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1. Introduction

High performance aircraft have mission requirements for operating in high angle-of-attack
and sideslip conditions and in various maneuvers of unsteady, large amplitudes governed by
multiple-input. multiple-output nonlinear dynamics. The large amplitudes coupled with
high degree nonlinear dynamics lead to requirements for nonlinear flying qualities. These
qualities require analyses of nonlinear dynamic stability, nonlinear contral. and noulinear
response behavior of such aircraft. Techniques are needed that (1) are computationally fea-
sible, (2) retain the nonlinearities of the aircraft and (3) provide physical and mathematical
understanding of the important nonlinear flying qualities.

One methodology which has recently exhibited promising evidence of accomplishing the
above is the Volterra Series. The purpose of this project is to obtain Volterra series rep-
resentations of nonlinear systems typical of high performance aircraft in large amplitude
maneuvers.

The development of the Volterra representation for the six DOF (degree of freedom)
rigid body-equations of motion is given in [1]. Therein, the nonlinear equations of motion
are formulated using the four-parameter (quaternions) method (see [2,3,4]). The first three
terms of the Volterra Series representation are constructed in [5] for the longitudinal motion
of the F-8 crusader aircraft using the nonlinear model developed by Gerrard and Jordan
[6]. Suchomel [5] has numerically evaluated the three-term Volterra Series representation
of an extended version of Garrard and Jordan’s model which incorporated some additional
aerodynamic drag and thrust terms. Suchomel’s work compares the predictive performance
of the three-term Volterra Series representation against the Runge-Kutta integration of the
full nonlinear model. His results demonstrate that the approximating three-term Volterra
Series gives an accurate prediction of the output response of the given nonlinear system.

The present work continues the application of the Volterra Series representation [1] to
nonlincar aircraft models of high a flight. The nonlinear models of such flight have naturz!

low-order submodels which hold over separate flight regimes (e.g., pre-stall. stall and post-




stall). For example, i the pre-stall regime we observe an almost linear relationship between
the state variables and the aerodynamic force and moment coefficients. In the stall and post-
stall regimes the relationship becomes a combination of linear, bilinear, quadratic, cubic, etc.
It is not only necessary but unnatural to search for a single high-order, nonlinear relationship
that governs flight behavior in the total envelope spanning pre-stall, stall and post-stall flight.
It is, however, feasible to provide simple low-order dynamics that govern each separate {light
regime and then combine them to form the total nonline‘ar model. The total then consists of
a set of simple low-order equations that govern flight in each regime (or subspace) and that
agree with the equations of the adjoining regime at their common boundaries. In this work
we consider such subspace models. They come about naturally as described above.

In Section 3.1 we consider a nonlinear wind tunnel model for high alpha («) longitudinal
flight involving the limit cycle. We show how the complex nonlinear aerodynamic model has
a natural representation in terms of linear and quadratic subspace models wiich have fairly
simple Volterra Series representations. Simulation analysis is conducted on both the original
nonlinear windtunnel model and the Volterra subspace approximation. The accuracy of the
approximation is investigated.

Next, in Section 3.2, we consider a nonlinear windtunnel model of wing rock which
is generated by unsteady aerodynamics effects [23-33]. The complex model is a simple
composition of two bilinear subspace models. Again, simulation analysis is conducted and
the accuracy of the approximation is investigated.

Section 4 considers methods for analyzing the nonlinear responses discussed in Section 3.
In 4.1 an approach based on Volterra models is discussed. The application of classic analysis
techniques to the same models of Section 3 is explored in Section 4.2.

Our conclusions and suggestions for future research are contained in Section 5.




2. Volterra Series Representation For Nonlinear Systems

The first approach usually taken when confronted with the task of analyzing a nonlinear
system of ordinary differential equations is to linearize. However, some current flight dvnam-
ics problems of interest to the Air Force possess significant nonlinearities in the complete
mathematical model that cannot be ignored. To predict the behavioral characteristics of
the system, the complete nonlinear model, or at least an approximation that contains the
significant nonlinearities, must be analyzed.

The well-developed theory of differential equations has provided general existence and
uniqueness results for nonlinear systems. However, these results, unlike the corresponding
results for linear systems, do not provide a closed form representation for the solution.
The mathematical tools for the analysis of nonlinear systems are limited, and the known
tecliniques are not well developed when compared to the results for linear systems.

