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ZPIMP: A ZERO-D Z-PINCH IMPLOSION CODE

I. INTRODUCTION

-The discharge of electrical energy through a cylindrical gas puff is a

well tested means of creating an intense burst of high energy radiation.

Typical output from an imploding neon Z-pinch is a few kJ of x-rays when the

peak current is about 1 MA on the GAMBLE II pulsed-power device at the Naval

Research Laboratory. The experimental program to produce a bright and

consistent Plasma Radiation Source (PRS) on GAMBLE II and on other facilities

has evolved over the past several years., This program rapidly changes as new

concepts in plasma load design are continually proposed. To predict the

utility of, analyze, and revise such new ideas inexpensively, it is useful to

model the proposed implosion in a simulation. A zero-dimensional radiation-

hydrodynamics code provides both a succinct and rapid resource to address the

above issues.

In a zero-D model of an axisymmetric implosion, the entire plasma is

pictured to implode as a unit, either in an annular shell or a filled

cylinder. The velocity of the imploding shell or cylinder is determined by

the volume integral of the momentum or kinetic energy equation; the internal

energy by the volume integral of the plasma energy equation. Several zero-D

codes have been used in the past to predict and study Z-pinch dynamics. The

code SIMPLODE was used to study neon 2 ,3 and sodium4  implosions, while a
5

similar code was employed by McDonald and Ottinger to also study a neon PRS.

In the SIMPLODE code3  the mass density, velocity, and current density are

taken as uniform across the annular shell. The waveform of the driving

current waveform is a prescribed function of time, not determined from a

circuit equation. The radiative cooling is based on a detailed non-LTE

collisional-radiative equilibrium (CRE) model for the ionization dynamics.

The escape probability approximation is used for the radiative transfer of the

lines. The momentum equation determines the velocity of the imploding shell.

Recent investigations with the SIMPLODE code indicate a serious

Manuscript approved March 6. 1989.
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drawback,however: total energy is not always conserved. In the McDonald and

Ottinger code 5 the mass density in the plasma shell is uniform, while the

velocity profile is determined from the continuity equation. The velocities

of the inner and outer qhell radii are equal. To maintain total energy

conservation, the outer shell velocity is determined by the kinetic energy

equation rather than the momentum equation. The current density is uniform

but limited to a small skin region in the outer part cf the plasma shell.

Although the extent of this rcgion of resistive heating evolves in time, is

does so according to the local plasma velocity. Hence the same mass element

is always carrying the current and no diffusion of the magnetic field is

possible. The temperature of the skin is allowed to be different from that

of the core region. The ionization state and radiative emissivity are

determined from fits to a sample CRE calculation. Opacity effects on the

radiative output were scaled with the load mass to match experimental data.

The present ZPIMP code is a new zero-D model which adopts the best

aspects of the previous codes, namely the circuit equation and CRE ionization,

while improving on the dynamics. For the hydrodynamic equations, this code is

structured much like a typical multi-zone 1-D simulation code. In §II.A to

§II.C the spatial and temporal finite difference forms of the hydrodynamic

equations are derived in detail. These results are reduced to three zones in

§II.D, with most of the mass contained in the central zone. This zone is

characterized by an averaged density, ion temperature, and electron

temperature. The finite difference approach to the hydrodynamics allows one

to calculate separate velocities for the inner and outer radii of the shell.

The steps in §II.D also point out the limitations of a zero-D code,

particularly at the bounce time. For the evolution of the magnetic field, the

induction equation is analytically solved (§II.E) for the magnetic flux in a

moving medium. The solution assumes a small gradient length scale for the

field and uses a planar geometry for the region of magnetic diffusion. As the

plasma heats up and the resistivity decreases, the form of the solution

displays the onset of flux freezing. A simple circuit model is employed in

§II.F to self consistently determine the driving current from a supplied open

circuit voltage. Section II.G addresses the problem of total plasma plus

field energy conservation. The ionization dynamics is handled by a non-LTE

CRE model (§III), and the probability-of-escape method for radiative transf-r

is used to handle opacity and trapping effects in the lines. At the start-up
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of the simulation, where the temperatures are below 20 eV, the CRE model is

replaced by an average-atom model as described in §IV. These last two

sections are brief since the essential features have been described in

previous papers.

As stated in the opening paragraph, the primary motivation for a zero-D

simulation code is the rapid investigation of new concepts. For instance,

recent interest has turned to imploding aluminum vapor puffs on the GAMBLE II

device. In §V we apply the ZPIMP code to model such implosions. The

implosion radius, maximum electron temperature, maximum charge state, and

maximum continuum and line radiation is investigated. The initial geometry of

the vapor is varied from annular puffs to filled cylinders. Detailed studies

of various mass loadings and geometric configurations to determine the optimum

radiative yields, emitted spectra from the L- and K-shells, and pulse

durations will be presented in a following report.

A summary of the essential points of the report is contained in §VI.

II. DYNAMICS

A. Magnetohydrodynamic Equations in Cylindrical Symmetry.

The structure of the simulation code ZPIMP is modelled after the

standard form of large scale radiation-hydrodynamic codes. The ionization

dynamics and radiation transport is time split from the magneto-hydrodynamics,

and communication between these two physical aspects is handled through a

local radiative heating or cooling term. The ionization and radiation aspect

will be discussed in §§ III and IV. In the present section we consider the

magnetohydrodynamics of the Z-pinch and derive the appropriate equations for

numerical simulations by starting from the general plasma-fluid equations.

Let pi=mini (Pe=me n e) be the ion (free electron) mass density; eZi the mean

charge state of the ions; Pi (pe) the ion (electron) pressure; and Ci (Ce)

the ion (electron) internal energy. We will assume cylindrical symmetry (no

*-dependence) and axial invariance (no Z-dependence) so that all plasma and

field variables depend only on the time t and the radial coordinate r.

Furthermore, we assume for the mass weighted velocity v = vReR, and for the

magnetic field B = B e The last assumption together with Ampere' law
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implies J = J zez for the current density in the absence of displacement

currents. Thus the electrons have the same velocity as the ions in the radial

direction, vis. VR? but unlike the ions, there must be a non-zerc electron

velocity in the axial direction.

We now write down the plasma and field equations subject to the above

geometry. The mass continuity equation is

ap i 1 a
- + -rpv) = 0 . (1)

The electron continuity equation is replaced by the requirement of charge

neutrality, ne = n Z.

The total momentum equation is found by adding the electron and ion

momentum equations and neglecting the electron inertial terms:

a 1i a ( P 2 + a p ~ 0 ) = -1 2
a-(PivR) + r '(PiVR) + R= -eJzB (2)

In this equation Qvis is an artificial viscosity term used to numerically

smooth the conversion of kinetic energy to thermal energy at the bounce.

