POLARIZATION MATRICES OF LITHIUM TANTALATE

Arthur Ballato
ELECTRONICS TECHNOLOGY AND DEVICES LABORATORY

April 1989

DISTRIBUTION STATEMENT
Approved for public release; distribution is unlimited.

US ARMY
LABORATORY COMMAND
FORT MONMOUTH, NEW JERSEY 07703-5000
NOTICES

Disclaimers

The citation of trade names and names of manufacturers in this report is not to be construed as official Government indorsement or approval of commercial products or services referenced herein.
In analytical treatments of piezoelectric acoustic transducers, signal processors, and resonators, the electromechanical transduction mechanism is most often expressed in terms of the elements of the piezoelectric $[e]$ or $[d]$ matrices. Molecular interpretations of piezoelectricity, and especially electro-optical applications, usually involve polarization as the preferred variable, and consequently the alternative $[a]$ and $[b]$ matrices are of interest. The elements of these latter sets are calculated for lithium tantalate from measured elastopiezoelectric constants taken from the literature.
CONTENTS

INTRODUCTION ... 1
CONSTITUTIVE EQUATION SETS 1
RELATIONS AMONG MATERIAL CONSTANTS 5
CALCULATION SEQUENCE .. 7
EXPLICIT FORMULAS FOR POINT GROUP 3m 10
INPUT VALUES FOR LI TA 03 17
OUTPUT VALUES FOR LI TA 03 17
CONCLUSIONS ... 20
REFERENCES .. 20

TABLES

Table Page

1. Symbols, Units, and Definitions 2
2. Relations among Material Constants 8
3. Further Relations among Material Constants 9
4. Elastopiezodielectric Matrices for Point Group 3m: The [e], [h], and [a] Sets 11
5. Elastopiezodielectric Matrices for Point Group 3m: The [d], [g], and [b] Sets 11
6. Isagric Elastic Stiffnesses 17
7. Piezoelectric Stress Constants 17
8. Dielectric Permittivities at Constant Strain 17
9. Elastic Stiffnesses ... 18
10. Elastic Compliances .. 18
11. Piezoelectric [e], [h], and [a] Values 18
<table>
<thead>
<tr>
<th>Table</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. Piezoelectric [d], [g], and [b] Values</td>
<td>19</td>
</tr>
<tr>
<td>13. Dielectric (eps) Values</td>
<td>19</td>
</tr>
<tr>
<td>14. Dielectric (chi) Values</td>
<td>19</td>
</tr>
<tr>
<td>15. Dielectric (bet) Values</td>
<td>19</td>
</tr>
<tr>
<td>16. Dielectric (zet) Values</td>
<td>20</td>
</tr>
</tbody>
</table>
INTRODUCTION

Electromechanical transduction taking place via the piezoelectric effect is characterized phenomenologically by constitutive equations that relate the elastic and electric variables. These equations take a variety of forms, depending upon the choice of independent and dependent variables; the choice is normally dictated by the application. For example, piezoelectric resonators in the form of thickness mode plates are most easily treated using the isagic elastic stiffnesses \([cE]\), the piezoelectric stress constants \([e]\), and the dielectric permittivities at constant strain \([(\varepsilon)S]\).

Various measurement techniques yield values for the elements of a particular coefficient set more directly than those of another. The coefficients appearing in the different equation sets are, however, interrelated, so that once any one complete set is available, all the other sets of elements may be found. The most accurate and precise experimental results to date have been from plate resonator (resonance) and pulse-echo (transit-time) measurements. From the \([cE]\), \([e]\), and \([(\varepsilon)S]\) matrices determined therefrom, those matrices representing material properties expressed in the other alternative forms may be calculated.

Electrooptical applications are becoming increasingly important. So also are treatments of piezoelectric and ferroelectric phenomena from the standpoint of molecular interactions. In both of these cases the constitutive equations using polarization as the independent electrical variable, rather than either electric intensity or displacement, assume greater importance than the sets traditionally used for transducer, signal processing, and resonator applications.

In this report we give the complete sets of linear constitutive equations relating elastic and electric fields. For each equation set the numerical values are computed for lithium tantalate, a highly piezoelectric ferroelectric with temperature-compensated orientations, from the measured \([cE]\), \([e]\), and \([(\varepsilon)S]\) values of Smith and Welsh (Ref. 1). Coupling to the thermal field is neglected. Rationalized mks units are used throughout.

CONSTITUTIVE EQUATION SETS

Symbols and units for the quantities employed are given in Table 1. In terms of these, six constitutive equation sets are used. Of these, electric intensity, dielectric displacement, and polarization each appear in two sets as an independent variable. The sets are, in compressed matrix notation, as follows. A prime denotes transpose; \([I]\) is the unit matrix.