One technique for the study of nonlinear systems that has shown promise is the Volterra
series approach [1,5,7-19]. This approach provides a series representation for the input-output
behavior of the nonlinear system. In particular, the Volterra series gives a mathematical
representation of the solution in the form of an expanding infinite series of integrals which
encompasses the nonlinearities of the system. This representation can be viewed as a series
in which each term is the solution of a linear equation where the nonlinearities of the system

appear as forcing functions. For a nonlinear differential equation of the form
z = f(z,u)
the Volterra series representation of the solution is an infinite series of integrals
t
l‘(t) = ho(t) + / h](t - 0’1)71,(01)d0'1
0
t t
+ / / h2(t —U],t —UQ)U(O'l)U(Ug)dUIdaz (21)
o Jo

t t t
+ / / / h:j(t - O’l,t - 0'2,t - Ug)U(O’l)U(Og)U.(O'g)d(f]dd’gda’:;
0 JOo JO
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where ho(t) 1s the zero-input solution and the h;,7 = 1,2, ..., are called the ith order Volterra
kernels. For a complete discussion of the Volterra series representation for ordinary differ-
ential equations see [20,21]. Also, see Appendix A for additional comments on the Volterra
series.

The Volterra series approach provides an approximation for the solution by truncating
the series. Such a finite representation gives the response of the system in terms of the input
signals. initial conditions, and the stability derivatives of the system. This approximation
provides not only a methodology for predicting the behavioral responses of the nonlinear syvs-
tem but also a methodology for the study of how various parameters affect the controllability
and stability of the system.

The mathematical theory for the Volterra representation is by no means complete. Al
though some convergence results for the series representation exist, they are extremely con-
servative and have not proven useful in engineering applications. In most applications the
sighuficanl cuatacieristics ol the system are contained in the second or third terms; therefore
convergence is not a major issue.

Our technique for approximating the solution of nonlinear models of high o flight is
based on a subspace concept. The subspaces arise naturaliy in the acrodynamic forces and
moments in high performance flight. Our approach is outlined as follows:

1. partition the total envelope into natural subspaces in which the nonlinearities can be
accurately described by low-order multivariable polynomials (preferably third order or
less),

2. pick an eguilibrium point for each subspace, (we have no definite procedure for selecting
the equilibrium point - at present these points are selected in an ad hoc manner),

3. approximate the solution of the differential equation for each subspace by a truncated
Volterra series (three terms or less).

For this approach the differential equation form is employed for the terms of the Volterra




series instead of the integral from (see Appendix A). Consider inputs »f the form
= ug + ku,

where ug, u; denote an equilibrium and a perturbation input. The solution to the nonlinear

differential equation has the form, see [20, Chapter three],
r=ro+kry + Kz, + KFry 4+ -

where r 1s the state, b is a éonstant, To 1s the initial equilibrium state and z, is the contribu-
tion to the state from the ith term in the Volterra series. Substituting this representation for
the solution r into the governing equation, expanding the right hand side in a Taylor series
with respect to k, and equating coeflicients of equal powers of k gives rise to the following

equations for the first three terms of the Volterra series representation

i’l = Al‘] + bu1
T2 = Az2 + qi(x1), z2(0) =0

T3 = Ar3 + g2(z1,22), 73(0) =0

where A is a n X n matrix (the state is n x 1), b is a n x 1 veciu, and the g;,1 = 1,2 are
in general n x 1 nonlinear functions of their variables. All of these quantities depend on the
equilibrium point about which the Volterra series is expanded. Upon entering a subspace the
state equations are reinitialized by incorporating the current state into the initial condition
of the linear part z;. In the event that the polynomial of step 1 above is first order, the
corresponding, ¢, = 1,2 are zero and the Volterra series is simply a linear system.

In Appendix G we describe a program that computes the differential equations for each

Volterra term. This program was used for all the Volterra equation calculations discussed in

this report.




3. Simuiation Results

The following examples will serve to illustrate the application of the Volterra series

representation to subspace models of nonlinear systems.