Section II.C on fin~ite differencing discusses the appropriate form for Qvis"

The equation for the ion internal energy ci is

a1

-(pii) +- r'r(rPiiVR) + (pi+Qvis) r(rVR) + L(rqi =(3)atr 3r iR+ r ar i, rar R) =ie-

In the present application we will be considering gaseous vapors so that the

strong coupling effects of high density plasmas can be ignored. For an ideal

perfect ion gas c. = (3/2)kBTi/mi. The thermal heat flux is

qi (i) r(kBT) (4),iR = -Ki ar

where (i) is the thermal conductivity given by Braginskii 6 or Epperlein and71

Haines 7 Since we are carrying separate ion and electron temperatures the

energy transfer from the electrons to the ions is

m n
Q = 3m e kB(TiT e) (5)Oi 3m. t.Bi e

1 l
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where t. is the ion-electron collision time.ie
The equation for the electron internal energy ce is

e -e + (rpeceVR) + Pe -(rvR) + i .r(rqe)

2 O AA- Q V11 + - r(kBT) (6)= ie+ ZIJ n + 8rnBJe

e

The specific electron internal energy is composed of two parts, the first

component is due to the free electrons and the second is the electronic energy

of excitation and ionization: ce = (3/2)kBTe/me + (Pi/Pe)Cex. The radiative

heating rate, or cooling rate if negative, is contained in A. The quantities

Cex and A are calculated prior to each hydrodynamic step and kept constant

during that step. The electron heat flux is

(e) r(kBTe) + kBT eASign(B) enqle,R = - K1  a ~sg( )~~- 7
e

The thermal transport coeffcients Kje), iA' and ot are again given by

Braginskii , and we have expressed the resistivity as ni = . Also,

sign(B ) = B,/IB, I.

In place of the electron momentum equation a generalized Ohm's law for

the plasma is derived by dropping the electron inertial terms and solving for

the electric field. The Z-component is given by

E = -- VB + Vz + - sign(B )-(kT) . (8)Z c R + ~I'Z en+r Be)e

To complete the set of equations we have Faraday's law for the evolution

of the magnetic field,

aB aEz
i - c T- (9)at - r

and Ampere's law without the displacement current for the current density,

cia
= c I rB) (10)Z -4n r r (
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For later reference we present the equations for the plasma kinetic

energy, plasma total energy, and field energy. Multiplying the total momentum

equation by vR and using the mass continuity equation leads to the plasma

kinetic energy equation:

T-(2 iVR ) + I r rvR -PivR 1 Pe' vis - (Pir Pe ( ) r- -(rvR)

vR
- JzB (11)

Adding to this result both internal energy equations gives the total plasma

energy equation:

a ( 1 2 ~1 [rRi C 1 2
-t-pici+ Pe + V2 R J r - ar2 ivR(Pie.+ + piR +Pi P Qvis)]

+ Parq+ rq A + Je +
- 1 JZ + AkBT (12)r H A e)Z cR en n\,ar B

e

Poynting's theorem for the total magnetic field energy is readily derived from

Faraday's law by multiplying by B /4r[:

2 cl
t(Bn) c r 8(rEzB,) jzEz (13)t (8 n) r- r z z

The above equations contain all the transport terms as given by

Braginskii subject to the conditions of cylindrical symmetry and translational

invariance along the axial direction. Following previous studies we will

henceforth drop the thermal frictional component of the electric field (the

term in 0A) in comparison with the resistive component (the term in ri) in

eqns (6), (8), and (12). For J7  ~ I/2rtRS, where I is the current, R is the

plasma radius and 8 is an effective skin depth, the neglect of the frictional

component is valid as long as

620 1_' T 3/2 a

>> Ziln(A) C6A) e --- IR amps.
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In this condition temperatures are in eV, distances in cm, and O*1/0A is a

factor of order unity depending on (eB /meC) ie and Zi"

B. Integral Form of the Equations.

In a zero-D, cylindrically symmetric, radiation-hydrodynamic simulation

code the basic assumption is that most or all of the plasma is confined to an

annulus or filled cylinder. The equations derived above are then applied to

this plasma region as a whole with the radial dependence of the plasma

variables either assumed a priori or integrated out. For instance, one could

begin by specifying a density and velocity profile consistent with the mass

continuity equation. These profiles would depend on a Lagrangian coordinate

spanning the plasma shell, the inner (Rin) and outer (Rout) shell radii, and

the inner (V in) and outer (V out) shell velocities. The momentum equation is

next integrated over the shell volume to obtain an equation for Vou t *

Likewise, the internal energy equation is integrated over the shell volume to

obtain an expression for the average internal energy. This approach was
2 . 5employed by Guillory and Terry McDonald and Ottinger , however, found that

the total plasma plus field energy was not conserved in the Guillory and Terry

model. Instead, McDonald and Ottinger employed the kinetic energy equation to

determine V out, with the assumption Vin = V out. Further, within the plasma

shell they considered two subzones which differed in temperature but not

density: an outer zone from R out-6 to Rou t of fixed mass which contained a

uniform current density, and an inner zone form Rin to (R out-6) which was

current free.

An alternative approach is to view a zero-D model as a special case of a

typical full 1-D code with many zones. In this approach no plasma profiles

are assumed a priori, instead (i) the fluid is divided into a number of zones

such that each zone boundary moves with the fluid velocity at that interface,

and (ii) spatially averaged values for the plasma variables are used in each

zone. The definition of the averaged quantities are determined by

approximations to the volume integrals of the fluid equations. Since the

integration is over a moving zone it is appropriate to adopt a Lagrangian

7



framework for the fluid equations. This requires the transformation of the

independent variable from the spatial coordinate r to an indexing coordinate

j, wherein each fluid element moves about between fixed values of j. The

spatial position of a fluid interface with index j is R(j)=R., and its

velocity is DR.i/Dt V. The Z-axis is at j=O and the outermost interface isJ J
at j=NJ. The Jacobian for the transtormation between the two coordinate is E

R/@j, giving for the volume element about j, 2rnAZRdR = 2nAZR(j)E(j)dj. To

integrate the dynamic equations we regularly employ the theorem,

R(j+l) R(j+l) R(jl)

- 2r Odj -- f2nrdr 2R f (14)T tI Dt R(j)
R(j) R(j)

where f is an arbitrary quantity. We note that the meaning of Df/Dt is that

the function f is first to be written as a function of the Lagrangian

coordinate j and the time t before differentiating. The relation above is

then readily proven by transforming the integral on the right to a function of

j (2nrdr -+ 2r[FEgdj), bringing in the time derivative and finally using the

standard relation between the Lagrangian and Eulerian time derivative:

Df af VR 3f
Dt = -t + - Tj

We now integrate the continuity, momentum, and energy equations over a

volume element 2nREdj and apply eqn.(14). For the continuity equation (1) one

finds

R(j+l) R(j+l)
D-- pi2rTrdr + [2rupi(VR- --) = 0, (15)

