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2A THE VERSATILE MAINTENANCE EXPERT SYSTEM (VMES)
RESEARCH PROJECT

2A.1 TECHNICAL OVERVIEW

2A.1.1 Summary of 1987

X Research on the Versatile Maintenance Expert System (VMES) project is concerned with
issues in the development of a system that could diagnose faults in an electronic circuit and
interact with a maintenance technician. During 1987 our research on this project had two dis-
tinct but overlapping phases: consolidation of work done during the previous two 0_years and
developing new directions of research. 1.7.. ., | SRR NI f a Lo T fes

JIES

In the first phase we emphasized several aspects of versatility. The’aspects of "'versatil- /)/
ity” originally defined by the VMES project included: ability to diagnose a device tlat has beeh
designed so recently that there has not been time to train technicians in its diagnosis; ability w
diagnose a device that is so experimental that it has not been cost effective to design extensive -
automatic testing systems; ability to diagnose a wide range of devices from a similar family of [
devices; ability to serve at various maintenance levels (field, depot, etc.); ability to interact flexi-
bly and in a "user-friendly"” fashion. Significant achievements of the first phase of the VMES
project, all of which were consolidated in the first half of 1987, were in the area of device
representation and fault diagnosis. These were: development of an improved diagnostic strategy
that uses suspect ordering criteria, introduction of a new model of connections that enables
VMES 1w diagnose connection problems such as interrupted wires and bad contact points, and
incorporation of both logical and physical device models to ease user interaction and speed up
diagnosis.

In the second phase of our work we began to design an improved system which
emphasizes the interactions between the logical and physical models. This was made possible
by our acquisition of an actual working physical device. We also began to explore how to
accommodate analog components, in addition to the digital components previously handled. A
more complex control structure to handle diagnosis at different levels of knowledge began to
take shape.

’

i Accesion For }
NTIS CRA&I W
DTIC TAB 0
Unannounced £
Justification
By ..

Distribution ]
Availability Codaes
]
Ava-l and | or
Dist l Special

28-3 A-l \ ]




2A-6




2A.2 PHASE 1: DEVICE REPRESENTATION AND FAULT DIAGNOSIS'

The major achievements of the VMES project in the first phase are in the areas of device
representation and fault diagnosis. These were: the diagnostic strategy was improved by using
more effective suspect ordering criteria, a new model of connections was introduced to enable
VMES to diagnose connection problems such as interrupted wires and bad contact points, and
both logical and physical device models were incorporated to ease user interaction and to speed
up diagnosis. The remainderof this section expands upon these three topics.

2A.2.1 Suspect Ordering

Suspects are first sorted into sublists by global criteria called fault possibilities. Fault pos-
sibility is determined by evaluating the suspects against the overall current situation, which
consists of the current test results. For the current implementation, there is only one global cri-
terion: a2 suspect has higher fault possibility if it contributes to more vio-expct output ports.
Suspects within each sublist are then sorted by some local criteria called fault potentialities.
Fault potentiality is a measure of the rate a particular type of component may fail. It is
independent of the environment, depending only on the component type. (It may also depend
on the lot number of the component, but so far we do not treat such details.) The ideal fault
potentiality data for our domain is the thermal analysis data of the components. Due to the
unavailability of the thermal analysis data, it is now implemented as an index ranging from 1
to 3. Component types with no stored fault potentiality data default to 2.

VMES does not make the single fault assumption. The system incorporates the user’s
judgement by offering him an opportunity to terininate the diagnosis session whenever a faulty
part is located. The user can choose to continue the investigation of the remaining suspects if
he feels that more faults are possible or if he would merely like to make sure other suspects
have no problems. The user may have another opportunity to terminate the diagnosis when
VMES notices a diagnostic short-cut from the dual device model is present; this will be dis-
cussed in the section of “Dual Device Model”.

2A.2.2 Modeling Connections

Model-based circuit diagnosis isolates the faulty components of a malfunctioning elec-
tronic device by reasoning on the basis of structural and functional description of the device.
In this part of our work, we argue that explicit representation of wires and points of contact
(POCONS) is necessary for diagnosing faults of circuit connections. The traditional model of a
wire as a uni-directional module is inappropriate because it ignores the bi-directional nature of
a wire and does not include POCONs. A new model of wires and POCONs and the correspond-
ing semantic network representation are devised and implemented. A wire is modeled as a bi-
directional module to preserve its physical property, and its uni-directional design intention is
retained by the connection mechanism. A deliberate component connection mechanism - either
by forming a POCON from two different ports or superimposing two same ports together - is
also devised and implemented. In this new connection mechanism, components at different
hierarchical levels are linked together by port superimposition, and components at the same
hierarchical level are linked by POCON formation. The new wire model and connection
mechanism are effective in circuit simulation and fault diagnosis. The resultant VMES has
been successful in locating interrupted wires and bad contact points, and as has been discussed,

!This section is a summary of the following papers: Taie, M. R., Geller, J., Srihari, S. N., Shapiro, S. C., “Knowledge
Based Modeling of Circuit Boards”, in Proc. of RAMS-87, Jan. 1987; Taie, M. R. and Sribari, §. N, “Modeling Connections
for Circuit Diagnosis”, in Proc. of the 3rd IEEE CAI A, Feb. 1987; and Geller, J, Taie, M. R., Shapiro, S. C,, Srihari, S. N,
“Device representation and Graphics Interfaces of VMES™, in Proc. of the 2nd International Conf. on Applications of

Al in Engineering, Aug. 1987, 22-7




the new connection model makes it is possible to handle bridge problems to a limited extent.

2A.2.3 Dual Device Models

Human diagnosticians of electronic devices seem to simultaneously maintain models of the
logical and physical structures of the target device. They carry out most of the diagnostic rea-
soning over the logical structure of the device due to its functional association. While carrying
out the reasoning, the logical structure is apparently mapped to the physical structure from
time to time. Tests and measurements are first initialized using the logical structure, and are
then realized and executed on the physical structure. Repair, which is usually done by replac-
ing a physical unit or by fixing a physical connection, is planned and done on the physical
structure. In other words, maintenance technicians use a model of physical structure of the tar-
get device, which is a hierarchically arranged set of replaceable physical components at various
maintenance levels such as field-level and depot-level. By mapping the logical structure of the
device to its physical equivalent, maintenance technicians are able to terminate the diagnostic
process at the right moment and to form an adequate repair plan.

Given that the mapping between the logical structure of the device and its physical
equivalent happens throughout the diagnostic process at all hierarchical levels, the speed in car-
rying out the mapping is critical to the time needed to locate faults. This implies that objects
on both the logical structure and the physical structure of the device should be closely linked
to each other so that the mapping is done efficiently. Even experienced technicians may have
difficulty in locating a point on a schematic diagram of the real device, where the schematic
diagram represents the logical structure of the device, and tke form of the real device is the
physical structure. This difficulty is attributable to the large difference between the logical and
the physical structures and a lack of cross-links at all hierarchical levels of the device in
human memory. On the other hand, when modeling and representing a device in an automatic
fault diagnosis system, the cross-lirikks between its logical structure and physical structure can
be modeled and represented to an appropriate level of detail. This is indeed possible to do in a
computer with reasonably sized memory.

In VMES, the physical structure of a device is represented distinctly from but in a similar
way as its logical structure. In a structural template for a logical component type, every sub-
part of the component type is specified with a subpart “id” and a subpart “type”, which are
used to instantiate the subpart if it is found to be a suspect and further investigation of it is
necessary. In addition to the subpart “id” and “type”, an “mntn-]v” indicator is also associated
with every subpart of a physical component type. The “mntn-lv” indicator shows the intended
maintenance level of the subpart, ie., the maintenance level where the subpart, if found faulty,
is replaced without further diagnosis. The “mntn-lv” indicator is associated with the physical
structure rather than the logical structure of a device to reflect the fact that human experts
form and carry out a repair plan based on a physical model rather than a logical model of the
device.

In order to abstract a device into a model, which can be efficiently represented and inter-
preted, some abstraction restrictions have to be made. First, the hierarchical trees abstracted
from the two perspectives should have the same number of hierarchical levels. Second, the
cross-links can only be made at the same hierarchical level. Third, several logical objects on the
logical structure can correspond to the same physical object on the physical tree, but a logical
object cannot spread over several physical objects. This restriction seems unreasonable at first,
but a closer investigation of the electronic domain shows the contrary — physical objects in the
domain usually have larger grain size than logical objects. This is especially true with modern
technology as more and more logical functioning units are being packed into a physical unit,
e.g- a simple HexInverter chip (a physical object) contains six independent inverters (logical

objects). 2A-8




The two representations of the logical and the physical structures of a device are cross-
linked at every hierarchical levels. There are two kinds of cross-links between the logical
structure and the physical structure of a device. The first kind are cross-links for components.
The second kind are cross-links for ports. While the cross-links of components helps in deter-
mining if the diagnostic process should go on or terminate, and in forming a repair plan, the
cross-links of ports makes user interaction much easier — when ordering a test or a measure-
ment, it can be used to clearly direct the user to the right location on the real device. The
advantage of a logical abstraction of the device 1s that it provides a high level view of the dev-
ice which facilitates the diagnostic reasoning. For instance, a n-bit wire is abstracted as a single
logical wire, thus freeing the technician (or a fault diagnosis system) from thinking about bit
slices. However, when a measurement is required, it is necessary to locate all the bit-ports on
the real device, and this is often a difficult task for human diagnosticians since these bit-ports
may spread out randomly.

In the rest of this section, we describe how VMES uses this device representation to facili-
tate fault diagnosis and user interaction. When bad outputs are found in the suspect currently
being investigated, the system has to determine if the diagnosis should terminate or not. Most
fault diagnosis systems use the simple idea of SRU (smallest replaceable unit) which says that
the diagnostic process stops when the current suspect is a SRU, i.., a terminal node (a leaf) of
the structural hierarchical tree of the device VMES takes a more flexible approach by incor-
porating the idea of “intended maintenance level” into the system. A system parameter,
VMESIML, is set to the “intended maintenance level” the system is working on. If a part
shows some bad outputs and it is at the intended maintenance level, it is declared faulty and
the diagnosis on it is terminated. For example, a board is replaced at field and then sent back to
a depot where the fault is further isolated to a chip. The checking for the maintenance level
of a part is done on the corresponding physical object of the part (a logical object), and a repair
plan is formed based on the component type of the physical object. VMES also provides an
opportunity for the user to short-cut the diagnosis by noticing that all remaining (iogical)
suspects are in a single replaceable physical unit at VMESIML. Since the same physical object
gets replaced no matter which logical suspect is faulty, further discrimination among the
suspects is unnecessary, provided that connections are assumed to be intact.

The major interaction between VMES and the user is the input of port values. Since diag-
nostic reasoning is carried out on the logical model of the device, VMES always wants the
values of the logical ports. Through the cross-links between logical and the physical structures,
VMES is able to inform the user which “physical port” should be measured to obtain the value
for a given logical port. For representation and display efficiencies, wires are excluded from the
physical representation of a device; this does not hurt the user interaction since the wire-end of
a wire can always be identified as the wire-end connected to a port of a common component in
the physical representation.

The third use of the physical representation of a device is in repair suggestions. When a
faulty object is found or the end of the diagnosis session is reached, VMES suggests a repair
plan to the user according to the type of the faulty object. If the faulty object is a common
component, VMES just suggests that the user replace its corresponding physical part. If it is a
wire, the corresponding physical wires are identified for repair. Note that a logical wire may
correspond to several physical wires, for example, a 4-bit logical wire may be realized by four
wires on a printed circuit board. Only the physical wires which are responsible for the fault
are identified for repair. This is done by decomposing the port value of a logical wire into bit
slices to determine which bit(s) are giving incorrect values. Finally, if the faulty object is a
POCON, that is, it is a bad contact point, the user is directed to the location of the contact point.
The physical representation is not only used to form the repair plan, it also helps direct the
user to the object or location on the real device where the repair is actually performed. In
other words, it provides for better user interaction in both test and repair.

2A-9
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2A.3 PHASE 2: A NEW DIAGNOSTIC ARCHITECTURE

This section explores the new areas and directions of the VMES project, and, by contrast-
ing them with those of the existing system, exhibits the reasons for pursuing those areas and
directions. The following details the progress of the current research assistants on the VMES
project since August.

The first menth (August) was devoted almost entirely to learning. A number of back-
ground papers on fault diagnosis were read and Mingruey Taie’s recent dissertation was studied
in depth. From these readings much was learnt about fault diagnosis in general and the exist-
ing implementation in particular. A working knowledge of SNePS, which is used extensively
in the implementation, and of the updated version SNePS II, which is to be used in the future
implementation, was also acquired.

As soon as there was sufficient familiarity with the existing implementation, a new dev-
ice from the AQTS system was selected for implementation. A device was wanted which was
sufficiently similar to the already implemented PCM6 board so as to be able to be implemented
without modifying the existing system, but which would still afford an adequate a test of the
system robustness. The valuable experience of implementing a new device was also a major
consideration. The PCM4 board was selected. This board had three new types of digital and
two new types of analogue component and thus would test the ability of the system to handle
new components. The decision was partly influenced by the fact that there was a picture of
the physical PCM4 board. Access of some kind to the nature of the physical device was impor-
tant since there had already arisen the intention to make greater use of the distinction between
the logical and the physical representations of a device employed by the existing system.

As preparation to implementing the PCM4 board, it was decided to implement a very
small device. A balf adder was chosen and was implemented quite quickly. The implementa-
tion of the PCM4 board itself has just recently been completed. These implementations pro-
vided much information about what the system could, and could not, do. From the knowledge
acquired from the readings and the experience of the implementation, an overall plan for modi-
fying, upgrading and extending the system evolved.

The new system to be built will begin with the knowledge representation used by
Mingruey Taie and the control structure developed by Zhigang Xiang. It was deemed impor-
tant to have continual access to an actual physical device while developing the new system so
that greater account can be made of the physical representation. A physical device — a Heath-
kit Prirter Buffer, Model SK-203 — was therefore purchased and assembled. Three general
areas on which detailed work needs to be done have emerged:

(1)  The refinement and adaptation of Xiang’s general diagnostic architecture to the particu-
lar domain of circuit diagnosis. A control structure needs to be developed which will
allow a more modular approach to the different kinds of circuit that are to be handled.
If the more complex system to be built is to handle a greater variety of fault efficiently,
a significantly more complex control structure is required. Such a structure must have
the capacity to respond dynamically to the diagnostic process. Integrated into this struc-
ture will be a sub-structure controlling the repair strategy.

(2)  The adaptation of the current means of knowledge representation developed by Taie to
the new system. That representation is to be extended significantly so as to accommo-
date analogue components in general, and sequential rather than just combinational cir-
cuits.

(3) The improvement of the means of reasoning about the knowledge representation system
in general, and especially about the means of generating, ordering and eliminating the
fault suspects. It is hoped that use can be made, via the knowledge representations, of
the natures of individual components, rather than of just the interconnections between
them. Other methods of improvement must be explored also.

2A-11
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2A.3.1 Modularity of the Implementation

One of the important characteristics for the new implementation of VMES is modularity.
We envision a system with several different types of reasoning techniques. For example, there
may be specialized techniques for eliminating suspects in analog circuits that are not appropri-
ate for combinational digital circuits. It would be desirable to be able to just use the portions of
the system that are needed to diagnose the given device, rather than having the entire system in
memory and only using a small portion. This is attractive because it is space efficient.

The existence of reasoning modules that can be requested by the user either when a diag-
nosis is started or even in the midst of a session is attractive from the experimental stand point
as well. If specialized modules are designed, they can be tested with a “minimal” system
configuration that will prevent other modules from interfering with the new module. If
conflicts do arise between modules, the problems can be located by removing possible "'suspect”’
modules until the problems are resolved and then focusing on the set of suspect modules that
give rise to the observed problems.

The idea of a minimal system is that there are some set of modules that are necessary for
the system to do any work. The modules in a minimal system would include input and output
routines, routines to build the required device representations, the basic diagnostic reasoning
modules, and a simple routine to guide the system toward a completed diagnosis.

Another key feature that modularity adds is expandability. Because a protocol must be
established between the modules in the system, a clear and concise method of adding new
modules should develop. When this occurs, you not only have an environment suitable to test
new modules, but also an environment suited to developing new modules.

2A.3.2 Types of Circuits

Roughly, there are three types of electronic circuits — analog, combinational and sequen-
tial circuits. Each type has its own characteristics; for example, combinational circuits have
simple logical signals (0 & 1), analog circuits must consider current in addition to voltage, and
sequential circuits have an extra time aspect. Hence, different types of knowledge and methods
of diagnostic reasoning are needed for different types of circuits. The knowledge representation
primitives and diagnostic rules the current system provides are good for combinational circuits
but it is not clear how to use the current system for general circuits of the other two types.
Since analog and sequential circuits exist in most electronic devices, it is desirable to extend the
current system to handle them.

Analog circuits

In addition to voltage, current plays an important role in analog circuits. Their behavior
is described by Ohm’s law and Kirchhoff’s current and voltage laws. In order to diagnose an
analog circuit, all the above knowledge must be represented in such a way that the system can
use it to analyze the circuit and derive helpful information.

The major difficulty in knowledge representation for analog circuits is representing sig-
nals. Unlike the digital domain, the analog domain has a richer set of signals and most of them
are continuous. For example, we have to represent input and output waveforms and the sys-
tem must be able to compare and manipulate them. All these are currently under investiga-
tion.

Sequential circuits

A sequential circuit is specified by a time sequence of external inputs, external outputs
and internal states. The external outputs are functions of both the external inputs and the
present state of the circuit. The next state of the circuit is also a function of its present state

and external inputs. Current functional representation does not include the time dimension and
2A-12




thus needs to be extended.

We are considering a hierarchic representation for time so that functions can be
represented at different levels of time hierarchy. In other words, the behavior of a sequential
circuit is described using different granularities of time. As a result, sequential circuits can be
diagnosed at various levels of time hierarchy in a way similar to the use of structural hierar-
chy is used in combinational circuits currently.

2A.3.3 Suspect Handling

One of the key components of the VMES system is the way the fault suspects are han-
dled. From the measured values of the various ports and the functions representing the com-
ponents in question, those output ports which are vio-expects are found; i.e., those whose value
violates what would be expected on the strength of the measured values and the component
functions. Given the vio-expect output ports, there are are three main tasks to be accomplished;
namely,

(a) The initial generation of the fault suspects, of the list of all those component parts that
would, if they were faulty, account for the observed fault or faults,

(b) The ordering of those suspects according to the likelihood of their being responsible for
the observed fault(s).

(c) The subsequent elimination of those suspects that in fact are not faulty, by the testing of
the components in question.

The Current System
These three tasks are handled by the current VMES system in the following way:

(a) The suspects are generated by locating all those components which have an output (or bi-
directional) port leading to a vio-expect output port. For example, if I1 and 12 are the sole
input ports of the eventual output port O, if C1 - Cn are the components lying be-ween
either I1 and O or I2 and O, and if, given the values of I1 and I2 and the furctions
representing C1 - Cn, O is a vio-expect, then every component C1 - Cn becomes a susj «ct.

(b) The order of the suspects is determined by the global criterion that the more vio-expe s a
suspect contributes to, the more likely it is that it is faulty. (A local criterion  .at
applies to suspects having the same global likelihood of being faulty has been propoed
but has not been implemented.)

(c) Suspects are tested in the order of their likelihood of being faulty. The tests employ the
existing values of the suspect’s ports, and if these values are consistent with the suspect’s
function, it ceases to be a suspect.

The New System

Considerable improvements are envisaged for each of the three main tasks. Overall, more
reasoning about the nature of the device, its components, and the connections between its com-
ponents is desired.

One important kind of reasoning being explored is a qualitative reasoning that exploits a
deep knowledge of the device. Knowledge of this general kind is already represented by the
system. A human technician will ask himself whether the kind of fault he is observing is
likely to be caused by a component of a given type, whether a failure of that component is
likely to produce the observed fault. Here, he will make considerable use of his knowledge of
how the device components function, and of the inter-connections between them. But he will
not in general perform detailed or quantitative calculations about the various components at
this stage of the diagnosis. Rather, he rely on comparisons and considerations of a more qualita-
tive kind. (He may, of course, resort to detailed quantitative calculations at a later stage of the
diagnosis.) It is in this sense that the reasomg‘% is1s;id t0 be qualitative.




The primary motivations for developing a reasoning system of the qualitative kind are
these. First, since human technicians proceed in more or less this way, there is every reason to
believe that the methods will yield quite a powerful diagnostic system. And second, the com-
putational overhead of such a system is considerably less than that of a comparabie system that
relies on purely quantitative reasoning.

The new diagnostic system is dealing with the three main tasks as follows:

(a) Two methods of suspect generation are being examined. The first uses the kind of qualita-
tive reasoning about the nature of the devices outlined above. In the second, the diagnos-
tic system will request the user to measure the values at certain ports. Just which ports
are measured is determined by the system. The measured ports are those that are logically
intermediate between the input and output ports of which the values are already known
by the system. In this way the system will home in on the trouble area more efficiently;
large segments of the device can, at least initially, be excluded.

(b) The ordering of the suspects is particularly well suited to the qualitative reasoning
approach. Other considerations will, of course, also be used. For example, the current
method of ordering (mentioned earlier) will be retained, though it will now just be one of
the factors that affects the suspect order. There is an interesting problem of how different
ordering criteria are to be compared to yield the final suspect list.

(c) The kinds and numbers of tests to which a suspect is to be subjected is to be improved.
The current system employs a single test whereas, in general, a number of tests is needed
to eliminate a suspect. These tests should be sufficiently diverse to make it extremely
likely that if the component passes, it is not faulty.

2A.34 New Test Device

Although this project is intended to develop a system that is adaptable to a wide range of
devices in the domain of digital circuits without, at times, focusing on a specific device, this
seems a hopeless task. By studying the problem of diagnosing faults in several specific devices
and keeping the goal of versatility in mind, we should discover the constraints and methods
needed to attack this problem more readily than if we were to study just one or two devices.
Several devices have been modeled by the current implementation of VMES.

A new device was needed to help spur new ideas, extensions and refinements to the
current theory. A primary concern was that the researchers’ actually have a small piece of
hardware to motivate the theory, rather than just schematics and pictures. After pursuing the
possibility of using a piece of RADC equipment, it was suggested that we select an appropriate
test device and purchase it.

