AD-AQO‘Z 3/l

ON ESTIMATING THE DEPENDENCE BETWEEN TWO POINT PROCESSES
BY

HANI DOSS

TECHNICAL REPORT NO. 417
MAY 4, 1989

Prepared Under Contract
NO0Q14-86-K-0156 (NR-042-267)

For the Office of Naval Research

Herbert Solomon, Project Director

Reproduction in Whole or in Part is Permitted
for any purpose of the United States Government

Approved for public release; distribution unlimited.

STANFORD UNIVERSITY
STANFORD, CALIFORNIA

ELECTE § ¢
MAY3 119898 &




1. INTRODUCTION AND SUMMARY.

Let (NA,NB) be a stationary bivariate point process on R, This article is
concerned with statistical methods for discovering and quantifying an association

between the two processes from a realization A1 CA <Ll <AL, B1 < B2 <,..< Bn over
B

2
a long period of time T. The paper is motivated by certain ;roblems that arise in
neurophysiology, which are very briefly described as follows (for further details see
e.g. Bryant, Ruiz Marcos, and Segundo, 1973).

Two neurons, A and B, are monitored over a period of time T during which each
neuron fires a sequence of impulses. The problem is to determine whether or not the
impulse times are associated. An association between Ny and Ng may be construed as
evidence that either the two neurons are communicating, or that they both share input
from a third source,

Another problem arises in certain neurophysioclogical studies of learning and
memory. An animal is to be taught (trained) to perform a certain task. Now consider
two '"connected” neurons, A and B, which are essential in the performance of this task.
Record the impulse times during a period before the learning experience, obtaining a
realization of (N:ef‘,Ngef‘), and during a periocd of time well after the learning
experience, obtaining a realization of (Nﬁft',Ngft‘). The processes Nief'
Ngef' may be dependent. The problem is to determine whether or not this dependence

is "stronger' for the processes Nﬁft' and Ngft'. A neurophysiologist may consider

and

a change in the strength of the dependence as evidence that learning has taken place,
The two problems have very different statistical character. Let S be a statistic

that '"measures' the dependence between two point processes. The first problem is

one of testing the hypothesis that NA and Ng are independent, and requires only

knowledge of the distribution of S under the assumption that N, and Np are independent.

A

The second problem is much more difficult: to compare S across two situations we must

know the distribution of S when the two point processes are dependent.




In a more general context, Ripley (1976,1977) introduced a measure K, defined
on an appropriate space, that summarizes the second-order properties of the process,
Before describing this measure, we need to state some assumptions and introduce some
notation. Let Ni(s,t) denote the number of events of type i occurring in the interval
(s,t]l, for i = A, B, Assume that each process has no multiple occurrences, and that
the intensities

A; = lin % PN, (t,t+h) > 0} for i = A, B (1)
h0 ,

are finite, (The existence of these limits was proved by Khintchine, 1960). The
Ai's then have an interpretation as mean number of occurrences per unit of time: for
ty <ty
E Ni(tl,tz) = xi(tz-tl) for i = A, B (2)
(this follows from Dobrushin's Lemma and Korolyuk's Theorem; see Leadbetter, 1968).
We now give an informal description of the measure K, adapted to the present
context,

The measure K is defined on the Borel subsets of R, and for t <t2, writing

1
K(tl,tz) for K{(tl,tz)}, we have

1
K(tl't2)='T; E{NA(tl,tz)Ia B point at t=0}

(3)
1
(= X;'E{NB('tz"tl)'an A point at t=0}]
Note that if N, and Np are independent, then
K(t),t,) = t, - t (4)
regardless of the values A, and Aq. = 0
[0S T
Ripley proposed the estimate of K(tl,tz) given by ot e ——
n, n S
. T B A
K(t,,t,) = I{A -B. t,,ty)}, 5) -
1272 NANB izl jzl 7R ( 1 2) (5) Codes
ifor R
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where I{+} denotes the indicator function (actually, the estimate proposed by Ripley
has an edge correction for points near the boundary of the period of observation; this
edge correction will not concern us). |

Previous work on the estimator K is concerned with spatial processes. The
results center on using R to test that a single process in Poisson (Ripley, 1977;
Chapter 8 of Ripley, 1981; Silverman, 1976) and on using K to test for independence
of two processes (Lotwick and Silverman, 1982; Diggle and Milne, 1983).