R(j) R(j)

which is the .simple fact that the total mass between Lagrangian coordinates j

and j41 is constant since the grid velocity, DR/Dt, equals the mass velocity,

7R . In the volume integral of the total momentum equation (2) we use

different upper a:.d lower bcunds:

• m n m8



R(j+l/2) j+1/2 R(j+I/2)
D- j VR2nrdr + f jP+e+0 vis)2nRdj =- JzB,2nrdr. (16)

R(j-1/2) j-1/2 R(j-I/2)

For the ion internal energy equation (3) we use the same limits as in the

continuity equation:

R(j+l) j+1 R(j+l)

S ici2nrdr + I (pi+Qvis)-(SVR) 2rdj + [2nRqi = RR J)= (17)

R(j) R(j) R(j)

Likewise, the volume integral of the electron internal energy (6) is

D R(j+l) j+l L R(j+l)
D [ pe e2nrdr + Pe aj(RVR)2ndj + [2r qe,RJR(j)

R(j) j

R(j+l)

A -[AQ. 2f1  ]Zrtrdr (18)

R(j)

Again for later reference we list the volume integral of the kinetic

energy equation (11),

R(j+I/2) 2R(j+I/2 )
D 1 2 + [(Pi + Pe+  R(j-1/2)u PiVR 2nrdr+[p pQ s)2 2RVRJR~

R(j-1/2)

R(j+1/2) arV R(j.+1/2)
Se 2 nrdr =-J R B 2ntrdr ; (19)(Pi+ Pe+ (vis)r j CRr

R(j-1/2) R(j-1/2)

the integral of the plasma energy equation (12) between arbitrary boundaries

R(j=a) and R(j=b),

R(j=b) R(j=b)
D (PiCi+ Pe+ Pi )2rdr (pi+ Pe+ Qvis)2aRVR]

R(j=a) R(j=a)

9



+ 2nRqR+ 2rrRq 1 ~~)Rjbl , eRH(j=a) - R( - Z JB, + "-XJz )2nrdr; (20)

and the integr~al of the field energy equation (13) with the same boundaries,

R(j~b) 2 B2  R(j=b) Rjb
B 0£E[ B 2R - r

Dt(~~2nrdr - 1 8 nE) 2 RV R+ 4eB02R]Rja f - Z JE Z2nrdr. (21)
R(j=a) R a)R(j=a)

C. Finite Difference Form of the Equations.

The basic set of equations which are used to advanced the density,

velocity, and internal energies are eqns.(l5)-(18). We next convert this set

from time differential and spatially integrated forms to true finite

difference forms. The mass continuity equation (15) determines the advanced

average density of each zone:

( n+1) _ j+1/2 -~ ] +112 (= (2.)
1i,j+1/2 -l (n+l) Azn[(R n+1))2 (R~n+l))2]'

where M. j1/2 is the total mass initially between R i and R ~'and tn is the

time at step n.

For the total momentum equation we take V. to be the mass weighted

velocity at interface R.j between R j12and R -/anaprxmteq.(6

as

r + N VY') (n+1/2)
j+1/2 V 4- [(P j 1 /2 - P. 1 22nR]

R(j+l/2) (n+1/2)

[ !JB,2nrdr] ,(23)

R(j-1/2)

where

t0



P = Pi+ Pe+ Ovis

In this approximation we have associated half of the total mass in each of the

adjacent zones with the velocity at the interface j. "'he integral over the

pressure force is evaluated for a step function approxiration to the pressure

profile across the interface. The temporal finite differencing is indicated

by the superscripts (n+1) and (n). The superscript (n+1/2) does not denote

the time average of a quantity, but rather a value determined from a half-step

predictor.

The form of the artificial viscosity is

Ovis,j+1/2 = bvispi,j+1/2 Cs,j+1/2 min{O,V j- V j+l

where b vis is a constant parameter chosen to match the results from a standard

multi-zone hydrodynamic code. C is the isothermal sound speed of the ions.s
Note that the artificial viscous pressure only contributes if the zone is

undergoing compression.

For eqns.(17) and (18) we take the ion and electron internal energies as

uniform between R. and R j+. Equation (17) is approximated as

M (n+l) - (n)
j+1/2 i,j+i/2 ij+1/2 (n+1/2) vin rjn+lj/2)V, 2& at + (Pi+ 0vis) + /2- 2 jRl j1l - j j ]

+ qRj+lqi,j+l- 2rRjqi,j ](n+ l ) = [ 1ie i ol(n+1/ 2 ), (24)
K Zj+l/2

where Qie is to be evaluated using the spatially averaged temperature and

density according to eqn.(5). The pressure integral of eqn.(17) has obviously

been approximated by extracting the averaged pressure of zone j+1/2 and then

carrying out the integral. The temporal location of the heat flux is at the

advanced time, for in practice one time splits off this term and calculates

its effect implicitly after advancing the energy equation to tn + l . We have

also not yet specified the time location of VI and V' in the second term of
1 j+1

this equation, but will do so shortly by an energy conservation relation. The

corresponding result for the electron internal energy equation (18) is

11



M (n+l) (n)
ej+l/2 e,j+l/2 e,j+l/2 + P(n+l/2) /2R n+ 1 /2)V' - 2 nR n+1 / 2 ) V ')

r ](n+l)

2rtRj+lqe,j+l - 2nRjq e,j

Vol (n+1/2) R(j+l) (n+1/2)

[ _ e) J I-0- I+ [ f VI Jz2 rdr (25)
ie AZj+1 /2 + RIj)

R(j)

where A(n+1/ 2 ) is the average heating (cooling if negative) rate over the

timestep. The same statements concerning the time location of V' V+,, and

the heat flux terms made for the ion internal energy equation apply to this

equation. Note that the total number of electrons in zone j+1/2 has been

assumed to be a constant in this approximation. This reflects the time

splitting between ionization and hydrodynamics wherein the number of free

electrons is unchanged during a hydro-step. This approach requires that the

total electron internal energy, (3/2 )MekBTe/me + M ex, remain unchanged during

an ionization step.