I. The Piezoelectric Stress Constant Set

\[
[T] = [cE] [S] - [e]' [E] \quad (1)
\]
\[
[D] = [e] [S] + [(\varepsilon)S] [E] \quad (2)
\]
<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>UNIT</th>
<th>SYMBOL/DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastic stress</td>
<td>N/m²</td>
<td>[T]</td>
</tr>
<tr>
<td>Elastic strain</td>
<td>------</td>
<td>[S]</td>
</tr>
<tr>
<td>Electric intensity</td>
<td>V/m</td>
<td>[E]</td>
</tr>
<tr>
<td>Dielectric displacement</td>
<td>C/m²</td>
<td>[D]</td>
</tr>
<tr>
<td>Dielectric polarization</td>
<td>C/m²</td>
<td>[P]</td>
</tr>
<tr>
<td>Elastic compliance at constant [E], [D], [P]</td>
<td>m²/N</td>
<td>[cE], [cD], [cP]</td>
</tr>
<tr>
<td>Elastic stiffness at constant [E], [D], [P]</td>
<td>N/m²</td>
<td>[sE], [sD], [sP]</td>
</tr>
<tr>
<td>Dielectric permittivity at constant [T], [S]</td>
<td>F/m</td>
<td>[(εT)], [(εS)]</td>
</tr>
<tr>
<td>Dielectric constant, relative, at constant [T], [S]</td>
<td>------</td>
<td>[(Kr)T], [(Kr)S] =[(εT)/(εo)], [(εS)/(εo)]</td>
</tr>
<tr>
<td>Dielectric impermeability at constant [T], [S]</td>
<td>m/F</td>
<td>[(bet)T], [(bet)S] =[(εT)/(-1)], [(εS)/(-1)]</td>
</tr>
<tr>
<td>Dielectric impermeability, relative, at constant [T], [S]</td>
<td>------</td>
<td>[(betr)T], [(betr)S] =[(εT)(-1)], [(εS)(-1)]</td>
</tr>
<tr>
<td>Dielectric susceptibility at constant [T], [S]</td>
<td>F/m</td>
<td>[(χT)], [(χS)] =[(Kr)T-I]*εo, [(Kr)S-I]*εo</td>
</tr>
<tr>
<td>Dielectric susceptibility, relative, at constant [T], [S]</td>
<td>------</td>
<td>[(χr)T], [(χr)S] =[(χT)/(εo)], [(χS)/(εo)]</td>
</tr>
<tr>
<td>Reciprocal dielectric susceptibility at constant [T], [S]</td>
<td>m/F</td>
<td>[(ζT)], [(ζS)] =[(χT)/(-1)], [(χS)/(-1)]</td>
</tr>
<tr>
<td>Reciprocal dielectric susceptibility, relative, at constant [T], [S]</td>
<td>------</td>
<td>[(ζr)T], [(ζr)S] =[(ζT)*εo], [(ζS)*εo]</td>
</tr>
<tr>
<td>Piezoelectric stress constant</td>
<td>C/m²</td>
<td>[e]</td>
</tr>
</tbody>
</table>
TABLE 1. SYMBOLS, UNITS, AND DEFINITIONS. (continued)

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>UNIT</th>
<th>SYMBOL/DEFINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piezoelectric strain</td>
<td>m/V = (C/N)</td>
<td>[d]</td>
</tr>
<tr>
<td>coefficient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piezoelectric stress</td>
<td>N/C = V/m</td>
<td>[h]</td>
</tr>
<tr>
<td>modulus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piezoelectric strain</td>
<td>m2/C</td>
<td>[g]</td>
</tr>
<tr>
<td>constant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piezoelectric polarization</td>
<td>V/m = N/C</td>
<td>[a]</td>
</tr>
<tr>
<td>modulus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piezoelectric polarization</td>
<td>m2/C</td>
<td>[b]</td>
</tr>
<tr>
<td>constant</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Square brackets, *sic*: [], denote matrices.
II. The Piezoelectric Strain Coefficient Set

\[[S] = [sE] [T] + [d]' [E] \]
\[[D] = [d] [T] + [(\text{eps})T] [E] \]

III. The Piezoelectric Stress Modulus Set

\[[T] = [cD] [S] - [h]' [D] \]
\[[E] = -[h] [S] + [((\text{bet})S)] [D] \]

IV. The Piezoelectric Strain Constant Set

\[[S] = [sD] [T] + [g]' [D] \]
\[[E] = -[g] [T] + [((\text{bet})T)] [D] \]

V. The Piezoelectric Polarization Modulus Set

\[[T] = [cP] [S] - [a]' [P] \]
\[[E] = -[a] [S] + [((\text{zet})S)] [P] \]

VI. The Piezoelectric Polarization Constant Set

\[[S] = [sP] [T] + [b]' [P] \]
\[[E] = -[b] [T] + [((\text{zet})T)] [P] \]

The electric variables are connected by the relation

\[[D] = (\text{eps})o * [E] + [P] \]

where \((\text{eps})o\) is the permittivity of free space, defined by

\[(\text{eps})o * (\text{mu})o * (c) * (c) = 1 ; \]

\((\text{mu})o\) is the permeability of free space, equal, by definition, to 4 \(\pi \times 10^{-7}\), and \((c)\) is the velocity of light in vacuo and, also by definition, is equal exactly to \(2.99792458 \times 10^8\) m/s.

From (13) the expressions for the remaining electric variables associated, respectively, with the six equation sets (1) to (12) may be found:

\[[P] = [e] [S] + [((\text{chi})S)] [E] \]
\[[P] = [d] [T] + [((\text{chi})T)] [E] \]
\[[P] = (\text{eps})o * [h] [S] + [I - (\text{eps})o * (\text{bet})S] [D] \]
\[[P] = (\text{eps})o * [g] [T] + [I - (\text{eps})o * (\text{bet})T] [D] \]
[D] = -(\epsilon_o \ast [a]) [S] + [I + (\epsilon_o \ast (\zeta S)] [P] \quad (19)
[D] = -(\epsilon_o \ast [b]) [T] + [I + (\epsilon_o \ast (\zeta T)] [P] \quad (20)

RELATIONS AMONG MATERIAL CONSTANTS

The material constants are interrelated by the following formulas:

\[(c_X) [s_X] = [(\epsilon_Y) [(\beta_Y) = [I] \quad (21)\]
\[(\chi_Y) [(\zeta_Y) = [(\kappa_Y) - (\chi_Y)] = [I] \quad (22)\]

In (21) and (22), X = E, D, or P and Y = T or S.