3.1 Longitudinal Limit Cycle: Exaraple 1

For the purpose of illustrating our approach, we consider a simplified nonlinear model of
the longitudinal limit cycle at high angle of attack, a. Simplified high a flight is governed
roughly by the following two differential equations developed in Appendix B

& = g+ 9.168C,(a) — 1.8336(6. + 7°) + 7.361904 (3.1)
q=573(Crn,a+ Cp,, b) +2.865 (3.2)
where « is the angle-of-attack in degrees, ¢ is the pitch rate in degrees per second and 6.
is the elevator control in degrees. To keep the presentation simple, we prescribe (', = —1
and (', = —1.5. The nonlinear plunging force coefficient C,(a) is represented by the
following equations (3.3) through (3.6). It has the appearance of an inverted high o lift
curve, Figure 3-1. This model in discrete data points was taken from measured wind-tunnel
values of the T-2C airplane, Stalford [22]. The coefficients in equations (3.3) through (3.6)
were numerically calculated to provide a fit for the dis~rete data points for the corresponding
a intervals.
The slope of the C, curve is approximately linear up to stall which occurs around a =

14.5°. This portion of the C, curve is represented accurately by the linear function
C,(a) = —0.073784%4a, a < 14.36". (3.3)
In the stall region between 14.36° and 15.6° the C, curve is quadratic in nature and is
represented accurately by the quadratic equation
C.(a) = 0.09722a% — 2.8653c + 20.03846, 14.36° < o < 15.6°. (3.4
In the stall/post-stall region between 15.6° and 19.6° the (7, curve reverses its curvature and
is represented accurately by the quadratic equation

() = =0.01971a* + 0.74391 — 7.80753, 15.6° < a < 19.6° (3.5)
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FOR T-2C AIRPLANE §, = —13°.




In the post-stall region between 19.6° and 28°, the C, curve exhibits linear behavior
C.(a) = —0.01667a — 0.47333, 19.6° < a < 28°. (3.6)

The above division of the « interval into four a subspaces leads to an accurate representation
of the nonlinear function C,(a) by four low-order equations.

In each of the subspace regions described by Equations (3.3) through (3.6) an equilibrium
point is chosen and the solution of the differential equation is approximated by the first three
terms of its Volterra series. For simulation and analysis purposes, we use the differential
equation form for the Volterra series terms. Following the procedure outlined in Section 2,

with state = [, q]T and input u = &, (elevator angle), we consider inputs of the form
8e = bey + kb, (3.7)

where 6., is the equilibrium input and & is a real parameter needed for the perturbation anal-
ysis below and does not have physical significance. The solution to the nonlinear differential

equations (3.1) and (3.2) has the form
T =z0+ kry + kKlzg + Koz + - - (3.8)

where 2o = [0, go]7 is the equilibrium state and z; = [0, ¢]7 is the contribution to the state
from the ith term in the Volterra series. Substituting (3.7) and (3.8) into (3.1) and (3.2),
expanding in a Taylor series with respect to k, and equating coeflicients of equal powers of

k results in differential equations for the first three Volterra series terms of the form s

i’l = A.’l‘] + b(se1
Ty = Az, + gi(T1), z2(0) =0 (3.9)
L3 = Arz + go(x1, 72), z3(0) = 0.
In all four subspaces regions the column matrix b is given by (see Appendix C for Region I1)
_[-1.8336
b= [ ~8.505 ] (3.10)

8




and the matrix A, the Jacobian at (ao, go, b, ), has the form

_— All 1
A= [—5.73 0] (3.11)

The entry A;, depends in this example on the value ap. However, in subspace regions I
and IV, as described by equations (3.3) and (3.6), the approximation (3.9) is linear with
a1(z1) = g2(x1,72) = 0 and A;; is independent of o with values —0.67646 and —0.152831,
respectively.

In the subspace regions Il and 111, as described by Equations (3.4) and (3.5), the functions

g1 and g, have the form

gi(xy) = [91})"3] (3.12)

g2(zy,22) = [921%102] (3.13)

where the constants g;; and g¢;; depend on the particular region. We picked the equilib-
rium point for each region by first assigning a value for é., and then calculating ag, 70 from
cquations (3.1) and (3.2). In region II, the Volterra series has been expanded about th* equi-
librium point (ao, qo, &¢,) = (14.36°, —1.7552°/sec, —9.24°) giving g1 = 0.8913,95; = 1 826
and A;; = —0.6709. In region III, the Volterra series has been expanded about the e jui-
librium point (ag, qo,8e,) = (17.6°, —7.911239°/sec, —11.4°) giving g1; = —0.180701, g, =
—0.361403 and A,; = 0.459482. The calculations for g1, 9, and Ay, for region II are giver.
in Appendix C. In the prediction analysis we use the following procedure. Starting from
conditions a® = 11°,¢° = 0 and §. equal to a constant value, the Volterra model of the
first subspace describes the airplane’s response until a = 14.36° is reached. At this point
the Volterra model of the second subspace describes the response until a reaches one of the
boundaries, 14.36° or 15.6°. If the response intersects the 14.36° boundary, then the first
Volterra model governs the response. If the response intersects the 15.5° boundary, then
the third subspace model governs the motion while a remains between 15.6° and 19.6°. The
fourth subspace model governs the model when a is between 19.6° and 28°. Upon entering
a new region, the equilibrium state, xo, is changed to correspond to the equilibrium point

9




e

used in this region. The initial linear state x, is set equal to = — xo, the value of the state
at the boundary crossing minus the new equilibrium value. The initial “nonlinear” states,
I, Iy, ..., are set equal to zero.