The following criteria were used to select the device:

reasonably priced (< $500.00)

contains combinational circuitry
contains sequential circuitry

contains analog circuitry

contains a variety of component types
contains many logical components (>50)
can be subdivided into several subdevices

The new test device that was selected was a Heathkit Printer Buffer Kit (mode! SK-203).
In addition to satisfying the previously mentioned criteria, the device came with the circuit
schematics, circuit board x-ray views that physically locate the components, an operation guide,
the device specifications, some basic troubleshooting information, and block diagrams that are
helpful in understanding the circuitry and components.

There is one other advantage worth mentioning about this device. Since we built the
printer buffer from a kit we know more about its physical construction than we have about
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any of the other test devices. Because of this and the fact that we actually have the physical
device, we can cause faults in the device by removing or "damaging’ components in a number
of ways. Then we can use our implementation of VMES to diagnose the fault. Previously,
testing an implementation of a device meant “damaging” a logical component in the representa-
tion and using VMES to locate that logical device. There was no physical device to check the
diagnosis on. Now, we perform a more realistic test of our implementation by “damaging” a
physical component (or more than one) and giving VMES the symptoms of the device. This
gives us a much richer test device.

Physical Description

Model SK-203 printer buffer is enclosed in a sheet metal housing with the front and rear
panels exposing the controls and fixtures. The enclosure itself is 9.25 inches wide, 1.5 inches
high and 8 inches deep. It weighs approximately 1.5 pounds. On the front panel, as depicted in
Figure 1, are 11 pushbutton switches (including for both input ports [1] a clear key, (2] a copy
key, {3] a priority print key, [4] a restart key, and [S] an offline key, plus [6] a single swap key),
three 7-segment LED displays and an LED above the "Swap" pushbutton. The arrangement of
these parts are shown in Figure 1. FRONT-AND-REAR.

SERIAL N SERIAL OUT PARALLEL N PARALLEL OUY

(6000000000000} ©)
\000000000000f

HEATH COMPANY
Benton Harbor. W1 49022
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Figure 1. FRONT-AND-REAR
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Also, there is an external transformer that plugs into a 120 VAC wall receptacle and outputs 8
VAC, 1 amphere to a plug that mates with the power jack on the rear panel.

Within the enclosure are two circuit boards connected by two 20-pin right angle plugs.
The smaller circuit board mounts all of the components that are visible in the front panel of
the enclosure. The main circuit board mounts the rest of the components of the printer buffer.
This includes a 64180 CMOS microprocessor, eight 64K x 1 bit dynamic RAMs, an 8K ROM,
and many logic and decoder IC’s. In addition to these digital components there are various resis-
tors, capacitors, diodes, and inductors that give us the analog components of the circuit.

Operational Description

The model SK-203 printer buffer will accept files from one or two computers and print
them to one or two printers. By using a combination of the Swap key (pushbtutton switch) and
the Offline keys all the reasonable configurations can be achieved.

Some of the other features of the SK-203 printer buffer are:

¢ expandable memory up to 512 Kbytes

@ ability to print up to 99 copies of a file

@ allows the user to stop a current job to print another job and then resume the stopped print
job

@ the user can restart the printing of a file in case of printer failure

@ both the parallel and serial ports are configurable by DIP switch settings

A complete description of the operation of the SK-203 printer buffer is available in the
"Heathkit Manual for the PRINTER BUFFER Model SK-203", part number §95-3727-01.
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2A.4 DEVELOPMENT OF SNePS-2

Most of this year has been spent on the development/upgrade of the Semantic Network
Processing System (SNePS) for use with Texas Instruments Explorers and Symbolics Lisp
Machines. The current complete version of SNePS, commonly referred to as SNePS79, is imple-
mented in Franz Lisp, Opus 38.92 and currently running on Digital Equipment’s VAX
750/780/78S family of computers. The new version of SNePS currently under development,
commonly referred to as SNePS-2, has been chosen as the vehicle upon which the Versatile
Maintenance Expert System (VMES) is to be implemented.

The development of SNePS-2 has been essentially broken down into two steps. The first
step has been translating the SNePS code from Franz Lisp into Common Lisp — the language
used on lisp machines. The second step is then the debugging of the new system in the com-
pletely new environment of the lisp machine.

2A.4.1 Motivation

In the summer of 1986, Ernesto Morgado? and the SNePS Research Group completed the
core of a new version of SNePS, also implemented in Franz Lisp, Opus 38.92, which uses
Morgado’s theory of Semantic Networks as Abstract Data Types [Morgado86] When the
VMES project was put together, this new version of SNePS, referred to as SNePS-84, was
selected as the base system.

When the Northeast Artificial Intelligence Consortium (NAIC) decided to purchase Texas
Instruments Explorers for research and development, it was clear that this would be the target
machine for our VMES project. One of the main problems with this was that the dialect of
lisp used on these new machines was Common Lisp and not Franz Lisp as we have been using
here at SUNY at Buffalo. Hence, the implementation of SNePS79 and SNePS-84, both written in
Franz Lisp, Opus 38.92, would not run directly on these Explorers and some conversion of code
would have to take place in order to use SNePS on this project.

Therefore, the project of converting the SNePS-84 system over to Common Lisp and the
lisp machine environment was started. However, the new system created would not be just a
direct translation of SNePS-84, it would be an enhanced version as well including a
parser/generator for natural language and a graphical interface to the network.

2A.A4.2 The Translation

During the past year, we have translated all of the code for SNePS-84 into the Common
Lisp syntax. There are several differences between Franz Lisp and Common Lisp that make
this a substantial task.

The easiest part of the translation is identif ying functions which have different names in
Common Lisp, and Franz Lisp. Occasionally, a function’s arguments may need to be altered by
the addition, deletion or re-arrangement of its parameters. This is usually due to additional
flexibility exhibited by some Common Lisp functions to allow a user to specify how to mani-
pulate the data. For example, the Common Lisp function sort allows the user to specify a
predicate which will determine the ordering of the elements.

Another problem during translation is when functions available in one language are not
available in the other. When functions avalable in Common Lisp were not available in Franz
Lisp, the new must be written to take advantage of the efficiency of the new functions now
available. In the worst case, it is clear that new code must be written.

2 Morgado, E. J. M., "Semantic Networks as Abstract Data Types,” Ph.D. Dissertation, Department of Computer Sci-
ence, SUNY at Buffalo, September 1986.
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Foremost in the problem of translation, is the rule of scope between the two languages.
In Franz Lisp scoping occurs dynamically. This means that as a series of function calls are per-
formed, calling environments, and related symbol bindings, surround subsequent function calls.
Therefore, if a symbol does not have a value in the immediate environment, then the surround-
ing or calling environments are searched for the symbol. Lexical scoping used in Common Lisp,
however, bases its search for symbol bindings based on the location in the code where that sym-
bol is given a value.

2A.4.3 Enhancements

Since the project began, we have attempted to get SNePS-2 working on both TI Explorers
and the Symbolics Lisp Machines in order to develop a system that was easily portable to either
machine. Based on this desire, the availability of personnel, and their experience, some enhance-
ments to SNePS have been implemented on one brand of lisp machine before the other.

The first enhancement is a graphical interface to the semantic network called Ginseng.
This project was developed on the TI Explorer due to the availability of many primitive graph-
ical functions found in the TI Graphics Toolkit — now included in version 3 of the Explorer’s
operating system. Such functions perform the actual task, for example, of drawing a line, cir-
cle or rectangle on the screen. Without these functions, it would have been necessary to write
these functions ourselves to calculate the the shape of the desired iems and draw them at the
appropriate screen locations.

At this point in time, Ginseng is capable of displaying any SNePS node defined in a given
network using the two functions gi-desc and gi-dump. Gi-desc is essentially a graphical ver-
sion of the SNePSUL function describe which displays a tree consisting of the current node to
be described and all nodes pointed to by descending relations from the current node. Gi-dump,
which parallels the SNePSUL function dump, displays the current node and all nodes related
by either an ascending or descending relation. These graphs, once displayed on the screen may
then be printed by performing a screen dump to the department’s QMS laser printer.

The second enhancement is the Natural Language INTerface (NLINT) which consists of a
parser/generator based on 3n augmented transition network (ATN) grammar. The purpose of
this is to read in sentences, based on a subset of English, and create the appropriate network to
represent the inputted phrase. With the surface, and using the same grammar, one may ask
for what a particular SNePS node represents in english and it will be displayed on the screen.

The NLINT system was initially translated from SNePS79, and hence Franz Lisp, onto the
TI Explorers. At the time of the conversion, no particular test vehicle (ie., grammar) was
available to get all of the kinks out of the system. Subsequently, this feature was desired op
the Symbolics machine and a great deal of time was taken to debug this system on that particu-
lar machine. As of yet NLINT has not been brought back to the Explorer, but I believe that
this transition will be relatively effortless as the Explorers appear to be more relaxed in their
Common Lisp syntax than is Symbolics.

2A 4.4 Future Direction

As stated, quite a bit of SNePS-2 is already converted to Common Lisp and operational. In
fact, some additional packages to those previously mentioned, such as Multi (Multi-processing
simulator) and Match (Network pattern matcher), are also working. The task that lies before
us now is to integrate this into one large system, on each machine, and debug the SNePS Infer-
ence Package (SNIP). This is probably the most involved part of the conversion due to the fact
that SNIP uses all of the other packages mentioned earlier.

Along with the debugging of SNIP is the introduction of the SNePS Belief Revisor
(SNeBR) into the SNePS-2 system. Due to its integral part in how inference will be conducted,
it is not clear as to whether the implcmentatizog o%' gelief revision will occur concurrently with




or after the completion of SNIP. Perhaps we will defer work on SNeBR until after the comple-
tion of SNIP, while keeping in mind the kind of things that will be necessarv when we do
implement SNeBR.
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2A.5 GRAPHICAL DEEP KNOWLEDGE: COGNITIVE BACKGROUND AND PROGRESS

Recent progress in the representation of spatial concepts like positions, whole-part rela-
tions, and reference frames is presented. The relations of graphical deep knowledge to cognitive
science are shortly discussed.

~The concept and importance of Graphical Deep Knowledge have been discussed in previ-
ous publications related to this project, e.g., Geller, J., Shapiro, S. C., Graphical Deep Knowledge
for Intelligent Machine Drafting, Tenth International Joint Con ference on Artificial Intelli-
gence Morgan Kaufmann Publishers Inc., Los Altos, CA, August 1987. In this paper we will
review recent progress on the subject, as well as deepen the cognitive background of graphical
deep knowledge research. Much of this material is derived from Geller, J, A Knowledge
Representation Theory for Natural Language Graphics Dept. of Computer Science, State Univer-
sity of New York at Buffalo, (dissertation) 1987 (forthcoming)

2A.5.1 Recent Progress in Graphical Deep Knowledge Research

'n eller, J., Shapiro, S. C, Graphical Deep Knowledge for Intelligent Machine Drafting,
Tenth International Joint Con ference on Artificial Intelligence Morgan Kaufmann Publishers
Inc, Los Altos, CA, August 1987, pp. 545-551, a number of different structures for position
representation have been introduced. We have recently found that all the presented structures,
and in fact a few more, can be summarized with one complex case-frame. This result does not
make the individual structures unnecessary, because access to small simple structures is more
practical from a pragmatic point of view. Nevertheless the summary representation by a single
case-frame deepens our understanding of the concept of position. A similar overarching struc-
ture will also be shown for the three different types of part-hierarchies that have been intro-
duced in Geller, J., Shapiro, S. C.,, Graphical Deep Knowledge op. cit. Finally a case-frame for
representing simple assumptions about the currently valid reference frame has been found
necessary and will be presented. We will start this section with a short reminder of the
representational formalism used to explain case-frames.

2A.5.2 A Reminder: The Representational Formatc

According to the theory that is explained in Geller, J, A Knowledge Representation
Theory for Natural Language Graphics op. cit., we view the goal of our brand of Al research as
achieving asymptotic domain coverage for knowledge in a specific topic area. There is a
number of ways to specify such domain knowledge but in order to do concrete work one has to
make a commitment as to which notational format to use, and as to what semantic theory to
subscribe to. Our representational format is based on proposition nodes that dominate sets of
arcs. While the proposition node is necessary to refer to a specific proposition, the information
of the generic structure is completely contained in the combination of arcs. One can view this
combination of arcs as a case-frame, and this is exactly what we will do. All structures shown
are given as case-frames, while concrete examples are given in the linearized version of SNePS
networks that was for the first time introduced in Geller, J., Shapiro, S. C, Graphical Deep
Knowledge op. cit.

Concerning a semantic theory we will assume that the semantics of every case-frame is
dependent solely on the combination of arcs, and will be specified by a descriptive semantics
and a procedural semantics based on an interpreter for the structures. The semantics for one
fram* cannot be derived by combination of semantic primitives that are exemplified by arcs in
the semantic network, but has to be specified individually. Globally speaking, the semantics of
a whole network with many knowledge structures can be composed from the semantics of the
single case-frames.
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2A.5.3 Position Representations

Positions are the most complex phenomenon in graphical deep knowledge. Nevertheless it
turns out that one can get by with a single structure to represent every possible case. A
number of special cases can be derived from this structure that make practical applications
easier to deal with. While the special cases have been discussed in previous reports, we will
now present the syntax of the general purpose position case-frame.

Syntax:
object <object>
relpos x <distance>
y <distance-2>
z <distance-3>
rel-to  <reference-object>
unittype <unit-specifier >

space  <space-specifier>

All the terms written in angular brackets denote semantic network nodes, all other terms
are semantic network arcs of the SNePS system. From a case-frame point of view, “object”
represents a slot, while “<object>” stands for a slot-filler. The “relpos” slot contains a sub-
frame which in turn has three slots x, y, and z.

Procedural Semantics:

In order 1o draw an object <object>, derive a displacement of <object> from the object
<reference-object> by using <distance>, <distance-2>, and <distance-3> interpreted as meas-
ured in units of the unit-type according to <unit-specifier>, and create a pictorial projection
according to the <view> expressed in an appropriate reference-frame assertion. If a coordinate
transformation is necessary to fit the display on the screen, and if <space-specifier> is “world”,
perform the transformation. If the specifier is “screen”, do not perform any transformation
even if that results in failure of the display request.

Naturally, this procedural semantics is somewhat “hanging in the air”, because no draw-
ing will be possible unless a form for <object> is specified in the network. Objects might also
have attributes, parts, etc. which will influence the final picture. All these representational
constructs have been sufficiently covered in prior reports. The reference-frame assertion men-
tioned above is one of the newer results of this research and will be shown in a following sec-
tion. Finally, the position of <reference-object> must be available in the network to correctly
anchor the relative position expressions in the given case-frame. We will now give an example
instantiation of this case-frame as a semantic network in a linear network description format.

Descriptive Semantics:

The descriptive semantics for the position case-frame will be given, based on the example
shown before. This is done simply because it is easier to refer to a concrete structure than to an
abstract case-frame. The semantic network node m9 represents the proposition that pcm-chipl
is 40 pixels to the right and 20 pixels below the position of trafol in the world. “World”
hereby has to be understood as opposed to “screen”, i, the example deals with world coordi-
nates that can be transformed to screen coordinates if necessitated by the given viewport on the
screen and the actual values of x, y, and z.

The backslashes in front of the numbers transform the numbers into literal LISP atoms.
This is necessary, because the numbers are treated as SNePS concept nodes, which requires the
existence of a property list for them. Numerical atoms, however, do not bave property lists.
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Example:
m%  object pcm-chipl
relpos m8( x /40

y /-20
z /0
rel-to trafol
unittype pixel

space world)

The sub-case-frame describing the actual coordinates is dominated by a molecular node (m8).
While the node m9 has to be read as a proposition, m8 is read as a structured SNePS individual.
m8 and all the structure below it represent an individual corresponding to a point in 3-
dimensional space.

The above case-frame permits a number of variations that are not obvious from the given
example, and thai are part of the descriptive semantics. We will discuss them arc by arc.

(1)  The x, y, z slots can contain fuzzy descriptors like “near” instead of numbers. In most
practical cases the 2-d assumption is made, and the z slot is completely omitted. Under
the standard reference frame, x and y are then equated with screen coordinate axes.
The displacement expressed by x and y can also be inherited, in which case the relpos
arc might be omitted.

(2) It is necessary to anchor position descriptions somehow, otherwise one gets an infinite
regress of spatial references. For that purpose the rel-to arc may point to the special
concept “world-center”. Also the rel-to slot may be compietely omitted if the reference
object can be derived from the part hierarchy. This is the case if the given object is part
of another object.

(3) The most common unit-type of measurement is “pixel™ however, the unit arc may also
point either to the reference object at the end of the rel-to arc, or to the object itself,
expressing so called body coordinates or reference object body coordinates which have
been discussed in Geller, J., Shapiro, S. C,, Graphical Deep Knowledge, op. cit.

(4) The space that a relative position specification refers to may be either “world” or
“screen”. If the space is “world”, a display request will possibly result in a different
screen position than world position. If the space is “screen”, coordinates refer strictly to
the screen and may not be transformed.

2A.5.4 Part Representations

As done with positions before, one can create an overarching structure to represent parts,
such that all the part representations used in previous publications will be superseded by it.
Nevertheless, to maintain a reasonable efficiency (in the Al sense of the word), the previously
introduced special cases will not be discarded.

Procedural Semantics:

If the slot of <real-assem-clu> is taken by the concept “real-part”, treat this case-frame as
a real-part assertion. If <real-assem-clu> is “sub-assembly”, treat it as an assembly assertion.
If <real-ass-clu> is “sub-cluster” treat it as a sub-cluster proposition.

In previous publications the differences between these three types of part assertions have
been explained. Real-parts are parts of an object that has its own drawable form such that it
would be permissible to draw the super-part by itself, without its parts. Sub-assemblies are
parts of an object that has its own drawable form, but drawing it without its parts is not per-
missible. Finally, clusters are abstract objects that have parts but no forms of their own. If
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Syntax:
object <object>
modality <modality >
part-relation <real-assem-clu >
sub-object <object-2>

necessary, they may be represented by an empty box, for example.

In order to draw an object <object> it is necessary to retrieve form, position and possible
attributes of the object as well as of its desired parts. The part hierarchy, in conjunction with
user requests for simplified displays, will decide which parts actually to display. If a user
wants to see a complete representation, all parts will be shown. If he wants a simplified
representation, parts will not be shown, but sub-assemblies will be shown. If a complete
display of a cluster is required, all the parts will be shown. If a simplified diplay of a cluster
is required, the symbulic representation of the cluster as a box will be drawn, and all the sub-
clusters will be omitted.

Descriptive Semantics:

Above structure asserts that <object-2> stands in the part-relation to <object> which is
specified by <real-assem-clu>. For pragmatic reasons the three case frames presented in previ-
ous publications will be maintained.

2A5.5 Reference Frame Representation

In the section on position representations a case-frame concerning the current reference
frame was mentioned. This case-frame will be represented now. For NLG the problem of
reference frame identification represents itself in the following manner. The screen that a per-
son looks at naturally induces a coordinate system with axes parallel to the screen edges. There
are a few reasonable choices for the center position, and we will assume the convention of hav-
ing a horizontal x axes intersecting a vertical upward pointing y axes in the lower left corner
of the screen. A person may then use screen coordinates to describe the location of an object.
Unfortunately screen coordinates alone are an insufficient device for NLG.

A normal graphics device has a certain addressing range. Typically one has pixels from 0
to 1024 in the horizontal direction, and from O to 800 in the vertical direction. If a person
refers to a position which is beyond this range, for instance by using negative coordinates, she
makes it clear that she is not interested in screen coordinates, but in world coordinates. So refer-
ence frame identification means to determine the relation between the world coordinate system
and the screen coordinate system.

It has been stressed before that this work deals only with 2-dimensional graphics.
Nevertheless it turns out that people often look at a 2-dimensional diagram with a preconcep-
tion that this is really a projection of a 3-dimensional world. Imagine a screen with nothing
but a vertical arrangement of two circles on it. If one assumes that this scene represents a
side-view, then one circle is clearly above the other circle. But if a person has just looked at a
map, she might be biased to conceive of the diagram as a top-view. In this case the second circle
is behind the first circle. In the side-view an object that is behind the first circle would be
partly or totally occluded by it! So a natural language utterance can only be interpreted if one
starts with the idea of a 3-dimensional world coordinate system. Luckily, people don't seem to
assume arbitrary angles between world coordinates and screen coordinates, so it will be
sufficient to deal with a few special cases.
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What should be represented in the knowledge base of the system is the decison whether,
if 3-d interpretation is necessary, diagrams should be considered side views or top views. Also
the terms “left” and “right” are hopelessly ambiguous as used by people. We consider it impor-
tant that the system should know explicitly and declaratively whether it is using these terms
based on the user’s view or its own view. This leads to the following knowledge structure.

Syntax:
view <top-or-side>
leftness <user-or-system>
Procedural Semantics:

”

If required to display an object A “behind” an cbject B, and the assumed view is “top
then A will be displayed vertically above B. If the view specified is “side” then A will be
displayed at the same location as B, such that B is drawn later and overdraws A. “In-front”,
“above” and “below” are interpreted analogously. If required to display an object “at the left”,
and leftness is asserted as “user” (“system”), then the object will be displayed in the left
(“right™) area of the screen.

Example:

m1( view side
leftness user)

Descriptive Semantics:

The case-frame dominated by m1 asserts that any picture that needs to be interpreted as a
projection of a 3-dimensional scene is assumed to be a projection orthogonal to the surface
defined by the screen, assuming the screen is in its usual upright position. In addition it asserts
that any reference to a lateral direction is assumed to be in the coordinate system defined by the
body of the user. Without such an assertion the following questions would be meaningless to
the system: “Do you mean left for me, or left for you?” and: “Is this a top view or a side
view?”. No other possible reference frames than “top” or “side” and “user” or “system” are per-
mitted.

2A5.6 A Look at Cognitive Science Contributions to GDK

We have recently extended our view of graphical deep knowledge, because it now is an
integral part of Natural Language Graphics (NLG). It turns out that this permits us to investi-
gate a number of interesting relations between GDK/NLG and cognitive science. Interactions
with the three major fields of cognitive science, namely linguistics, cognitive psychology, and
philosophy will be discussed. To our own surprise we have found that philosophy has contri-
buted interesting ideas to our work, not only from the theoretical standpoint, but also from the
practical view of user-interface design. The influence of linguistics and cognitive psychology
goes more into the opposite direction. Interesting questions and hypotheses have been raised, to
be answered by these two disciplines. Some pilot experiments have been performed to get
psychological results.