In this paper we study the asymptotic properties of ﬁ(tl,tz). The main result

is that under certain regularity conditions, as ng >,

- d . 2
g (Kt ,t,) - K(t),t,5)) > N(0,0%(t,,t,)), (6)
where
cz(tl,tz) may be consistently estimated from the data. (7

Besides providing the basis for a test of independence between NA and Np, (6) and
(7) enable one to test whether or not K(t1’t2) has changed in the experimental situ-
ation described earlier.

The cross-intensity function defined by

. 1
AAB(u) = lim i P{NA(u+t,u+t+h1) >0; NB(t,t+h2)> 0} (8)
h,,h,~0 M1"2
1272
is related to X by
t
2
K(t),t)) = : I A, . (u) du (9)
AAXB tl AB

Under the independence hypothesis, AAB = AAAB. Brillinger (1976) considered the random

function
I g M
Jp) = izl jZI I{Aj-Bie (u-h,u+h)} (10)

and showed that under suitable regularity, if h+0 and T+= in such a way that hT




. T T T - T, T .
remains constant, then for Y P, luk- uk,l >2h, 1sk<k”“sM, JAB(u.k) are asymptoti-

cally independent Poisson random variables with means ZhT AAB(uk) , for k=1, ..., M,

3T (w

Thus, X“(u) = can be used to estimate A,,(u) at a finite number of points.

-~

In practice one would graph the two functions XAB and K over a finite Tange, say
(-L,L] (i.e. graph R(-L,t) for -LsStsL), Although from a mathematical viewpoint
B and K contain essentially the same information, the statistical properties of
their estimates are quite different: estimation of >‘AB is akin to estimating a den-

sity, and from Brillinger's result the variance of XAB is of the order EIT; on the

other hand, estimation of K is akin to estimating a distribution function, and

from (6), the variance of K is of the smaller order n_l_ A graph of iAB may,

. B
however, indicate features {(spikes, location of maxima and minima, etc.) that cannot

be seen in the graph of K. Clearly the two approaches are complementary.

2. ASYMPTOTIC DISTRIBUTION OF THE K-FUNCTION.

Let

Upp(tysty) = E{NA(tl,tz)ia B point at t=0}, (11)

We may estimate UAB(tl,tz) by

n, n
i LT § a8, e (2y,8))) (12)
U, ,(t,,t,) — A.-B.e(t,,t . 12
AB* 1272 "Bl=1j=1 j i 1°72
Letting
a ni
A, = for i=A,B (13)
we note that
|1 : L

To prove asymptotic normality of 4 (Theorem 2) we will prove joint asymptotic

normality of (f)AB(tl,tz), '):A) . We will in fact find it necessary to first prove

4
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joint asymptotic normality of (ﬁAB(tl,tz), /g 1/i8). The delta-method (i.e. a
first term Taylor expansion) applied to the function f(x,y,z) = %; then yields the
asymptotic normality of i(tl,tz). We also obtain the joint asymptotic normality of
(GAB(tl,tz), XA’ XB) by applying the delta-method to the function g(x,y,z) = (x,y/2,1/2).

