured and weakened by the

intrusion of magma in March and April, 1980. At 8:32 a.m. on May 18, a magnitude

5.2 earthquake shook the mountain, and several large landslide blocks broke loose and

slid downhill toward the North Fork of the Toutle River (Fig. 28b). Within a few

seconds, the pressure on magma, hot water, and gases inside the mountain was greatly

reduced, and their rapid expansion produced the devastating event that was to become

known as the "lateral blast". The evolution of this blast was recorded by several

eyewitnesses, by seismic equipment stationed around the mountain, by weather

barometers, and by damage to the environment and to man-made equipment around the

mountain 35 . Nearly 600 km 2 of forest were devastated, and approximately 60 people

were killed. Heavy logging equipment was tossed and overturned (Fig. 30a); trees were

totally stripped from the land over a large area. Where they remained, as much as 10

cm of bark and wood was abraded and the interiors were impregnated with shrapnel

(Fig. 30b). The pattern of tree blowdown (Fig. 31) provided a remarkable record of

local flow directions -- certainly a flow-field pattern to challenge geologists and fluid

dynamicists for years to come.

In the region closest to the volcano, trees were either stripped from the land or were

felled subradially away from the vent, and the blowdown direction showed little

dependence on the terrain (Fig. 32). This zone is called the direct blast zone, to

emphasize that the blast travelled directly away from the mountain without regard to

even major topographic obstacles37 . Surrounding the direct blast zone is a zone in

which topography did influence the blowdown direction, called the channelized blast
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FIG. 29. Temperature-entropy diagram for H20 with isobars. On the left, an isentrope
for an eruption of Old Faithful is shown; on the right, two isentropes for eruptions from
the assumed Mount St. Helens (MSH) initial conditions are shown. Pure steam would
have condensed during isentropic expansion, as indicated by the vertical line. Heavy
mass loading of the steam by hot particles increases the mixture entropy and, by transfer
of heat to the steam, increases the entropy of the steam during expansion. Condensation
during decompression is thereby prevented, as indicated by the arrow pointing to the
lower right.

zone to emphasize that the blast followed channels in the topography. Surrounding this
region and marking the limits of the devastated area is the singed zone, a zone in which
trees were left standing but were singed by the heat of the blast as it became positively
buoyant and lifted from the ground into the atmosphere37.

This devastation was caused by the eruption of more than 1014 g of magma, hot
water, and entrained glacier ice and trees. The vent through which the material emerged
covered a large fraction of the north side of the mountain. Available evidence allows
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a

FIG. 30. Photographs showing (a) damage to heavy logging equipment during the May

18 lateral blast, and (b) damage to trees. Photos by H. and S. Kieffer.

many theories, and geologists do not even agree on initial and boundary conditions for
the flow . I describe below my model for the blast, a model that emphasizes the role

of gas expansion and nozzle flow 37. Given a plausible set of simplifying assumptions,
this model attempts to define the flow characteristics and to correlate these predicted

characteristics with features in the devastated area: tree directions; the transition from

direct to channelized blast zones; measured velocities and temperatures: and the general

shape of the devastated area.

B. A simple nozzle model

In my model, the lateral blast is simplified to the problem of the eruption of a

pseudogas from a reservoir under pressure into an atmosphere at lower pressure. The

17
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FIG. 31. Typical pattern of tree blowdown. Note that the tops of the trees and most of
the small limbs are missing. The contrast in this photo is low because volcanic ash
mantled trees and slope when the photo was taken shortly after May 18, 1980.

thermnodynamic properties and reservoir geometry are also simplified accordingly (Fig.
28c). The fluid is defined by its initial (average) pressure, PO; temperature, T.; and
mass ratio, m, of solid to vapor phases. The reservoir is assumed to have resembled a
converging nozzle whose exit plane (vent) was the landslide scarp left on the north face
of the mountain by the removal of thz avalanche material.