The approximation to the integrals made in the above equations are not

arbitrary, but are determined by plasma energy conservation over the entire

system within the finite difference scheme. We now derive through algebraic

manipulations a plasma energy conservation relation starting from the finite

difference forms used to advanced the velocity |eqn.(23)] and the internal

energies [eqns.(24) and (25)]. The result will then be compared with the

exact conservation equation (20) as a check on the finite difference forms

(23)-(25). Define

<V.> 1 (n+l) + V.(n))(6
i 2 (j Vj ,(6

and likewise for <V +1/2>. This time averaged velocity at R. is not

j(nl1/2)
necessarily the same as V.(n+ I/2), which is the result of a half-stepJ
predictor. Next multiply the finite difference form of the total momentum

equation (23) by <V.> to obtain
J

12



1-H 1I/,2-' 2) L [(v n+ 1))2 ,fvn) 2

+ Mn+/2) -P~n+12) n+/2) >R(j+1/2) (n12

+ (l <V~ <V.>[ j !JZB+2nrdr] .(28)

R(j-1/2)

This relation is the derived finite difference form of the kinetic energy

equation. If we note that

(p n+1/2) _ P n+1/2) 2nrtn+1/2)<V.> [P(n+1/2) 2nR (n+1/2)<V>]R(j+1/2)

+I1/2 "J-1/2 i 1 JR(j-1/2)

S~ne1/2) (2 R~n+1/ 2)<V. > - 2 n.ll2)V >

P- n+ll 2 )(2nR~n+l/ 2 )<Vj> - 21R'-n+1/ 2 ) <V >)
J-1/2 3J-/ j12

then the form of the terms on the left hand side of equation (28) is

consistent with those same terms in equation (19). Equation (28) thus

expresses the local conservation of kinetic energy over the domain Rj-1/2 to

R j+I/2. On the other hand, the sum of eqns. (24) and (25) expresses the local

conservation of total internal energy over the domain Ri to R 4+I. Since the

two domains are different we cannot derive a finite difference form for local

conservation of total plasma energy (eqn. 20) starting from the finite

differenced momentum and internal energy equations. However, total plasma

energy can be shown to be globally conserved. To see this sum equation (28)

over the interfaces between the axis and the outer boundary (0 < j < NJ) and

rearrange the result to read

NJ-1i 1 M [j(1n+l) +2 (V)+l)_ 2v(n) 2 (n))]2

. 2 t +1 + 1 ( ) 2 n- )
Sj=0

J-1 P (n+I/2) (nRn+1/2)<Vj > - 2 Rn+lI
2 )<V > '

j=0 j+1/2 p+ pi I )
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NJ- 1R(j+1/2) (n+1/2)NJ-1

X <V.>[[ -JB,2nrdr, (29)
j=O R(j-1/2)

as long as V(j=O) = V(j=NJ) = 0. Next sum the internal energy equations (24)

and (25) from j=O to j=NJ-I and add to equation (29). We now identify V inJ
eqns.(24) and (25) with <Vj>. At the axis one must have qiR = qe,R = 0, and

we will assume that there is no energy loss due to conduction through the

outer wall at j = NJ. Then the result is

1 NJ-1 1 M j12 1[(n 1)) 2 nl)) 2n(n)2 2 ) 2

1t NJ- MjI2 ^nl) _ n +l) _ (n) _ n )

j=0 2 (z vjn; Ij)

K_ j=0 6Z i,j+I/2 i,j+1/2 + )~/2 e,j+I/2

NJ-I R(j+l) R(j+I/2) (n+1/2)z [(A YL) + rlJ 22nrdr - -J B2nrdr -(30)
j=O AZj+i/2 C

R(j) R(j-I/2)

This expression is the derived finite difference form of the total plasma

energy equation for the entire domain. Note the similarity of this result

with the sum over all the zones of the exact expression, eqn.(20).

Equation (30) is actually quite remarkable for the case of no magnetic

fields. It states that one can transport internal energies in a Lagrangian

code and yet maintain global conservation for the total energy (internal +

kinetic). This result is not based upon an expansion for a small timestep,

but rather arises from the finite difference forms (23)-(25) for the momentum

and internal energy equations. The proper sequence of steps to achieve energy

conservation in a hydrodynamic system is as follows;

(s-i) Using the values at t(n ) do a half-step predictor to find pi, V,

i' e at tn + I/ 2 for each j.
(s-ii) From these quantities compute pi' PeI Qvis' and R at t at each

j. (If there is a magnetic field, also compute the currents I and

JZ and the field B at tn +1/2 as discussed below.)

(s-iii) Compute V(n+l) at each j from eqn.(23).

14



(s-iv) Form <V.> from eqn.(26).J
(s-v) Use these quantities in the energy eqns.(24) and (25) to find the

final advanced quantities s.(n+l) and £e (n+l) at each j.

Unfortunately, with the addition of magnetic fields and an external

circuit, conservation of the total plasma plus field energy is not as straight

forward as it is for a hydrodynamic system. We have evaluated the JxB force

term in eqn.(23) and the resistive heating term in eqn.(25) at tn+ 1/2 , but

have yet to show consistency with the derived plasma plus field energy

conservation. We will address this problem in §II.G.

D. Hydrodynamics for the Zero-D Model.

One of the objectives in deriving the above general equations is to

explicitly demonstrate the underlying assumptions and limitations of a zero-D

dynamic model. To reduce the above set of equations to two momentum and two

internal energy equations, begin by considering three zones for the annular

shell plasma. The inner zone extends from the axis at j=O to j=l (R1 ), the

central zone from j=1 (R1 ) to j=2 (R2 ), and the outer zone from j=2 (R2 ) to

j=3 (R3). This last radius is that of a fixed cylindrical boundary termed the

wall. The following assumptions are made;

(a-i) The total mass of the central zone (j = 1+1/2) dominates the mass

of the inner and outer zones, M1/2 << M3/ 2 >> M5/ 2.

(a-ii) The temperatures of all three zones are nearly equal.

(a-iii) The ion and electron number densities of the central zone are

always much larger than those of the inner and outer zones.

(a-iv) The outer zone is current free: Jz = 0 and B = 21/rc for r > R2.

Since Qvis a Pics V, (a-ii) and (a-iii) also imply that the viscous

pressure of the central zone likewise dominates. For an ideal gas law the same

condition holds for the thermal pressures and the total internal energies (ME)

of the central zone. Under these assumptions the momentum equations from

eqn.(23) for V1 and V2 can be written as
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3 (n+l) V (n) R(j=3/2) (n1/
3/2- 1 1 +p (n1/2 )2 R(n+i/2).fJzB2rdr] ,(31a)

2AZ At 3/2  2R = J B 3a
R(j=I/2)

and

M V (n+l)_ v(n) _ R(j=2)(n12
M3/2 2 2 p (n+1/2)2 n.(n+1/2) -[ J B.2nrdr] (  (31b)
26Z At 3/2 2 Cj cZ,(b

R(j=3/2)

The upper limit of this last integral stops at R2 according to (a-iv). To

eliminate the heat flux terms in the internal energy equations we separately

sum Pqns.(24) and (25) over all three zones. Asqumptions (i) and (ii) allow

us to write these sums as

H (n+l) _ (n)M3/2 1,3/2 i ,3/2 %(n+1/2) ..nR(n+1/2)V>- 2nR (n+1/2) <VI>)3Z At + (pi+ 0vis)3/2 2 2> -

Vl(n+1/2)

ol , (32a)

Lie YAZ j=3/

and

M (n.l) (n)
e,3/2 e,3/2 e,3/2 + (n+1/2) (R (n=1/2)<V > _2-R(n=1/2)<VI>)
6Z At +e,3/2 (_2 2 2 1 1

R(2)
Vol](n+1/2) 2 ] (n+1/2)[(A 0i) - J=3/ + [ ; f n jZ 2 2rdr] (32b)

ie + R=O

The radiative term A only contributes from the central zone since it has the

dominant number of radiators. The ion-electron energy exchange term only
2

contributes from the central zone since Qie a ne
The assumption (a-ii) is reasonable as long a- the heat transfer,

particularly due to the ion heat flux, is large compared to the compressional

heating: 3.9ii A(kB Ti/mi)/6r2 >> AV/Ar. However, assumptions (a-ii) and (a-
iii) do break down when the plasma shell bounces off the axis. The pressure

of the inner zone must then rise above that of the central zone as the
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collapse is reversed. Further, if there is some anomolous resistivity in the

outer low density zone, then assumption (a-iv) may also be violated.