\[[c_D] - [c_E] = [h]' [e] = [e]' [h]
\quad = [h]' [(\epsilon_S) [h] = [e]' [(\beta_S) [e]
\quad = [a]' [e - h \ast (\epsilon_o)] = [e - h \ast (\epsilon_o)]' [a] \quad (23)\]

\[[c_P] - [c_D] = [h]' [a] \ast (\epsilon_o) = [a]' [h] \ast (\epsilon_o)
\quad = [h]' [(\epsilon_S) [(\zeta_S) [h] \ast (\epsilon_o)
\quad = [a]' [(\beta_S) [(\chi_S) [a] \ast (\epsilon_o)
\quad = [a - h]' [c] = [e]' [a - h] \quad (24)\]

\[[c_P] - [c_E] = [a]' [e] = [e]' [a]
\quad = [a]' [(\chi_S) [a] = [e]' [(\zeta_S) [e]
\quad = [h]' [e + a \ast (\epsilon_o)] = [e + a \ast (\epsilon_o)]' [h] \quad (25)\]

\[[s_E] - [s_D] = [d]' [g] = [g]' [d]
\quad = [d]' [(\beta_T) [d] = [g]' [(\epsilon_T) [g]
\quad = [b]' [d - g \ast (\epsilon_o)] = [d - g \ast (\epsilon_o)]' [b] \quad (26)\]

\[[s_D] - [s_P] = [b]' [g] \ast (\epsilon_o) = [g]' [b] \ast (\epsilon_o)
\quad = [g]' [(\epsilon_T) [(\zeta_T) [g] \ast (\epsilon_o)
\quad = [b]' [(\beta_T) [(\chi_T) [b] \ast (\epsilon_o)
\quad = [b - g]' [d] = [d]' [b - g] \quad (27)\]

\[[s_E] - [s_P] = [b]' [d] = [d]' [b]
\quad = [b]' [(\chi_T) [b] = [d]' [(\zeta_T) [d]
\quad = [g]' [d + b \ast (\epsilon_o)] = [d + b \ast (\epsilon_o)]' [g] \quad (28)\]
\[(\text{zet})_S - (\text{zet})_T = [b] \ [a]' = [a] \ [b]' \]
\[(\text{zet})_T - (\text{zet})_S = [d] \ [b]' = [a] \ [sp] \ [a]' \]
\[(\text{chi})_T - (\text{chi})_S = [(\text{eps})_T] - [(\text{eps})_S] = [e] \ [d]' = [d] \ [e]' \]
\[(\text{chi})_T - (\text{chi})_S = [(\text{eps})_T] - [(\text{eps})_S] = [d] \ [ce] \ [d]' = [e] \ [se] \ [e]' \]
\[(\text{bet})_S - (\text{bet})_T = [h] \ [g]' = [g] \ [h]' \]
\[(\text{bet})_S - (\text{bet})_T = [h] \ [g]' = [g] \ [h]' \]
\[= [g] \ [cd] \ [g]' = [h] \ [sd] \ [h]' \]
\[= [e] \ [d] \ [ce] = [(\text{eps})_S] \ [h] = [(\text{chi})_S] \ [a] \]
\[= [(\text{eps})_T] \ [g] = [(\text{chi})_T] \ [b] \]
\[= [g] \ [cd] = [(\text{bet})_S] \ [e] = [(\text{chi})_S] \ [(\text{bet})_S] \ [a] \]
\[= [I - (\text{bet})_S * (\text{eps})_o] \ [a] \]
\[= [g] \ [h] \ [sd] = [(\text{bet})_T] \ [d] = [(\text{chi})_T] \ [(\text{bet})_T] \ [b] \]
\[= [I - (\text{bet})_T * (\text{eps})_o] \ [b] \]
\[= [e] \ [a] \ [cp] = [(\text{zet})_S] \ [e] = [(\text{eps})_S] \ [(\text{zet})_S] \ [h] \]
\[= [I + (\text{zet})_S * (\text{eps})_o] \ [h] \]
\[= [b] \ [a] \ [sp] = [(\text{zet})_T] \ [d] = [(\text{eps})_T] \ [(\text{zet})_T] \ [g] \]
\[= [I + (\text{zet})_T * (\text{eps})_o] \ [g] \]

Some alternative relations are the following:

\[= [b] \ [cp] \]
\[= [(\text{zet})_S] \ [e] = [(\text{eps})_S] \ [(\text{zet})_S] \ [h] \]
\[= [I + (\text{zet})_S * (\text{eps})_o] \ [h] \]
\[= [b] \ [a] \ [sp] = [(\text{zet})_T] \ [d] = [(\text{eps})_T] \ [(\text{zet})_T] \ [g] \]
\[= [I + (\text{zet})_T * (\text{eps})_o] \ [g] \]

Equations (21) to (43) result from equating like dependent variables in pairs selected from equations (1) to (12) and (15) to (20). Each
pair yields one equation in three variables, one mechanical and two electrical, or vice versa. Two other equations exist, again from (1) to (12) and (15) to (20), that contain the same three variables found in each paired equation. One of these auxiliary equations is used to eliminate one of the two variables of the same kind; the result is one equation in two variables, one electrical and one mechanical. These are now independent variables, so the coefficients must vanish; two relations between the material coefficients result. As an example, (3) and (7) both have [S] as dependent variable. Equating them produces one relation in [T], [E], and [D]; one of the electrical variables must be eliminated. This is done by using either (4) or (8); each contains the same three variables. If (8) is used to eliminate [E], one obtains \([sE - d' g - sD'] [T] = [d' (bet)T - g'] [D]\). Therefore, \([sE] - [sD] = [d'] [g]\) and \([g] = [(bet)T] [d]\). Use of (4) instead of (8) leads to the equations \([sE] - [sD] = [g]' [d]\) and \([d] = [(eps)T] [g]\). There are 36 pairs, six each equating \([S]\) and \([T]\), and eight each equating \([E]\), \([D]\), and \([P]\). The 72 relations contain many redundancies. Relations between the elastic, piezoelectric, and dielectric constants are shown schematically in Tables 2 and 3.