We define &; as the state resulting from a Volterra approximation with j terms

j «
:AL‘_,'=$0+Z.’E,'= [gj} (3.14)

where r, is the equilibrium state.

In the example described above we have j =3
Ia(t) = xo + a1 (t) + x2(t) + x3(t) (3.15)

where x;(t),7 = 1,2, 3 satisfies (3.9). The solution to the nonlinear differential equations (3.1)
and (3.2) is denoted by z(t) = [a(t),q(t)]T. We use a fourth-order Runge-Kutta routine to
calculate z(t), thus aft).

We consider two step inputs 6. = —9.2° and 6. = —9.4°. The onset of the limit cycle
occurs between these two inputs. For 8. = —9.2°, the responses a(t) and é&3(t) are compared
in Figure 3-3. Their differences are presented by the solid line in Figure 3-6. We observe
no limit cycle for this input. The three-term Volterra response is an excellent match to the
nonlinear response. The maximum difference is only 0.05 degrees as shown in Figure 3-6.

For §, = —9.4°, the responses a(t) and &3(t) are compared in Figure 3-4 with their
differences presented by the solid line in Figure 3-7. This input of 6. = —9.4° generates
a limit cycle. Again the three-ierm Volterra model response is an excellent match with a
maximum difference of 0.01 degrees over a time interval of 100 seconds as shown in Figure
3-7.

For comparison, we consider a piecewise-linear model, choosing the following regions and

lincarized models of (,(«), Figure 3-2,

C.(a) = (~0.0728158T)a, o < 14.74° (3.16a)
(. (a) = —1.073305924 + 0.088470922(c — 14.74°), 14.74° < a < 17.4° (3.16b)
10




C.(a) = —0.8308956 + 0.03309905(c — 17.4°), 17.4° < a < 18.87° (3.16¢)
C.(a) = —0.7882234 — 0.016633734(a — 18.87°), 18.87° < a < 28° (3.16d)

The responses using the above approximations are compared with the nonlinear responses,
a(t), in Figure 3-5. The differences are presented by the broken line in Figure 3-6 for
d. = —9.2°, and in Figure 3-7, for 6, = —9.4°. The maximum difference in Figure 3-6 is
about 2.5 degrees, and in Figure 3-7, about 0.7 degrees. These differences are one to two

orders of magnitude more than those obtained using the Volterra approximation.
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3.2 Wing Rock Limit Cyvcle: Example 2

Unsteady aerodynamic effects at high a generate a wing rock limit cycle phenomenen on
aircraft configurations incorporating slender forebodies (e.g., F-5 and X-29), Nguyen, et al
[24, 26] and Brandon, et al [30]. We consider a mathematical model of an experimental wind-
tunnel wing rock model developed by NASA Langley Research Center, Nguyen, Whipple and
Brandon [24]. The following equations (3.17) and (3.18) hol for a wind-tunnel sting mounted
model on an apparatus which allows the model to rotate freely about its roll axis with no
angular limitation.

p=Dp (3.17)

Sb
[;

Fw]l

)
C1 (@) + Cy (e ;J)f‘f, (3.18)

p=
where ©» and p are the roll angle in radians and roll rate in radians per second, respectively.
Here, the constants ¢, S,b, I, and V' are the dynamic pressure, wing reference area, wing
span, roll moment of inertia and free stream air speed, respectively. The coefficient C, is
the rolling moment stability derivative due to sideslip 3. The coeflicient Czp is the rolling
moment derivative due to roll rate p and sideslhp rate 3. Approximate wind-tunnel values of
these coefficients are given by Nguyen, Whipple and Brandon for the angle of attack a = 30°.

See the development in Appendix D.