Equations (22), and (31a)-(32b) are the reduced set of equations for

advancing the hydrodynamic quantities of an imploding shell in our zero-D

code. In the case of a filled plasma cylinder the interface at j=l is

identified with the Z-axis. The momentum equation (31a) for V1 is no longer

needed and the internal energy equations determine ci and ce in the region

between the Z-axis and R2. The problem with assumptions (a-ii) and (a-iii) at

the time of the bounce has essentially been integrated away.

E. Magnetic Induction Equation.

One of the most important dynamical effects in a Z-pinch is the amount

of resistive heating inside the plasma during the run-in phase. This is a

consequence of the diffusion of the magnetic field from the outer plasma

boundary into the collapsing plasma shell. Rather than fix a skin depth or

define a current density profile in the plasma shell, we will develop an

approximate solution for the magnetic diffusion in the moving plasma. The

induction equation describing the diffusion is found by substituting the

expression for Ez from Ohm's law, eqn.(8), into Faraday's law, eqn.(9), and

using the expression for JZ from eqn. (10):

aB [rc 2fl,Ba
-B# a a c~h

v =  - aar )J , (33)
at ar R ~ + r 4n r 3

where we have dropped the thermal friction term in 0A for the reason stated

below eqn.(13). To solve eqn.(33) we make several additional assumptions to

those listed in §II.D;

(a-v) The current skin depth (6) inside R2  is sufficiently small that

B /r << 9B /ar.

(a-vi) The resistivity is spatially uniform over the diffusing region, ri
= fl1(t).
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To convert this equation from an Eulerian framework to a Lagrangian one

note that

aB a B aV DB B DOB
a ~ ~ B V R 1:1 11DO -

at Tr(VRBf at ar aj Dt e Dt Dt

Finally, note the specific relation

R(j,t) = Rt(t) + (R - t) j e e R -R2(t) R(t) = A1R. (34)2()aj 2(t) )

Equation (33) can now be written as

DOB c 9 2 2OB

(35)
Dt - 2 (3

Note that if 1iI = 0 for t > t1 , this equation states that the magnetic flux

AZARB remains fixed at its t value even though 6R may continue to change.

Next transform to a new time variable:

t c2 Vi(t')
r 4 J dt' , (36)04rce2(t ,)

and thereby reduce eqn.(33) to a planar diffusion equation:

= +B )a 2(eB,)D(B+ a2(B(37)

DT aj2

The solution is subject to the initial and boundary conditions

2 R2 (T) at j = 2 (r=R 2), (38)eB 0 a • 0 an eB = e ) 2(T)c

The boundary condition at the outer plasma radius reflects the value of the

magnetic field in the outer vacuum adjacent to the plasma due to the current I

within the plasma. Equation (37) can be solved by the method of Laplace

transforms. The result for the magnetic flux is
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(2-" )2(' e - ( 2 - j ) 2 / 4 ( T- T ' )

e(r)B(j,r) R0 2e(Rr')c) e,3/2 di'. (39)

For the following manipulations set

-= E(-r) 21(t)
R2 (i)c(40)

In order to make the solution (39) tractable for numerical computation we will

take § to be constant over each time interval (tnt n+l), and denote its value
n+1-/2at T by tn+/2* Equation (39) can then be written as

E)-TB (-) 2-" ' T -(2-j )2 /4(-r--T, d)

e(i)B,(2) = f N+I/2 JN 3/2 di'

N-1 r n (2-j)2/4(T-ir')
+ Z 2W/ n+1/2 3/2n=0 n (-T-Tl )32 d.

Next making the change of variables from r' to ' = (2-j)/1[21(t-')J, the

solution can be calculated at time TN +1 > T > TN from

e(i)B(j,T) = N+/ 2 [l-erfr N-1+ §n- [(2 )erf(2J)], (41)

where erf(x) is the error function and n = 2V(-nn). Note that a0 = 2/T > m,

> ... > aN"
One can interpret this last equation by noting that at the time step

Tn+1/2' a component of the magnetic flux §n+1/2 enters the plasma and the

diffusion length scale from that time on is R2xn. Clearly at the outer radius

where j = 2 the boundary condition eqn.(38) is satisfied, and at the initial

instant when x0 = 0 there is no magnetic flux in the plasma.

For the current density 4nJz/c = B /R + (DBt/aj)/e one can calculate

directly
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B N -(2-j)2/cn2

J7 = 4n R 23/202 [ (2n+1/2-n-l/2e2 )In=1 n12n-/an

-(2-j)21a 2

+ *1/2 (42)

A maximum for the skin depth 8 of the current in the plasma shell at "time" T

can be determined by the penetration depth of the first component of the

magnetic flux -%12 to enter the plasma at time t=O: 8 - o(R 2-R1). This value

is clearly an overestimate of the skin depth since the magnetic flux

components which enters the plasma shell at later times, In+1/2' are

significantly larger and have a smaller penetration depth.