We now need to give the statistical setting of our asymptotic investigation. The
functions U, (t,,t,) and K(t;,t,) involve the notion of the Palm measure. That is
for € >0, we consider the conditional distribution of the process (NA,NB) given that
there is a B point in the interval (0,c), and take the limiting distribution of
(NA’NB) as €+0. Intuitively, this corresponds to selecting a B point "arbitrarily",
and considering the process with that point labeled the origin. This notion is
discussed for univariate processes by Leadbetter (1972) and for bivariate point
processes by Wisniewski (1972)., We will assume that the process is observed during
a period of length T starting immediately after the occurrence of an "arbitrary" B
point, say B0 (thus, we will be working with the Palm measure). This mode of sampling
is called semisynchronous sampling by Cox and Lewis (1972); see Wisniewski (1972) for
some fundamental properties related to it. Also, for the sake of convenience, we
will assume that the period of observation ends with a B point,

Let F?ﬁ denote the o-field generated by the events

{Bkle (Bo+v1, By+wi), oo, Bkme (Bo+vm, By +w.);
Ny(By+Ty, Bg*+s;)=h,,...,N(By+r , By+s )=h}

brvi<wiso,ki=-1,-L eeey, i=1, ..., my %<sj50,hj=0,1,2,.“,j=1,..”

n, and m and n nonnegative integers. For u>0, let F; u denote the o-field generated
0
by the events

{Bk € (B0+v1, Bo+w1), ...,Bk

€ (Bo+vm, Bo+wm) 3
1 m

Na(Bg+ Ty, By+sd=hy, oo, Ny(Byery, Byes))=hi)




hrusvi<%fki=h 2, ”.,i=1,.“,m;uSrj<%,h.=0,1,2,.”,j=1,..” n,

and m and n nonnegative integers.

Let 5
a(u) = sup{|P(E;nE,) - P(E)) P(E)| ;E eFD, EjeFp
0

} (15)

If a(u) >0 as u+>, then the distant future is virtually independent of the past.
We will actually need stronger conditions on a(-) .

Let 8>0, n>1, 0<t<1 be any constants satisfying

n+l)
[n B+1J t>1 (16)
Assumptions:

Al [ ()1 t® dt <o
0

A2 sup IB{[NB(J',j'fl)Jn ! a B point at t= 0} =M<w

-eo<j <o

1
4(1+ I )

A3 E{[NA(tl,tz) a B point at t= 0} < ®

4(1+ L )
Ad  E [:(Bl- By) 1-t ] < ®
T

4(1+ 1—1:)
AS E [NA(BO,BI)J < ®

These assumptions are discussed towards the end of this section.

THEOREM 1. Assume Al and A2, Let UAB(tl,tz), UAB(tl,tz), and >‘i for i=A, B be

defined by (11), (12), and (13), respectively.

(i} Under A3, we have as ng > =

. d 2
Mg (Uag(ty,t5) - Upp(t),t)) > N(O,v (t,t,)) .




2 : .
Furthermore, y (tl,tz) can be consistently estimated from the data.

(i11) Under A4 and A5 we have as ng ~ =

- . . d
JH; (Ap-hgs Ag=2g)” > N(O,A).

Furthermore, A can be consistently estimated from the data.
(iii) Under A3 - A5 we have as ng >«

N - - d
/E; (Upg(t1aty) = U p (8,850, Xa-hy, Ag=Ap)” > N(0,E(t,,t,)).

Furthermore, E(tl,tz) can be consistently estimated from the data.

PROOF.

(1) We begin by showing asymptotic normality. Let U{ and Ui be defined by

us = ‘2 I{Aje(Bi+t1,Bi+t2)} I{BOSAjSBn }

j=ae B
and
U, = ngmI{Aje(Bi+tl,Bi+t2)}.
Note that
g
Og(t oty = 2= J U7 . (17)
B i=1
g g
It is clear that 2 U.1 - 2 U; = Op(l). Thus, it suffices to prove the result with
i=1 i=1

Ui's instead of U{'s in (17). Observe that the sequence {Ui}:=_m is stationary,
with mean UAB(tl,tz) and finite variance (by A3). The Ui's may be far from indepen-
dent: for small k, Ui and Ui+k may be nearly identical. If, however, U.l and Ui+k
are "nearly independent" for large k, then one can still hope to have a Central
Limit Theorem effect. The proof consists of translating Al, the mixing condition on
the point process, into a mixing condition on {Ui} that allows the application of an

appropriate central limit theorem for stationary sequences.