Ci,(a = 30°) = —0.4584 (3.19)

Ci,(a =30° 8) = 0.4[1 — 7.64]8]], (3.20)
0<|8<035

0 =23 (3.21)

Evaluating the constants in (3.18) we have, see [23],

1 /gSt
5 <q1 )> Ci (o = 30°) = —26.6667 (3.22)
aSh\ [ b\ L
( I, ) (2_\7> Cry (@ = 30%, ) = 0.70485[1 — 3.82| ] (3.23)
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In view of (3.22) and (3.23), Equation (3.18) becomes
p = —26.6667¢ + 0.76485(1 — 3.82|¢(]p (3.21)

Our nonlinear model is described by (3.17) and (3.24).

The nonlinear equation (3.24) lends itself to separation into two regions: Region I with

@ > 0 and Region II with » < 0.
p = —26.6667, + 0.76485[1 + (—1)’3.820]p (3.25)

where j denotes the region.
Let .r = [.p]7 be the state of the nonlinear equations (3.17) and (3.24). Let x, = {4,.p,])7
be the contribution to the state from the ith term in the Volterra series. The differential

equations for the five-term Volterra series approximation have the form

Iy = Ar (3.26a)
Iy = Arg + gi(xy), 22(0)=0 (3.26b)
T3 = Ars + ¢2(&1, T2), z2(0) =0 (3.26¢)
Ty = Arg + ga(xy. 22, 73), 74(0) =0 (3.26d)
Ts = Azs + ga(Ty, T2, T3,74), 5(0)=0. (3.26€)

The equilibrium point of (3.17) and (3.24) is wo = 0, po = 0. The A matrix in (3.26) is given
by

- 0 1 a9~

A= {—‘26.6667 0.76485] ' (3.27)

The g, functions in (3.26) have the form

- , 0 g,
gi(-Tl» RN 1‘:’) = [(—1)’2-921929,‘2(%, ,:I‘,)] (326(\)
where j denotes the region {(j =1 or 3 = 2) and where
g12(r1) = o1 (3.28h)
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g22(r1, 12) = @1p2 + w2 (3.28¢)
g32(T1, T2, I3) = ¥1P3 + Yap2 + Yam (3.28d)
Ga2(X1. T2, T3, T4) = @©1P4 + P2p3 + wapP2 + wap1 (3.28¢)

As in eq. (3.14). we let 7, be the state resulting fromn a Volterra series with j terms. For
J = 1.2,....5. the roll angle responses for the initial condition ¢(0) = 5.73° and p(0) = 0.0 are
presented in Figures 3-8 through 3-12 respectively. The roll-angle response of the linearized
system I, = Ar; is compared with the nonlinear response in Figure 3-8. The linearized
system diverges to a roll angle of 180° after 9 seconds: it does not predict the stable limit
cvele, The limit <yele is predicted by the two-term Volterra approximation; the amplitude is
short by about 7 degrees. The three-term Volterra approximation overpredicts the amplitude
by about 5 degrees. The four-term and five-terni Volterra approximations provide good
predictions for both the amplitude and the period of the wing rock limit cycle, Table 3.1.
The five-term Volterra approximation predicts the amplitude to within 0.31 degrees. The

nonlinear system response was calculated using a fourth-order Runge-Kutta routine.

3.1. Comparison of Predicted Wing Rock Limit Cycle Characteristics

System #. Roll Angle
Volterra Period Amplitude
Approximation (Seconds) (Degrees)
two-Terms 1.2100 28.15
three-Terms 1.2257 40.60
four-Terms 1.21500 31.46
five-Terms 1.21857 35.65
" Nonlincar 12187 35.34

System

We observe that both the period and amplitude values for the Volterra approximations
given in Table 3.1 approach the corresponding value for the nonlinear system. Let E,.1 =
2.3.4.5 denote the error for the amplitnde as predicted by the i-term Volterra approximation.
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It follows that

Eil _
| < =231
|E7|
Thus we might suspect quadratic convergence for the sequence {£;}22,. We make this

observation for this one example only and note that it is based on numerical results for four

terms.
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4. Analysis

In this section we consider several approaches to analyzing the nonlinear limit cycles
considered in Section 3. First we suggest an approach for analyzing the wing rock limit
cycle that is based on the Volterra submodels developed previously. Following this, the
usefulness of classical approaches to the analysis of the wing rock and longitudinal limit
cycles is explored.