The total current within the radius R2 at a time r lying in the interval
N N+i

(T ,t ) is

I(T = z f z(2-J, )2yt[R2 (r)- ( 2-j ) E( T)IOEdj

In the limit of a narrow skin depth one can neglect the second term in the

square brackets in the integrand and the lower limit of the integral can be

replaced by --. One then finds by carrying out the integration the consistent

result I(x) = IN+1/2. Under the same estimates for computing the integral,

the resistive heating at time rn+1/2 in the electron internal energy equation

(32b) is explicitly

c2R2 I 1/2 [ (2/ 2  N  1
"- 2rR ed j 1 223 [ a z( n122 12

-o 4n E o n=l n

N N 212
4 ( Dn+1/2- n-1/2) (m+1i/2- m-1I/2 )  

112
n=l m=l (2 2)

n tm (Cn m)

N 2V2
N- 1/2 (n+1/2 t n-1/2) 1/2 . (43)

n=l 
(n 2 + a0o2) 1 /0
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Likewise the mean value for the magnetic field within R is0

B1 B i1N-1<B,> -R B¢Olj 1N+14 O X(4

0 2-I [4N+1/2r n+1/2 n+1- n'J(4
2 - n=O

The Maxwell stresses of eqn. (31a) and (31b) can be readily evaluated in this
limit:

c (z)JRI - 2 3/3/ + 5. aB (BR2 -(~~~d3/2 3/2

2

and

/21 2
I--JBO2RedjB(j32 (46)

F. Circuit Model

The electromagnetic force cmf driving the current which implodes the

plasma shell is provided by a generator external to the plasma load. The

entire system, plasma plus generator or machine, can be modelled by a simple

circuit. Let the machine have a constant resistance Z and inductance L,

while the plasma sustains a varying voltage drop Vw at the outer boundary or

wall (r = R3). The equation for this circuit is

I ZI = f (t) - V (t) . (47)Lm dt + m = Mf( w

To find V w, integrate Faraday's law, eqn.(9), over the region between

the outer plasma radius R2 and the wall radius R3. From relation (14)
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R(j=3)
Dt BO - (BVR)j 3 + (BVR)j 2  = cEz(R 3 ) - cEz(R 2 )

R(j=2)

Since VR(j= 3 ) = 0 we have

R(j=3) VR
Vw = Ez (Rc)a -B d R  +  j=2 + AZEz(R2). (48)

zy J3 -BdRC0j= + 2)
R(j=2)

According to the discussion following eqn.(13), we will ignore the A term in

the expression for Ez from Ohm's law, eqn.(8). The last two terms of the

above equation then reduce to AZ I(t)Jz(j= 2 ,t). Since B = 21/Rc in the outer

region [assumption (a-iv) of §II.D] the integral in eqn.(48) can be done

explicitly and the time differentiation carried out. The result for the

potential drop at the wall is

Vw geo d + Z I + n iJz(R2 , t)AZ , (49)

where

L = 2 6i ln and Zgeo Z (50)
C 2C

are the geometrical inductance and motional resistance arising from the plasma

load. Using eqn.(50) in eqn.(47) gives the working equation

dl

(L + Lg) - + (Z + Z )I = - flJz(R2t)6Z. (51)
in geo dtm geo mf 1 2'

This equation is solved using a finite difference scheme:

(lin I(n+l/ 2 ))  I ( n + )  i(n) + (Z + Z(n+l/ 2)) I(n+l) I(n)
,. geo 6t + m geo 2

n+1/2

[ mf - IiJz(R2 )6Z] n (52)
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F. Total Energy Conservation.

The plasma plus field total energy equation is the sum of eqns.(12) and

(13). The integral of the result from the axis to the outer boundary is the

sum of eqns.(20) and (21). If there is no heat flux through the outer wall

and eqn.(8) is used for Ez this later sum is

R(j=3) R(j=3) !2)nd + I I Dnd

St f (PiEi Pece +  PiVR)2rdr + - )nrdr
o 0

R(j=3)

IVw  + A2trdr, (53)

0

where Vw is the potential drop at the wall according the eqn.(48). Note that

IVw is the input power to the plasma load from the machine while the second

term on the right hand side of eqn.(53) is the negative of the radiative loss

rate per unit length.

The objective of this section is to derive a corresponding expression

for eqn.(53) starting from the difference equations used to advance V, Cif C ,

and Vw, and the differential equation for Bf. Part of this procedure has

already been done: the total plasma energy equation was derived in eqn.(30).

To derive an energy equation for the field let us start with the expression

for the energy input from the machine over the time At. From eqn.(49)

(n+1/2) (n+1) + (n))[(n+1/2)lI(n+l) Il(n)
At<I>V n I 2  = a t L

w 2 ) geo At

+ Z(n+1 /2) I(n+1) + I(n) + ZinJz(R2(n+1/2)
geo 2 + ] (54)

Using the definitions in eqn.(50), we can rearrange the right hand side of

this equation,

1(n.+)2, [ V2 t](n+1/2) l(n) 2 [in 3  V2 At-(n+I/2)

c) 2 2R2  2 2R 22
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I(n+1)I(n) V2At (n+1/2) [] (n+1/2Z [- + <>zat. (55)
c 2

Note that

[in V2 t(n+l1/2) R 2R (n+1 ) ) (n+1/2)
2 2R 2  ] = n + in k(n---2)) 2R~n+l12 )

22 2 2

<RR <V Mt V(nt2),

1n = inyj) + lfl1(n j/ 2) ) + ln (1 + 2 >)-2R (n+1/2)
2 2

As long as IV2At/R 2 I << , the sum of the last three terms is much less than

the first term, which grows as the pinch implodes. A similar expansion can be

obtained for the second term in expression (55). Further, we note that for R2

< r < R3, B% = 21/rc, which implies

R(j=3) 2 12

1 ( k)2nrdr = -lni

R(j=2) c 2

Using the above relations in eqn.(54) gives

R(j=3) B2  (n+I) R(j=3) B2  (n)

S )2nrdr] -  ( ,)2nrdr]

R(j=2) R(j=2)

A~t11>Vw(n+/ 2)+ l(n+1)l(n) V___2 _at (n+1/2)1 n12 (nt1/2 Ih~(2 1 (n I2 2

Atz<Iv + C Rn1/) - .tI[jR) (56)

We next work on the magnetic field energy in the region r < R2.

R(j=2) B2  R(j=2) B2

[J (=)2ntrdr] (n1 Bt 2nrdr](n

0 0
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1 ~ ~[(B,,n+)) 2R,(n+1)e(n+l) _ Be,(n)) 2 R(n) e(n)]dj
0

= ~ ~ (R (n~l)B (n+1) + R(n) B (n)) (e(nfln+1f ) (n )B (n))dj
0

(en) e(n+l)+ 1R +IB nIR nBn)R )  ~- dj .(57)

For small timesteps

9 (n+1) B (
n + l ) _ (n)B n  At-(OB ) 1 = at ciZ)(n1/2)

by eqn.(35), and

e(n) (n+l) L [ln(R(n)) ln(R(n+l))] L a -<V>AtR (n-) -R n+I) ajj <---4-'t

Using these last two relations in eqn.(57) and integrating by parts gives

R(j=2) 2  R(j=2) 2
B (n+1) - ~ =) B2  (n)fnd ( g)2nrir]

0 0

= I [(R2 B(R 2 )n + (R2 B(R 2 ) ]c[nJR 2 )]

(n+1) (n) <V2>
-~t( 2 , 2)) (R2 , 2 )) <2>

j=2 R (n+l ) (n) (n+1/2)

t; 2 [(JzRe) + (JzRe) (n Jz) dj

0
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R(j=2) (n+1) (n)

+ tj 'V 1 [(RB,)(n +)(JzR) + (RB e) (jzR(+)] dj. (58)c 2 (J <R .(5>

0

Finally add eqns.(56) and (58), and note that B (R2) = 21/R 2c to find

R(j=3) B2  (n+l) R(j=3) B2
1, ( A+~1) 1(n
~tLi ~ .g-flr - 1 ~[j ( ,2nrdrJ

0 0

(+I/2) R(j=2) (n+l) ( n)] ( n+1/) 2djZ>Vw _ j2 [ [JzO + Re)( (n ,J l2d

0

j=2 (n+1) (n) (n) (n+1)

+ J ' < [(RB,) (JR9) + (RB, zRe) ] d dj (59)

0

Equation (59) is the derived form of the field energy equation (21). We

note that, unlike the derived total energy equation for the plasma [eqn.(30)],

eqn.(59) is only valid to first order in At. The derived form of the total

plasma plus field energy equation is given by the sum of eqns.(30) and (59).