Let u(k) be defined for k = 1, 2, ... by
u(k) = sup{|p(51n52) - P(EI)P(EZ)I; Eyeo(e.. Uy, Ug), Ejea(Uy, Uy, --.)F  (18)

(Here, o(... U-l’ UO) denotes the o-field generated by {...,U UO}, and similarly for

-1

o(U,U,qs+++)). The function u(+) is called the mixing coefficient of the sequence

{Ui}. Our goal is to prove that Z [u(k) 7 <w®, It will be more convenient however,
® k=1

to show instead that ) [u(2k) 1" <=,
k=1

The two conditions are equivalent since wu(-)
is nonincreasing.

Let k21 be fixed, let E1 € o(.en, U-k)’ E2 € o(Uk,...), and consider P(ElnEZJ.

Let

c, =1, -8 <-k/BV1y ang ck={Bk-eoz[k“(5*”]}

-k -k~ "0

We may write
P(E)nE,) = P{(E;nC_) n (E,nC)Y + PL(EpNE,) n (CoUC)Y , (19)

where © denotes complementation.

Consider the first term on the right side of (19). For all large k, since

8 L/ (8+1)

-B. < -

-k 0
> 1
Ezncke FBO+D< /(f3-|-1)]”:1 . Therefore,

B
- . 0
implies that B_k rt, < BO’ we have E1 n C-k e F__, . Furthermore,

1
PL(E,nC_) n (E,nC)Y s PEDPE,) +a(lk /B yuey (20)

The second term on the right side of (19) is obviously less than or equal to
P(ka) + P(C.E). These last two probabilities are dealt with in the same way.

Consider P(CI:'). Observe that

1/{8+1)

P(CE) s P{one of the intervals (B0+j,B +j+1 , j=0,1,...,k ] -1 (21)

0

has at least [kB/(BH)] points},




By A2, Chebyschev's inequality and Boole's inequality, the right side of (21) is

1/(8+1) yy 8/ (B+1)y-n |

less than or equal to [k Combining this with (20} and

-handling the opposite inequality in s similar way, we obtain

w2 s akM BN ag)y o i/ B Dypd/ D)7

Assumption Al implies that

k=1
Combining (22) and (16) we obtain that Z [u(Zk)]T < »  and hence that
k=1
] ) 1™ <=, (23)

k=1

Assumption A3 implies in particular that

‘r .
[ 2(1+ l-1 {]
E U1 < o,

L

This, together with (23) allows us to apply Theorem 18.5.3 of ibragimov and Linnik
(1971) to conclude that for Yz(tl,tz) defined by
2 ) -+
vo(t,,t,) = Var Uy+ 2 hZICov(uo,uh) (24)

we have as nB >
Vg (0,.(t,,t.) ~U,o(t,,t,)) jd»N(o 2(t..t,))
B ‘“aB't10%27 T VAB'M12 2 Y Ltyata) ).

Consider next Yz(tl,tz). Let v, = Co;(UO,Uh) and let Gh denote the sample

covariance at lag h:

nB-h-l
) izo (Ui'U)(Ui+h‘U)
v =

h nB-h ’




where D = OAB(tl,tz). Defin_ng the spectral density of {Ui} by
1 1 ¢
f(A) = 7wV T hzl vy, cos Ah,

we see that yz(tl,tz) = 27f(0). Thus, to estimate Yz(tl.tz) we have available the
machinery for spectral density estimation from the time series literature. Frequently

used estimates of 2nf(0) are of the form

S
Vot 2] ¢ v (25)
0" 5% Thth

where s and Cys +es5 Cg aTE constants depending on ng, with s/nB + 0 as ng > =, and
Ci2cyZ ... 2, The choice of s and {ch};=1 is not discussed here. For such a
discussion, see any standard text on time series (e.g. Section 7.4 of Chatfield,

1980; Chapter 9 of Anderson, 1971). Consistency results for spectral density estimates
have been established under conditions on {U;} that are not implied by Assumptions

Al - AS (e.g. existence of all moments in Brillinger, 1975; {Ui} is a linear process

as in Anderson, 1971 and in Hannan, 1970). In the appendix, it is shown that there

exists a consistent sequence of estimators of Yz(tl,tz).