CALCULATION SEQUENCE

Using as input \([cF]\), \([e]\), and \([(eps)S]\), one may compute the remaining quantities in a variety of ways. The following sequence is typical:

\[
[sE] = [cE] (-1)
\]

\[
[(bet)S] = [(eps)S] (-1)
\]

\[
[d] = [e] [sE]
\]

\[
[h] = [(bet)S] [e]
\]

\[
[(eps)T] - [(eps)S] = [e] [d]'\]

\[
[(eps)T] = [(eps)S] + [e] [d]'
\]

\[
[(bet)T] = [(eps)T] (-1)
\]

\[
[cD] - [cE] = [e]' [h]
\]

\[
[cD] = [cE] + [e]' [h]
\]

\[
[g] = [(bet)T] [d]
\]

\[
[sF] - [sD] = [d]' [g]
\]

\[
[sD] = [sE] - [d]' [g]
\]

\[
[(betr)S] = [(bet)S] * (eps)o
\]

\[
[(zetr)S] = [(betr)S] (I - (betr)S) (-1)
\]

\[
[(zet)S] = [(zetr)] / (eps)o
\]
TABLE 2. RELATIONS AMONG MATERIAL CONSTANTS.

\[
\begin{align*}
\Delta g & = \Delta \xi \\
\Delta c^D & = \Delta s^E \\
\Delta c^E & = \Delta s^D \\
\Delta c^P & = \Delta c^D/\varepsilon_0 \\
\Delta s^E & = \Delta s^D/\varepsilon_0 \\
\end{align*}
\]
TABLE 3. FURTHER RELATIONS AMONG MATERIAL CONSTANTS.
\[(\text{bet})^T\] = \[(\text{bet})^T\] * (\(\text{eps}\)) \(o\) \hspace{1cm} (59)

\[(\text{zet})^T\] = \[([\text{bet}^T] \cdot [I - \text{bet}^T])^{-1}\] \hspace{1cm} (60)

\[(\text{zet})\] = \[(\text{zet})^T\] / (\(\text{eps}\)) \(o\) \hspace{1cm} (61)

\[(\chi)^S\] = \[(\text{zet})^S\] \(^{-1}\) \hspace{1cm} (62)

\[(\chi)^T\] = \[(\text{zet})^T\] \(^{-1}\) \hspace{1cm} (63)

\[\text{[a]}\] = \[(\text{zet})^S\] \[\text{[e]}\] \hspace{1cm} (64)

\[\text{[b]}\] = \[(\text{zet})^T\] \[\text{[d]}\] \hspace{1cm} (65)

\[\text{[cP]} - \text{[cE]}\] = \[\text{[e]}\]' \[\text{[a]}\] \hspace{1cm} (66)

\[\text{[cP]}\] = \[\text{[cE]}\] + \[\text{[e]}\]' \[\text{[a]}\] \hspace{1cm} (67)

\[\text{[cP]} - \text{[cD]}\] = \[\text{[a]}\]' \[\text{[h]}\] * (\(\text{eps}\)) \(o\) \hspace{1cm} (68)

\[\text{[sE]} - \text{[sP]}\] = \[\text{[d]}\]' \[\text{[b]}\] \hspace{1cm} (69)

\[\text{[sP]}\] = \[\text{[sE]} - \text{[d]}\]' \[\text{[b]}\] \hspace{1cm} (70)

\[\text{[sD]} - \text{[sP]}\] = \[\text{[g]}\]' \[\text{[b]}\] * (\(\text{eps}\)) \(o\) \hspace{1cm} (71)

\[\text{[[bet]}^S\] - \text{[[bet}^T] = \[\text{[h]}\] \[\text{[g]}\]' \hspace{1cm} (72)

\[\text{[([chi]}^T\] - \text{[([chi]}^S\] = \[(\text{eps})^T\] - \[(\text{eps})^S\] \hspace{1cm} (73)

\[\text{[[zet]}^S\] - \text{[[zet}^T]\] = \[\text{[a]}\] \[\text{[b]}\]' \hspace{1cm} (74)

A number of these relations are used as checks. For example, \text{[[bet}^S] and \text{[[bet}^T] are known from (45) and (50), but the difference is recomputed in (72).

EXPLICIT FORMULAS FOR POINT GROUP 3m

Elastic:

The 6x6 elastic constant portions of Tables 4 and 5 partition into 4x4 and 2x2 submatrices. The 4x4 elastic stiffness and compliance submatrices are interrelated by formulas (75) to (93), taken from Cady (Ref. 2):

\[A = s_{33} * (s_{11} + s_{12}) - 2 * s_{13} * s_{13}\] \hspace{1cm} (75)

\[B = s_{44} * (s_{11} - s_{12}) - 2 * s_{14} * s_{14}\] \hspace{1cm} (76)

\[2 * c_{11} = s_{33} / A + s_{44} / B\] \hspace{1cm} (77)

\[2 * c_{12} = s_{33} / A - s_{44} / B\] \hspace{1cm} (78)

\[c_{13} = - s_{13} / A ; \; \; c_{14} = - s_{14} / B\] \hspace{1cm} (79a), (79b) \hspace{1cm} (79)
TABLE 4. ELASTOPIEZODIELECTRIC MATRICES FOR POINT GROUP 3m:
THE [e], [h], AND [a] SETS.

<table>
<thead>
<tr>
<th>Matrix</th>
<th>E</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>00</th>
<th>00</th>
<th>00</th>
<th>-22</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>e'</td>
<td>00</td>
<td>22</td>
<td>31</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>epsS</td>
<td>-22</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cE</td>
<td>00</td>
<td>22</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h'</td>
<td>15</td>
<td>00</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>betS</td>
<td>15</td>
<td>00</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cD</td>
<td>11</td>
<td>00</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d'</td>
<td>00</td>
<td>11</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>epsT</td>
<td>-22</td>
<td>00</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>15</td>
<td>00</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>betT</td>
<td>15</td>
<td>00</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a'</td>
<td>00</td>
<td>00</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zetS</td>
<td>00</td>
<td>00</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

66 = (11 - 12) / 2

Matrix entries show only subscripts.

TABLE 5. ELASTOPIEZODIELECTRIC MATRICES FOR POINT GROUP 3m:
THE [d], [g], AND [b] SETS.