1.1 Volterra Series Analysis

In this section we apply the Volterra series subspace technique to the wing rock example

given in Section 3.2. In particular, we obtain a two-term representation for the solution of

the system
p=p (4.1)
p = —26.67Tp + 0.76485[1 — 3.82|¢||p

For convenience we let a = 26.67,b = 0.76485, c = 3.82b and define the 2 x 2 matrix A by
|1 0 1
A= [—-a b] :
The system (4.1) can now be represented by the matrix equation
T = Az + g(z) (4.2)

where z = [, p]7 and the nonlinear vector valued function g is defined by g(z) = [0, —¢|e|p]T.
It is to be noted that the unique equilibrium point for (4.2) is o = 0. We assume that
system (4.2) has a solution of the form ¢ = kz, + k%*z; + ... where k is a constant and

i = [z, zi2)T = [éi, 2T, 1 =1,2,.... Substituting z into (4.2) yields

.7 2. cee = L2 0
bty + k2g o= Alkoy+ Koot ) b | pn 4 kg 4 ) (kg + K2zas + )

in the region ¢ > 0. At this point we equate the coefficients of the first and second powers
of the constant k to obtain the following equations for the first and second terms of the
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'olterra series representation

2-?1 = A.Tl
and

i'g = ‘4132 + gl(xl)

where g;(z,) = [0, —cz13715)T. To include initial conditions, say z(0) = z

we modify (4.3) through (4.4) to become

1"1 = AI], .’1‘1(0) = IO

and

Ty = Ar2 + g1(x1), 72(0) =0

The state transition matrix for (4.5) is given by (see Appendix F)

At — obt/2 Bngt; By, t;

where

) |
stnw,t, Biy(t) = —sinwpt
o Wo

Bll(t) = COS(‘)Ot -

—-a . b .
By(t) = ;—smwot, Bay(t) = coswot + Eu—)—smwot
0 0

and wo = y/(4a — b?)/4. For z° = [0, p°]T we have

_ Al 0 _ o bty2| Biat
Ti(t) =€ [po]-—l’e [Bngt%]

and

£a(t) = e 0 4 /tef“f—ﬂ [g”g”;] Bya(7) Bya(7)dt.

o 20— T

(4.3)

(4.4)

, in system (4.2)

(4.7)

(4.8)

(4.9)

Using various integration techniques, we find that x,(¢) has the form (see Appendix F)
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t
1) = —o(p?)2eAt | —(36% + 36w3) sin’uwo bt/
(1) c(p’)’e {[ —6ab 3w (b® + 36wd)

+ sin wotco.swot (/2
12(1 b2 -+ 36w0)
coswot be/2
+ 2 T 1 2R 2\
—b* — 36w0 + 24a | (b2 + 36w?)a
+ —8h? stnwot Sbt/2
b® + 36bw? — 24ab 2awo(b? + 36wl)

—8b 1 ).
b* + 36w3 — 24a | a(b? + 36wd)
Combining (4.7), (4.8) and (4.10), we have a representation for the approximate solution

Z2(t) = z1(t) + z2(2) for (4.1) with initial condition p(0) = 0,(0) = p°. To calculate the

amplitude and period for the limit cycle of the wing rock example, we can set

Ba(t)) = 21(th) + 22(t) = [_‘;)o] (4.11)

where t; represents half the limit cycle period. Assuming that the limit cycle is symmetric
with respect to the ¢ axis, equation (4.11) allows us to (at least in theory) solve for p® and
ty in terms of a,b, c.

The exact representation for p° and ¢, in terms of the values a,b and ¢ probably can-
not be obtained in closed form, and ways to simplify the equations to obtain approximate
soi .tions should be considered. From this example we see that simple (two-term) Volterra
approximations lead to complicated expessions when solved explicitly. This indicates that
techniques of a more qualitative and indirect nature may be needed to show how the explicit

Volterra solutions can be simplified.
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4.2 Classical Analysis

In this section we present several classical approaches to the analysis of the examples
discussed in this report. A review of several standard techniques will serve to put the new
approach we have considered into proper perspective and to suggest methods for carrying
out analysis using Volterra submodels. In the following sections, the wing rock and longitu-
dinal limit cycles are analyzed using an energy (Lyapunov) method, harmonic balance, and
piecewise-linear analysis.

1.2.1 Wing Rock

The equation that described the wing rock considered in this report is of the form
Pt+ap—bp+elelp=0 (4.12)

where p is the roll angle in radians and in our case @ = 26.7, b= 0.765, and ¢ = 2.92.
Most classical approaches to analysis of nonlinear dynamic behavior assume that the
behavior is characterized by a single nonlinear differential equation (i.e. one region). Since
this is the case with our simplified description of wing rock, it is an ideal candidate for

application of classical methods.