(ii) Let El, £, ¢ R, and let

2
i = &) NaGBy 1.85) + £5(B4-B; 4).

The sequence {xi}:=-° is stationary, and if n(+) denotes its mixing coefficient, it
is clear that (23) holds for n(-) as well. This gives a central limit theorem for

{Xi}, and by the Cramér-Wold device we have that

»

= A T
ng {B-; - E N, (By,B,), o E(B, - B,)

is asymptotically normal with mean 0, and a covariance matrix which can be consistently

estimated as in Part (i). Applying the delta method with the function f(x,y)==(§, %}

we obtain that

10




— n, E NA(BO’BI) ng 1 l,
g 17? - E(B,-B,) A E(B,-By)

is asymptotically normal, and it is simple to argue that E NA(BO’BI)/E(BI'BO) = A

-1 _
and {E(BI-BO)} = XB .

(iii) The proof of (iii) is similar to that of (ii) and is omitted.

THEOREM 2. Let K(tl,tz) and R(tl,tz) be defined by (3) and (5), respectively, and

assume Al - A5. Then, as ng > =
/ny (R(t,,t,) - K(t,,t,) jd»N(o cz(t t.))
B 122 152 > 1°°2 s

where oz(tl,tz) can be consistently estimated from the data,

Results giving the asymptotic normality of estimates of ‘A and AB (under varying
sets of assumptions) already exist in the literature; see e.g. Theorem 8.6 of Daley
and Vere-Jones {(1972). It was necessary to establish joint asymptotic normality of
iA and GAB(tl’tZ) in order to obtain asymptotic normality of K(tl,tz).

Any theorem giving asymptotic normality of the normalized partial sums of a

stationary sequence {T,} must assume a moment condition on T, and also a mixing

1
condition on {T,}. In general, weakening of the moment condition must be compensated
by strengthening of the mixing condition, and vice versa. Assumptions A3, A4, and

AS provide moment conditions on the sequences {Ui}, {NA(Bi-l’Bi)}’ and ((Bi'Bi- },

1)
respectively. Assumption A2 insures that the B process '"moves along' rapidly
enough so that Al, the mixing condition imposed on the point process, translates

into a mixing condition for the sequences {Ui}, {NA(Bi_l,Bi)} and {(Bi'Bi- )1,

1
Relationship (16) describes in a technical way the interplay between the mixing rate
on the point process and the moment condition on the sequences (Ui}’ {NA(Bi_l,Bi)},

and {(B,-B, )}.

i1




The conditions assumed by Brillinger (1976) neither imply nor are implied by
Al - AS of the present paper. Brillinger assumes a mixing condition on the bivariate
point process and also that the "second order moments' kij(-) (i,j =A,B) exist and
are continuous (he also assumes existence and continuity of the '"third and fourth
order moments'; see equation (2.2) of his paper). This condition on AAB(-) is not
satisfied by the following process: NB is a Poisson process, and NA is Ng shifted to
the right by 1 unit. In this case, XAB(I) = », This process does however satisfy
Al - A5, Conversely, it is easy to find processes (NA,NB) satisfying all of Brillinger's
conditions, but not those of the present paper. Perhaps the simplest example is the
following. Let NA and Ng be independent, Na being a Poisson process, and Np being
an equilibrium renewal process on (-»,») (for a definition and a construction see
pp. 517-19 of Karlin and Taylor, 1975) with interarrival distribution having a first
moment but no second moment. Then A4 is violated, and it is not difficult to check

that this process satisfies all of Brillinger's conditionms.