<table>
<thead>
<tr>
<th>Matrix</th>
<th>E</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>00</th>
<th>00</th>
<th>00</th>
<th>-22</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>d'</td>
<td>00</td>
<td>22</td>
<td>31</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>epsT</td>
<td>-22</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sE</td>
<td>00</td>
<td>22</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g'</td>
<td>15</td>
<td>00</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>betT</td>
<td>15</td>
<td>00</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sD</td>
<td>11</td>
<td>00</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b'</td>
<td>00</td>
<td>11</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zetT</td>
<td>00</td>
<td>00</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

66 = (11 - 12) * 2

Matrix elements show only subscripts.
\[c_{33} = \frac{(s_{11} + s_{12})}{A} \quad (80) \]
\[c_{44} = \frac{(s_{11} - s_{12})}{B} \quad (81) \]
\[c_{66} = \frac{(c_{11} - c_{12})}{2} = \frac{s_{44}}{2B} \quad (82) \]
\[K = c_{33} \ast (c_{11} + c_{12}) - 2 \ast c_{13} \ast c_{13} \quad (83) \]
\[L = c_{44} \ast (c_{11} - c_{12}) - 2 \ast c_{14} \ast c_{14} \quad (84) \]
\[2 \ast s_{11} = c_{33} \ast K + c_{44} \ast L \quad (85) \]
\[2 \ast s_{12} = c_{33} \ast K - c_{44} \ast L \quad (86) \]
\[s_{13} = -c_{13} \ast K; \quad s_{14} = -c_{14} \ast L \quad (87a), (87b) \]
\[s_{33} = \frac{(c_{11} + c_{12})}{K} \quad (88) \]
\[s_{44} = \frac{(c_{11} - c_{12})}{L} \quad (89) \]
\[s_{66} = \frac{(s_{11} - s_{12})}{2 \ast c_{44}} \ast L \quad (90) \]
\[\det (4 \times 4) \begin{bmatrix} s \end{bmatrix} = A \ast B \quad (91) \]
\[\det (4 \times 4) \begin{bmatrix} c \end{bmatrix} = K \ast L \quad (92) \]
\[A \ast K = B \ast L = A \ast B \ast K \ast L = 1 \quad (93) \]

Formulas (75) to (93) hold for each set of constant electrical conditions: either \(E \), \(D \), or \(P \) constant.

\[[cD] - [cE] = [\text{del } cDE] = [e]' \begin{bmatrix} h \end{bmatrix} = [h]' \begin{bmatrix} e \end{bmatrix} \quad (23) \]
\[\text{del } cDE_{11} = + e_{22} h_{22} + e_{31} h_{31} \quad (94) \]
\[\text{del } cDE_{12} = - e_{22} h_{22} + e_{31} h_{31} \quad (95) \]
\[\text{del } cDE_{13} = + e_{31} h_{33} = + h_{31} e_{33} \quad (96) \]
\[\text{del } cDE_{14} = - e_{22} h_{15} = - h_{22} e_{15} \quad (97) \]
\[\text{del } cDE_{33} = + e_{33} h_{33} \quad (98) \]
\[\text{del } cDE_{44} = + e_{15} h_{15} \quad (99) \]
\[\text{del } cDE_{66} = + e_{22} h_{22} \quad (100) \]

\[[cP] - [cD] = [\text{del } cPD] = [a]' \begin{bmatrix} h \end{bmatrix} \ast (\text{eps})^{o} = [h]' \begin{bmatrix} a \end{bmatrix} \ast (\text{eps})^{o} \quad (24) \]
\[\text{del } cPD_{11} = (+ a_{22} h_{22} + a_{31} h_{31}) \ast (\text{eps})^{o} \quad (101) \]
\[\text{del } cPD_{12} = (- a_{22} h_{22} + a_{31} h_{31}) \ast (\text{eps})^{o} \quad (102) \]
\[
\begin{align*}
\text{del cPD13} &= (+ a31 h33) * (\text{eps})o \\
&= (+ h31 a33) * (\text{eps})o \quad (103) \\
\text{del cPD14} &= (- a22 h15) * (\text{eps})o \\
&= (- h22 a15) * (\text{eps})o \quad (104) \\
\text{del cPD33} &= (+ a33 h33) * (\text{eps})o \quad (105) \\
\text{del cPD44} &= (+ a15 h15) * (\text{eps})o \quad (106) \\
\text{del cPD66} &= (+ a22 h22) * (\text{eps})o \quad (107)
\end{align*}
\]

\[
\begin{align*}
[cP] - [cE] &= [\text{del cPE}] = [e]' [a] = [a]' [e] \quad (25) \\
\text{del cPE11} &= + e22 a22 + e31 a31 \quad (108) \\
\text{del cPE12} &= - e22 a22 + e31 a31 \quad (109) \\
\text{del cPE13} &= + e31 a33 = + a31 e33 \quad (110) \\
\text{del cPE14} &= - e22 a15 = - a22 e15 \quad (111) \\
\text{del cPE33} &= + e33 a33 \quad (112) \\
\text{del cPE44} &= + e15 a15 \quad (113) \\
\text{del cPE66} &= + e22 a22 \quad (114)
\end{align*}
\]

From the del c13 entries we have the ratios
\[
e31 / e33 = h31 / h33 = a31 / a33. \quad (115)
\]

From the del c14 entries we have the further ratios
\[
e15 / e22 = h15 / h22 = a15 / a22. \quad (116)
\]