2A.5.7 Yes, Philosophy can be Useful

The philosopher Paul Grice [Grice, H. P., Logic and Conversation, Syntax and Semantics:
Speech Acts, 3, P. Cole and J. L. Morgan (eds.), Academic Press, New York, 1975, pp 41-59] has
introduced the so called maxims of cooperative communication. These are pragmatic rules
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about how to use natural language in communicating with other people. They are divided into
maxims of quantity, maxims of quality, one maxim of relation, and maxims of manner. It
turns out that these maxims can be applied to graphical communication with a GDK based NLG
system. We will shortly point out some maxims which can be guiding for user interface
design. (1) Make your contribution as informative as required. We have been able to develop
this maxim into two sub-maxims that apply to NLG: (a) show all possible views of the same
phenomenon, and (b) show a complete view of one phenomenon. (2) Do not make your contri-
bution more informative than is required. One can interpret the use of part hierarchies for
selecting objects in simplified displays as a conclusion of this maxim. (3) Do not say that for
which you lack adequate evidence. This maxim can be used in displays that are combined with
reasoning systems that are able to generate hypothesis. A graphical display of a hypothesis has
to look different from a display of an established fact.

(4) Avoid obscurity of expression. This maxim can be interpreted as a requirement to use
standard terminology whenever available. (5) Avoid ambiguity. In order to avoid ambiguity
one has to avoid doubtful accidental features in graphical displays, like meaningless intersec-
tions. Also the number of icons used must be sufficient to cover all the phenomena of the given
display domain. (6) Be orderly. This is of major importance. The order of drawing different
parts in a graphics system is generally considered unimportant. All that counts is the final
result. We disagree with this notion. A good NLG system should present the major features
that a user is most interested in at the beginning of a new screen creation. In a maintenance
system like VMES, it is important to first display faulty components, and then the rest of a
device. This will permit a maintenance technician to react faster to machine output. For a
deeper treatment of the subject, as well as for a long discussion of the maxim of relevance the
user is again referred to Geller, J, A Knowledge Representation Theory, op. cit.

2A.5.8 A Short Look at Linguistics and Psychology

Practical work with the VMES user interface and its natural language component has led
to questions that we have raised to linguists and psychologists. Among these questions were
the following. What is the linguistic knowledge about the semantics of fuzzy spatial terms
like “left” and “right™ Is there any experimental work that would help us determine what
people think these terms mean? Are there cross linguistic studies on this subject? Most of our
literature studies have resulted in negative answers. We have therefore conducted pilot experi-
ments concerning the meaning of the spatial terms left, right, top, bottom, center, and the four
corners. We have also constructed two hypotheses that limit the semantics of spatial terms,
and that are open either to cross lingusitic examination or experimental work. Details of this
work can be found in Geller, J., A Knowledge Representation Theory, op. cit.

2A.5.9 Conclusions

Three new case-frames have been presented that conceptually summarize a number of
knowledge structures of graphical deep knowledge that have been published in previous
reports. These are a general-purpose position case-frame, a new part case-frame, and a new
case-frame for reference frame representation. It also has been pointed out that GDK has to be
seen in the larger context of Natural Language Graphics, and that it derives interesting ideas
from pragmatic rules of communication and raises interesting questions for natural language
semanticists and experimental psychologists.
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Kaowledge Based Modsling of Circuit Boardet
Misgreey R. Tei:  SUNY ot Bufal Buffalo
hmnGeler,  SUNY st Buffalc Buffalo
Sarger N. Sribari;  SUNY at Suffale;  Buffaic
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Kcy Werde Maintenance, Fault Disgnosis, Expert System, Device Modeling, Device Represea-
ation, Graphical Knowledge. Circuit Board Analysis, User laterface. Knowledge Sased Graph-

ics, Knowledge Representation.
Alatract

This paper describes s maintensace cxpert system that bas beea desigoed
with a focus oa applied kaowicdge sepraseatation. Two mais poiats of
interest are dexcribed, the represcatation and reasoning mechanisms
necessary for diagnosis based on a decp model of & device, and the
represcatation for aa integrated graphical user iaterface with limited
matursl langusge capabilities. Device mructure is represented in 2
hierarchy of device types. Structural semplates and instantistion rules
permit focused diagnostic reasoning weing laxy iastaatiation. Func-
tional description is procsdurally antached 0 the declarative setwork
represeatation.  Similarly, piscss of graphics code are sttached to a
declarative represcatation of the graphical sppserasce of the device.

Iatrodection

The VMES research project is simed at the development of & ver-
stile maintenance expert sywem (or digital circuit troubleshooting.
Theoretical and practical aspe s of foult disgnosis, kaowledge represen-
tation for system versatility. «nd Laowledge-based graphical represeata-
tion of urgc; devices are heing investigated.

VMES is designed us he \erutile srom 3 range of target devices in
the chasen domsin (2 clam of digital circuitsX across most of the possi-
ble fauhs acrom different maintenance Jevelss and acToss a variety of
user interfaces. To ahueve these vermtilities, the device-model-based
spprosch is followed. The desice model-based approach, as opposed W
the empirical-rule-based spproah used by MYCIN [Shortliffe?6a) for
medical disgnosis and by CRIB [HartleyB4a] for computer hardw are
{ault diagnosis, is suggested t0 have advantages in knowledge avyquru-
tion, diagoosis capability, and system generulitatnn
{Duviss 3a, DavisSia, Geneseretha)

VMES is implemented in SNePS [Shapiro79a] the Semantic Met-
work Processing System, and has several modules: an expandabdle com-
poaent library as its koowledge beer; an inference package (part of
SNePS) with diagnostic rules an active datatmse for diagnosic s user
interface for intermediate users (engineers) w adapt VMES to new dev-
ces by incrementally updating the component lidrary: and 3 multi-
medis user interface for end users (technicians) 10 interact with VMES
for fault diagnosis. The architecture of VMES is shown ia Figure 1.

Since a device ‘model-based fault diagnosis system reasons directly
on the structure and function of a device and usually uses a simple
inference engine, the represencation of the device is vital to system per-
formance. We use 3 hierarchical representation of 0 pro-
vide abstraction levels of devices. This allows & fault diagnosis sysiem
to focus oa either individual objets o on several objects at a time.

The knowledge base stores descriptions of all component types
used by the target devices. Obpcts which are parts of a device are
instaatiated oaly when aceded. A formalism for device representation
using instantiation rules and structural templates has been designed w0
describe the structure, the function, the intended maintenance level, and
the test instruction of each p type o the knowledge base. The
basis of the inference engine is SNIP, the SNePS Inference Package. It
alw includes an algorithmys and disgnostic rules for carrying out the

diagnosis. The active database is created for each diagnosis W store
instantiated objycts and their associated port values and states.

The rmulti-media user interface has menu, graphical, and limited

astural language capabilities Mot human dialogues about & sechaical
subject profit (rom the use of diagrama ia sddition % sawral language
commuaication. For cixcuits, wchaicians typically wee wire plans
which represeat the functioa of s board, and structural diagrams which
show the physical layout of the components of the circuit. The most
natural way for s maiatenance sywem 50 ask 2 user sbout the voltage
value at a specific Jocation is 0 display the structural disgram of the
board and mark the position which is currestly wader foces, for
instance by highlighting it. While CAD sysems with similsr inter-
faces exist, they are typically based on data objects iike poists, lines, eoc.
and é0 aot more kmowiedge about visual properties of the demain
cbjects that they are dealing with. In our approach all information
secesary to display am obpct is swred as Anowledge ia 2 common
framework with the knowlaige ssccamry for doing diagoosia.

In this way we have combined our work os the graphical inter-
face with more busic research in the represestation of
knowledge. Systems of kaowledge-bused graphics have beea reported
in the literature by Zydbel et ol (ZydbeiSla]l and by Friedell
[Friedell84a] By incorporating maore and more knowledge iaw the
graphical interface we have attained a sew level of graphics that we
want w refer w0 as Intelligery Machine Drefling.

Device Modsling

Compact representation is demrable for memory economy. diagnos-
tic efficiency, and system versatility. in observiag that maay parts of
an electronic device may have the mme componest type and thus show
the mme fuaction, we find that represeating every detail of & device
will ] ecemary redundancy, which impairs sysem perfor-
mance and versatility. Instead of representing all objecu explicitly.
VMES mainuins an expandabie compoaent 1ibrary, sad cbjects are
instantiated as mecded. Devices are modeled hierarchically, and gbjoces,
which may be the devior itself or its sub-parts at any hierarchical jevel,
are represeated as modules Several implementations have beea experi-
mented with [Shapiro86a, Taic86al and s formalism which represcats
devices by instantiation rules and structural templates is described here.

Steuctursl Knowledes

The component library consists of descriptioas of all component
types used to construct the devices at all hierarchical levels. Each com
ponent type is in turn abstracted at two levels, and represented by »
SNePS rule and a3 SNePS amertion. -The former is categorized as an
“instantiation rule”, and the latter a “scructural semplate”™.

At level-1 abstraction. knowledge sbout a component type is
represented as an instantiation rule. The rule is used to instantiate an
objct of the component type as 3 mordule with 1/O ports and associated
functional description. The functronal description is implemented as 2
LISP function that calculates the desired port value in terms of the
values of other ports; this allows the simulation of the device.

At level-2 abstraction, a structural template is used to describe the
sub-parts and wire connections of the object at the mext hierarchical
level. Component types and intended maintenance levels of sub-parts
are also indicated. A structural wmplate provides the mecessary
knowledge about the sub-structure of all objects of the same component
type without representation overherd. Unlike instantiation rules, struc-
tural plates are never executed (fired) w produce a represenuation

1 Ths work wias supported in part by the A Force Systems Command, Rome Air Oevelopment Center, Grifhe
Asr Force Base, New Vork 13441 S700, and the Air Force Ofice of Scuentific Research, Bolling AFB UC 20332 wader

Contract Na. FX602-83 € Ou0R.
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FAgure 1. Archilecturs of VMES
All ennctations ere shown in ielics,

(build avd S
ast (bxild object °x type POM6 abs-iv IRTLY)
The entocedent part states that for every ebject x If
& is of type PCM6 end 10 be Instantiated at level-1 by
this rule then do the consequents. The first part of
Consoquents budlds the Vo ports of the cbject. The
se0ond part of consequents assigns the funcrional
description 10 the ot put ports. The Esting heve is
incomplece due to Umited spuce. Below ere some input
ports for tming control.
- of (ouild inport-of *x id t-shift) = ¥TS
<q (build inport-of *x id r-shift) = vRS
Below ere some input ports for voice signal.
o (Suild inportof *x id siginl) = vSIL
oq (build inport-of *x id sigin2) = vSI2
Below are some ot pud ports for volce signal.
oq {build outport-of *z id sigoutl) = vSOL
o (build oucport-of *z id sigout2) = vSO2
Below are seme function assignments of voice signal
outpu. It siates that t0 calculate the port velue of
dgout] (*vSOI), the function PCMGsigos wish five
argunents (pn 3) which are dginl (pl *vS1]) end
other four timing signals (p2-p3) is to be used, and
the calculated resds may have 3% of errov tolerance
{colrnc 5) -,
g (build object *vSO1 futic POM6sigout twirac §
pa $ p1 *vSIt p2 *vTS p3 *vRS p4 *wJO pS *vRO)
o (build objpet *vSO6 func POM6Esigout wolrae $
pa S pt *¥SI6 p2 *vTS p3 *vRS pd *vTE pS *vRS)

Figure 2. instantiation Rule for Level-1 Abstraction of
Component type POMG. (For testing purpose. the digital
o pemin & pamaut are connected for each channel to
form a loop 30 that input at sigin is echoed to the
output sigout)
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mwuwumz-ammaux
mwwmmwmmmmg
mmm.r.mwmumcus
are their picterial equivaleona mmwmﬁm”
ooded modelstion boards which are waed for weiccommunication. -

There ave three secaions of & structurel templases: the firm
one identt fics that the template ls for ¢ partiader type such
as PCMG;: the second seczion described the ndparts: end the
last section envisions the wire connections.

(build -
Section I: Structurel Template [dentl fication.
type POM6 abs-lv STIL2
Section 2: Subparts Description (incomplesel The Ud
part gives the unique U of a subpart within the template.
The ext-name part is used 10 extend the neme of the
adpars when li is inntantisied. The type pors gives
the type of the subpary. and the mniniv part Indicetes
s intendod mainienance level.
i
((build i POM6-pc] ext-same PCI type PCC
maty-iv DEROT)
(build id POM6-pc2 ext-name PC2 type POC
mata-4v DEPOT)
(build id POME-2t ext-same NOTG.40 type NOTG
mata-iv DEPOT)
{bwild id POM6-atl ext-name NOTG 2! type NOTG
mata-iv DEPOT)
(build id PCM6-ix) ext-aame IX1 type XFORM
mata-iv DEPOT)
(build id PCM6-ix2 ext-name IX2 type XFORM
mata-jv DEPOT)
Section 3: Wire Connections. (incom plete)
connections (
(build from (build inportof POME id sigial)
w (baild inportof POME-ixt id ia))
(build from (build outport-of POM6-ix1 id owt)
w0 (beild inportof POME-pet id sigia))
pomi/oside... .
(buiMd from (build isporcof PCM6 i pemin-A)
%0 ((build inportof PCMo-pct id pemin)
(build inportof PCOME-pc2 id pomin)
(build inportof POMe-pcS id pomia)))
(build from (build inportof POM6  id 30)
w (build inportof PCM6-a10 id ia))
(build from (build outport-of POM6-nt0 id out)
w0 ((duild inportof PCM6-pcl i t-strobe)
(build inport-of POMée-pc) id t-strobe]

Figure 3. Structural Templates for Level-2 Abstraction
for Component type PCMG.

Exnctional Knowledee

Functional knowledge of 2 component rype is represented 25 a
procedural sttachament 1o the semantic actwork. The functional descrip-
tion is usable w0 simulate the component behavior, is. w0 calculate the
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Figure 4. Level-1 abstraction of component type PCMSE.
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values of output poves if the values of the input povts are given. Rt
should also ¢ wsable 10 ifer the values of the input ports in terms of
the valuss of other 1/O pores. This is importast i hypothetical reason-
ing is wasd for foult disguosic. Though we have oaly weed the fusc-
tionsl descrigtion %0 calculate the value st the output port, our
tepeencatation schame can Se wand borh ways.

The fuactionsl decription is implemented as a LISP fuaction,
which calculates the desired port value ia terms of the values of other
pores. Every port of a componest type has such ¢ fuaction essocisted
with it, the link Setwees the port and the fuaction is decribed in the
instantistion rule of the compoment fype. Since different ports of
different component types might display the same behavior, some fuac-
tions can be shared. Figure 6 shows some cxamples of functional
description. .

Below Us the function for the atpat port of ADDERtype
objocts

(defun ADDEROut (inpl iap2)
(o inpl iap2))

Below ls an exomple to show a function shared by severel
&l f arent componens types namely by the cype “PCMGE”™, the
type “wire” and the type “140-1 trens former™. All these
companent types show the same behavior at our level of
compenent abstraction: they echo the input 10 the out puat.

(defua ECHO (inp))
inpl)

Below is the function for the outpt port of ANDGasetype
ebjecrs. (Ouher coding is possidie. bt since we use 110 for
hig , the following way ls a convenient one.)

{defun ANDGout (inp1 inp2)
¢ (+inpt iap2) 20

Figure 6. Examples of Functional Description.

Grashical Knawiedgs

While the process of diagnosis is rvaning, the user is informed
about the activitics of the system via & graphical trace of its reasoning.
The device is displayed on s graphics terminal, and parts curreatly
under comsideration are highlighted, for insance, by changing their
color. Some more details about this will follow in a later section, bere
only represeatational questions will be raised.

in the chapters sbove we have introduced a notation for the
knowledge wmed for disgnosis, which is besed on the SNePS user
language. All the information necemary to create & graphical represea-
tation of the diagnostic object is stored in the very same kaowledge
fepresentation eaviroament. This sot only means that we are using the
same SNePSUL syntax w0 describe objects in a way that pictures can be
created, but we are using 2 common knowledge base, and in fact t0 2
certain degree the seme Anowledge for the diagnosis and the drawing
programs.

In this representation oaly primitive shapes are swored in a form
comparable t0 “classical” graphics programs. For insunce, the form of a
multiplier is stored as a piece of code that, if executed, draws 3 multi-
plier. However any more complicated entity is stored declaratively in
the network representations. )

It is pecemary w0 distinguish between two different types of
graphical represeatations Yhich pose diferent requirements. In a struc-
tural or physical representation 8 device is shown is a geometrically
snalog way. If a resistor is below a chip on a board, then one can
up«unyicmuofambehwmpkmnofachipwm
corresponding plan. In order o construct such a plan & human as well
as a system must have positional knowledge. Thi¢ Anowledge is usu-
ally exprexsed by coordinste pairs.

Functiona! or logical representations, on the other hand. do not

seed positional knowiedge. 8 cac draws & Wire plaa, it is 2ot aece-
oary © know exactly where % put 2 composest. Certain consectivicy
conditions have 10 be mtisfed in order 0 create & picture trus ©© the
object, and certain coavestions of the drafteman’s trade bave @ b
obesrved, but there are 80 & priori rules that specify chat a certais resie-
tar saust ¢ uader a certain chip. In fact ot even acighborhood rela-
tions hawe 1 be preserved.

‘We will first describe the tepeemeatation used for structural
descriptions, and thea talk abowt Jogical descriptions (wire plass) Al
the routines for structural display have beea implementad, and the
implementation for functiona] display is curreatly well on its way.

Graghics Structural Descriptions

it is ascemary 0 know sbout the form of every object involved
in the production of & drawing. s our system, forms are either linked
directly w the corresponding objpct or aa objact inberits a form from &
class of cbjpcts. This requires two case framex, oae linking the object 0
s clam and & mcond ome linkiag the clam 0 s form. Forms represest
the ok Grtwess the declamtive aand the procsdural plase of the
reprematstion system. A form is at the mme time two different thinge
it is & (bese) node in the samantic setwork. aad is this way accessible
by the kpowiedge base handier, but it is also the name of a LISP fusc-
tion that contains calls @ routines of a LISP graphics package. SNePSUL
cxpremions for some of the caseframes desctibed ia this and the sext
sction are gives ia Figure 7.

Positions are sepremauted i & variety of different ways, the maia
positions. The caselrame for aa edject which i locsted at an sbeolute
position contaias aa arc (a £iot) 10 the object, and arcs to modes dencting
cordinate aumbers. Ia the case of & relative position aa additional arc
identifios & “referemce object”. In order 10 draw a relatively placed
objact, the drawiag program has 1 retrieve the position of the reference
object frst.

Relatively placed sub-parts do not have an arc to a refereace
object. In this case. the assumption made by the drawing system is that
this part must be placed relative w0 its “super-objct”. In general the
pasition of any part is smumed 10 be the position of its referemce poist.
By coavention the upper Jeft cormer is made the reference point when-
ever pomsible. So the caseframes described above relate W0 the reference
poiats of the involved objects.

NEaia | —t
=

. .
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Figure 5. Level-2 sbstraction of component type PCMSE.




(build ebject D1-M1
form zmult
modality fuaction)
This describes an ob jecs with Individud Form

(build object D1-M2
type muitiplier
madality function}
This asserts that DI-M2 is a wdsdpller

(build class multiplier
form zmult
sadality fusction)
Ths expression links the class multlplier t0 the form xmadt

(build objxt DI
sub-parts (D1-M1 D1-M2)
sab-aseerns (build iaport-of DI
7] inpl)
abepos (build x 100 y 200)
modality fuaction)
This is & partial description of D1. It has 2 perts
DI-N 1 and D1-M2, one sndrassembly which is en inpa port
with the ld inp] and on ebsolute posicion et 100/ 300

Figure 7. Example Caseframes for Graphical Knowdedge.

Our syssem also permits us t0 assign attributes 10 objecss. We are
discrimiasting betweea icoaic aad symbolic attributes. koonic attribuess
are direczly displayable, for iastance “colos” is such an attribuwe. Sym-
Solic attribuees require & mapping fusction that amigns a displayable
attribute w0 & symbolic attribute. The diagacsis program makes heavy
e of this pomibility. For instance, the sate (symbolic) atiribute is
displayed by mapping it w the color (icoaic) artridute.

We are Viewing actributes as functionals that take & form func
tion and as attribute-value as arguments and retura & modified form
function. The mapping between symbolic actribute values and iconic
attribute valuwes is therefore dane procedurally. For the example above
the state “feulty™ would be mapped to the color “ved”, and the state
“suspect”™ would be mapped to “greca”.

Besides the clam hierarchy, a part hicrarchy is also employed
wiing a caseframe With aa object arc and one or more sub-parts arcs. It
is pomible for the user w0 specify bow many levels of the part hierar-
chy he waats w0 see displayed.

Graphics Fuactional Reproscatations
if ome tries w0 create logical (functionsl) representations from 3
knowledge base. thea the following interesting points become sotable
= All the positional information can be eliminated. It should aot be
necemary % speci{y any location.
= In order 0 create & reasoaable picture, more kaowiedge of other
types is pecemsary. For example, it is necessary w0 know which
objects are inports and which objects are outports, because people
usually expect the signal flow on a diagram w0 go from lkeft w0
tight, or from tp 0 botwm. Incidentally, this information is aleo
sscesmary for diagnosis, and therefore does mot create any addi-
tional requirements.
=  Forms loose their abmoiute meaning. Objects like wires and boards
especially don™t Beed w0 be specifiod by graphics code. In fact the
forms of all wires will be the resuit of a routing algosithm. It is
s well known discriminating factor between declarative and pro-
dural representati that the fatwer do aot ‘permit imcomplete
specifications, while the former cnes da. But this is exactly what
one would like t bave. All wires coatsist of vertical and borizoa-
tal lines, but sothing about the specific form of & wire is kmown
Before the positions of the impinging compooents have been fized.