Although the model can easily be scaled both geometrically and thermodynamically,
one set of plausible values for initial conditions demonstrates the features of the model:
an average reservoir prc.ssure of 12.5 Mpa (125 bars, the pressure appropriate to 650 mn
of rock overlying the reservoir), an initial temperature of 600 K (327 0C), and a mass
ratio of rock to steam of 25 : 1. The initial temperature assumed may seem surprisingly
cool if one only associates volcanic eruptions with red-hot, incandescent magma.
However, many so-called "volcanic" eruptions, such as the one shown in Fig. 27, are
not driven by magma, but by heated water ("phreatic eruptions"), or by a mixture of
heated ground water and magma ("phreatomagmatic eruptions"). The detailed nature of
the volcanic gases driving the eruption is ignored here because the large-scale features
of the fluid mechanics are probably not sensitive to the gas source. The chosen
temperature happens to be the saturation temperature of pure water at 12.5 Mpa (125
bars), and it is a reasonable number to assume a priori if one believes that geothermal
waters heated to saturation conditions drove the eruption (and that the badly fractured
mountain edifice could not sustain any overpressure in the eruptive fluid). Thie
temperature of 600 K can also be thought of as an average temperature for a complex
mixture which, after it had traveled only a short distance, contained mateiial ranging
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from the melting temperature of the magma (- 950'C) to the freezing temperature of
glacial ice and snow entrained in the flow. Reasonable changes in assumed initial
pressure, temperature, and solid-to-mass ratio do not qualitatively alter the conclusions.
Atmospheric pressure is taken as 0.87 bar. For scale, the vent diameter is taken as I
km, the approximate width of the scar left by the avalanches. The eruption is assumed
to be centered at 2,135 m (7,000 ft), and the centerline of the flow is oriented about 5
degrees east of north to match the overall direction of the flow field. These are the only
variables in the model -- there are no arbitrary fitting parameters.

Nozzles operating at pressure ratios much greater than about 2:1 are supersonic. At
the ratio of 125:0.87 assumed above for Mount St. Helens, the emerging flow should
have been highly supersonic (refer to Fig. 2; see Fig. 33 for a more detailed diagram
and nomenclature). The most important dynamic parameter of the erupting fluid is its
sound speed -- 105 m/s for the reservoir fluid postulated above, according to pseudogas
calculations. This sound speed is about 1/3 of the value of the atmospheric sound
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FIG. 33. (a) Schematic diagram of the structure of an underexpanded supersonic jet3 9.

The flow leaves the nozzle through plane xx'. Further discussion of this figure is given
in Ref. 37, p. 388. (b) Detail of a corer rarefaction for conditions appropriate to the

Mount St. Helens model. This could be interpreted as a map view of the flow pattern



196

from the east comer of the vent (where the walls of the volcano are projected by the

stippled pattern). The (mathematical) characteristics of the flow are the thin lines that

radi,,te from the corner A of the vent. They are labeled according to the Ma&

number, M, of the flrw as it crosses the characteristics. AB and A'B" are streamlines

of the flow: CC' is a tangent to A'1'. The small arrows d, e. f, and g represent

calculated local directions of flow as they would be recorded in the directions of tree

lowdown. The arrows e, f, and g are particularly significant, because if these are

assumed to lie along flow streamlines and are extrapolated linearly backwards, a flow

source significartly in front of the mountain would be inferred. In compressible flow,

linear extrapolation of streamlines cannot be made, because the curvature of the flow

through expansion waves would not be properly accounted for.

speed. Therefore, the flow field of the volcanic pseudogas can be internally supersonic.

but still subsonic with respect to the surrounding atmosphere. Thus, there is no
contradi, ion between the postulated supersonic flow and the notable absence of
atmospheric shock waves during the lateral blast (see eyewitness accounts in Ref. 35

and Ref. 37).

Consider first the initial ve'ocity of the fluid. According to the proposed model, the

fluid would accelerate from rest in the reservoir to so.ic velocity at the vent -- 100 m/s.

Laboratory stLdies 40 have shown that, in the absence of gravitational effects, the flow-

front velocity of dense fluids remains at approximately the sonic velocity for many

source diameters, because entrainment of the light surrounding atmosphere causes very

little deceleration. At Mount St. Helens, the flow would have accelerated as it dropped

down the face of the mountain into the valley of the North Toutle River, but it would
have decelerated as it rose back up into the high country north of the Toutle River (the

region now called Johnston Ridge). Because the combined effects of gravity and

compressibility are not included in the model, it cannot be accurate to this level of
detail. Measured velocities of the flow, averaged over substantial topographic relief to

Johnston Ridge, were about 100 m/s, in good agreement with the calculated sonic

velocity.

According to the model, the fluid emerged from the volcano as an under-expande

supersonic jet (Fig. 34). The pressure would have decreased to 7.5 Mpa (75 bars) as the
fluid accelerated from the reservoir to the vent, and then decreased to ambient pressure

through a series of complex rarefaction waves and shock waves within the jet outside of
the volcano, as shown schematically in Fig. 33a and in detail in Fig. 34. Because of the

high pressure in the jet as it left the vent, it would have spread laterally through a

characteristic angle known as the Prandtl-Meyer angle (Fig. 33b). For the initial

conditions postulated, the Prandtl-Meyer angle is 96 degrees. Thus, flow that initially