\[
\begin{align*}
[sE] - [sD] &= [\text{del sED}] = [d]' [g] = [g]' [d] \quad (26) \\
\text{del sED11} &= + d22 g22 + d31 g31 \quad (117) \\
\text{del sED12} &= - d22 g22 + d31 g31 \quad (118) \\
\text{del sED13} &= + d31 g33 = + g31 d33 \quad (119) \\
\text{del sED14} &= - d22 g15 = - g22 d15 \quad (120) \\
\text{del sED33} &= + d33 g33 \quad (121) \\
\text{del sED44} &= + d15 g15 \quad (122) \\
\text{del sED66} &= + d22 g22 * 4 \quad (123)
\end{align*}
\]
\[[sD] - [sP] = [g]' [b] \ast (\varepsilon) \]
\[= [b]' [g] \ast (\varepsilon) \quad (27) \]
\[\text{del } sDP11 = (+ g22 b22 + g31 b31) \ast (\varepsilon) \quad (124) \]
\[\text{del } sDP12 = (- g22 b22 + g31 b31) \ast (\varepsilon) \quad (125) \]
\[\text{del } sDP13 = (+ g31 b33) \ast (\varepsilon) \]
\[= (+ b31 g33) \ast (\varepsilon) \quad (126) \]
\[\text{del } sDP14 = (- g22 b15) \ast (\varepsilon) \]
\[= (- b22 g15) \ast (\varepsilon) \quad (127) \]
\[\text{del } sDP33 = (+ g33 b33) \ast (\varepsilon) \quad (128) \]
\[\text{del } sDP44 = (+ g15 b15) \ast (\varepsilon) \quad (129) \]
\[\text{del } sDP66 = (+ g22 b22) \ast 4 \ast (\varepsilon) \quad (130) \]

\[[sE] - [sP] = \text{[del } sEP] = [b]' [d] = [d]' [b] \quad (28) \]
\[\text{del } sEP11 = + d22 b22 + d31 b31 \quad (131) \]
\[\text{del } sEP12 = - d22 b22 + d31 b31 \quad (132) \]
\[\text{del } sEP13 = + d31 b33 - + b31 d33 \quad (133) \]
\[\text{del } sEP14 = - d22 b15 = - b22 d15 \quad (134) \]
\[\text{del } sEP33 = + d33 b33 \quad (135) \]
\[\text{del } sEP44 = + d15 b15 \quad (136) \]
\[\text{del } sEP66 = + d22 b22 \ast 4 \quad (137) \]

From the \text{del } s13 entries we have the ratios
\[d31 / d33 = g31 / g33 = b31 / b33. \quad (138) \]

From the \text{del } s14 entries we have the further ratios
\[d15 / d22 = g15 / g22 = b15 / b22. \quad (139) \]

Piezoelectric:
\[[d] = [e] [sE] \quad (33) \]
\[d15 = + e15 sE44 - e22 sE14 \ast 2 \quad (140) \]
\[d22 = + e22 (sE11 - sE12) - e15 sE14 \quad (141) \]
\[d_{31} = + e_{31} (s_{E11} + s_{E12}) + e_{33} s_{E13} \]
\[d_{33} = + e_{33} s_{E33} + e_{13} s_{E13} \times 2 \]

\[[h] = [(\text{bet}S)] [e] \]
\[h_{15} = (\text{bet})S_{11} e_{15} \]
\[h_{22} = (\text{bet})S_{11} e_{22} \]
\[h_{31} = (\text{bet})S_{33} e_{31} \]
\[h_{33} = (\text{bet})S_{33} e_{33} \]

\[[g] = [(\text{bet}T)] [d] \]
\[g_{15} = (\text{bet})T_{11} d_{15} \]
\[g_{22} = (\text{bet})T_{11} d_{22} \]
\[g_{31} = (\text{bet})T_{33} d_{31} \]
\[g_{33} = (\text{bet})T_{33} d_{33} \]

\[[a] = [(\text{zet}S)] [e] \]
\[a_{15} = (\text{zet})S_{11} e_{15} \]
\[a_{22} = (\text{zet})S_{11} e_{22} \]
\[a_{31} = (\text{zet})S_{33} e_{31} \]
\[a_{33} = (\text{zet})S_{33} e_{33} \]

\[[b] = [(\text{zet}T)] [d] \]
\[b_{15} = (\text{zet})T_{11} d_{15} \]
\[b_{22} = (\text{zet})T_{11} d_{22} \]
\[b_{31} = (\text{zet})T_{33} d_{31} \]
\[b_{33} = (\text{zet})T_{33} d_{33} \]

Dielectric:

\[[(\text{bet}Y)] = [(\text{eps}Y)]^{-1} \]
\[(\text{bet})Y_{11} = 1 / (\text{eps}Y_{11}) \]
\[(\text{bet})Y_{33} = 1 / (\text{eps}Y_{33}) \]
\[
((\text{zetr}) Y) = ((\text{betr}) Y) [I - (\text{betr}) Y]^{-1}
\]
(162)

\[
(\text{zet}) Y_{11} = 1 / ((\text{eps}) Y_{11} - (\text{eps}) o)
\]
(163)

\[
(\text{zet}) Y_{33} = 1 / ((\text{eps}) Y_{33} - (\text{eps}) o)
\]
(164)

\[
((\text{eps}) T - (\text{eps}) S) = [\text{del} (\text{eps})] = [e] [d]' =
\]

\[
((\text{chi}) T - (\text{chi}) S) = [\text{del} (\text{chi})] = [d] [e]'
\]
(30)

\[
\text{del} (\text{eps}) 11 = \text{del} (\text{chi}) 11 = + e_{15} d_{15} + e_{22} d_{22} \times 2
\]
(165)

\[
\text{del} (\text{eps}) 33 = \text{del} (\text{chi}) 33 = + e_{33} d_{33} + e_{31} d_{31} \times 2
\]
(166)

\[
((\text{bet}) S - (\text{bet}) T) = [h] [g]' = [g] [h]'
\]
(31)

\[
\text{del} (\text{bet}) 11 = + h_{15} g_{15} + h_{22} g_{22} \times 2
\]
(167)

\[
\text{del} (\text{bet}) 33 = + h_{33} g_{33} + h_{31} g_{31} \times 2
\]
(168)

\[
((\text{zet}) S - (\text{zet}) T) = [\text{del} (\text{zet})] = [a] [b]' = [b] [a]'
\]
(169)

\[
\text{del} (\text{zet}) 11 = + a_{15} b_{15} + a_{22} b_{22} \times 2
\]
(170)

\[
\text{del} (\text{zet}) 33 = + a_{33} b_{33} + a_{31} b_{31} \times 2
\]
(171)
The values measured by Smith and Welsh (Ref.1) using the pulse-echo (transit-time) technique are as follows:

TABLE 6. ISAGRIC ELASTIC STIFFNESSES.