Comparison of this result with eqn.(53) indicates the proper time location for

the integrand in the resistive heating and JxB work terms, the second and

third terms on the right hand side of eqn.(59). However, the required timing

of these two terms presents a problem. At step (s-iii) of §II.C for the

computation of V(n+l), the quantities R(n+ ), e(n+l), B (n+l), and JZ(n+l) are

not known. But we note that to first order in At we can make the replacements

1 [(JZR@) (n+l) + jRe) (n)] (n+1/ 2)R(n+1/2 ) e(n+1/2 )

and

[(RB(n+1) Re)(n) (n) (n+1) R B R(n+1/2)

Now the expressions for the resistive heating in eqns.(30) and (59) agree.

However, for the JxB work term, <V> is inside the integral in eqn.(59), but in

eqn.(30) the integral is split up over the j-domain and <V> is extracted. In
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a full 1-D code there are many zones so that the splitting of the integral is

not a severe approximation. In a zero-D code the Maxwell stress term in the

momentum equation (23) remains a potential problem for the conservation of

total plasma plus field energy. To ameliorate this potential difficulty we

have only considered applications of the zero-D code to rapidly collapsing

plasmas so that the subsequent rapid resistive heating maintains a narrow skin

depth for the current density [see assumption (a-v) of §II.EJ. Thus the

Maxwell stresses contribute only over a narrow region at the outer boundary of

the plasma where V = V2. The estimates in eqns.(43)-(46) are to be evaluated

as part of the half-step predictor sequence in step (s-ii) of §II.C.

To maintain complete energy conservation IV. t/Rj must be << 1 as

required in the above derivation for field energy conservation. In practice

we have found that total energy is conserved to -2% over an entire simulation

with the zero-D code.

III. ATOMIC MODEL AND RADIATION TRANSPORT

Dai8
The Al atomic model is described in detail by Duston and Davis 8 . There

is excited level structure in the eleven highest ionization stages (H-like

through Na-like); only ground states are carried for the other stages. For

each atomic level included in the model, a rate equation of the form

df.
, - Z W.. f. - r W.. f. (60)dt - 3 ]1 1 3 13 3

is constructed, where fi is the fractional population of level i, and Wji is

the net reaction rate describing the transition from initial state j to final

state i.

For the plasma densities modeled in these studies, the effective

populating and depopulating rates are generally fast compared with the

hydrodynamic response. An equilibrium assumption can be made in which the

explicit time dependence is dropped; in this case, the plasma is said to be in

collisional-radiative equilibrium (CRE), wherein the plasma ionization state

responds instantaneously to changes in hydrodynamic parameters. The processes

included in the transition rates Wij and the methods used in calculating the
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9
corresponding tate coefficients are described elsewhere Once the rate

equations, including radiation transport, have been solved, the electron

density and the ionization and excitation energy in the plasma can be

calculated.

Radiation emission from a plasma and its opacity are dependent on the

local atomic level population densities. Except for optically thin plasmas,

however, these populations also depend on the radiation field through optical

pumping, photoionization and photoexcitation. Thus, the atomic physics

processes and radiation transport are strongly coupled and must be solved

self-consistently. In this model, an iterative procedure10 is used in which
the radiation field from the previous iteration is used to solve for new fi'

from which a new radiation field is calculated and populations are

recalculated until convergence is achieved.

A hybrid model is used to transport the radiation. Free-free radiation

is treated on a multifrequency basis. The line and bound-free radiation is
11

transported via a probabilistic model

IV. AVERAGE-ATOM MODEL

A time-dependent average atom model has been developed which solves

hydrogenic rate equations for a set of orbital population levels P n, where

1<n<1O. These rate equations are nonlinear and are of the form

dPn
._ Pn E D(n-m) Q + n Z C(mn) Pm - P n I n + QnRn (61)

where Q n=(1-P n/g ), In is the ionization rate of level n, Rn is the

recombination rate into level n, D(n-*m) is the destruction rate of level n by

transition to level m, C(m4n) is the creation rate of level n by transition

from level m, and gn is the degeneracy of level n and is given by 2n2 for

hydrogenic levels. The model includes radiative and three-body recombination,

collisional excitation and de-excitation and radiative decay in the rates.
12This model is based largely on the work of Post, et. al.

Once the populations P have been calculated, the average charge andn

radiative cooling rate can be determined. An approximate way of generating n1
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subshell populations and energies has been devised; in this way, An=0

transitions can be treated. This treatment of 6n=O transitions differs from

the more complicated approach of Post, et. al. Bremsstrahlung, bound-free,

and line radiation are included in the radiative cooling.

The rates in the Al atomic model used in these studies were not

considered reliable for electron temperatures below about 20 eV, so the

average-atom model was sometimes used for electron temperature lower than

this.

V. APPLICATION TO ALUMINUM VAPORS

A. Plasma Shells of Varying Thickness

The ZPIMP code described in the above sections was used to simulate the

implosion of aluminum plasma shells of varying mass loading and initial radii.

Mass loadings of 30, 35, and 40 pgm/cm were considered. Initial outer and

inner radii pairs were (1.00, 0.90), (1.05, 0.85), and (1.15, 0.75) cm; these

pairings gave initial shell thickness of 0.1, 0.2, and 0.4 cm. Initial

electron and ion temperatures of 5eV were assumed. The coefficient of the

artificial viscosity, bvis, was set at 0.25 after comparison of some test runs

with a multi-zone 1-D Lagrangian code. The resistivity is given by

Braginskii's 6 form in the high field limit. For the machine inductance we

used Lm = 58 nanohenrys; for the machine impedance Zm = 2 Ohms; and the open

circuit voltage was chosen to match GAMBLE II.

Figure 1 shows the minimum outer radius R2,min = min{R 2 (t)) obtained in

this series of runs (the minimum inner radius always went to zero). The

smallest of the R2,min always occurs for the lowest mass loadings and thinnest

shells. Figure 2 gives the times of peak compression for this set of

calculations. The earliest compression times again occur for the lowest mass

loadings and thinnest shells.