was directed northward by the geometry of the vent would hax a diverged to the east and
west; note this type of expansion beyond the east-west line in Fig. 32. The predicted
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FIG. 34. Map of the flow field according to the present model of blast dynamics 37. To
case the numerical computations, the exit Mach number of the flow is assumed to have
been 1 .02, instead of the sonic Mach number 1 .00. All length dimensions are
normalized by the vent diameter. The model is symmetric about the axis of the vent and
is split into two halves here for conciseness. On the left, the characteristics (computed
by hand) are shown as thin lines radiating from the corner of the vent. The boundary of
the flow is assumed to have been at constant pressure (0.87 bar). The peripheral
intercepting shock formred by reflection of the expansion waves from this boundary is
shown as a dashed line. Note how reflection of expansion waves deflects the boundary
of the flow away from its original expansion angle of 96 degrees. Flow directions are
shown by representative arrows, solid within the zone where the model is strictly valid,
dashed in the zone where the model is extrapolated across shock waves. On the right,
contours of constant Mach number M and, therefore, constant pressure (PIP0 ),
temperature (TIT,), and density (p/po) are shown. Velocities are given implicitly
by the Mach numbers. Each contour is labeled by the value of the Mach number, A.
From the innermost contour outward, values of M, PIPo TITO' and p/p are
given. In the supersonic region, these values are, respectively, (2.23, 0.087, 0.91,
0.095': (2.49, 0.047, 0.89, 0.053), (2.75, 0.025, 0.87, 0.029); (2.88, 0.018, 0.86, 0.021);
(3.0., 0.013, 0.85, 0.016); (3.14, 0.009, 0.83, 0.011). The values extrapolated into the
subsonic zone were used by the author in Ref. 37 to extrapolate the flow density to the
singed zone, but should be ignored, because a more realistic assumption is that the flow
returns to atmospheric pressure. The area covered by a stippled patter is a core in the
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flow that is at sabatmospheri7 pressure. Downward curvature of the outer contours near
the axis of the flow is probably an artifact of the grid size used in the numerical
solution, and the likely contour shape is shown by short dashed lines. A computer
model that produced a somewhat smaller supersonic zone, because the flow boundary
was assumed to be inviscid rather than viscous (as in the above model), was run by R.A.
O'Leary, Rocketdyne, for the author. Details can be found in Ref. 41. Differences
between the two models are not significant in terms of our lack of knowledge of the real
complexities of the eruption; e.g., material emerging from two moving landslides
instead of from a single vertical vent.

flow zone is superimposed on the map of the devastated area in Fig. 35. 1 suggest that
the devastated area has a southern boundary that actually curves south of an east-west
line near the volcano because the initial Prandtl-Meyer expansion drove gas around in
these directions.

In an under-expanded supersonic jet, rarefactions crisscross the flow and reflect off
the flow boundary, assumed to be at a constant pressure equal to ambient atmospheric
pressure (Fig. 33a). Upon reflection, they turn into weak compressive shocks called
intercepting" or "barrel" shocks (Fig. 3 3 a). The reflection of the rarefactions from the

flow boundary turns the diverging flow back toward a more axial direction. I suggest
that these reflections are responsible for focusing the direct blast zone so strongly to the
north (Figs. 32 and 35) and for limiting the extent of east-west devastation.

The fluid inside of the jet expands and accelerates as it passes through the expansion
waves -- obtaining, according to the model, a Mach number of more than 3 on the
centerline and velocities in excess of 300 m/s. Internal velocities can be locally higher
than the flow-front velocity because of the internal rarefaction and shock waves.
Pressure, temperature, and density decrease through the expansions. The pressure

behavior is particularly interesting and illustrates the nonlinearity of the supersonic
expansion process: as the fluid expands, the pressure decreases below atmospheric
pressure, and a large zone of subatmospheric pressure develops inside the supersonic
zone (see the shaded area in Figs. 34 and 35). The existence of such a low-pressure
core has some interesting volcanologic implications, for example, plastic components on
vehicles in or near this part of the devastated area were degraded by the formation of
large vapor bubbles 42 . Laboratory studies demonstrated that the vapor formation was
caused by exposure of the plastic to high temperatures during the blast. Efforts to
duplicate the degradation by heating similar plastics in the laboratory under atmospheric
pressure produced general similarities, but failed to reproduce the large size of the
bubbles found on the components from the vehicles. I speculate that bubbles may have
grown unexpectedly large because the external pressure was temporarily lower than
atmospheric in the supersonic core of the lateral blast.
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debris entrained by the blast at the Mach disk (the overturned logging vehicle in Fig.
30a and the debris around it give some impression about the size of the debris load near
the Mach disk), would propel the particulate matter through a "gas shock", so that the
Mach disk should, in this geologic case, be thought of as a Mach-disk zone, perhaps of
the order of 1 km in thickness. As the fluid decelerates into the subsonic zone
downstream of the Mach disk, flow velocities decrease, pressure rises from
subatmospheric back toward atmospheric, and the density of the fluid increases.
According to the calculations, the Mach disk would have stood about II km north of the
vent. The calculated position and, to a lesser extent, the position of the lateral
intercepting shocks, coincide roughly with the boundaries between the direct and
channelized blast zones (Fig. 35). I propose that these two zones correspond roughly to
the boundary between supersonic and subsonic flow regimes within the lateral blast.