We also have found chat, in general, for cither type of representa-
tion:

= the classical part hicrarchies are not suficient even for most prim-
itive spplications. We have 30 far discriminated between real
parts and sub-amemblies, 20d one more type of whole-part hierar-
chy for clusters might become necesary. Sub-amemblies are

fepresented very similarly @ sub-parts, only the arc sub-parts

replacd by the arc subramems :

The AJ Uterature has o0 far discumed laberitance aloag the linm

of & class hicrarchy. We have found it accemsary 9 do inberitance

along our part hierarchy, and w0 control this laheritance with o

mcuatiribute. la this way & user can state declaratively

whether be wasts aa attribute inheritod or aot. While we o

waat to iaherit that a big chip bas big pors we do act wast w0

inherit that if & board is faulcy, then 50 are all its parte

Using 80 spatial information about the location of objcts foroes
us W deal with placiag and routing algorithms, however our objectives
are far from s VLSl designer, and more comparabie t0 the TYGES pro-
ject (Eades8ba) in that we are trying w0 create a graphically pleasing
representauca. We refer w this type of drawing activity ss [ntelligens
Machine Dre fting, 3 1erm that we have oot yei scea ia the literature.

We bave defined & very limited clas of circwits and are working
cn automatic placing of members of this clast. The clam has boen
defined (ormally, but ia this paper we will limit curselves o an iatui-
tive summary dexcription. Devicer in the clam coasist of O oc 1 main
obpct and of parts of this main objcts Every part, as well as the
main object, has “ports™, and ports sre conneced by wiree. The sumber
of signsl paths aad the length of signal psths is expecied o be small
enough 10 permit placing them with cur column-equal-spaciag algo-
rithm (which will be reviewed later). All componeats have %0 be cos-
sectad “wraight forwardly®, ic. ao (ecdback loops sre permiciod. kons
(« parts) are all about the same size.

The column-squal-placing slgoritha clamifics clements accordiag
10 their signal distance from the sysum input ports and amiges every
post 0 2 colsma. It then equally distributes all columas over the
screen, and equally distribuies all parts inside their respective colemas.
We are curvently reviewing the Literature oa \'LS! routiag. in ovrder w0
decide wpon as appeopriste routing algorithm.

The advantage of a systern that does its own placing based 0o
information about the structure of the device is obvious — 0 & Jarge
extent, creating 2 knowledge base for maintenance purposes takes care
of creation of the mecemary graphics. We have also found kaowiedge
based programming t0 be far more robust than all other commos peo-
gramming paradigms. The reasoning system and the graphical interface
of VMES were designed by different poople with a misimum amouat
of persosal interaction, nevertheless system integration did aot post any
dificulties.

Ancther significant advantage of our represeatation system for
graphical kaowieige is the la-ge amouat of SNePS saturul language
peocemsing software that can immedistely be used. We bave used the
SNePS ATN package [Shapiro82a) to creste & satural language inter{ace

-0 the graphics routines This permits us 10 do Narwrel Language

Graphics [Brown8la, Humman84a] almost as & byproduct, the oaly sep
secomary was the creation of an ATN grammar for the
graphice/circuitboard domain.

The user can for instance request from the system:

show me all multipliers

show me DIM!

show me all faulty adders

please display D1
and many others, where D1 ts the name of a device, and DIM1 the
name of its first multiplier.

Riagnostic Reasoning

The diagnostic reasoning of VMES follows a simple control struc-
ture. It stares from the top level of the structural hierarchy of the dev-
foe and tries w find output ports that violate an expectation. “Violated
expectation” is defined 23 3 mismatch between the expected (calculated)
value and the observed (measured) value at some output. Though the
target domaia of VMES is digital circuit boards, we observed that ia
real life mast of the clectronic boards contain some timple analog com-
ponents such a8 resistors and transformers. Therefore, for practical con-
sideration, some components are allowed 10 have a wierance when their
outputs are heing checked for violated expectations. The tolerance
informatioa is associated with the instantiation rul: as depicted before.

After violated expecations are detected, the system uses the siruc-
tural template o find 2 subset of components at the next lowe:




is st the botiom level of the tructusal hicrarchy and a0 furth -~ diag-
aosis is pomsitle.

A small set of SNePS rules is activated ot every stage of the diag-
sosit. For example, three rules are activated when ressoning about a
pomibie violatad expectation of a specific port of & device. One rule is
deduce the mensured value of the port. A measured port value can
cither be deduced (rom Wire conmections or requesied {rom the user. A
similar rule is activated for the calculated value. and the last rule is
wsed to compare the two values % decide if there i a violated expecta-
ton. The lam rule is shows in Figure. § ia both SNePS code and in
Englisk.

Suspects sre firmt sorted a0 sublins by global criteria called
fault possibilitien. Foult pomsibility is determined by evaluating the
suspects against the wholistic curreat situation, which is the current
test results. For the current implemenuation. there is only one global
criterion: 2 suspect has higher fauit pomibility if it contridbuies 10 more
vigrezpet output Ports. Suspects withia each sublist are thea sorted by
some local critaria caljed fanit potsatialities. Fault poteatiality is a
measure of the ruse a particular type of compoment may fail It is
independent of the eaviroameay, only depeadiag on the component
type. (It may also depend on the lot aumber of the componeat. but %0
far we do not treat such details.) The ideal fault potentiality data for
our domain is the thermal analysis data of the compaments. Due to the
unavailability of the thermal anslysis data, it is now implemented as
an index ranging form t t0 3. Component types with no swored fault
potentislity data default to0 2.

VMES does not make the single fault amumption. The system
incorporates The user’s jadgement by offering him an opportuaity to ter-
minate the disgaosis semion Whenever a faulty pert is located. The
user can choose 10 continue the iavestigation of the remaining suspects
if he feels that more faults are possible or if he would merely like
make sure other suspects have 80 problems.

Grashical Infertrace

As mentioned in an earlier section, there is & part of the VMES
system that permits the user @ graphically trace the whole reasoning
procems. This is dome by a function called display. chac retrieves
knowiledge about how' objects look and how they are located (rom the
network. and computes and creates a graphical represeatation {rom this
krowledge. This method is snalogovs o the generation of matural
language (rom & knowledge base, a widely acoepted Al technique.

The reasoniag pert calls display with the name of the object that
should be displayed. pomibly with one or more of 3 sumber of options.
We will give a quick review of the possible optioax more details can be
found in [Shapiro86al

It is pumible w0 select how may levels in the part bierarchy
should be displayed. Objgects can be shown blinking. and they can be
blown up or shrunk tw £l the sxreen or a predefined window
optimally. It is pomsible t0 creste two pictures. & detailed picture of an
object and a picture of the “environment” of that obpct. The user has
oaly 0 specify the objpct itself: the environment is retrieved from the
part hierarchy by searching upwards.

A sub-optioa of the environment option permits the user W limit
how may levels up in the part hicrarchy is searched. The selection of
what 10 show can be limited not only by the number of levels. but also
by the number of parts or according 10 3N APProxIMAte COgNItive com-
plezity which we are simulsting by counting the aumbes of graphics
primitives visible on the screen.

Conclusions

The tepresentation scheme described in this paper bas been used to
represent several devices, including severa: multiplier/adder boards and
a sixchannel PCM (Pulse Code Modulation) board for telephone com-
munication. VMLES has been successful in isolating the faults on these
boards. A typical esample is that VMES identifies an inverter on a
PCN\6 board as a faults part, which actually accousts for the simul-

(Suild

avd ($p Sve Svm Ser)

&ant ((build port *p value *vc source calculated toirac *ur)
(build port *p value *vin source measured))

oq (buisd
mis 1 max 1
arg (build same THEY-MATCH pl *vc p2 *vm

tolrac *ur)

arg (build port *p state vioexpetl

In English:

1f the calculated and measured values of port p are knowo as
vc & vm, anc and oaly aoc of the followiag natements is true
(1) vc and ven agrees
(2) port p displays a violated especuation.

Figure 8. A diagnostic rule.

taneous malfuactioning of the two chasaels it affecta, i the earty suge
of diagnosis. Though VMES has a0 capebility w0 conclude that it is the
oaly fault on the board, the suspect ordering criteria help the system to
decide which suspect is 90 be chocked first. The result shows that the
representation scheme, sloag with as expandable component lidbrary
leadi 10 severa] important sdvantages compact representation and sys-
tem efficiencies ia toth system development and operating pbases.

We first claim that a clear distinction between the two atstraction
levels of an cbject is desirable. The scparation leads to system eficiency
since the kngwiedge at the two abstraction levels are used at different
suages of diagacsis. Level-1 information is used for detecting violated
expectations, and level-2 lnformation is used for suspect generation. To
mix these two levels together will cause represeatation overbead and
bamper system performance.

The use of the pamive structural wemplates, which are sever exe-
cuted, 10 represent the substructure of objects of a component type has
sdvaatages over & procsdural represeatation which uses a procedure or
an instamtiation rule for it {Davisf3a Shapiro$éa] Whenever it is
necemary €0 reasom abolst the substructure of an object, it is carried out
oo the unique scructural template for the componeat fype of the object.
Only the sub-parts that require (urther examination will be instan-
tiated (by the proper instantistion rules for them). Ualike the struc-
tural template represcatation, & procedural representation is used to
instantiate “all” sub-parts of aa objecs, and then the reasoning is carried
out over the resulting swbstructures. This leads to serious system
ineficiency due t0 representation explosion and resource waste caused
by uanecesrary object instantiatioa.

The momt important feature of VMES is its versatility. VMES can
easily be adapted 0 pew devices by merely adding the structural and
functionz] information of the “sew” component types 1o the component
library. A new component type is defined as a component type which
has not previously beea descrided to the component library. The mew
device itself is 2 mew componeat type by our defnition. The effort
required t0 adapt the systera %0 pew devices should be minimal since
digital circuit devices have a lot of common components, and the struc-
tural and functional description are readily available at the time 2 dev-
ice it desigoed.

We bave found at presentations that the graphics interface consid-
erably improves the understuandability of the reasoning process of the
system. The use of a knowledge based graphics system promises to sim-
plify the creation of graphics for pew devices, in this way aiding the
versatility of the system. The common representation for diagnosis,
graphics and a2 sumber of natural language tools has aided us in adding
a oatural lasguage component to the system, and in this way
strengthened our belief in the usefulness of & knowledge based graphics
system as a patural interface (or a user friendly maintenance expert
system.

As 2 spin off, we have found limitatioas in the classical part
hierarchy and inheritance mechanisms, and we have surted to work on
s modulie for Intelligent Machine Dra fling as a part of our system.
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ABSTRACT

Modei-based circuit diagnosis isolates the faulty com-
ponents of a malfunctioning electronic device by rea-
soning on the basis of structural and functional descrip-
tion of the device. In this paper. we argue that explicit
representation of wires end points of contact (POCONs)
is necessary for diagnosing fauits of circuit connections.
The traditional rnodel of a wire as a uni-directional
module is inappropriate, because it ignores its bi-
directional nature, and it does not inckide POCONs. A
new model of wires and POCONs and the corresponding
mmmammmAm

same ports together is devised and implemented. Exam-
pleg of using this model for circuit diagnosis are shown,
and its limitations are discussed.

1. INTRODUCTION

A design-model-basod fault diagnosis system reasons on
the basis of structural and functional descriptions of a device.
The performance of such z system, in terms of effective diag-
nosis and system generality, is dependent largely on the device
model. The structure of a device is usually modeled hierarchi-
ally, and components are modeled as modules with 1/0 ports
{2,4,8,10] This aliows the sysem to focus on relevant parts
of the device. Wires and wire connectioas, which, accsrding to
domain experts, are among the major causes of devioe malfunc-
tion, have not received the deserved attention in previous
work.

A wire is often modeled as a common module with 1/0
ports, just like other compoments (2,4,10} By doing this, a
mkhﬂﬁﬂymwhmﬂmmwlmn
are uni-directional by convention. This reflects the design
mtenunnott.hewimind:edemhtmﬂbuvmhthephy-
sical reality of a wire — although both are important in fault
diagnosis. Though this kind of model iz in general good for
Components such ax inverters and IC chips, its use for modeling
wires presents two problems. First, the “implicitness” of the
Asumption fwself is dangerous for fault diagnosis systems,

'm‘rorkwuu&min part by the Air Force Sys
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because it makes the systems incapable of ad justing themselves
to different diagnostic situations (1} Second, treating wises as
uni-directional modules makes it impossible o diagnose some
wire-related faults, as shown in the following example. '

A wire which emerges from point A for some length and
then focks o points B and C, which is shown in Figure 1, is
represented as

(runm(A)(B)) {run-wire (A} (C)) ia (2)
where run-wire is a function that is used 10 create
a wire from its first argument to the second; or

(CONN (A) (B]) (CONN (A (C)) in (4]

where CONN is a two-argument predicate in some

kind of logic programming language, and it asserts

that there is a connection from its first argument

to the second; or

(build from A to (B Q) in {101

where build is a command which builds a node

with a “from” arc pointing to A and two “w0” arcs

pointing to B and C respectively, which node

assercs that A is connected 0 B and C.
Here A, B and C represent the three wire ends (wire parts) of
the wire; the actual representation of & wire end in some sys-
tems may be more complicated than what we show here All
these representations treat a single piece of wire as two
separate wires, and show no direct connection between point B
and point C. Thus a short (bridge) to ground at point C cannot
be noticed at point B, which is guaranteed to have a value sup-
plied at point A in these models This may misiead a fault
dizonosis system 0 conclude that the component whach it con-
nected to the wire at point B is faulty, since it shows some bad
output and its input (at point B) is assumed 0 be intact.

Anocher problem concerning wire connections, which has
also been long ignored by researchers in fault diagnosis, is the
problem associated with the contact points in an electronic dev-
ice. According to experts in the circuit domain, a “bed contact” ,

jre———— -] :
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ie, a problem in Wire connectivity, is s common fault of elec-
tronic devices. A bad contact in connection is usually misper-
ca'veduahdvinuuhﬂdliphtmltdhpmism
A Joose pin and socket means an improper connection between
a pin and its host socket, but not & bed chip, which the pin
belongs to, or a bad wire, which the socket to. In this
paper we argue that “point of comtact (POOONY", which is
missing in the existing literature, should be modeled and expli-
cidy represented for efflective and complete fault diagnosis.

In the following sections, we first review the common
model of components as a module with 1/0 ports, and then we
introduce a new model for wires and POCONs along with
some implementation details. Examples of using this new
model for circuit diagnosis are shown, and its limitations are
discussed. )

2. A MODEL FORX COMMON COMPONENTS

In general, components in a device can be categorized as
wires and noa-wires. We refer w0 non-wires, ie, the com-
ponents other than ‘wites, 3 “common componeats”, and treat
‘wires as special components.

Hierarchical models of devices are used t0 abstract devices
at different levels of detail. A common component at any
abstract level is in tura abstracted at two levels At the
level-1 abstraction. 2 common component is represented as a
module (a black box) with 1/O ports and associsted functions.
At the Jevel-2 abstraction, subparts and wire connecticas of
the component sre envisioned. Figure 2 is the pictorial illus-
tration of the model! for common components.

In our sysem. instead of explicitly representing every
part of a device at all hierarchica] Jevels, we use an expandable
component library to maintain descriptions of component
“types”, and parts are instantiated Jynamically as needed. The
significant part of this model is the clear distinction between
Jevel-1 and level-2 abstraction, which are represented in our
system implemented in SNePS, the Semantic Network Process-
ingSymm.animnﬁadmmchnmnlwq-
plate respectively. This model along with the expandable com-
ponent library has advantages for system eficiency and versa-
tility. More details can be found in (10}

We investigate device from a knowledge
representation view and conclude that there are two kinds of
object in device representation by its nature. The first kind is
the object that can be isolated from its environment when it is
being investigated, examples are “B1” in “the PCM6 board, B1,

is suspicious”, “B1-IX3" in “the transformer, B1-IX3, is faulty”,

and “B1-WI12” in “the wire, B1-W12, is interrupted”. We call
this kind of object a “stand-alone object”, which includes both
common and special components. The second kind of objects
are those which are always amociated with some other
object(s). Examples are 1/0 ports of components and POCONs

in1 q =
N2 Tri-Adder bout -
in3 l
Function: out=in1+in2+in3

in connections. Please note that /O ports are imaginary objects
which conveniently represent the “places™ where data (signals)
flow into or out of a component, and POCONs represent the
“relative physical relation™ between two other objects. This
kind of object is termed “parasilic object™ since it is not a rea]
object, and its existence always depends on the object(s) it is
asociated” with. Figure 3 shows the semantic network
representation for ese two kinds of objects as well as the
hierarchical represcatation of a device. Wires, componeat con-
nections, and POCONs are discussed in following sections, and
thus are not included in Figure 3.

which is represented as a base
node with &3 unique name
“B14X3" in SNePS. The node m1
dencles that the object 81-1X3
is of type XFORM (transtormer).
(a)

: 81-1X3 is a stand-alone object

The molecular node m2 stands
for the first input port of
B81-1X3. A port is a parasitic
object which s represented as
2> @ a structured object in SNePS,
@ and iis existence depends on
s host abject 81-003. The

node m3 explicltly asserts that
the object m2 is a PORT.

®)

\ An exampie of a hisrarchical
@ Po model of devices: B1-DQ ks a
gei 3 sub-part of B1 (by node m5),

. and B1 in tum is a sub-part of

uim e SYSTEM (by node mé).

3. A MODEL FOR WIRES

In most previous work, a wire is modeled in a manner
similat 0 other common components as modules with VO
porws, {2] or not explicitly modeled at all (4,10} We have
shown in the introduction that this is inadequate, and here a
oew model for Wwires is presented. Wires are special com-
poneats in several aspectsc a wire is merely a piece of metal in
mfctm:twisudcoppnthmdswuppedbyphnjcsor
strips on a printed circuit board; the sole function of wires is
to transmit signal (voltage and/or current) from one point to
apother; and it is maintained at all maintenance levels — in
contrast, a commoa cxmponent such as & board is usual’
replaced only in the feld, and » chip is replaced at a sh.,
(depot).




In the work presented here, 3 wire is still modeled as a
module, but the traditional uai-directional /O ports are dis-
carded. Instead, the wire ends are represented as bi-ports, a
pew term that stands for bi-directional ports, which allow sig-
nals 0 flow in cither direction. The semantic network
sepresentation of the wire model is shown in Figure 4 with
the threeend wire in Figure 1 as an example. The example
wire is explicitly represented as a whole piece — a module
with three bi-portx. Now the behavior of & wire can casily be
represented by a rule asserting that all bi-ports of a wire have
the same value (with ground dominaat). The rule concerning
the behavior and diagnosis of wires will be shown later. This
simple model of a wire reflects its physical properties and
cnables correct simulation and fault diagnosis of electronic cir-
cuits.

As mentioned before, both bi-directional physical reality
and uni-directional design intention of wires are important the
bidirectional property is useful in diagnosing some wire
related faultss and the uni-directional property is good for fast
geoeration of suspects by tracing back the part connection from
bad outputs. It seems that our wire mode! only preserves ithe
physical reality, but loses the design intention of 3 wire. The
design intention ought 6 be presented in some way. A close
investigation reveals that our wire model as module with bi-
ports suffices. This model has the bi-directional property via
the use of bi-ports. It also bas the umi-directional property,
though not explicitly represeated in the model itself, via the
connections with other componeats — & bi-port connected to an
Out-port serves as an in-port, and a bi-port connected t an in-
Pport serves as an out-port. This improves system efficiency by
saving the representation overhead of explicitly representing
the uni-directional design intentios in the wire model itself.

4. CONNECTION AND POCON

The explicit representation of points of contact (POCONs)
has not been reported in the literature. For instance, Davis [2]
deals with connectioas by superimposing the ports of two coa-
nected components, fay, a wire and a chip. In this case, there is
no way to find a faulty POCON, because there is no POCON at
all. In order to catch this kind of problem, POOONs should be
modeled and explicitly represented.

Unlike compooents such as chips and wires, POCONSs are
the “relative physical relation”™ betweea two ports of two com-
ponents, which are “atwolute physical entities™, and thus
POCONSs cannot be modeled as physical components. Neverthe-
less, since the function of a POOON is o transmit signal
between its two sides, it is reasonable t0 model a POCON as a
logical component, and then we can assert propertics such as
“intact”, “suspicious”, and “faulty” of it. Like a port, a POOON
is a parasitic object. A POCON is something that can not exist
by itself, and is always referred 0 by the two ports with
which it is associated. The semantic network representation of
a2 POCON is shown ia Figure 5.

L 2
1 LY. ®]
— 5
— o
Physical diagram Logical diagram of
_l of a board (partial)
Superimposing two same
@ ports. The node mG
v asseorts that the two ports
equiv  equiv m1t and m2 are the same

pont abstracted with two
components at differant
levels. M1 is the first
. signal input port of board
Bt.andanelsmoﬁrstend
of wire B1-W1, where
(B1-wi) éB%Wﬂs:amno(Bl.

Making 2 POCON out of
two differant ports.
object Unlike m3, which asserts
the relation of two same
@ ports and is not an object,
m6 is a co. ~epwal object

ol type 20C( . whichis

contact comtact formec » different
ports, md a.. mS5. This
makes it possile to
assent diagnostic states
biport-of id inport-of such as “suspicious” or




There are actually two different connections needed in
modeling electromic devices in a hierarchical way. One is to
link two ports which are actually the same port abstracted at
two different hierarchical levels: Aa example i that the port
*“in1" is a port of the tri-Adder in Figure 2(a), and it is also a
port of the short wire in the left upper corner of Figure 2(b).
Note that the tri-Adder and the wire are at differeat hicrarchi-
cal icvels, but they sharc the same port. This port is
represented a8 TWO entities: one associated with the tri-Adder,
wmmmummmmmddhm
or device simulation from one level 1 another possible. Since
the two posts are actually the same one, this link is imple-
mented by a “dual-equiv” semantic network caseframe,t which
bas the same effect as “superimposing™ two {5} (And whis
is the only right place for superimposi The other connec-
tion is to link components at the same hierarchical level
together. Instead of superimposing two ports, we use a “dual-
contact” semantic aetwork caseframe to link the two ports by
forming the representation of a POCON. The use of POCON
preserves both the Jogical sense of connection and the physical
sense of contact. Figure $ illustrates these two kind of connec-
tion mechanisms. -

ateb-cls atrb

type object object  ar
blpon:g“z am,.:g“)anb
N e ©

t The “dual-equiv” semantic network caseframe is used in

tional semantic networks w0 link two inunsioulg dis-

tinct g\en glxtcmtonally equivalent objects together. See (3] for
more detail.
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5. FAULT DIAGNOSIS

In this section, we first show how a value and/or a state
is associated with an object in Figure 6. Then, the methods of
locating a faulty wire and a bed POCON are descrived. The
details of the diagnosis by our experimental system VMES
(Versatile Maintenance Expert System) are discussod in (8] and
(10] and thus only the diagnosis concerning Wires and POOONs
is presented here.

