Report KSC-TR-88-002

TECHNICAL PROGRESS REPORT NUMBER 2

Kendall Preston, Jr.
Kensal Consulting
Building 36
5701 E. Glenn Street
Tucson, AZ 85712

15 December 1988

Progress Report for Second Month
N00014-88-C-0717

Distribution:

<table>
<thead>
<tr>
<th>Addressee</th>
<th>Code</th>
<th>Number of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific Officer</td>
<td>N0014</td>
<td>1</td>
</tr>
<tr>
<td>Administrative Contracting Officer</td>
<td>S0302A</td>
<td>1</td>
</tr>
<tr>
<td>Director, Naval Research Laboratory</td>
<td>N00173</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Code 2627</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, D. C. 20375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>S47031</td>
<td>12</td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alexandria, VA 22314</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strategic Defense Initiative Organization</td>
<td>SDIO84</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: T/IS The Pentagon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, D. C. 20301-7100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prepared for
OFFICE OF NAVAL RESEARCH
Department of the Navy
800 North Quincy Street
Arlington, VA 22217

Scientific Officer
Office of Naval Research
Attn: Dr. Keith Bromley
800 North Quincy Street
Arlington, VA 22217-5000

This document has been approved for public release and sale by
Distribution is unlimited.
This project on subpixel target detection relates to research in the optimization of three-dimensional computing structures for use in target detection and to research in the reduction of an optimum computing to an efficiently-designed silicon chip. During this work period the project concentrated on working with our subcontractor Visual Information Technologies (Plano, Texas) on a computing structure which assumes a 16-bit data bus delivering values of 16 voxels to 7 replicate memories each holding 128K bits. Since reduction of this computing structure to silicon is beyond the current state-of-the-art, another design was prepared using a one-byte input via an input data multiplexor with input data stored sequentially in 7 replicate memories. Data is extracted from these memories via a hard-wired routing matrix to a single flash processor. This new configuration has overwhelming advantages in terms of our ability to reduce it to silicon.
TECHNICAL PROGRESS REPORT

NUMBER 2

Topic Number: SDIO 88-10

Title: Three Dimensional Cellular Automata for Subpixel Target Detection

Contract Number: N00014-88-C-0717

From: Kensal Consulting, Tucson, Arizona (Code: 0D9C9)

To: Dr. Keith Bromley, NOSC, San Diego (Code: N00014)

Project Description:

This project on subpixel target detection relates to research in the optimization of three-dimensional computing structures for use in target detection and to research in the reduction of an optimum computing structure to an efficiently-designed silicon chip.

Technical Progress:

During November work on this project concentrated on establishing our working relationship with Visual Information Technology (Plano, Texas). A visit by the Principal Investigator was made to Visual Information Technology in mid-November. Prior to this visit an analysis was undertaken as to the feasibility of reducing the patented Logical Transform Image Processor directly to silicon (see U.S. Patent 4,641,351, 3 Feb 1987). This computing structure is shown in the first of the attached drawings. The design illustrated assumes a 16-bit data bus which delivers the values of 16 voxels to 7 replicate memories each holding 128K bits. These are indicated as memories M1 through M7.

Seven replicate memories are required in that the three-dimensional neighborhood is
the tetradecahedron which includes 13 voxels. Two of these voxels exist on isolated lines. Four exist as pairs and three exist as a triple. This latter configuration includes the central voxel. This makes seven clusters of voxels, hence the seven replicate memories. As the replicate memories are loaded, the seven address counters associated with the replicate memories are pre-set to zero and then incremented as the 16-bit words arrive and are stored. During this time there are no outputs to the word shifters. After the seven replicate memories are filled with data from the three-dimensional workspace, the address multiplexor is used to enter offset addresses, as appropriate, so that words read from the seven replicate memories to the word shifters during this epoch contain the binary values of 16 central voxels and all of their associated neighbors. This data is fed over 118 wires via a wire matrix to address the 16 LUTs (Lookup Tables). Previously, of course, the LUTs are loaded identically with the same algorithmic structure. Structures which can be loaded provide for various types of erosion, dilation, or skeletonization. In target detection the primary algorithms are those of erosion and skeletonization.

The output address multiplexor is used for two purposes. Initially, it is used to load the LUTs with the algorithmic structure and, subsequently, during the processing epoch, it permits the sixteen 13-bit tetradecahedron values to feed their appropriate LUTs. The result is the return to the host of 16 new values for the 16 tetradecahedrons being processed. This operation continues until all voxels in the workspace have been operated upon.

Assuming four devices per cell, and totaling the number of devices in the primary device consumers, namely the replicate workspace memories and the LUTs, an estimate of four million devices are needed to put the entire computing structure on a single chip. This, of course, could be reduced by half (two million devices) by reverting to a byte-processed workspace. Even at that level the design is infeasible for a single chip.

Using the results given in Technical Report Number 1, and further information furnished by Visual Information Technologies, the Principal Investigator elected a modified byte-addressed processing system as shown in the second figure attached. This configuration uses multiplexing and shifting at high-speed (as is feasible on a single chip) to full advantage to produce the same results as a fully-configured (two
million device) processor with only twenty thousand devices, approximately.

The operation of the new configuration is as follows. Using a byte (8-bit) input via an input data multiplexor, 7 bytes are stored in 7 one-byte registers or "bit shifters." These bytes are stored sequentially at high speed from the 7 appropriate lines of the workspace. Next, 13 hard-wired outputs from leading bits in these bit shifters are used via the address multiplexor to address a single LUT eight sequential times. The LUT is reduced from a 13-address LUT to a 12-LUT by extracting the wire from the central voxel to feed the central voxel logic. This logic is also fed by the output from the LUT. Thus the twelve vertices of the tetradecahedron are processed by the LUT yielding a one-bit output. This output is then combined with the value of the central voxel in the central voxel logic. The output of this logic is fed to a 8-bit shift register which accumulates, after eight shifts, the one-byte output required giving the new values of the eight central voxels being processed.

Although this new configuration is sequential/parallel rather than being fully parallel, it has overwhelming advantages in terms of our ability to reduce it to silicon. Also, due to the fact that all computations are on-chip, an extremely high clock rate can be employed. This will allow us to recoup any disadvantage lost by shifting from a fully parallel to a sequential/parallel mode of operation. Also since only twenty thousand devices are required, several of these byte processors can be configured per chip. At present we are looking at the possibility of having four complete configurations per chip so that 32 total voxels will be processed in one processing epoch. A further advantage to placing several complete byte processes per chip is that chip yield (not processor yield) will reach essentially 100% due to the fact that the chip would be usable if only a single processing structure is in working condition. Since four complete processing structures will be fabricated per chip, yield is likely to be very high.

The above statement has still more important applications to the military where redundancy is important. With four complete processing structures per chip of which any one is totally employable as a three-dimensional computing structure, loss of active componentry during a military mission could be sensed and remedial action taken. Failing processors could be deleted from the computing structure by simply changing the routing of bytes between the workspace memories and the
processor memories. This redundancy, therefore, makes for an attractive fail-safe computing structure under severe conditions of either heat and/or radiation damage.

Plans for December 1988:

Plans for December 1988 (to be documented during the next two technical progress reports) are twofold. Work will continue with Visual Information Technology on chip design. At the same time analytical work will continue, still based on two-dimensional processors, in order to determine the optimum computing structure in terms of computing rate (in pixels per unit time per device).