3. DISCUSSION,

The contributions of this paper are two-fold: proof of asymptotic normality of
i(tl,tz) and a method for estimating the asymptotic variance oz(tl,tz), enabling the
construction of asymptotic confidence intervals for K(tl,tz), for fixed values of
t and t,.

The function K(+,*) will usually be of interest over a continuum of values, say
-L< t1< tzs L, where L is some number much smaller than T. One can plot E(-L,t)
for -L<t<L or, what is sometimes more useful, plot K(tw%, t+%) for
-L + % Stsl - % . Here, d is some small number representing the experimenter’s
guess at the duration or likely duration of the effect of a B point on the A process,

The function K(tw%, t+%) is identically equal to d if N, and NB are independent.

12




We may form the bands
R(-L,t) ¢ 2(¢/2) 3(-L,t)//;l_3' -L<tsl
and

a d d (a/2) A, . d d d
K(t-3, te3) ¢ 2 o(t-;, te3)/ /1'1; Lezst

A

d
L-3

IR

where G(tl,tz) is an estimate of o(tl,tz), and z(a/z) is the upper — - 100 percentile
point of a standard normal variable. These bands of course are not simultaneous
confidence bands. To form simultaneous confidence bands one would need to carry out

two distinct steps:

(i) establish weak convergence of the processes

Vv (t) = vn (ﬁ(-L’t) - K(-L,t))
ng B
and
fg d d d d
wnB(t) = nB(R(t'E s t"'-z') - K(t-—z-, t+-2-))

to Gaussian processes V(t) and W(t), respectively.

(ii) obtain v(“) and w(a), the upper o * 100 percentile points of sup |V(t)|
and sup  |W(t)], respectively. Theest
-L+§stsL~%
The bands
R(-L,0) = v Lstsl
and
lE(t-%,t%%) tw(a)//ﬁg -L+%Sts L-fzi-

are then asymptotic simultaneous confidence bands.
A proof of weak convergence appears extremely difficult. Although desirable
from a theoretical point of view, weak convergence is not useful statistically unless

the distribution of the supremum of the absolute value of the limiting process can

13




be obtained. In general this is a very difficult problem even if the Gaussian
process is stationary (see Cressie and Davis, 1981). In the case of two independent
Poisson processes weak convergence of UnB(-)'and WnB(-) can be established. wnB(-)
converges weakly to a stationary Gaussian process, the distribution of the supremum
of which is known. Since this distribution depends only on the two rates Aa and Ag
it can be estimated directly from the data. These results will be reported in a

future paper.

14




APPENDIX

In this appendix it is shown that under Assumptions Al - A5, the asymptotic
variances in Theorem 1 can be consistently estimated. We discuss only yz(tl,tz);
the other asymptotic variances are handled in the same way. We emphasize that
in applications.simple estimates such as those given in (25) would suffice.

Consider the sequence {Ui}. For an arbitrary integer n, let

n
1U;
Y, = =1 _ (26)
/n
It is well-known (and easy to see) that
Var Y, = (1-£) v, = z(t t,) + e(n), where e(n) >0 as n + = 2N
17 ]y m 2T Y R ’ :
If Yl’ Y2, cees Yh are i.i.d., then
h 5 2
¥ (Y.-EY.)
ji=p + 1 2 2 1 2
E[;_____;_____.- YO(t ) [ = e%(n) + ¢ Var(Y,-EY;)" . (28)
By A3, Var(Y,-EY,)? is finite.
n

The idea is to divide the sequence {Ui}?=1 into h blocks, each of size n,
with the blocks separated by a distance f, and to let Yj be the normalized sum

of the U's in the j*! block, as in (26), for j = 1, 2, ..., h; see the diagram.