Energy Analysis

A standard equation from mechanics, which involves nonlinear damping, is of the form.

see [34],
I+ h(x,r)+g(x)=0.
The energy of this system is given by
E=12+ /g(r)dm
and the change in energy with respect to time by
dE/dt = —zh(z,1).

Our equation (4-12) can be put in this form using the following correspondence




g=ap

h = —bp + c|plo.

To evaluate the change in energy of our system, we consider two cases.
L. p>0: —zh(z,z) = @*[b — ¢
= dE/dt > (<)0 when ¢ < (>)b/c
I1. p<0: —th(z,z) = ¢*b + cy)
= dE/dt > (<)0 when ¢ > (<) — b/c
The regions of energy increase/dccrease are shown in Figure 4-1. 'l he situation shown in
Figure 4-1 is similar to that of the classical Van der Pol oscillator. The origin is an unstable

cquilibrium point as the system encrgy increases in a neighborhood of the origin.

e
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FIGURE 4-1. Regions of Energy Increase/Decrease

3




As the system cnergy increases, the system is forced into the region |p] > b/c where the
energy is decreasing and in turn is forced back into the region |¢| < b/c where the energy is
increasing. This alternation between increasing and decreasing energy results in the observed
limit cycle. If the coefficient of the nonlinear term, ¢, should change sign, then energy will
increase everywhere in the phase plane and the system will be unstable.

This analysis also indicates why the linear submodel approach fails to predict a stable
limit cvcle. The linear submodels accurately redect the behavior in a neighborhood of
the origin, where the energy is always increasing, and thus predict completely unstable
behavior. The Volterra submodels reflect the behavior over a larger region of the state
space and somehow capture the positive damping that occurs for larger values of |¢]. An
area for future investigation would be to characterize the damping in a truncated Volterra
approximation.

Although energy analysis is a very powerful tool for this second order example, its use-
fulness declines as the systems become more complicated. It is not generally possible to
define a useful energy (Lyapunov) function for a complicated system of equations.

Harmonic Balance

To apply the first-order harmonic balance method, we assume that the oscillation is a

pure sinusoid
@ = Acos(wt) (4-13)

of unknown amplitude and frequency. Substituting (4-13) into the original differential equa-

tion vields
— Awecos(wt) + aAcos(iot) + bAwsin(wt) — cAw|Acos(ret)|sin(wt) = 0 (4-11)

Substituting the Fourier series for |cos(wt)

H e

1
lcos(wt)| = = + —cos2wt + . ..
3

into (1-11) and dropping all harmonics vields

. o 20 ., . 4 .
~Awtcostwt) + aAcos(wt) + bAwsin(wt) — = Atwsin(wi) — (—r/\zwsm(—uvf) =0
s T
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Equating the coefficients of the cos(wt) terins gives the equation for the limit cycle frequency

w = a.

Equating the coefficients of the sin(wt) terms gives the equation for the limit cycle amplitude

A_37rb

_'—4?-

Substituting the values of the parameters a, b, ¢ for our case gives
w =517 (T = 1.216)

A= 3537

which compare very favorably with the simulation results T = 1.219 and A = 35.34°.
The harmonic balance method is a very powerful tool for analyzing simple oscillations
and can be extended to higher order systems with a concomitant increase in complexity. In

the next section we apply this technique to a more complicated example.

4.2.2 Longitudinal Limit Cycle

An important feature of the equations modeling the longitudinal limit cycle is that the
nonlinearities cannot be represented in a simple manner over the entire range of interest.
Most classical analysis techniques do not apply in this situation. The approach outlined
in this report decomposes the state space into regions in which the nonlinearity can be
represented by a low order polynomial. This section examines two other approaches.

The first approach approximates the nonlinearity by a piecewise-linear function and
provides qualitative information about the behavior of the resulting system. The second
approach represents the nonlinearity numerically, using a spline fit to wind tunnel data, and
investigates the usefulness of harmonic balance techniques.

Piecewise Linear Analysis

We consider the longitudinal equations (3-1), (3-2) and the piecewise-linear approxima-
tion of C,(a) given by (3-16). The system is unstable in regions II and IIT (14.74° < o <
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13.87°), as the coetlicient of a in (,(a) is positive, and stable in regions I and IV. For a

given constant input, é.,, the equilibrium value of & is found by setting ¢ = 0 and given by
ap = 0.5 — 1.56,,.