<table>
<thead>
<tr>
<th>cE11</th>
<th>cE12</th>
<th>cE13</th>
<th>cE14</th>
<th>cE33</th>
<th>cE44</th>
<th>cE66</th>
</tr>
</thead>
<tbody>
<tr>
<td>229.8</td>
<td>44.0</td>
<td>81.2</td>
<td>-10.4</td>
<td>279.8</td>
<td>96.8</td>
<td>92.9</td>
</tr>
</tbody>
</table>

Units: 10^9 N/m².

TABLE 7. PIEZOELECTRIC STRESS CONSTANTS.

<table>
<thead>
<tr>
<th>e15</th>
<th>e22</th>
<th>e31</th>
<th>e33</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.72</td>
<td>1.67</td>
<td>-0.38</td>
<td>1.09</td>
</tr>
</tbody>
</table>

Units: C/m².

TABLE 8. DIELECTRIC PERMITTIVITIES AT CONSTANT STRAIN.

<table>
<thead>
<tr>
<th>(eps)S11</th>
<th>(eps)S33</th>
</tr>
</thead>
<tbody>
<tr>
<td>377.</td>
<td>379.</td>
</tr>
</tbody>
</table>

Units: 10^{-12} F/m.

The input values from Tables 6, 7, and 8 were used to compute the remaining elastic, piezoelectric, and dielectric quantities for lithium tantalate in the manner discussed in prior sections of this report. The results are given in Tables 9 to 16.
TABLE 9. ELASTIC STIFFNESSES.

<table>
<thead>
<tr>
<th></th>
<th>cE</th>
<th>cD</th>
<th>cP</th>
<th>del cDE</th>
<th>del cPE</th>
<th>del cPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>229.8</td>
<td>237.6</td>
<td>237.8</td>
<td>7.78</td>
<td>7.976</td>
<td>0.187</td>
</tr>
<tr>
<td>12</td>
<td>44.0</td>
<td>37.0</td>
<td>36.8</td>
<td>-7.02</td>
<td>-7.19</td>
<td>-0.169</td>
</tr>
<tr>
<td>13</td>
<td>81.2</td>
<td>80.1</td>
<td>80.1</td>
<td>-1.09</td>
<td>-1.12</td>
<td>-0.0261</td>
</tr>
<tr>
<td>14</td>
<td>-10.4</td>
<td>-22.4</td>
<td>-22.7</td>
<td>-12.0</td>
<td>-12.3</td>
<td>-0.291</td>
</tr>
<tr>
<td>33</td>
<td>279.8</td>
<td>282.9</td>
<td>283.0</td>
<td>3.13</td>
<td>3.21</td>
<td>0.0750</td>
</tr>
<tr>
<td>44</td>
<td>96.8</td>
<td>116.4</td>
<td>116.9</td>
<td>19.6</td>
<td>20.1</td>
<td>0.472</td>
</tr>
<tr>
<td>66</td>
<td>92.9</td>
<td>100.3</td>
<td>100.5</td>
<td>7.40</td>
<td>7.58</td>
<td>0.178</td>
</tr>
</tbody>
</table>

Units: 10^9 N/m².

TABLE 10. ELASTIC COMPLIANCES.

<table>
<thead>
<tr>
<th></th>
<th>sE</th>
<th>sD</th>
<th>sP</th>
<th>del sED</th>
<th>del sEP</th>
<th>del sDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>4.93</td>
<td>4.79</td>
<td>4.78</td>
<td>0.143</td>
<td>0.146</td>
<td>0.00283</td>
</tr>
<tr>
<td>12</td>
<td>-0.518</td>
<td>-0.424</td>
<td>-0.422</td>
<td>-0.0945</td>
<td>-0.0962</td>
<td>-0.00169</td>
</tr>
<tr>
<td>13</td>
<td>-1.28</td>
<td>-1.24</td>
<td>-1.23</td>
<td>0.0450</td>
<td>0.0461</td>
<td>0.00105</td>
</tr>
<tr>
<td>14</td>
<td>0.585</td>
<td>1.00</td>
<td>1.01</td>
<td>-0.419</td>
<td>-0.427</td>
<td>-0.00798</td>
</tr>
<tr>
<td>33</td>
<td>4.32</td>
<td>4.23</td>
<td>4.23</td>
<td>0.0832</td>
<td>0.0852</td>
<td>0.00195</td>
</tr>
<tr>
<td>44</td>
<td>10.46</td>
<td>8.98</td>
<td>8.95</td>
<td>1.48</td>
<td>1.51</td>
<td>0.0282</td>
</tr>
<tr>
<td>66</td>
<td>10.90</td>
<td>10.42</td>
<td>10.41</td>
<td>0.475</td>
<td>0.484</td>
<td>0.00905</td>
</tr>
</tbody>
</table>

Units: 10^{-12} m²/N.

TABLE 11. PIEZOELECTRIC [e], [h], AND [a] VALUES.

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>h</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>2.72</td>
<td>7.21</td>
<td>7.39</td>
</tr>
<tr>
<td>22</td>
<td>1.67</td>
<td>4.43</td>
<td>4.54</td>
</tr>
<tr>
<td>31</td>
<td>-0.38</td>
<td>-1.00</td>
<td>-1.03</td>
</tr>
<tr>
<td>33</td>
<td>1.09</td>
<td>2.88</td>
<td>2.94</td>
</tr>
</tbody>
</table>

Units: e: C / m²; h and a: 10^9 V/m.
TABLE 12. PIEZOELECTRIC \([d]\), \([g]\), AND \([b]\) VALUES.

<table>
<thead>
<tr>
<th>(d)</th>
<th>(g)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>26.5</td>
<td>55.9</td>
</tr>
<tr>
<td>22</td>
<td>7.51</td>
<td>15.8</td>
</tr>
<tr>
<td>31</td>
<td>-3.07</td>
<td>-7.93</td>
</tr>
<tr>
<td>33</td>
<td>5.68</td>
<td>14.7</td>
</tr>
</tbody>
</table>

Units: \(d\): \(10^{-12}\) m/V; \(g\) and \(b\): \(10^{-3}\) m\(^2\)/C.