All wires have the same function — transmitting values
(signal as voltage) from one point to snother. Though wires
may have different numbers of wire ends, they all show the
same behavior — the values at all ends of an intact wire are
equal. It is usually necessary to simulate the bebavior of a
common component by calculating its outputs from its inputs
using its functional description (3,4,8,10} Unlike for common
components, there is no need to simulate the behavior of a
wire. A simple Tule which states thut a wire is faulty if it
has different values at its ends suffices. The rule we use w0
diagnose wires is shown in Figure 7.1t

A POCON has similar function t0 a wire — it transmits a
signal from one side t0 the other. Remember that our model
for POCON is & logical object which is represented as a struc-
tured node with two “coatact™ arcs poisting to two ports of

In SNePSUA. (SNePS User Language):

(ouiid
avb 8p1$p2 Sw v $v2)
&ant (build object *p 1 bi-port-of *w)
{build object *p2 bi-port-of *w)

attr (build atrb-cls value atrb *v1))
{builld object *p2
attr build atrb-cis valug atrb *v2))
oq {bulid object *w
attr (build atrb-cls state atrb faulty]

In English (not fine by line transiation}

¥ p1 and p2 are different bi-ports of wire w, and
v1 ard v2 are the values of p1 and p2, and
v1is not equal to v2

THEN the wire w is faulty

tt Under the UVBR (Unique Variable Binding Rule) of
SNePS [9] different variabies can not bind to 2 same value.
This has the advantage of better reasoning efficiency by saving
some antecedents of a rule, and by eliminating redundant van-
able bindings. In the rule we show here, there is no need to ex-
plicitly specify that pl and p2 are two different ports as an
antecedent. that the requirement of pi p2 being
different ports is shown in the English tion of the rule.
Moreover, there is no antecedent for checking if v1 and v2 are
equal or not, because, under UVBR, the last two antecedents of
the rule can be simultaneously satisfied only if v1 and v2 have
different values.




two compooents. Theréfore, a bad POOON can be defined as a
POCON of which the twn zssociating ports have different
values. Note also that a POCON is only a conceptual object
which represents a physical relationship between two ports of
two components. It has no port of its own, and whenever the
value of a port of a POOON is requested, the port is identified
as & port asmciated with its host component rather than the
POCON. In VMES, we currently treat the locating of & bad
POCON as & by-product of checking components. This is done
by the following method: wheneves a port value is acquired,

(diagnose B1 PCM6)
00008 diagnose B 1: searching vio-expct...

@> Test Configuration for PCMG Boardt
a>
@> 1. connect pemout to pemin for every channel

@> 2. synchonize T-STROBE/SHIFT and R-STROBE/SHIFT

60008 vio-outps founct (m3I6 m34)
{m36 (id {sigout 1)) (outport-of (B1)))
{(m34 (id (sigout3)) (outport-of (B 1))
000080 suspects createct
{B1-NOTGr0 B1-NOTGO B1-WR1 B1-WR2 B1-WRS
B81-WT1 B1-WT2 81-WTS B1-PC1 B1-PC3 B1-IX1
B814X3 B1-0X1 81-OX3 B81-W11 81-W12 B1-W13
81-W14 81-W31 B1-W32 B1-W33 B1-W34)

@080 diagnose 81-NOTGr0: searching vio-expct...

what's the value of port
{m731 {id (out)) (outport-of (B1-NOTGrO))
*fvaluelnil? 1

what's the value of port
(m696 (id (i} er't-of (81-NOTGrO))
-*[valuelnil? O

G0e08 81-NOTGr0 shows no problem

.......

what's the value of port
{m761 (id (2)) diport-of (B1-WR1))
*[valuelnit? 0O

whats the value of port
{m732 (id (3]} (biport-of B1-WR1))
s [valueyni? 1

@G0A0 wire B1-WR1 is faulty
by showing different values at wire ends

Terminate the diagnosis?

*yin? y

VMES manually terminated

@0008 | GOT THE FAULTY PARTS AS:
{81-WR1)

Repair Order: fox 81-WR1 (typeWIRE3)
done
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the system finds anotber port which forms a POOON with the
first port, and if the second port has a value which.is different
from the value of the first port, then the system concludes that
the POCON is bad. This is somewbat similar to the way a
buman expert diagnoses electronic circuits in that he measures
some port values to check a component, but the resuit of the .
measurement stimulates him t conclude that the fault is on &
nearby POOON rather than on the component be intends to
check [6]

By using the model of wires and POCONs and the diag-
nostic rule and method described hese, VMES has successfully
Jocated a broken (interrupted) wire and & bad contact point on
a malfunctioning six channel pulse coded modulation board for
telephone communication. Part of the screen output for a diag-
naosis sestion is shown in Figure 8.

* {diagnose B1 PCMG)
@680@ diagnose B 1: searching vic-expct...

@@80Q vio-outps found (36 m34)
(m36 (id (sigout 1)) (outport-of (B1))
{m34 (id (sigout3)) (outport-of (B1)))

€O608@ suspects created:
(B1-NOTGr0 B1-NOTGt B1-WR1 81-WR2 B1-WRS

60000 diagnose wire: B 1-WR1

what's the value of port
{m761 (d (2)) biport-of (81-WR1Y)
¢(valuslnil? O

whats the value of port
{m748 Gd (1)) (biportof 81-WR1))
s [vaue)nit? O

whats the value of port

(m732 (id {3)) biport-of m “-WR1))
*{valuelnii? O

©0808¢ The pocon m733 between the ports
{m732 (id (3)} (biport-of (B1-WR1)))

{m731 (d (out)) (outport-of (B1-NOTGrO))

is faultyl

Terminate the diagnosis?

*yin? y

VMES manually terminated

@00088 | GOT THE FAULTY PARTS AS:
(m733
{contact (m731 (id (outl) {outport-of (B1-NOTGrON)
(m732 (id (3)) (biport-of (B1-WR1I)
Repair Order: fix the contact point
done




Though the rule shown in Figure 7 is good for locatin
interrupted wires, it cannot handle the bridge (short circui
problem of wires. When a wire is Gridged w ground or some
other componeat, all wire ends still bave the same value (with
ground dominating). This makes the bridge problem difficult
w0 diagoose. Nevertheless, this problem is not unsolvable. A
bridged wire can be identified by observing a difference
between the measured value at wire ends and the-supplied
value of the wire. The supplied value of the wire is the value
which the wire is intended to transmit. The supplied value
could be the calculated value of an output port of a componeat
which is connected to the wire, or it could be from a requested
test in which a value is actually supplied to one wire end
from outside the board. Since wires are explicitly modeled and
represented in our system, the necessary procedures and user
interactions for carrying out the test can easily be imple-
mented, and 8 bridged wire can be Jocated A harder problem is
how to decide if the bridge is on the wire or on some com-
ponent which is connected 10 the wire. One way is to discon-
nect the wire and the component for separate test. Though
this ensures that a_bridge can be corvectly located, this opera-
tion may be wo costly and impractical. A more reasopable
treatment is 10 ask the user to check it Since buman beings
have much better visual capabilities than computers, they can
detect most bridge faults by inspection if they are directed w0
the right area.

6. CONCLUSIONS

Explicit representation of wires and POCONs is necessary
for diagnosing faults regarding connections. Our system, using
a new mode] of wires and POCONs as well as a deliberate
component connection mechanism of either forming a POOON
from two different ports or superimposing two same ports
wgether, is effective in circuit simulation and fault diagnosis.
Our system has been successful in lacating interTupted wires
and bad contact points, and it has been shown that it could
handle bridge problems of wires t0 some extent.
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kaowled(eﬁrwluwa

systems are looked ot Some
mmmmm
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L Introduction

A human expert possesses knowledge
about a domain, has an understanding of
domain problems and has some skill at
solving problems An expert system for a
given domain is a computer program that
is capable of solving problems at a perfor-
mance level comparable to that of most
human experts in that domain.

Early successes of e..j-ert systems were
lndanniumthmduﬁeldsofmedmne
bacterial infectious

recently many applications have been

found in traditional engineering domaing.

This is only natural in that engineering,

defined broadly, is the use of specialized

knowledge to solve real world problema

Examples of applications of expert
in engineering are: confi
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with primitive components and arranging
or rearranging them to satisfly re-
quirements Examples of problems of syn-
thesis asre configuring a computer,
designing a bmldm(. designing a
mechanica

1 or electrical component, etc
1.2 Role of Kno
Expert problem solving seems to involve
search through a j

judgemental knowledge
base specialized to the domain. The
knowledge can be either public (publish-
ed definitions, facta, theories) or private
(not in books). Private knowledge is
typically in the form of rules of thumb,
called heuristics that are learned and
refined over years of problem solving ex-
perience in that domain. In fact, the cen-
tnltukdbmldxngmlym'm
d'eluudnt.m‘ and reproducing private
knowledge K Mhthe
task of extracting human expert
knowledge and organixing an effective
Mhon.mmuedknwhdce.
including heuristics, general modals and
a:almodehdbohathunknowlodce

2. Using Production Rules

The method of knowledge representa-
tion should have the following
characteristics: capture generalization, be
understood by poophpvndmgit.bun—
ly modifiable, and be useful in a put
many situations. Knowlodge :
represented in first generation expert
systems in the form of a set of production
rules The basic form of a production rule
is:

Rule R,
If ay, Gy ..., Gy
Then by, by ..., by
where a; are predictatas (statements that

can have true or false values) that are
referred to as antecedents (also premises,
patterns, conditions) and b; are referred
to as consequente The consequents can
either be deductions or actions A deduc-
tion is inferred from facts about a given
situation. An example of a deduction rule
is (If (LIGHT ON) Then (CAN SEE).
Deductions are most common in
disgnostic reasoning. An sction rule
mchanguoneut\ntwnhlmther eg (If

pert behavior in terms of available
operations.
A rule can be viewed as a conditional




Tools for Bulkiing Expert Systems

There are several strategies for selecting
the rule for firing from the conflict set.
Some of these are:

1) Specificity ordering — arrange rules
whose conditions are a super-set of
another rule

2) Rule ordering — arrange rules in
priority list; rule appearing earliest has
highest priority.

3) Data ordering — arrange data in
priority list; rule luvin. highest priority
data (condition) has highest priority.

4) Size ordering — rule having longest
list of constraining conditions has highest
priority.

5) Context limiting — activate (or deac-
tivate) groups of rules at any time; thus
there is less likelihood of conflict.

The choice of conflict resolution strategy
is ad-hoc. Specificity ordering and context

tion facility, nndnknwld(cacqum
model.

2.1 Forward and Backward Chaining
In the case of synthesis systems the
antecedents of the rules are conditions
and the consequents are actions The in-
terpretation or control mechanism used by
synthesis systems is as follows:

1) Collect rules whose if parts are trig-
gered and select a rule using a conflict
resolution strategy.

2) Do what the rules’ then part says
(fire).

In the case of analysis systems the

antecedents of rules are either obeerved -

or derived facts and the consequents are
new facts that are derived. This
mechanism is said to forward chain the
rules The control mechanism used by
analysis systems can be either forward or
backward chaining. In backward chaining,
nparucuhrlvpothensisnlectodmg
some discipline. The rules are examined
to see if the hypothesis is a consequent.
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If 00, the antecedents of such form the next
sct of hypotheses. The procedure is con-
tinued until some hypothesis is faise or all
hypothesss are true based on the data.
Forward and backward chaining

anlquummaulgwnhbm-

up analysis systems progressively

the data to draw conclusiona. Top-down
analysis systems begin with an expecta-
tion of what the data could define and see
if the data fits the expectation.

2.2 Certainty Computation

It is often useful or necessary to
associate levels of confidence with rules
as well as with antecedents and conse-

based on probabilities, is as follows:

* The certainty of a rule’s overall input
is the product of the certainties sssociated
with the rule’s antecedents.

* The certainty of a ruie’s output is
given by a single valued function having
input certainty on one axis and output
certainty on another.

* The certainty of a fact supported by
several rules is determined by transform-
ing certainties into related
mh.alldmmym
then transforming the certainty ratios
back into a certainty.

2.3 Production Rule Languages

lnplindph.mmttymmembe
programmed in any programming
language such as FORTRAN, C, or LISP.
However, as with any complex system, the
choice of the tool can influence the

ficiently implomcntod using many
different y available tools
Prominent among these are: EMYCIN,
KAS, ROSIE, OPSS5 and PROLOG, among
other. Each of these languagessystems
provide a built-in inference mechanism.
EMYCIN, a system derived from
MYCIN®, is particularly suited to
diagnosis problems, provides backward
chaining, and allows certainties between
11 and +1 to be associated with data and
conclusions KAS has derived from PRO-
SPECTOR, an expert system for
geological exploration. It uses likelihood
ratios for rule strengths and control can
be both forward and backward. OPSS5 of-
fers generality in that it is easy to tailor
the system to the domain but unlike
EMYCIN and KAS it does not offer
sophisticated front ends OPSS uses for-
ward chaining exclusively. ROSIE uses
English-like syntax but has ne
sophisticated data base structure. PRO-

LOG is a logic programming language




“pressure”), descriptions
main objects and their relstionships to

pmM‘OOpd.ﬂundutho
pump’s input valw™).

3.1 Semantic Networks

A ssmantic network is a method of
wmhmmﬂ-

-nod.(dmld
in the utwrk and relations are

(=

(b) device type object

© 0o

Figure 2. A scmantic nctwork consists

of lsbolod modes and arcs wich associated

dmﬂgﬁu (a) network for “P1 hanummpd.'(b)qﬂnlan

network in

3.2 Frames

A frame provides a structured represen-
tation of an object or a class of objecta For
example, one frame might represent an
automobile and another & whole class of
automobiles. In a sense a frame is a col-
lection of semantic net nodes and slots
that together describe a sterestyped ob-
ject, act, or events (ses Figure 8). Con-
Mmmnnbhinahmm
for organizing frames that repressnt
clasees into hierarchical taxonomies In
addition, special purpose deduction
sigorithms exploit the structural
characteristics of frames to perform a set
of inferences that extends the explicitly
held set of beliefs to a larger, virtual set
of beliefa

3.3 Integrated Environments
Examples of systems that combine the

process-
ing system that allows relational
knowledge

as well ag production rules to
be represented in the form of a semantic
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network. SNePS is particularly 2p-
ptopﬁahwhonutunlhnmmm-

framework that allows several knowledge
sources (or expert systems) to interact in
the solution of a problem. An environment
for such an approach is GBB (Geperic
Blackboard Development system).




4. Research at SUNY at Baffalo one is an abstraction of the other. The  tion expert systems Second and future

Research is ongoing in the logical and physical models of a physical  generation expert systems will integrate

of Computer Sciencs at SUNY at Buffalo  system often correspond. For instance, the  production rules with semantic networks,

y on methodologies for expert systems that  power train of an automobile consists of  frames, and other knowledge representa-
soive ansiysis In particular we  two functional (Jogical) components, the  tion schemes Our research on expert

are exploring the design of knowledge-  engine which provides power and the  systems methodology at SUNY at Buffalo

based systems for image interpretation
(recognizing objects in complex en-
vironments) and for diagnosia. In the im-

age interpretation area our work concerns
hwbmdim-mmumtydupens

in achieving a common goal'* and how to

is cumntly focused on pnblcms of
analysis such as image interpretation and

faultdugmslnthednmmth
efforts are to develop a theory of multi-
Jevel device knowledge representation and
an approach to versatile maintenance bes-
ed on a semantic network representation.

methods emphasize the use of a
blackboard architecture, frames, and pro-
duction systema In the diagnosis area our
wutmﬂhwbwntmﬁal
and other model knowledge in

A% In the remainder of this
neﬁon'ofoauonlyonourmumhm
the area of diagnostic expert systems since
it is & commonly encountered engineering

systems based on direct mapping of obeer-
vations to conclusion are said to have on-
ly shallow knowledge. Second and future
generation diagnostic expert systems that
utilize a modael of the physicial system as
an essential part of reasoning may be said
to perform on the basis of deep knowledge.
An important component of deep
knowledge consists of design specifica-
tions of the device and hence the resulting
systems may be" said to be

There are several ways of modeling a
physical system. The analytical capabili-
ty, flexibility and efficiency of the reason-
ing process can be expected to depend on
the model selected. Two ongoing efforts on
modeling and representation for diagnosis
are described in the following.

4.1 Behavioral and Structural Models

A physical system can be modeled
behaviorally and/or structurally. A
behavioral model is a logical model and
a structural model is a physical model.
The method of modeling may be different
at different levels of abstraction, depen-
ding on the task. The logical model is a
functionally (causally) oriented abstrac-
tion where each logical component has a
localized contribution to overall behavior.
A physical model is a representation
where each component is described in
terms of its physical characteristics. In the
process of modeling, functional (or logical)
structure may be derived from an obser-
vation of the physical structure in a
bottom-up manper. Two models of the
same type have a hierarchical relation if

lndlblhtythﬂlﬂl.M
tion. Device structure is
hierarchically to reflect the design model
of most devices in the domain. Each ob-
ject of the device hierarchy has the form
of a module Instead of representing all ob-
jects explicitly, an expandable component

library is maintsined, and objects are in-
stantiated only when needed. The compo-
nent library consists of descriptions of
component types used to construct devices
at all hierarchical levels Each

is represented as an instantiation rule and
a structural template. The instantiation
rule is used to instantiate an object of the
component type as a module with 10
ports and associated functional descrip-
tions Structural templates describe sub-
parts and wire connections at the next
lower hierarchical level of the component
type. The implementation of VMES (Ver-
satile Maintenance Expert System) is be-
ing done using SNePS

5. Summary

There exists a close match between the
capabilities of expert systems and the
needs of engineering practice Knowledge
scquisition and representation is central
to the design of expert systema Produc-
tion rules are the preferred method for
representing knowledge in first genera-
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ABSTRACT

The VMES project aims to create a device-model-based versatile maintenance
expert svstem which -assists the user in isolating specific faulty components or
connections in a malfunctioning digital circuit. We describe a device representa-
tion formalism that supports the diagnostic reasoning of VMLS and eases its
adaptation to new devices. The salient feature of this scheme is the inclusion of
both logical and physical structural descriptions of the target device. The two
representations enable VMES to make efficient diagnostic judgements and to
interact effectively with the user in performing repair and test. The user inter-
face of VMES is treated as a separate area of scientific investigation. We describe
the design and implementation of three interfaces, viz, a graphics display inter-
face, a graphics input interface, and a natural language input interface. The use
of knowledge baséd interface technology has proven a rewarding area of research
from the theoretical as well as the applied perspective.

INTRODUCTION

VMES is a device-model-based versatile maintenance expert system for the
domain of digital circuits [7} The objective of VMES is to interact with a
maintenance technician (the user) to identify the specific fauity componeat or
connection of a malfunctioning circuit. The versatility of VMES is multifold:
across a wide range of devices, covering most possible faults, suitable {o1 different
maintenance levels, and providing an intelligent user interface. VMES uses a
device-model-based approach since it is more general than the traditional
empirical-rule-based approach {1,2,7]

VMES consists of five modules: the knowledge-base; the inference engine;
the active database; the end-user interface; and the intermediate-user interface
(Fig. 1). The knowledge-base is implemented as an expandable component library
which contains component descriptions. The inference engine has the generic
diagnosis knowledge of the domain, and uses the SNIP semantic network infer-
ence package of SNePS, the semantic network processing system, as its basis (5, 3}
An active database is created and updated throughout each diagnostic session to
keep the instantiated objects and their associated diagnostic states and values.
The end-user interface interfaces the maintenance technicians when carrying out
a dlagnostnc session. The intermediate-user interface interfaces the engineers or
senior technicians to update the knowledge-base for new devices. All these five
modules are implemented on top of SNePS.

As knowledge engineering is to empirical-rule-based systems, device
modeling/representation is the key to the suctess of a device-model-based fault
diagnosis system, since knowledge about the structure and function of a device is
the major knowledge source of reasoning in such a system. Consequently, our
efforts are focused on the development of a device representation form.alism for
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versatile maintenance. All knowledge, whether of strucwural, functional, or
graphical, is in a unified knowledge base (Fig. 2), which is easily expandable and
is referred as a “component library”,

Knowledge Base inference Engine Actlve_Database
Component Library: SNIP with instantiated
tation Rul ._.ﬁComdFMon Objects
T States/Port values
Other Component
Type information

Figure 1 Architecture of VMES.
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Figure 2 A unified knowledge representation using SNePS.
(a) The SNePS network representing “D1 is an
M3A2, D1-M1is a MULTiplier, and D1-M1 is a
subpart of D1", (b) Adding graphical knowledge
without changing the original representation in (a).

rel-to

2A-51




User interaction is an important issue of the VMES project in two aspects:
VMES has 10 communicate with the maintenance technician for test and repair,
and it has o provide an engineer or a senior technician facilities for adapting it
to other devices by adding their descriptions to the component library. In the
next section, the VMES device representation scheme is described with the
emphasis on device representation which facilitates a better user interaction. Sec-
tion 3 discusses the knowledge-based graphics package of VMES, which main-
tains and reasons on “graphical deep knowledge™ when interacting with the user.
Section 4 is the conclusion.

DEVICE REPRESENTATION

In VMES, a device is modeled as hierarchically arranged modules. While this is
hardly a new idea, the innovative part of our work includes: the use of an
expandable component library; a clear distinction between two levels of abstrac-
tion of an object; representing a component “type” as an instantiation rule and a
structural template; an explicit representation of wires and points of contact
(POCONSs); and the incorporation of logical and physical structure of devices for
both diagnostic reasoning and user interaction.

General Representation Scheme

Devices in the digital circuit domain share many common component types.
Representing every detail of a device causes much representation overhead, which
in turn leads to system inefficiency. Instead of coding each deyice, we only
describe the component types used by the device to the component library. Parts
of a device are instantiated as needed. Adapting VMES to a new device is an
easy task — just adding to the component library those component types used by
the new device and not already in the component library. Since the representa-
tion scheme is still being experimented with, we currently have only about
twenty different component types in the component library.