Ul UZ U3 Un Un+f U2n+f-1
N | | eee ) | | 1 | | | | o | eeesecven
n al T T T T T T T T 1 T
- n -+ 4~ £ - - n -
L J L )
) Y
n ZnEf-l
U, U.
g o izl’ y. o imnef
1 /n 2 i~

h

Diagram to describe {Yi}1=1‘

15




Then

1 o2 o 1 % .
=g L (1;-N°, where Y- gy. (29)

can be used to estimate Yz(tl,tz). The proof consists basically of making the
following heuristics rigorous. If f is large, then by the mixing condition on

the sequence {U;} (see (23)) the Yj's will be nearly independent, so that equation
(28) will be approximately true; if n is large, then e(n) in (27) and (28) will

be small, and if h is large then the second term on the right side of (28) will

be small (note however that Var(Yl-EYl)2 depends on n)., Also, the effect of
substituting Y for EY, in the left side of (28) should be negligible. Thus, T
converges to yz(tl,tz) in probability.

The numbers n = n(nB), h = h(nB) and f = f(nB) of course will depend on ng,

but in a way that is to be determined later. The dependence on ng will be
suppressed in the notation for convenience,
We begin by decomposing T given by (29) as
T=1 !2\ (Y,-EY,)% - (¥-EY)? (30)
h .o i ) RO

i=1

We will show that the first term in the right side of (30) converges to yz(tl,tz)
in quadratic mean (hence in probability), and that the second term in the right

side of (30) converges to 0 in mean (hence in probability).

Considering first-l E (Yi-EYi)z, we have by (27)

h j=1
. h h
1 2 2 _] 2 1 <
E[j; iZl(Yi-EYi) -y (tl,tz)“l = ¢"(n) + Var{h 1Zl(Y -EY. ) } . (31)
Writing
Ve Lvar(y-ev)?  and L1 T cov(y,-EY), (1. -EY) D) (32)
h ;T i3 it j j

16




we have )

(v,-Ev,)?} = v, (33)
1

"~

(

|1
Var T

l i
and we examine V and C separately, beginning with V,

Bounding the variance of a random variable by its second moment and using

(26) , we may write

1 n 4
V< E U, . 34
3 .le (34)
The Minkowski inequality gives
1 4.4 1 2
VS——nEU ==0(n 35
=5 B} = 0@ (35)

by A3,
We now consider C in (33), If i < j are fixed and US and Ut are summands of
/n Yi and /n Yj, respectively, then t 2 s+ f, Therefore, by Theorem 17.2.2 of

Ibragimov and Linnik (1971)
1t
4(1+ —)y 2
2 2 T 1-7
| Cov((Y;-EY,)", (Y,-EY,) )| s ()] 4+6{ElY1-EYll } , (36)
|

with u(+) defined by (18). Now by the Minkowski inequality,

4(1+4=) 2014 =) 401+ )
EIYI-EYII ' 1= EIRI-ERII =2 (37)
and therefore, (36) can be rewritten as
|Cov((Yi-EYi)2, (Yj-EYj)2)| = (f)1'0(n). (38)

Since the sequence {[u(f)]r};=1 is nonincreasing, we may write
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wnl® s 3 if B(6)I" = o(g) as £+ (39)
k= (5]

by (23). We conclude that for C defined by (32),
1
Ic) = o(F)n as £+, (40)
Consider now (?-EYI)2 in (30). We have

c 2 _1 2 1
B(Y-EY))" = LE(Y-EYD® + )

E(Y.-EY.) (Y.-EY.). (41)
i3 - S

Combining this with (27) and the argument used to produce (40}, we obtain

2

E[Y-EYI) %{yz(tl,tz) + e(n)) + o(%)n% as f » =, (42)

Now let n = n(nB), h h(nB) and f = f(nB) be sequences satisfying the

conditions

2

» %-remains bounded, and %r-+ 0 asn

n-+w

g~ = (43)

Such sequences are very easy to construct. Then the right sides of equations

(35), (40) and (42) converge to 0 as ng + =, This completes the proof.
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