Because of the dramatic deceleration of the flow at the Mach disk, gravity, which
was not a dominant force within the direct blast zone, dominated flow mechanics
outside of this zone -- in the channelized blast zone. Thus the flow streamlines, as
indicated by the tree blow-down patterns, are more influenced by topography in the
channelized, subsonic zone. The devastated area therefore consists of two parts: the
inner direct blast zone in which gas dynamics effects and supersonic flow were probably
dominant, and the surrounding channelized blast zone in which downhill flow driven by
gravity was probably dominant. This is an oversimplification, because both effects were
probably important throughout much of the devastated area (e.g., the most highly

supersonic zone and the Mach disk happen to coincide with a region of very steep
topography), and quantitative modeling including both effects is required in the future.

Temperatures throughout a particle-laden flow like the lateral blast are remarkably
high and uniform because of the high mass ratio of solids to vapor (this is the effect
of y - 1; see Fig. 4 and Eq. 2). Calculated temperatures changed only from 600 K to
480 K at limits of the devastated area; these temperatures are in excellent agreement
with temperatures measured in the deposits immediately after the eruption3 5 .

Several other properties of the blast can be calculated from this model. For
example, the maximum mass flux is calculated to ha-'e been 10 4 g/s/cm 2, and the
thermal flux to have been 2.5 MW/cm 2. The total energy of the blast was 24 Mt, of
which 7 Mt was dissipated during the blast itself, and the remaining 17 Mt was
dissipated during the almost simultaneous condensation of steam in the blast and the
subsequent cooling of steam and rock to ambient temperature in the weeks following
May 18.

As mentioned above, the supersonic flow model for the lateral blast has been
controversial. Nevertheless, features analogous to those eroded into the surfaces of
supersonic reentry vehicles have been found in the erosion surface under the blast

43
deposits
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C. Comparison of Mount St. Helens with the Saturn V rocket

The magnitude of the blast can be impressed upon one's imagination, and the true
scale of nozzles in geology can be appreciated, by comparing the Mount St. Helens blast
with a Saturn V F-I liquid-oxygen/kerosene motor (Fig. 36). The mass flux per unit
area at the exit of an F-I is about 25 g/s/cm2 ; that of the lateral blast was 240 times as
great. The power per unit area of the F-I motor is approximately 0.8 MW/cm 2: that of
the lateral blast was three times greater. The Saturn V power is delivered over five
rockets covering roughly 50 m2; the power at Mount St. Helens flowed out of a vent
more than 2,000 times this area. The total power of the five Saturn V motors is about 4

FIG. 36. A comparison of the power of Mount St, Helens with that of a Saturn V F-I
rocket engine is given in the text. Five F-I's provided the power needed to launch the
Apollo spacecraft. The photograph shows Apollo 10 shortly after launch from the
Kennedy Space Center on 18 May, 1969 (courtesy of NASA).
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x 105 MW; that of the blast was nearly 16,000 times greater. The thrust of the Saturn V
is 7.5 million pounds (3.3 x 10 7 N); that of the blast was nearly 105 greater. The lateral

blast of May 18, 1980, was indeed an awesome event by both geologic and fluid

dynamical standards.

VI. Perspectives

In the discussion of Crystal Rapids and Old Faithful Geyser, I have pointed out

specific directions for future research. At Mount St. Helens, unequivocal re-creation of

the fluid dynamics of the lateral blast may be difficult in spite of the fact that it is the

best-documented violent volcanic eruption in recorded history. The observational

problems inherent in geologic research, and particularly in the monitoring of

geologically rare events, are enormous. Nevertheless, the evolution of fluid dynamics in
geology over the past few decades has been rapid; viz., the pioneering work of Wilson

and Sparks and their colleagues and students4 4.

It is appropriate to conclude with the thought that the development of modem space-

craft, in which Hans Liepmann and his colleagues have been so involved, has led to one
of the most exciting discoveries of modem times -- the existence of erupting volcanoes
on another planet4 5. Even as we struggle to document and understand the geological
physics of fluids in our world, we have already discovered new puzzles in fluid dynam-

ics on other worlds.
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