A component type is abstracted at two levels. At level-1, it is a module
(black box) with 170 ports and a functional description. At level-2, its subparts
and connections are described. In a previous implementation, these two levels
were represented as twu instantiation rules (7} Since, usually, only a few sub-
parts of an object are relevant to further diagnostic investigation, instantiating
all subparts is inefficient. As an improvement, the two levels are now
represented as an instantiation rule and a structural template (10} An instantia-
tion rule instantiates an object with its ports and functional associations. A
structural template is a piece of passive knowledge, which allows VMES two
search the suspicious subparts of an object. Unlike other procedural representa-
tions of the level-2 abstraction [1,7], the structural template itself is never fired
or copied. Since the investigation of a suspect is often terminated without check-
ing its subparts, the clear distinction of' the two levels of abstraction along with
their separate representation has advantages on diagnosis and representation
efficiencies.

Explicit representation of wires and POCONs is necessary for diagnosing
faults of circuit connections (11} The traditional model of a wire as a uni-
directional module is inappropriate, because it ignores its bi-directional nature,
and it does not include POCONs. In VMES, a wire is modeled as a bi-directional
module to preserve its physical property, and its uni-directional design intention
is retained by the connection mechanism. Components are connected either by
forming a POCON from two different ports or by superimposing two ports,
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which are a same port abstracted at two different hierarchical levels, together.
With this new model, VMES is able to locate interrupted wires and bad contact
points.

Adding Physical tati

Human diagnosticians of electronic devices seem 10 simultaneously maintain
models of the logical and physical structures of the target device. They carry out
most of the diagnostic reasoning over the logical structure of the device due to its
functional association. While carrying out the reasoning, the logical structure is
apparently mapped to the physical structure from time to time. Tests and meas-
uremen s are first initialized using the logical structure, and then are realized and
executed on the physical structure. Repair, which is usually done by replacing a
physical unit or by fixing a physical connection, is planned and done on the phy-
sical structure. In other words, maintenance technicians use a model of physical
structure of the target device, which is a hierarchically arranged set of replace-
able physical components at various maintenance levels such as field-level and
depot-level. By mapping the logical structure of the device to its physical
equivalent, maintenance technicians are able to terminate the diagnostic process
at the right moment and to form an adequate repair plan.

Given that the mapping between the logical structure of the device and its
physical equivalent happens throughout the diagnostic process at all hierarchical
levels, the speed in carrying out the mapping is critical to the time needed to
locate faults. This implies that objects on both the logical structure and the phy-
sical structure of the device should be closely linked to each other so that the
mapping is done efficiently. Even experienced technicians may have difficulty in
locating a point of a schematic diagram on the real device, where the schematic
diagram represents the logical structure of the device, and the form of the real
device is the physical structure; which is attributable to the large difference
between the logical and the physical structures and a lack of cross-links at all
hierarchical levels of the device in human memory. On the other hand, when
modeling and representing a device in an automatic fault diagnosis system, the
cross-links between its logical structure and physical structure can be modeled
and represented to an appropriate level of detail. This is indeed possible to do i1n
a computer with reasonably sized memorv.

In VMES, the physical structure of a device is represented distinctly from
but in a similar way as its logical structure. In a structural template for 2 logi-
cal component type, every subpart.of the component type is specified with a sub-
part “id” and a subpart “tvpe”, which are used to instantiate the subpart if it is
found to be a suspect and further investigation of it is necessary. In addition to
the subpart “id” and “type”, an “mntn-lv” indicator is also associated .with every
subpart of a physical component type. The “mntn-lv” indicator shows the
intended maintenance level of the subpart, ie., the maintenance level where the
subpart, if found faulty, is replaced without further diagnosis. The “mntn-lv”
indicator is associated with the physical structure rather than the logical struc-
ture of a device to reflect the fact that human experts form and carry out a
repair plan based on a physical model rather than a logical madel of the device.

In order to abstract a device into a model, which can be efficiently
represented and interpreted, some abstraction restrictions have to be made. First,
the hierarchical trees abstracted from the two perspectives should have the same
number of hierarchical levels. Second, the cross-links can only be made at the
same hierarchical level. Third, several logical objects on the logical structure can
correspond to the same physical object on the physical tree, but a logical object
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can not spread over several physical objects. This restriction seems unreasonable
at first, but a closer investigation of the electronic domain shows the contrary —
physical objects in the domain usually have larger grain size than logical objects.
This is especially true with modern technology -2s more and more logical func-
tioning units are being packed into a physical unit, e.g., a simple Hexinverter chip
(a physical object) contains six independent inverters (logical objects).

The two representations of the logical and the physical structures of a device are
cross-linked at every hierarchical levels. There are two kinds of cross-links
between the logical structure and the phyvsical structure of a device. The first
kind are cross-links for components. The second kind are cross-links for ports.
Cross-links “for components are implemented by the “object<logicalobj>/
inside < physicalobj>" semantic network case-frame (Fig. a)). No distinction is
necessary as to whether the physical object contains a single logical object or
several logical objects. This is because we just care about whether the
corresponding physical object of a faulty logical object is at the intended mainte-
nance level and should be replaced, or it is not and the diagnostic process should
continue; this is independent of whether the physical objects contains anything
else. (Actually, a physical object in the electronic domain is often replaced with
most of its parts being intact.)

. type id port-of
G CO >
" O@D
Figure 3 Representation of cross-links between the logical

and the physical structures of a device.
(a) Component cross-links. (b) Port cross-links.

While the cross-links of components helps in determining if the diagnostic
process should go on or terminate, and in forming a repair plan, the cross-links of
ports makes user interaction much easier — when ordering a test or a measure-
ment, it can be used to clearly direct the user to the right location on the real
device. It is implemented by the “object<logical.port >/equiv < physical.port >”
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semantic network case-frame (Fig. 3(b)). The advantage of a logical abstraction
of the device is that it provides a high level view of the device which facilitates
the diagnostic reasoning. For instance, a n-bit-wire is abstracted as a single logi-
cal wire, thus freeing the technician (or a fault diagnosis system) from thinking
about bit slices. However, when a measurement is required, it is necessary to
locate all the bit-ports on the real device, and this is often a difficult task since
these bit-ports may spread out randomly. In our representation (Fig. 3(b)), these
bit-ports (physical ports) are linked together, from high-order bit 1o Jow-order
bit, by the recurrent case-frame = of “bit<a.physical.port>/
lo.bit <theremaining lower bits >™.

Physical

In the rest of this section. we describe how VMES uses this device representation
to facilitate fault diagnosis and user interaction. When bad outputs are found in
the suspect currently being investigated, the system has to determine if the diag-
nosis should terminate or not. Most fault diagnosis systems use the simple idea
of SRU (smallest replaceable unit) which says that the diagnostic process stops
when the current suspect is a SRU, i, a terminal node (a leaf) of the structural
hierarchical tree of the device (1,2} VMES takes a more flexible approach by
incorporating the idea of “intended maintenance level” into the system. A sys:
tem parameter, VMESIML, is set to the “intended maintenance level” the system
is working on. If a part shows some bad outputs and it is at the intended mainte-
nance level, it is declared faulty and the diagnosis on it is terminated. For exam-
ple, a board is replaced at_field and then sent back to a depot where the fault is
further isolated 10 a chip. The checking for the maintenance level of a part is
done on the corresponding physical object of the part (a logical object), and a
repair plan is formed based on the component type of the physical object. VMLES
also provides an opportunity for the user to short-cut the diagnosis by noticing
that all remaining (logical) suspects are in a single replaceable physical unit at
VMES.IMI. Since the same physical object gets replaced no matter which logical
suspect is fdulty, further discrimination among the suspects are unnecessary pro-
vided that connections are assumed to be intact.

‘The major interaction between \'MIS and the user is the input of port
values. Since diagnostic reasoning is carried out on the logical model of the dev-
ice, VMLES always wants the value ol & lugical port. Through the cross-links
between logical and the physical structures, VMLES is able to inform the user
which “physical ports™ should be measured far a logical port. Note that in digital
circuits, a Jogical port may corresponding to several randomly spread-out physi-
cal ports (or pins of chips). Two examples of how the physical representation of
a device helps the user in executing a port value measurement are shown in Fig.
4. The port o be measured in Fig. 4(a) is a port of a common component {non-
wire component). and the one in Fig. 4(b) is a hi-directional port (a wire-end) of
a wire. l'or representation and display efficiencies, wires are excluded from the
physical representation of a device; this does not hurt the user interaction since
the wire-end of a wire can always be identified as the wire-end connected to a
port of a common component in the physical representation as shown in Fig. 4(b).
Note that two kinds of values a user can type in: decimal and binary, where the
binary numbers are prefixed by the letters “B” or “b”. ‘The user interaction
shown in Fig. 4 is through pure text in SNePSUL (SNeP’S User Language) format,
it can be improved by implementing it in natural language and graphics (sl
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Figure 4 Asking a port value measurement. (a)
On a common component. (b) On a wire.
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The third use of the physical representation of a device is in repair sugges-
tions. When a faulty object is found or at the end of the diagnosis session, VMES
suggests a repair plan to the user according to the type of the faulty object (Fig.
5). If the faulty object is a common component, VMES just suggests that the user
replace its corresponding physical part. If it is a wire, the corresponding physical
wires are identified for repair. Note that a logical wire may correspond to several
physical wires, for example, a 4-bit logical wire is realized by four wires on a
printed circuit board; only the physical wires which are responsible for the fault
are identified for repair. This is done by decomposing the port value of a logical
wire into. bit slices to determine which bit(s) are giving incorrect values.
Finally, if the faulty object is a POCON (point of contact [11]), that is, it is a bad
contact point, the user is directed to the location of the contact point. The physi-
cal representation is not only used to form the repair plan, it also helps direct the
user to the object or the location on the real device where the repair is actually
performed. In other words, it provides for better user interaction in both test and

repair.
THE INTELLIGENT USER INTERFACE

General Remarks

As described in {7) VMES contains a knowledge based graphics package .which is
used as part of the VMES user interface. The purpose of this part of the VMIES
project is to investigate new designs for user interfaces, and to investigate what
we have called “Graphical Deep Knowledge™. We consider a knowledge represen-
tation system to be dealing with Graphical Deep Knowledge (as opposed to graph-
ical knowledge), if the knowledge is organized in a way that makes it accessible
not only to display routines, but also supports some form of graphical reasoning
with this knowledge. ’ '

Naturally, a procedural knowledge puradigm is not acceptable for Graphical
Deep Knowledge. While many graphics systems eliminate all information not
essential to the purpose of display, our svstem contains prima-facie “redundant”
information that is not immediately necessary for display purposes. llowever,
we have found good reason to maintain this additional knowledge and have at
least four reasons why additional knowledge adds to the power of a representa-
tional system.

(1) * It is helpful for a system to know what is currently visible on the
screen. A graphical representation looses much of its power if the user
cannot refer to the objects shown by that representation. (ne can con-
vince oneself easily of the importance of this notion by looking at virtu-
ally any system ol graphical representation (including the diagrams in
this paper). ‘The given figures are always referred to by some text and
derive their explanatory power from' this interaction with the text.
However, this requires that the system think in the same relations as the
user and maintain the same conceptual units as he does.

(2)  Declarative representations are required for any logic based reasoning.
This factor has been the prime motivation for the representational tools
developed here. An example of a simple reasoning operation would be a
situation where the position of one object O1 is known, and it is also
known that this object has an indeterminate spatial relation to another
object 02, like e. g. leftness. Any person could immediately derive from
these facts that the object ()2 must therefore be somewhere to the right of
01, and any system that could not follow this step of reasoning would be
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considered by a user as not intelligent. Reasoning in the domain of
graphics is especially interesting, because not only traditional forms of
logic based reasoning have to be investigated, but also analog reasoning is
of interest.

(3) Modern software engineering has made the concept of modularization
mandatory, and very often production programmers divide a program
into modules, such that the user interface is one module, and the host
program that performs the services the user is really interested in is
another module. This leads to the existence of an interface between host
program and user interface which, according to methods of good program
design, has to be kept well defined and small. The result of this modular-
ization is that the important concepts of the host program are not avail-
able o the user interface. and vice versa. Therefore a user can only refer
10 units the system designer decided explicitly to export from the host
program. Knowledge based programming permits the sharing of informa-
tion between different modules without creating a bottle-neck between
them, and without having dangerous global information available to
several modules. The reason why a knowledge base is not anywhere
near as dangerous as the sharing of global variables is that knowledge
bases are dealing with facts that are considered generally true, and if a
fact is true there is no reason to keep it private to a single module, and
little danger of conflicting definition or access. This last statement is espe-
cially true for rule-based systems. A rule expressing that A is left of B if
and only if B is nght of A is a universal truth that can be- made avail-
able t0 any module in any system.

(4) I a knowledge based system supplies tools for natural language interac-
tion a knowledge base containing Graphical Deep Knowledge becomes in
an interesting sense an interlingua, namely an interlingua between the
visual and the linguistic faculties of the system. Given that most
knowledge based systems have been created with some consideration of
natural language processing this observation should be of general interest
to KR research. Specifically the SNePS system has a number of tools for
natural language processing which permit the implied interactions.

‘Some other comments on the use of knowledge based methodologies in user
interface design can be found in (4] and (9]

The TINA Graphics Interface to VMES

Three user interfaces have been developed for the VMES system which are in
different states of completion and integration with the maintenance reasoning
program. The first interface is the “TINA” program for knowledge based image
generation. This program maps a declarative knowledge structure into a
diagrammatic representation on a visual display device. This module exists in
two.versions with dnﬁ'ercm focus, one of which has been used in the past by the
maintenance reasoner to inform the user about the current state of the diagnasis
process. Details of this representation have been reported elsewhere {7] but it
should be pointed out that svmbol colors are an important aspect of this represen-
tational facility.

It is relevant to the discussion of TINA that an important mode of display
for which the theoretical ground work has been layed in this project, called the
Intelligent Machine Drafting mode, has been developed. Traditional CAD sys-
tems for circuit boards are usually concerned with the maintenance of graphical
representations of wire plans that show a physical picture of the device. In
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contrast, technicians usually look (also) at logical wire plans. Logical wire plans
are interestingly different from physical ones in that no absolute positions for
components need to be maintained, only certain connectivity relations.

Nevertheless it is possible to draw the same wire plan in two different
ways such that one of them brings across the idea of the representation, and the
other one doesn’t. It is the goal of TINA in IMD mode to create 2 logical diagram
that is “easy to read”, by laying it out and routing it not according to principles
of CAD like minimization of energy consumption, but according to principles of
minimal cognitive complexity. The most important such principle that has been
used is the equal distribution of structure in the given space.

It goes without saying that a knowledge base for use with IMD mode does
not contain any knowledge of coordinates, and that the major effort in the pro-
cess of display is the reconstruction of this knowledge from hierarchy and don-
nectivity information. The abilities of the IMD module in use are limited tp 2
small device class that we refer t0 as A*M* and which has been modeled around
the “Adder-Multiplier” (Fig. 6), a device famous in the maintenance literature.
A*M* permits small variations of the Adder-Multiplier, for instance variations in
the number of ports per components, in the number of components per row, in
the number of processing rows, and in the number of connections per port. A
formal description of the device class has to be omitted due to limitations of

space.
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Figure 6 A 3-multiplier/2-adder board.

The Readform interf f

“The second interface is the “Readform™ program which is used for the creation of
visual icons in a format that is accessible to the knowledge representation system.
“I'his avoids the necessity of hand generation of graphics code. The compilation of
a larger pictorial unit is done by asserting _informalion about objects in the net-
work, such that in the process of drawing access is made to the icons created by
Readform. A knowledpe based version of Readform has been in the process of
development for some time, however as of this writing only the theory of this
system will be claimed. ‘

By observing users in the process of object creation (with Vanilla flavored
Readform) it has become obvious that the internal conceptual structures of the
person can 10 a certain degree be derived from the order of his actions as well as
by asking a few questions at strategic points. Readform supplies the user with a
scratch buffer which is separate from the object created at the current moment.
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Users have been observed to create objects by drawing a simple unit in the
scratch buffer and then repeatedly yanking the buffer content into the picture.

From this chain of actions one can derive that all the vanked objects are
presumably members of a certain class. and the system can verify this by asking
the user whether there is in fact such a class, and i so, how to name it. This
information can be used t0 create exactly the Graphical Deep Knowledge Struc-
tures that have been mentioned before as being used for picture generation.

The other thing that can be derived from the above chain of user interac-
tions is that all the yanked icons are presumably parts of a larger object which
consists of all the iconic primitives (lines, arcs, etc.) which were not created by
using the scraich buffer. This permits a system to ask the user whether he
wishes to name this larger object separately, and if he desires so, a part relation
between the yanked parts and the main structure can be formulated and stored
in the knowledge base as a proposition. This proposition becomes part of the part
hierarchy in the knowledge base. Part hierarchies are a backbone of many
representational systems and are used in the process of maintenance reasoning as
well as having major importance in the derivation of pictures from Graphical
Deep Knowledge and in controling complexity of displayable pictures.

The third user interface that we will treat in this paper is the natural
language interface. '

The Natural Language Interface

A versatile maintenance svstem is in need of a user interface in two different
situations. In the first situation a maintenance technician uses the system to get
help in troubleshooting a currently faulty device. The second situation is as
important, namely the initial creation of the device representation. In order to
deserve the title “versatile™ it must be pussible to create device representations
with ease and fiexibility. The natursl language interface that will be described
here belongs to the second class of interfaces. [t is the goal of this interface to
create an internal device representation to the point where it is possible to
display the whole device. llowever, as much of this creation as possible should
be done with natural language.

As has been pointed out in the section on Intelligent Machine Drafting,
there ‘is no necessity to actually enter coordinate information, so the natural
Janguage descriptions become quite natural. Natural Janguage processing is done
by way of an ATN .interpreter/compiler that is part of the SNePS environment
{6] The class of objects that can be built by natural language is limited, even in
comparison to the already limited cluss A*M* of displayable devices. 'The major
additional limitation that is imposed by the language interface is the branching
factor of electrical connections. 1t is possible to create wires impinging on at
most three port. :

Below, the original set of sentences that is understood by the Ni. interface
and that describes the. Adder-Multiplier will be presented. Running this set of
sentences through the ATN interpreter will create all the structures necessary to
describe the Adder-Multiplier completely for display purposes.

(nl)

D1 is a board

DiMl isa multiplier
D1M2 is a multiplier
- DIM3 is a multiplier




D1A1 is an adder
D1A2 is an adder
D1 has 3 inports
D1 has 2 outports
D1M1 has 2 inports
DIM1 has 1 outport
D1M2 has 2 inports
D1M2 bas 1 outport
D1M3 has 2 inports
DIM3 has 1 outport
ID1A1 has 2 inports
D1A1 has 1 outport
D1A2 has 2 inports
D1A2 has ] outport
connect input 1 of D1 with input 1 of DIM1 and input.1 of DIM2
connect input 2 of D1 with input 2 of DIM1 and input 1 of DIM3
connect input 3 of D1 with input 2 of DIM2 and input 2 of DIM3
connect output 1 of DIM1 with input 1 of D1A1
connect output 1 of DIM2 with input 2 of D1A1 and input 1 of D1A2
conncet output 1 of DIM3 with input 2 of D1A2
connect output 1 of D1A1 with output 1 of D1
connect output 1 of D1A2 with output 2 of D1
DIM1, DIM2, DIM3, D1A1, and D1A2 are parts of D1
wires are parts of D1
the form of a board is xboard2
the form of.a multiplier is xmult2
the form of an adder is xadd2
the form of a PORT is xport
end

The first (n1) above calls.the natural language processor from the SNePS environ-
ment, while the “end at the end returns to the SNePS environment. Although
the vocabulary of this interface. is quite limited there are variations of the sen-

tences shown above possible.

Of special interest are the final sentences that start with “the form™ because
these sentences call, if necessary, the before mentioned Readform interface from
inside the ATN interpreter and not only assert the relations between object class
and form, but also create any unknown form-icons by having the user draw this
icon. If the form is already known to the system, then only the assertional com-

ponent of this operation will be executed.

Figure 7 A low-end member of M*A*.
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This last operation involves the call of Readform from the ATN interpreter
which itself runs embedded in SNePS which itself runs on top of Franz LISP.
While display operations are extremely slow (hours an a VAX 11/750 for non-
trivial layout wsks), the natural language interface works reasonably fast
(response times under a minute) considering especially the muitiple layering of
the used svstems.

A device consisting of a single multiplier with two inputs and one output
and the three wires needed to connect the multiplier to the three device ports,
plus the six biports of the wires themselves are laid out in about 20 minutes (Fig.
7). This device has also been created completely by natural language interactions
and it represents a low end member of the A*M* class.

CONCLUSION

In diagnostic problem solving, human experts seem to use both the logical struc-
ture and the physical structure of the target device throughout the diagnostic
process at every hierarchical level. Knowledge of the logical structure of the tar-
get device topether with the associating functional knowledge is used for diag-
nostic reasoning, and knowledge of its physical structure is used to carry out a
test, to determine when the diagnostic process be terminated, and to form a repair
plan. It is important to incorporate the physical representation and the logical
representation of a device in maintenance. We find that a physical representation
of the target device, together with the representation of the cross-links between
the logical and the physical structures of the device, contributes to fault diag-
nosis in several aspects — such a system does not merely mimic the behavior of
human experts, it may outperform human experts in certain situations. It helps
determine when a diagnostic process should be terminated, thus it provides versa-
tility across maintenance levels. It.can provide a shortcut to diagnosis by notic-
ing that all logical suspects are in a physical object at the intended maintenance
level. It helps to form a repair plan based on the physical nature of the target
device. Finally, (probably the most important point,) physical representation
eases user interaction: it helps direct the user to the exact location in the real dev-
ice for test and repair.