This pattern of the extremum occurring for the lowest mass loadings and

thinnest shells also occurs in the next several plots (Figs. 3-7) for electron

temperature, average charge and radiated power. The higher radiative cooling

under these conditions allows the plasma to be compressed to higher densities
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(or smaller radii). The exceptions are the line and continuum radiation

maxima below the K edge, which are fairly flat.

All the Z maxima are well above 11, which means that the Al ions are

usually in the He-like and H-like states at peak compression. This is

reflected in the fact that the line and continuum radiation maxima above the K

edge are higher than those below the K edge. These results indicate that,

under the set of conditions simulated by these calculations, it should be

possible to create highly-ionized Z-pinch Al plasmas in the NRL GAMBLE II

device.

B. Filled Cylinder Plasmas

Using the same mass loadings, a set of filled-shell (inner radius---O)

runs were made for different initial outer radii ranging from 0.5 cm to 2.0

cm. Initial temperatures of 5eV were assumed. The next several figures show

some results from these calculations.

Figure 8 shows the minimum outer radius R2,min obtained at each mass

loading vs. initial outer radius R 2,0 Generally, the trend is for R2,min to

increase with R 2,. However, the 35 vgm/cm curve peaks slightly at R 2,o1.875

cm, and the 40 pgm/cm curve shows a very pronounced dip between 1.625 cm and

2.0 cm. Unlike Figure 1, the smaller R2,min occurs at the larger mass

loadings.

Figure 9 gives the times of maximum implosion (R2 = R2,min) vs. R2,o for

the diffeeiit Lmass loadings. The larger times occur at the larger mass

loading and larger R2 ,o' generally.

Figure 10 displays the maximum electron temperatures achieved during

these calculations. These maxima usually occurred at, or just prior to,

maximum implosion. The higher maximum temperatures result at the lower

masses. The 40 gm/cm curve drops very rapidly in the area where R2,min also

decreases rapidly, then it seems to stabilize as R increases again.
2,min

The maximum aiverage ionic charge Z is shown in Figure 11. The results

seem to peak around R -1.0; the highest ionization occurs at the smallest
2,o

mass. The 40 1gm/cm cutve crosses Z=11 in the region where R2,min drops

rapidiy. When Z is 11 or greater, He-like and H--like ions are predominant.

When Z drops below 11, [--shell radiation appears. The result of Z falling
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below 11 is enhanced L-shell and total radiation as will be seen in subsequent

figures.

Figure 12 shows the maximum total radiated power for these runs. The

higher radiation occurs for the larger mass, which helps to explain the fact

that the smaller R2,min occur with the larger mass.

Figures 13 and 14 give the maximum line and continuum radiation below

and above the K edge. Figures 12, 13a, and 14a shcw an increase in radiated

power at 40 gm/cm at R 2,=1.69 cm. This is the point at which maximum E

crosses 11 and at which R2,min decreases rapidly. The enhanced cooling of the

plasma, as shown in Figure 10, reduces plasma pressure and allows for

increased compression. Beyond R2, =1.75 cm, the radiative cooling drops;

plasma thermal energy is retained and it becomes harder to compress the

plasma. Hence R 2,mi n increases again.

It should also be noted in Figures 13a and 14a that the L-shell

radiative cooling reaches a minimum at large R2 ,o and rises again for the 35

ugm/cm mass. This accounts for the peak in this R2,min curve noted earlier.

These curves show high radiative losses at low R 2, for all the mass

loadings; hence, all R2,min are small at small R2, o.

VI. SUMMARY

The equations and structure of the new, zero-D, ZPIMP code have been

presented. This code combines the best features of previous, but separate,

zero-D codes, such as the coupling of a CRE ionization model with radiation

transport in SIMPLODE3 , and a self-consistent circuit equation as in McDonald

and Ottinger's5 code. However, ZPIMP uses a completely different approach for

the hydrodynamics: the continuity, momentum, and energy equations are solved

in a finite difference form similar to a standard multi-zone Lagrangian code.

Furthermore, rather than specifying a profile for the current density, ZPIMP

uses an analytic solution to the induction equation for the diffusion of the

magnetic field in a moving medium. The form of the total (plasma + field)

energy conservation relation is explicitly derived from the finite difference

equations.

The detailed development of the equations in the text clarifies the

inherent limitations of a zero-D model for an imploding plasma. Besides the
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oversimplification of an average value for the plasma density and temperature,

the bounce phase of an imploding annular shell is poorly handled. Pressure

forces in the plasma between the shell and the axis are always ignored in a

zero--D code, but do become significant at the time of bounce. Within the

framework of the ZPiMP code this problem could readily be corrected by solving

the dynamics over the inner zone, as well as the plasma shell. Since the mass

in the inner zone is much less than that in the shell zone, one could still

restiict the time consuming radiation transport to the main plasma shell. For

the existing ZPIMP code, the results for general trends at the collapse time

are consistentt with several runs made with multi-zone codes. The ZPIMP

simulation is also limited to rapid collapse times since the gradient scale

length of the magnetic field was assumed to be small compared to the plasma

radius. This condition allowed a simple solution to the induction equation

for annular shells. Future improvements to the hydrodynamics and magnetic

diffusion in ZPIMP are under development.

The zero-D ZPIMP code has been applied to the implosions of an aluminum

vapor in annular shells and filled cylinders. The parameters of the circuit

were chosen to match the NRL GAMBLE II device. The effects of various mass

loadings, initial outer radii, and shell widths on the gross properties of the

implosion were discussed. In particular, results for the implosion time and

radius, maximum charge state and temperature, and peak radiated power have

been summarized in the figures. In a future report we will analyze the

radiative yields, spectra, and pulse durations as a function of the mass

loading and initial configuration of the aluminum vapor. This large parameter

space can only be effectively studied with a versatile and rapid zero-D code

such as ZPIMP. From a comparison of the results we intend to determine the

optimum conditions for aluminum K- and L-shell radiation.
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Fig 1. Minimum outer radius for the thin shell Al plasma implosions.

The solid line represents a shell thickness AR=O.1 cm, the long

dashed line represents 6R=0.2 cm, and the short-dashed line

represents AR=0.4 cm.
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Fig 2. Time of maximum implosion for the thin shell cases. Same

notation as Figure 1.
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Fig 3. Maximum electron temperature for the thin shell cases. Same

notation as Figure 2.
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Fig 5. Maximum total radiated power for the thin shell cases. Same

notation as Figure 1.
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Fig 6. Maximum line radiation below (a) and above (b) the K edge for

the thin shell cases. Same notation as Figure 1.
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Fig 7. Maximum continuum radiation below (a) and above (b) the K edge

for the thin shell cases. Same notation as Figure 1.
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is 35 iigm/cm, and the short-dashed line is 40 11gm/cm.
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