TABLE 13. DIELECTRIC \((\epsilon)\) VALUES.

<table>
<thead>
<tr>
<th>((\epsilon)S)</th>
<th>((\epsilon)T)</th>
<th>(\Delta(\epsilon)TS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>377.0</td>
<td>97.1</td>
</tr>
<tr>
<td>33</td>
<td>247.0</td>
<td>8.52</td>
</tr>
</tbody>
</table>

Units: \(10^{-12}\) F/m.

\(\Delta(\epsilon)TS = \Delta(\chi)TS\)

TABLE 14. DIELECTRIC \((\chi)\) VALUES.

<table>
<thead>
<tr>
<th>((\chi)S)</th>
<th>((\chi)T)</th>
<th>(\Delta(\chi)TS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>368.0</td>
<td>97.1</td>
</tr>
<tr>
<td>33</td>
<td>370.0</td>
<td>8.52</td>
</tr>
</tbody>
</table>

Units: \(10^{-12}\) F/m.

\(\Delta(\chi)TS = \Delta(\epsilon)TS\)

TABLE 15. DIELECTRIC \((\beta)\) VALUES.

<table>
<thead>
<tr>
<th>((\beta)S)</th>
<th>((\beta)T)</th>
<th>(\Delta(\beta)TS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>2.65</td>
<td>-0.543</td>
</tr>
<tr>
<td>33</td>
<td>2.64</td>
<td>-0.0580</td>
</tr>
</tbody>
</table>

Units: \(10^9\) m/F.
TABLE 16. DIELECTRIC \(\varepsilon \) VALUES.

<table>
<thead>
<tr>
<th>(\varepsilon)</th>
<th>(\varepsilon)T</th>
<th>del (\varepsilon)TS</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>2.72</td>
<td>2.15</td>
</tr>
<tr>
<td>33</td>
<td>2.70</td>
<td>2.64</td>
</tr>
</tbody>
</table>

Units: \(10^9 \) m/F.

CONCLUSIONS

This report provides formulas interrelating the coefficients that appear in the several alternative sets of constitutive equations involving the elastic, piezoelectric, and dielectric properties of crystals. These are then specialized for crystals of class 3m; using measured values reported for lithium tantalate, numerical values of the elements of the polarization matrices are calculated.

REFERENCES

101 Defense Technical Information Center*
ATTN: DTIC-FDAC
Cameron Station (Bldg 5) (*Note: Two copies for DTIC will
Alexandria, VA 22304-6145 be sent from STINFO Office.)

483 Director
US Army Material Systems Analysis Actv
ATTN: DRXSY-MP
001 Aberdeen Proving Ground, MD 21005

563 Commander, AMC
ATTN: AMCM-FSC
5001 Eisenhower Ave.
001 Alexandria, VA 22333-0001

609 Commander, LABCOM
ATTN: AMSLC-CG, CD, CS (In turn)
2800 Powder Mill Road
001 Adelphi, Md 20783-1145

612 Commander, LABCOM
ATTN: AMSLC-CT
2800 Powder Mill Road
001 Adelphi, MD 20783-1145

680 Commander,
US Army Laboratory Command
Fort Monmouth, NJ 07703-5000
1 - SLCET-DD
2 - SLCET-DT (M. Howard)
1 - SLCET-DB
35 - Originating Office

681 Commander, CECOM
R&D Technical Library
Fort Monmouth, NJ 07703-5000
1 - ASOMC-ELC-I-T (Tech Library)
3 - ASOMC-ELC-I-T (STINFO)

705 Advisory Group on Electron Devices
201 Varick Street, 9th Floor
002 New York, NY 10014-4877
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Position</th>
<th>Organization</th>
<th>Location</th>
<th>Code</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>205</td>
<td>Director</td>
<td>Naval Research Laboratory</td>
<td>ATTN: CODE 2627</td>
<td>Washington, DC 20375-5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>Cdr, PM JTFUSION</td>
<td>1500 Planning Research Drive</td>
<td>ATTN: JTF</td>
<td>McLean, VA 22102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>301</td>
<td>Rome Air Development Center</td>
<td>ATTN: Documents Library (TILD)</td>
<td>Griffiss AFB, NY 13441</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>437</td>
<td>Deputy for Science & Technology</td>
<td>Office, Asst Sec Army (R&D)</td>
<td>Washington, DC 20310</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>438</td>
<td>HQDA (DAMA-ARZ-D/Dr. F.D. Verderame)</td>
<td></td>
<td></td>
<td>Washington, DC 20310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>520</td>
<td>Dir, Electronic Warfare/Reconnaissance Surveillance and Target Acquisition Ctr</td>
<td>ATTN: AMSEL-EW-D</td>
<td>Fort Monmouth, NJ 07703-5000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>523</td>
<td>Dir, Reconnaissance Surveillance and Target Acquisition Systems Directorate</td>
<td>ATTN: AMSEL-EW-DR</td>
<td>Fort Monmouth, NJ 07703-5000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>524</td>
<td>Cdr, Marine Corps Liaison Office</td>
<td>ATTN: AMSEL-LN-MC</td>
<td>Fort Monmouth, NJ 07703-5000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>564</td>
<td>Dir, US Army Signals Warfare Ctr</td>
<td>ATTN: AMSEL-SW-OS</td>
<td>Vint Hill Farms Station</td>
<td>Warrenton, VA 22186-5100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>602</td>
<td>Dir, Night Vision & Electro-Optics Ctr</td>
<td>CECOM</td>
<td>ATTN: AMSEL-NV-D</td>
<td>Fort Belvoir, VA 22060-9677</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The list contains a total of 11 entries.

Electronics Technology and Devices Laboratory
Supplemental Contract Distribution List
(Elective)

15 Nov 88
Page 2 of 2