It has been argued in this paper that knowledge based methaodologies are of
increasing importance for intelligent systems. They permit intelligent behavior
of the interface and help to offset problems in information privacy that are
enforced by modern software engineering technology. A powerful set of user
interfaces is also a precondition for a versatile system, because most expert sys-
tems have to talk with people of different requirements during their life cycle.
Specifically three user interfaces have been introduced in this paper. The first one
caters to the end user, which for VMLS is the maintenance technician. It creates
graphical representations of circuit boards. The specific research contribution of
this part of VMES is the creation of logical wire plans without any prior
knowledge about coordinate values of the system: icons. The other two interfaces
are mainly of use for the device designer who wants to enter information about
a newly created device into the maintenance system, without having to learn
some obscure graphics or KR language. The first of these two interfaces permits
the creation of graphical icons of new components. This interface is called from
inside the natural language interface, if a user attempts to use a primitive form
which was not previously declared. The natural language interface is based on
the SNePS ATN interpreter, and the complete necessary natural language input
for the creation of an artificial device called the Adder-Multiplier has been
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presented.
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Sclence

Department of Qompueer
Swane Universicy of New York at Buffale
Buffalo, NY 14260
gellorfhutialotcanct-seley

kaowiedge™ pera-
digm by the “wid knowisige pandigm” owtside of Al proper. ln
this sense 'we interpost Beown ot ol, and in this scase we want
our werk 0 be anderstood. ) .

Ia Ghe sutting of the VMES project (Versatile Malmtenance

Kaowisdge will be given. . , :

A. ThaDisslay Pregram

A sajpr part of the VMES weer fntasfoce I o dlaplay poo-
gram (named TINA), which is calied by the melatenence vessoner
- of VMES snd keeps the wser cosstantly (nformed what VMES s
currently “thinking” about. For this purpose it dlagleays, Salag
certala symbol colors, ‘a legical dlagram of the cisceit bosrd
curvently being apalyssd. Suspected componests are displayed ia
greea. Components found fanlkty ase displayed (n sod. Violesed

© This werk wes sugperted in pare by e Ale Foree Syvaums Command, Some Al
Drvalepmant Contac, Ooifian Alr Fosse Sane, New York $3048-6700, and she Alr
Foras Ofios of Selmaatic Remareh,-Sulting AFS DC 20513 sader Contust Mo
dum OAK ,

expoctations are shown in mageats. (Jojocts about which aothing
segetive is (yet) kaown are Glapiayed in blue. Blinking bn waed
0 Sadicate the curvent focus object of the system.

VMES is implementsd on 20p of SNePS the “Semantic Net-
vuk_ms’n-" 3

sysem.
latnitively the Hasarity principls mys that we do sot wast %

- represeat most five word sentences of & fanguage with Chres or

four semantic petwosk modes, but bave one kve word seatence of
this Janguage sepreseated with 25 nodes. An implicic epplication
of the Hamrity priacipie (LP) cas be sces la Shepiro’s work e

Before we presest an cxample application of the I1F it =
secemiry % my that the arc labels in SNePS setworks (g 1.
move explanations will be given in the aext section) are wes o=
ayses The sumber of diffcrent arc labels it ant faed -
and can be exesnded by the user. [t is assumed that the sumber

_ mom-etamdard connectives ()
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a0 =

Figere 1

pmmmesnene,

of ssc labels mecomary for one Hmited domain will converge
sowards a stable set, thesefose identifylag this sct s & way of
task domeeia anatysis [5) .

. I people con describe & dimple arsangement of objects by a
short seatence then i should be penible 00 describe i with a ren-
sonsbly sieaple SNePS structure. I this is not the case thea the
sumber of wsey defined primitives has %0 be extended 90 sccom-
modats the seatence. (OF course acw primitives will atso bave w
e weed If the stntence s mot scprascatable ot alt).

For fastence If twe peopls ase sitting ja front of a graphics
terminel dicplaylag the Adder-dfultiplier (which bas boen wsed
in maintensace ressarch, Fig. 2) and ane of theea asks:

*Toll me the nemes of ail multipliers”

then the other persoa will presumbly be sbis @ do that. There-
fove we would weat ovr graphics Interface %0 be abie © do the
same thing. We also wpnt the Eaowiedgs, base 10 contala infor-
mation on all multigliers in & formst approximately linesr ln
olas with respect % the answer gives by & pesson. This leads
directly W s oid lden, ths implementetion of & clust hicrarchy.
(Less obvieus examples will be given theoughout this paper) -
C . Notational Conventions far SNePS networks
Fig- 1 chows an examgple of a typical SNePS network in
osder % peovide some jatuition fer the seader act familiar with
NePS. The syntax and sumeatios of SNoP’S have besn cancfully
dekined (6] _SNePS is ales 2 “nest” KR gystem that lncerporates
full fiot evder calcaius. We will use Fig. 1-0 intro-
duce the astwork notation thet will be weed in this peper.
. The.nedes ml, a2, uil o4, m$ seprosent propositions. m2
exprasues the fast thet the object DIAS s of type Addes. An

oquiveiont fant aider predicets calculys sepressmtation for Fig. §

typsmiAdder-Multighier) & ebjecdmiDt)
yp(m2,Adder) & ebjec{mIDIAL)
m)tm:ﬂ:‘n%o AD
* type(mSPafl-Adder) & objec(mSDIAIFL) & part-of(mSDIAL)

é‘ Alaga) ~adpiay pa;)

. This transformation is-syatactic sugar and bas a0 influence ca

the meaning of the represeatation Which depends oo the combina-
tion of system primitives (arcs). Therefore sll the a's thaC will
be giveis in the following sections are %0 be understood as cxam-
ples.

:

E
£

We are interested ja layout aad souting of logical circmit
diagrams. Physical dlagrams ereated by CAD cystems bave %0 be
realized in herdwease, and therefore the layout is wemally optim-

:l-l-“:ha“ 3 apecial symbol (usually
outer ass 8 a
dark dot at an intersection) 0 mark clearly whether a crossing ks
meant %0 be an electrical conmection or aot.
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rescarchers have not yet selated well 0 the domaia of probiesm
solviag.

A.  IMD for circuit hosrd display -

We have decinod & very Hemitod class of objocts called A°M*
of the Adder-Maltiplicr of Fig-

mhnhl,_fn-ﬂtnmﬁnf“nny

é
;,
|
!
|

EvE
il
i
i
:
]
i
:
i
:

graphics
debate between “Imagisee”™ (14,15] snd
“propositionalisty™ [16,17] . The existence of some peropositiona!
representations is now widely accepted in all camps. However,

Signal Sow In on ebject of the class A'M® as well o¢ is its

graphi-
cal adeguacy. The type of reasoning permitted Is cither analogi-
ca} or propasitional. In order o avoid any possible terminologicat
confusions we will shus the terms “spadal kaowledge”, “visual
knowledge™ and even “graphical knowicdge™ and use the term
“graphical decp knowledge”.

Def: Graphical Decp Knowledge
A besc is mid 0 comtain graphical decp
kaowledge If at jesst part of itz knowledge exhibits deduc-
tive graphical adoquacy, and part.of its knowiedge exhibits
projective adequacy.

The term “decp™ Is” used in analogy with decp structures in

|

One major goal of our sessarch Is 10 create a base of graphi-
cal decp knowledge that ls adequate for dinplaying and ressoning
about cbjects ia general and sbowt the domaln of circuit boards fn
particular, Oue curveat analysis of graphical deep-knowledge is
given ia the following sections.

B Form Koawiedge

Objects may have individual forms or inherited forms.
=1 object 41 form xand modality function) (¢))

-Xob)adz.qp_em-ddhyfuahn) Q)
mX sub-class and-gate class boolesa. modality function)” (3)
34 class boolean form xboolean modality function) (O]

(1) describes an-object (individusl) d1 that hes a form xsod. The
last binary predicate “wmodalicty” is weed o discriminate between
differeat display modes. Clscuit boards permit display of their
wire plas (lagical or functional tion) and of their phy-
sical strecture. The'forms wsed for these two displays are usu-
ally different, therefore the form praposition must be qualified by
the display modality for which this tem of knowjedge is valid.
A form like “xand” is st the mame time & node la the
scrasntic act and a LISP function that, if executed, would draw a
specific form. Form fuactions are parameterized by the starting
position. Therefore ome form function can display the :ame
object at different positions, but 80 other modification is possible.
Q) amigns 42 %0 the clam of and-gates whick are by (3)
2z & subclass of the clam of boolcan components
which by (4) are all amigned the same form, samely xboolean.
We have ncver found ik noccssacy @ laberit & form using sn
intermediate class.

C. Rositfon Specification
A Jarge sumber of representations for positions is possibie.
All object positions refer to the position of an object’s fixed refer-
ence point,
1. Councrets and Furzy Abecluts Positions
m object d1 abepos m&{ x 100 y 200) modality function) (S)

(5) describes an absolute position of d1. The position is given by
the substructure mé which contains actual coordinate valuesr
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The pecudo predicate mé haz 0 be read ag a structured indivi-
dual, ot as & proposition (6] The implicic assumption of this
wmthh&umﬁnumghahﬂuhcngnphm
display device and are “relative 90 the screea®, and therefore
called absolute.

Whea people give a description of a picture, they typically
do not use coordinate values but rather talk about objects in the
center, at the top, or at the left of the screen. According to the
lipearity principle it is therefore necessary o represent these
“fuzzy” absolute positions. (6) shows an cxampie of a furzy
sbeolute position.

m'X object d2 fabspos center modality function) (6)

Curready Ihe.mmhgof&fumwhnill under
investigation. We have done & psychological pilot stedy with 20
subjcts w0 find out what people think “leftacss” means, which
bas 20t yet beea totally evalusted. Furzy absolute positions used
in this experiment are top” bottom, lef, right, center, upper left
corner, upper right comer, Jower left comer, and Jower right
E:onlnr The term “furzy” is mot yelatod 0 Zadeh's fuzry logic
18

2. Relative Fositions

Propositions about relative positices cam be divided into
different groups, sccording %0 a sumber of criterfa. The first dis-
dmhm-mm(m“nfcwu'm-
crete™ positions) sad fuzzy positions. For asmeric positions there
are at Jeast three different ways w-interpret coordinate valucs.
Values can be in pixels, or they Can be muldples of the
sizes of cither the object or the reference abject iavolved.

The treference object might be given explicitly or implicitly.
In the second case there must be a8 “uper-pant” of the object
which will be used as the reference object. Finally it might be
the case that a relative position o inherited from a class of
objcte. Many of the given represeatstional possibilitics can be
combined with each other.

a. Fuzxy Relative Positions—-As for fuzzy absolute
positions the analysis of the semantics of fuzzy relative positions
is still under way and based on experimental data.

m¥ object 43 frelpos left rel-o0 d1 modality function)  (7)

(7) describes the proposition that d3 Is left of d1.

Udmu,dctmumhthmmdvcpw
ton descriptions which do mot rely oa bipary relsticos. A
representation for “betwoea”, which has two reference objpcts is
shown in (8L More difficult are “on-cac-line”, “together”, and
“forming-a-circie™.

m9( object 499 (®)
frelpos between
rei-t0l 498
rel-ta2 497
modality function)

"B Concrets Relative Positions~We will bigin this
mﬁmuwtu-mmmm:ahpm
coordinates.
mmummmmwdmmmnmw
have their own forms.

m10( object port3 0]
Mpa = x2Uyd)

Fig. 3 shows ss example & multiplicr. The fittle -

- e
- =

Figure 3
A Muttiplier with 3 Ports

in 2 sizes. In both sizes
port3 ks one bodylength away from R

(9) dexcribes the relative position of port3 as being 24 to the right
of DIM1, and 4 above it. Distaioes refet t0 the reference point R.
If the relstive position of a part of an object fs given in pixel
coordinates then a problem with saaling results not oaly objects
have 0 be scalod, but also relative positions. This is upsatifying
bocause it doea not expreis the fundamenta! invariance of the
position of the sub-pert to Its super-part. Fortunately it is possi--
bie to represeat the refation between an object and its sub-parws
preserving the conceptwal positionsl lavariance by using “body
coordinates”. These coordimates yepreseat a pelative position as
multiples of the size of the relevast object.

m1( object port3 (10)
relpos m1X bx 3 by 1)
rel-+0 DIM?
modality function)

(10) shows the same relative position as (9), however assuming
that object port3 has a Jength of 8 pixels and a width of 4 pixels
The relative position “3°, Is a multiple of the size of port3. The
length and width of an object are the length and width of the
smallest surrounding rectangle of it which has lines panallel to
the coordinate azes (“extent” )

. Intuitively, the represeatation expnas the fact that & big
man bas his arms far away from his neck, and a small child-has
its arms near to the meck, but the ratio of the distance and the
size of the persom should be approximately a constant.

Usually there will be a aumber of objocts given with rela-
tive positions t0 the same reference objpct. This makes it desir-
sbie to specify relative positions ia body coordinates of the refer-
ence object, shortly called reference object coordinates (denoted by
the arca brx and bry)

m14( object port3 an
relpos m15( bex 1 bry 0.33)
rei-to DIM1
modality function)

(11) can be interpreted In the same way as (10), excepe that this
time the factors (after “brx®, “bry®) apply to the size of the refer-
ence object, which is amumed to be 24 pixels Jong and 12 pixels
high,

c Explicit versui lmplicit Reference Objocts— In
all cases 30 far the reference object of a relative position state
ment was given with a rel-40 arc. la the circuit board mainte
nance domaia & flat part hicrarchy is used.  There is one majp?
object, the board, whick has many differeat. parts which should
reasonably be placed relstive to this main object. It would be
redundant to amert the reference object for all the panis, and
therefore a default assumption is practical.
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m3alohjact &5 selpes st ¥x 300.y-30) a2
medalicy fuaction)
m18( sbject 46 cub-parts 45 modelity fuaction) (13)

(13) chows & part amerdon, & ool thet will be
seviewed Joter en. Bocause of (13) the selative position ssscrted
by (12) will be interpresed os being selntive w0 46

Combinstions of the seprescntational constrwces iatroduced
are in goncral possibie. For instance en lmplicike reference object
may be wsed with all types of relstive coordinates, including
fuzzy omes (14, 15}

m19( object 47 frelpos left modelity function) 4)

20( objact 48 sub-pares 47 modality fuaction) Qas)

4 Inherited Relative Pesitione—if enc adder has ks
first port ot half a body length (rom s sefesence.polat, thea this
will presusmably hold tswe for all the sdders ia the cystem, and

one would 80t want 10 amsert this ever sad over sgein. A wle- -

tion 0 this problem is % meke the selative position keelf inkerie-
sdle. This eption s excmplified by the fellowiag set of: proposi-
tions. The velotive pusiion Is given in velerence object coordi-
notes sad inhevited through an intermedions cloms “Matf-adder”.

m21( cbjact 49 type half-odder modaliy function) (16

2 ebject 410 sutrperes €9 modalicy function) (7
m2X seb-cless half-adder class adder modalicy funceion) (18)

m24( ebjact 410 form xadd modality function) (19)"
m25( class adder seipes mIS( bex 2 bey 9) (20)
modaiity function)

(16 (18), and (20) epecify the.seiative position of 49
which is iaherited from the class “adder”; (17) apecifies’ the refer-
ence objact 410 by force of Jos super-part selationship ® 49, -(19)
is meccasary. 90 permit the desivation of the siae of 410 which ia
tura is secommry for the computation of reference object eoordi-
mates.

3. Logical Ressoning with Fuzxy Pecitions

The followiag structuse is 8 SNePS rule that expremes the
fact that “¥ ome ebject s laft of another cbject, thén the other
object must be vight of the first object and vice verm”. For &
detalled explanation of the structure of SNePS rules, sec{19]

m2% avh (vl v2 v3) Q@1
thresh 1
arg (m28 object vl vel-00 v2 modality v3 freipos left) .
arg (m29 object v2 rei-10 v1 modality v3 frelpos right))

If the knowiedge base contains the absolute position of B and the
furzy position off B selstive 10 A but no positional. informetion
about A jeseil, then A's fuzzy position cin be desived with rule

(21) or a variation of it.

D. Parts Clustere. and Agscmbiics

Part hierurchies are a commonly . wssd comstruct is Al (20}
Our research has indicatod that s part hisrarchy alone is not
sufficient for graphichl decp knowledge represencations. We have
added two other types &f part-iike hiesarchies, called assemblics
and clusters.

The display of 2 complicated object with several levils of
parts might bs impossible on & limited resolution dieplay device.
A natural way to liagit the complexity of such a display task is
0 limit the sumber of levels of the hicrarchy that are sctually
displayed. This is a very ¢legant solution bocause it does not
require the introduction of say acw represcatational construct.

l

(17) showed -our reprorcatation of a dmgple part
An object can of course have more then ene part. “The
modality ettains @ special importance for part hlerarchiss. . Clir-
cuits like AND getes, OR goten etc. are displayed as
in a logical disgram. Ja sea! hardwase these are
binary AND getes in a single chip. These four goses :
perts of different logical units. lowever, in s physical represen-
tation afl four of them must be parts of the same integrated cir-

§
i

. cwit

1. Assemblics

Work oa the maintenance part of the VIMES projoct has Jed
0 the realization that certain objects should acver be displayed
without their parta. For instance, a port is a part of s switiplier.
but & multiplicr should mever be displayed without fes pores.

Sub-esscrubiics ave therefore cbjocts that have & real

velation to a object and which are supposed % be
displayed whencver the object they are part of is displayed.

The representation of sub-esscmblies is similar w0 pant-
whole relations, except that the arc “sub-emems” is wsed jnstend
of “sub-pasts™,

m30( object 410 sub-amea 49 modalicy Cuaction) )

that is iteelf displaysble, ie. that bas a form. However, & grouwp-

ing of components might consist of objcis of the same size and

importance, none of which descrves the status of mals object.
Fig. 4 shows a voltage divider and a T flter which sre typical
cxampics of such circuite.

A grouping which exists caly as aa sbetraction ik called &
cluster. I cae combines the concepr of cluster with the concept
of level a dilemma emerges. Either the abstract object is left out
of the hierarchy (which is.undesirable, bocause anything that
sscms patural to & person should be directly representable in the
astwork (LPOD, or the abstract object is put in the hicrarchy sad
the chjecte of the cluster ase made itx parte. But aow the doa of
creating simglificd dleplays by limiting the aumber of Jewils
displayed dots mot ‘work any more, because the abstract object is
not displaysble ja the same scase o5 real objects are. Moreover if
one is willing to give an abstract cbject a symbolic form, thea
both the symbolic form as well as the cluster elements would be
displayed If one wants to see all the levels of the part hierarchy.
" . Our answer to this problem is % create an additional hierar-
chy .which stands somewhere in between a part hicrarchy and aa
shetraction hierarchy. If A is an object (without “orm) which
has subclusters B, C, and D thea"A will be displayed only by
displaying B, C, and D. llowever if a partial display is enforoed
in & way that would exclude the level of B, C, and 1) from
showing, A will be displayed symbolically by a box, akin to the
display format in block diagrame...Fig. 5 shows the new display
fortat for Fig. 4. The metwork representation of ‘a sub-cluster s
shown by (23

m31( abject 410 sub-clusters 9 modality function) (23)

E.  Attribetes and Attribute Mappings

One important factor ia desigaing a system besed on graphi-
cal decp knowledge -is & clear separstion betweoen jcons and the
objects that are represented by these icons, an observation that
bas boen made by Others also [21] This separation forces one to
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A Vellage A TFagr
Obvider
- | }.
Voltage T-Flser
dvider |
Fows
Abstract Rep meentations for
Fowe s
Clatinguish between atributes of ebjicw sad steributis of plo-
s Amw#-mtl’h&ﬂn&&‘.
aumumu-m«.mu

of the plctuse of a component. Attribwtes fike fonltiness caanct
bs displayed 1y sad theselore have 00 b symbelised with
plceorial attsfbuces. :

Am.-rupn-;li,u-uthm )

with O % 3 posicions for sttrfbute vadues, The followiag cxam-

plos show aa sctrfbute wich ae atezfoutc-value (34), an strrivuse
with one position containiag the walve Foulty” (29) end an
stzriouts 'with twe positions e values- "l and
0" 06, No need for any attributes with mere then three post-
XX ebjoct 41 : . (+7)]
attr m3X atrb-cls new modalicy function)) _
m34 ebject 41 v21)
attr m3% atrb-cle stane .
: b fouity modelicy fusction)’ .-
mI6( ebjeck 42 . . 00
atte m3X otrb-cls rocaeed

atrbl Jeft acrb2 90 medalicy function)

mm-u-u(ﬂ)-wm-*-m;.
Atstbete clams ase Naked % Gt can Ve
applied % form functions. Such o-functions] Is called & modifier
Juncslon. (26) amere thet €2 fas the artributyclam “Somted”
e e e e . T
ove it

s -modifier function that Fotetes forme is hound te this sttributs
d--llh-l‘n'dahp—lukphmm
:ﬁum(—u:t;h-uu\ﬂ“-ipﬂ-
arel) avy pasned carvct epder as sdditlenal srgements

MC’QM..*ME
saurted. fn the | Gmss. This mokes it smenebile % eany
<hange by the weer. Uctersaces fike

© “Represeat the state fanity by red color and - %)

the staee good by blue color.”

havg Jod 10 this seproseatationsl decision (linsaricy principidl. Iy
(ZTV) the complete mapping noccesery for (27a) is given.

any

wvalt 3% expremsed fauity cxpressod-by rod)
vail s40( expressed good expressed-by biue)

&t Slads ths sttribute-class “stats” % the modifier-function “color™,
The two substructures at the end of the val] arce show value
mm&hmumm The
object attribute of faulty state is scprescated by the pictise ettxt-
Yute of sed color, wall corvesponds % atrbl and specifies value
mappings that apply to the first attribues posicion.

TINA s going theough ks fourth cycle of .
‘which is dene in Fraaz LISP on t0p of SNePS. All of Ye-shown
‘kaowiedge structures (and more) sre represcatable and setricv-
sbis from the astwerk kaowiedge busc, and most of them s
Interproted in & way comsistent with the descrigtive semantics
given ia this pages. Aa clder version of “TINA" has besn
© & seal ciscnit beasd weed for slecommunication pusposes
Sosed). The IMD syscem described has been waed for the Adder-

Muliplier only.




v  CONCLUSIONS
The probicm of Inacifigent Machiae Draftiag has buca intro-
ducod, and it was argued thet & is & thessutionlly inteveming Al
problem which . suficiently diffesent from ether CAD sech-
aiques 10 deserve scpacate investigation. The class A°M* has boen
defioed informally. snd & fow addicionsl of the
current IMD implementation for objocss of this class have been

given. The deiaition of Geaghical Deacp Knowledge asid
wuumdunms—p-n:.":

representing muﬁufm“n‘(mm—
tions, and sttributcs. Positions heve boes differeatiated faeo abeo-

object coordiadees have becn introduced. Part hicrarchics have
sbraction-hicrarchy like clusers of ebjecss. The desivation of
some of those structures based on the “Nansarky principle”™ has
bocn demonstratad. by presenting azamples for motivating
natural langusge witerances. Ammwm

graphical muﬁulﬂamhmm
indicated structures has boen implemmented.
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Artificial Intelligence (AI) offers to the design task the use of powerful sys-
tems that can be knowledgeable assistants to the human designer. - Knowi-
edge Representation techniques can be used to specify the ontology and
epistemology of the particular design task so an Intelligent Interface, in
general, and an Intelligent Drafting assistant, in particular, can discuss the
task with the designer using the same concepts that he uses. Investigating
Knowledge Representation formalisms for such aids in the context of devel-
oping a Versatile Maintenance Expert System (VMES) has uncovered a
number of interesting concepts that seem useful for a wider class of design
domains. These concepts are presented after a general discussion of the
role of Al in design, and an introduction to a particular Al Knowledge
Representation system. The role of design aids and Intelligent Interfaces in
VMES is presented as an example of the use of such systems.*

*This work was supported in part by the Air Force Systems Command, Rome Air Develop-
ment Center, Griffiss Air Force Base, New York 13441-5700, and the -Air Force Office of
Scientific Research, Bolling AFB DC 20332 under Contract No. F30602-85-C-0008, which sup-
ports the Northeast Artificial Intelligence Consortium (NAIC).




O ARTIFICIAL INTELLIGENCE AND DESIGN

The task-of design presents intelligent humans with a large number of com-
plicated problems. Artificial intelligence (AI) is the rescarch area which
attempts to discover how to program computers to solve the sort of prob-
-lems intelligent humans tackle. One use of Al in design might be to have
an Al system that would do the design itself, perhaps viewing design as a
search through a design-problem space. In this paper, however, we will dis-
cuss two. aspects of the application of Al as design aids for human design-
ers — the application of Knowledge Representation to drafting systems, and
the use of Intelligent Interfaces. After some introductory remarks, we will
give a brief introduction to the Al system we are using, present some results
- of our investigations into the applications of Al to design, and, finally,
show how this fits into a Maintenance Expert System we are developing.

The Role of Knowledge Representation

Modern computerized drafting systems supply their users with a wealth
of powerful modeling tools.. A typical drafting system deals with objects,
their visual and non-visual attributes, and their mappings into graphical
representations.  However, such a system is only a powerful set of pens, it
is not an assistant that “knows” what the designer is talking about. To be
intelligent, an assistant must be knowledgeable. Knowledgeable computer
systems are known as “Knowledge-Based Systems” (KBSs), and are a very
active area of Al research and development.

We can identify three roles that people play in the design and use of
KBSs. First, there -are people who design and implement KBSs without
regard to any particular application domain. We can refer to such people
as the KBS Designers, and to the results of their efforts, using terminology
from the field of Expert Systems (ESs), as “KBS shells.” Second, there are
those who particularize KBS shells to given application domains. They are
called “Knowledge Engineers” (KEs) in the ES world, and we can refer to
the results of their efforts as KBSs simpliciter. Finally, there are the “end-
users” who use KBSs as tools to get particular jobs done.

The job of a KE is usually perceived to be interviewing a person already
knowledgeable (at an expert level) in the application domain, and recording
that person’s knowledge in a form that the KBS shell can use. However, if
the KBS shell is flexible enough, there is an additional task for the KE: to
design the “form” in which the knowledge is to be recorded. This task is
the Knowjedge Representation (KR) task, and we will refer to the KE per-
forming this task as the “Knowledge Representation Engineer” (KRE).
(The KRE's task has jocularly been called “notational engineering.”) The
KRE's first task is an analysis of the knowledge primitives in the domain.
He must define the domain’s ontology (the kinds of objects and attributes
contained in the domain), and its epistemology (the sorts of things one may
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know about the domain, and the ways of knowing them). A flexible KBS
shell will permit the KRE to do this declaratively, ie. without re-
programming the shell.

TheKRBanmpplyavoeabuluy of conceptual objects, relations, and
attributes without a limit on the level of object abstraction. For example,
one can take the system's representation of an object, and its representation
of the depiction of the object on the screen, and create an explicit non-
procedural mapping between them. This mapping itself can be reified,
which makes it in turn amenable to serving as an object in a propositional
context. This example only involves t~0 levels of abstraction and is fre-
quently useful. For instance, it may be used to assert the validity of a map-
ping that might be limited to particular circumstances.

The declarative represeatation of these objects has the additional benefit
of placing them in the domain of possible end-user .querics. Whatever is.a
concept for both system and user can be discussed by them. The user can
tell the“system about them, and can ask the system what it currently knows
about them. The system can have rules that specify how to reason about
them, how to derive new attributes from old ones, and even under what cir-
cumstances to infer the existence of objects it- hasn’t beem explicitly
informed about.

A Knowledge-Based drafting system can be an intelligent assistant to a
designer, rather than just a powerful drawing tool.

intelligent Interfaces

Recently, there has been increased interest in the contributions Al can
make to the design of interfaces. There was both a workshop and a panel
on Intelligent Interfaces at the 1986 AAAI sponsored National Conference
on Artificial Intelligence, and DARPA has recently funded a program on
Multi-media Interfaces.

Our own view, [Shapiro 1986a] is that an intelligent interface needs the
following capabilities: it should know about the topic under discussion, not
merely be an isolated, modular, general purpose interface; it should know
about communication issues, including what is on the screen, and the rela-
tionship between what is being communicated and the way it is being com-
municated; it should have a user model, so it has an idea of what the user
knows, doesn’t know, and what the user is trying -to -accomplish. The
KBS-based drafter we are developing can be seen as an appropriate intelli-
gent interface to a more extensive design system.

General Introduction to SNePS

The SNePS Semantic Network Processing System [Shapiro 1979; Shapiro
1986b] is the KBS shell we use, and we will use the SNePS formalism in the




remainder of this paper. For the reader not familiar with SNePS, we will
first give a short introduction to the basic properties that distinguish it from
other semaantic network systems.

SNePS, unlike semantic network systems of the KL-ONE, KRYPTON
family, [Brachirian 1985; Brachman 1983] but like Anderson and Bower’s
HAM, [Anderson 1973) is a propositional semantic network system. i.e.,
the main ingredient of SNePS networks are assertions, constructed from
case grammar-like frames [Fillmore 1968]. This does not imply that SNePS
cannot support KL-ONE type class hierarchies and inheritance [Tranchell
1982], but that this feature is less prominent in SNePS. SNePS is a fully

" intensional knowledge representation system [Shapiro 1986b] — it can rep-
resent imaginary, non-existing, and even impossible objects, as well as
abstract objects, and multiple guises of a single object as if they were sepa-.
rate objects.

- SNePS handles full predicate logic with universal, existential, and
numeric- quantification. A number of non-standard connectives that
improve expressibility are available, including both a default operator and a
true ncgitioh. SNePS supports forward, backward, and bidirectional infer-
ence, in contrast to many other systems which permit reasoning in only one
direction. For instance, the OPSS expert system shell docs only forward
inference, whereas PROLOG does only backward inference. In SNePS, the
same rule syntax can be used for either type of reasoning; there are no
specific forward or backward rules. SNePS permits the use of recursive
rules, cither. ditectly recursive or indirectly recursive (McKay 1981]. A rele-
vance logic based [Anderson 1975; Shapiro 1976] extension to SNePS per-
mits its use as a truth maintenance system [Martins 1983]. ‘

Another advantage of SNePS is the total order independence of rules and
clauses in the rules, in effect eliminating the painful mixed procedural-
declarative semantics of PROLOG. This higher degree of flexibility permits
very natural representations, especially for natural language rule expres-
sions. However, the required computation times are usually longer than for
PROLOG programs.

Although the major purpose of SNePS is not to be a functional model of
the brain, 43 opposed to, for instance, Anderson’s ACT system (Anderson
1983], SNePS has beon.designed with & high degree of cognitive validity in
mind. This is expressed by a differentiation between conceptual and non-
conceptual relations, by the impossibility of PROLOGish retract-like forced
forgetting (except for debugging purposes), and by the accessibility of all
information about a concept from the concept itself.

. A number of different SNePS interfaces have been designed, containing
several natural language parser/generators for subsets of English, a frame-
like editor, & logic programming language, and several graphics interfaces.
In our description of kiowledge structures we will liberally use the
“Lispish™ notation of the SNePS User Language (SNePSUL), or our stand-
ard graphical representation of SNePS networks.
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Knowledge Representation in SNePS

In this section, we will discuss an example SNePS network to introduce
the syntax and semantics of some of the representational structures we use
in our work on VMES, the Versatile Maintenance Expert System [Shapiro
1986c]. Figure 9.1 shows an Adder-Muiltiplier, a simple experimental device
that has been used in the field of hardware maintenance research by a num-
ber of people. This object consists of three muitipliers and two adders.
Figure 9.2 shows part of the semantic network that describes this device.
Rectangles in Figure 9.2 represent concepts of real or imaginary objects.
Circles represent propositions about these objects. The network can be
read as follows: D1 is an object of type M3A2; D1AL is of type Adder and
is a part of D1; DIM1 is of type Multiplier and is a part of D1; DIAIF! is
a Full Adder and is part of DIAI; etc. o

The SNePSUL commands that create the network of Figure 9.2 are:

(define part-of object type)

(build object D1A1l
type Adder
part-of 01)

(build object DMt
part-of D1
type Multiplier)

(build object 01
type M3A2)
part-of D1Al
type Full Adder)

(build object DIAIF1
part-of D1A1
type Full Adder)

(build object D1A1F2
part-of D1A1
type Full Adder)

The first define command defines the arcs to be used in the system. Arcs
can be followed, for retrieval purposes, in either the forward or backward
direction, guaranteeing the universal accessibility of every node from every
other node that is related to it.

The set of build commands creates the actual network. Note that every
build command will result in the creation of one “m...”" node. These
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Figure 9.1. The Adder Multiplier and one of its parts.

nodes, as described earlier, correspond to propositions in the system and
cannot be created directly by the user. In other words, it is not possible for
the user to create an arc connecting two nodes named by him, guarding
users against creating non-conceptual propositions, objects the SNePS
" theory of mind does not permit.

put-of ~” part-of object

type  object type object

e o} o =

part-of part-of

© (=)

object type type object
Y

Figure 9.2. A piece of semantic net.




O AN ANALYSIS OF IMPORTANT ELEMENTS OF DESIGN
KNOWLEDGE

Having introduced the SNePS KBS shell, we will now discuss the ontology
and representational constructs that we, in our role as KREs, have found to
be necessary for creating descriptions of graphical depictions of simple cir-
cuit boards.

Objects and Forms

The first fundamental unit we need to deal with is the displayable object.
In order to create a picture of an object it is necessary to specify a form for
it. Every form has a dual role. On the one hand, it can be used to create a
picture of that form. On the other hand, it is a conceptual unit in the
knowledge representation system and can be manipulated as such. Picture
creation is done by s Lisp graphics function whose name is identical to the
form concept in the network, and whose arguments are the coordinate posi-
tions of the place the form is to be drawn. So, if the form of a: particular
gate is specified by the function gate-fors, the gate would be drawn at posi-
tion (100, 300) by evaluating the Lisp form:

(gate~form 100 300)

The degree of specificity of a form varies. While the form of an inte-
grated circuit or a transistor is totally fixed, the form of a wire is dependent
on the position of the ports it connects. If a user wishes to display an
abstract object then he has to supply a symbolic form for it.

Positions

The next essential ingredient for a drafting system is the concept of posi-
tions. There are several possible ways of specifying positions. In a tradi-
tional CAD system, positions are only expressed in an absolute or relative
manner based on coordinate values. This is an ability that a KBS should
also have. However, knowledge-based design systems should also be able
to deal with relational specifications, such as the specification that a certain
clement should be near or to the left of another element. This, of course,
introduces a certain fuzzyness in the representation. However, in many
cases this is exactly what a designer would like. It permits him to think in
concepts that are natural to him, and it avoids unnecessary specificity. In
other words, a knowledge-based drafting system permits one to specify spa-
tial relations with a reasonable degree of imprecision.

The following SNePSUL commands show first our representation- for rel -
ative coordinate positions, and then for fuzzy positions:
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(build object gate-1
relpos - (build x 100 y 200)
rei-to gate-5
wodality function)

(build object ' gate-2
relpos left
rel-to gate-1
modality function)

The first SNePSUL command will create a piece of SNePS network rep-
resenting the proposition that gate-1 is 100 units to the right and 200 units
above gate-S. - The second one asserts that gate-1 is to the left of gate-2.
The modality slot is used to differentiate between different arrangements of
an object in a functional representation (wire plan) and a physical represen-
tation (picture of the.board).

Affributes

Attributes can either be of objects or of pictures of objects. An example
of an attribute of a picture is blinking. A blinking picture can help a user
focus his attention on a currently interesting object, without expressing any-
thing about the object itself.

An example object attribute we have been using is the faultiness of a
gate. The proposition that gate-1 is faulty would be represented by the net-
work built by the command:

(build object gate-1
attr (build atrb-cls state
atrd faulty
modality function))

In order that the system know how to display a faulty gate, we tell it that
the state attribute maps to the state-to-color function:

(build attr state
wmod=func state-to-color)

Each attribute function, such as state~to-color, is actually a functional
that.takes a form function and an attribute value as arguments, and returns
& modified form function. So, again, if gate-1 had the form represented by
the function gate-form, and given that gate-1 is in the state of being faulty,
and that the attribute function for state is stare-to-color, gate-1 would be
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displayed as faulty at coordinate position (100, 300) by evaluating the Lisp
form:

(funcall (state-to-color #'gate-form 'faulty)
100 3000

Notice that representing different attribute dimensions (state, color, size,
etc.) by different attribute functionals explicates the way that different
attribute dimensions are, in fact, different.

In this technique, the information of how to display a faulty-gate is pro-
cedurally encoded in the state-to-color functional. An alternative is to
store the information declaratively in the network, such as by a proposition
built by the command: '

uild attr state
strb faulty
wmod-val redd

This proposition says that the attribute of being in a faulty state is to bc
shown by making the display red. The fact that red is a value of the color
attribute is stored by a separate proposition.

Class Hierarchy

An important feature of most knowledge representation systems is their
ability to handle classes of objects (and also hierarchies with many levels of
clagses). This permits a user to associate an attribute with an entire class
instead of a single object. For example, one could express the fact that all
lntegmeddrcuhsexpeauoundpotenﬂalonthdrpinow.modaﬁnxthh
fact with the class of all integrated circuits. .

Classes have two important features that are valuable for dengn systems
(and KR systems in general). The first is that by asserting that an object
belongs to a certain class, a lot of new knowledge is immediately available
about it. This is called inheritance along a class hierarchy. The other valu-
able feature is that this type of representation seems to correspond to the
way people organize their knowledge. Therefore the naturalness of the use
of classes also improves the general communication between user and sys-
tem.

Part Hierarchy

Another feature that is common in Al systems is, the use of part hierar-
chies. Much of the knowledge about physical objects can be organized. as -
facts that express a part-whole relation between different objects. This
applies also and especially to design systems.
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Our own resear~h has shown that the concept of inheritability which was
mentioned for class hietarchies is also applicable to part hierarchies, but
with a difference that we have not seen discussed in the previous literature.
For instance, the attribute of a special transistor of being “twice as large as
an average transistor” is inheritable by its parts. On the other hand, if a
circuit board is known to be faulty, nobody would want this attribute to be
inherited by all its parts. That would defeat the very purpose of a diagnosis
system.

In class hierarchies, the only attributes that are not inheritable, are those
that apply only to classes. For example, the cardinality of a class is not
applicable to, let alone inherited by, its individual members. In the part
hierarchy, however, there are non-inheritable attributes, such as faultiness,
that are applicable to sub-parts, just not to be inhzrited by all of them.

The representation that we are using for inheritable attributes is the same
as the representation for non-inheritable attributes, and is, in fact, identical
to the example of faultiness given in an earlier section. However it is
possible to assert in the network about a certain attribute that it is inherita-
ble, simply by pointing to it with an inheritable arc. For example:

(build inheritable size)

The display ptogrun which interprets the network automatically queries
for inheritability if it has to expand an object with attributes into parte.
The results of this query determine whether or not the parts of the object
are displayed as having the attribute.

Inheritability, as an attribute of other attributes, is a meta-attribute. The
fact that we are representing it explicitly and declaratively gives the user the
power to experiment with different attributes, and to postpone the decision
about which of them is inheritable.

Our findings about inheritance can be extended to other hierarchies,
which we refer to as relevance hierarchies. Relevance hierarchies are an
abstraction of a number of different hierarchies used in the literature,
including topic hierarchies {Haan 1986] and hierarchies of spaual universes
(containment hierarchies) [Fahlmann 1979).

(3 THE VMES SYSTEM

The resecarch described in this paper is a part of \he YMES (Versatile Main-
tenance Expert System) project, which deals with hardware maintenance for
mixed analog and digital circuit boards. By using the features of a knowl.
edge based architecture, a high degree of versatility has been achieved
[Shapiro 1986c].

The specific significance of our work is that frequently electronic devices
have fairly short life cycles. A new board is designed and quickly comes
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Figure 9.3. An invalid connection.

into use in the field. There is little time to design elaborate test procedures
or equipment, or to educate a large number of technicians and users. Usu-
ally, the only real expert on the device is its designer, and he is already
involved with another project when the first problems in the field come up.

Our research is directed toward the design of a KBS-based drafter that the
designer will use to help design a new device, This design stage will be the
“Knowledge Acquisition” stage of the VMES which will then be able to
advise maintenance technicians on the maintenance and repair of the device
that it helped design.

The maintenance system can also be used as a part of the design system,
since it can be used to detect impossible designs which do not conform to
certain integrity constraints. An example of such an ‘impossible design in
the circuit board domain would be if a new device that is described to the
system has two chips with their input ports connected to each other, but
neither connected to an outport of any other chip (Figure 9.3). Another
example would be if two points are electrically connected to each other by
two separate wires (Figure 9.4).

VMES implements a large number of the eoncepu which have been
described in the previous sections, i.e. part and class hierarchies, inherit-
ance, attributes, etc. It expects to talk to two different types of end-users.
On the one hand are maintenance technicians with a limited amount of edu-
cation and training. On the other hand are the designers that enter a
description of a new device into the system. These two types of end-users

redupdant connection

Figure 94. A redundont connection.
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have different user interfaces, but both interfaces are required to be natural
and user-friendly:

The need to create d&scnpuons of circuit boards quickly and without
- “programming” requires a system that has fairly general knowledge about
circuit boards, and that can be adapted to a new device in a short time and
with a natural dialogue. To achieve this the system has to understand much
‘about the objects of the domain, like wires, inverters or integrated circuits.
-The use of a Knowledge Representation language is a precondition for
achieving such understanding. Use of a component library also permits a
rapid chanze -from one device to another. If a new device does not contain
any new-components, then it is only necessary to describe the new wiring.

‘Our dpproach to the design of Intelligent Interfaces may be explained by
a description of three interfaces that are part of VMES. The main user
interface is 8 Knowledge-Based graphics component. This program, named
display, takes a piece of semantic network as argument and uses it to gen-
crate & pictorial representation of the stored knowledge. display works as a
geverator,. quite comparable with a natural language generator. Only
redundant permanent auxiliary storage is used by display. In other words,
the semantic network plus the Lisp functions describing primitive forms are
the only knowledge sources for the computation and creation of device
depictions.

We. are -working" on- displaying devices under the assumption that no
eoordi:mzpodtionsmziven We refer to this activity as intelligent
machine drafting (IMD). We are attempting to provide a procedural model
of some of the knowledge that a draftsman has about space and arrange-
ment of electronic components. display tries to arrange componeants of the
system in what it “thinks” is a graphically appesling way, using several var-
iations of an equal-spacing algorithm. Unlike VLSI routing or layout pro-
grams, which usually try to find some space-optimal solution, display
assumes tliat there is ample space to solve the placing problem.

The second interface is a natural language understander (NLU), imple-
mented by using an augmented transition network (ATN) {Woods 1970;
Shapiro 1982] semantic grammar. A user can create cias'ss of objects,
assign (predefined) forms to them, name members of these classes, assign
them attributes, and then display them, all with commands from a (fairly
limited) subset of natural language. The NLU uses the same KR constructs
as are used by display. This enables it to demonstrate its understanding
of declarative sentences by drawing the object(s) mentioned using appropri-
ate graphic indicators of the asserted attributes.

The third interface is the readform facility, which allows a user to create
Lisp form functions simply by drawing objects. resdform permits a user to
creste pictures of objects from simple primitives like lines, circles, boxes
etc. He can also design a form off to the side, on a kind of icratch pad,
and then add this form repeatedly to the object being designed. readform
will assume that the form created on the side is the form of a class of
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objects, and that the repeatedly added instances are members of that class.
These members will also be assumed to be parts of a main object, consist-
ing of the primitives placed before and after using the scratch pad.
readform verifies some of its assumptions by querying the user, e.g. asking
for a name of the suspected class. If the user supplies the requested names
then readform will create a network structure that asserts the class and part
relations and will even store the positions of the parts relutive to their super
object.

O CONCLUSIONS

Al offers to the design task the use of powerful. Knowledge-Based System
shells. Knowledge Representation Engineers particularize these KBS shells
to the particular design domain by specifying the ontology and epistemol-
ogy of the domain. This permits the end-users to discuss the design task
with the KBS as if it were a knowledgeable assistant.

We discussed two aspects of KBSs useful for design. Intelligent Inter-
faces know the task being performed, knuw about the objects, relations,
and attributes being discussed, and know how to express these concepts to
the user. Intelligent Machine Drafters (IMDs) are knowledgeable assistants
to the designer, besides being powerful drafting tools.

We have been developing a Versatile Maintenance Expert System
(VMES) that would be able to help a maintenance technician repair a device
that had been designed so recently that there would not have been time to
give the technician training on how to repair it. The VMES would acquire
its own knowledge of the device by serving as an IMD ta the original
designer.

In our roles as KREs for VMES, we have identified the following con-
cepts as useful for an IMD and for an Intelligent Interface to a design sys-
tem: objects; forms of objects; absolute, relative and “fuzzy” positions;
attributes of objects and of pictures of objects; attribute functionals; object
attribute to picture attribute mappings; class, part, "and relevance hierar-
chies; and meta-attributes, such as inheritability.
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