For values of é., between 0° and 9.5%, the equilibrium value of « is in region 1. Since this
region is stable we would expect a stable response. For values of 4., between —9.5° and
—12.2°, the equilibrium value of « is in an unstable region. The trajectory cannot converge
to this equilibrium point and it is forced into one of the stable regions that in turn forces it
back towards the equilibrium point. Thus we would expect a limit cycle to develop.

This simple analysis allows us to conclude that a limit cvcle will develop for certain
values of é.,, and to estimate the onset of the limit cycle as 8., =~ —9.5°. A more extensive
development of this analysis can be found in [35]. In addition, it should be noted that a large
amount of qualitative and quantitative work has been done in the general area of piecewise-
linear analysis. One advantage of using Volterra submodels will be to reduce the number of
regions. which may make analysis more tractable.

Harmonic Balance

To investigate the usefulness of harmonic balance techniques in more complex situations.

we consider the following, more accurate, longitudinal model for the aircraft
& = q+0.1066 4+ 0.1097[C. (e, é.) + C.4(a)q(0.0123)]

§ = 584[Cp(a, 8,) + Cpnyl)q(0.0123)]

where a is in radians and ¢ in radians/second. Because of its small magnitude, the (. ()
termm will be ignored. The C',, (', Cppy functions will be represented by spline fits to wind

tunnel data. Plots of these functions are shown in Figures 3-1 (for 6, = —18°), 4-2, and 4-3.
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The most severe nonlinearities occur near a = 15°, which is the onset of stall.

Given a constant 8., we first assume the solution has the form

a(t) = v + acos(wt)

g(t) = v, + azcos(wt) + bysin(wt).

Using a truncated Fourier series, we can approximate the outputs of the nonlinearities by

Crm(a(t),be) = Ym + amecos(wt)

C.(a(t),d.) = v, + acos(wt)
Crmg(@(t)) = Ymq + amqcos(wt)

where the v, and a, coefficients are computed numerically. Substituting these expressions
into the model and retaining only first harmonic terms results in three equations for the
unknowns <, a, and w. The harmonic balance (numerical) solutions for a and w are compared

with values extracted from time-domain simulation results for three values of é, below

Harmonic First-Order Balance Simulation
be a w a w
-15 2.23 4.71 3.15 4.16
-20 3.54 3.56 4.60 3.19
-25 4.35 2.87 5.85 2.73

The values predicted by a first-harmonic analysis are not very accurate.

One problem with the above procedure is that higher harmonic terms in the Fourier
expansions of Cp,,(a(t)) and g(t), which were ignored, can “beat down” and affect the con-
stant and first-harmonic terms through the Cp,(a)q term in the ¢ equation. By considering
the multiplicative interaction of the second harmonic of C,, (a(t)) with the first harmonic
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of g (only one of many higher-order contributions) the improved results given below were

obtained.

Modified Harmonic First-Order Balance Simulation
be a w a w
-15 2.64 4.46 3.15 4.16
-20 4.74 3.21 4.60 3.19
25 5.87 2.76 5.85 2.73

These results show that with very little additional numerical complexity, it is possible to

obtain accurate results outside the stall region. Near stall (6. = —15°), however, the results

degrade.

A more accurate (and complicated) analysis assumes the solution is of the form

a(t) =5 4+ aycos(wt) 4 aycos(2wt) + bysin(2wt)

+ ascos(3wt) + bysin(3wt).

Assuming similar Fourier expansions for g(t), Cm(a(t),é.), C.(a(t),é.) and Cpq(a(t)), sub-

stituting these expressions into the model, and retaining terms through the third harmonic

results in seven equations for the unknowns w,~v,ay, ag, by, az, b3. Solving these equations

produced the following results

Harmonic Third-Order Balance Simulation
b a w a w
-15 2.96 4.24 3.15 4.16
-20 4.36 3.25 4.60 3.19
=23 5.60 2.75 5.85 2.73

These results show good agreement with simulations even near the onset of stall. From

this example, accurate predictions of the amplitude and frequency of the longitudinal limit
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cycle near stall, where the nonlinearitics are the greatest, require that the effect of higher
harmonics be considered. When the nonlinear functions involved in the equations are derived
from wind tunnel data, only numerical results will be possible in general.

In summary, the classical methods provide significant insight into the examples consid-
ered in this report. For the most part, however, they are limited to assessing stability and
predicting limit cycles, and therefore do not form a broad base for the study of nonlinear
flyving qualities. On the other hand, the Volterra submodels retain the essential character-
istics of the nonlinear model, but at this time we do not know how to analytically extract
the desired information. The analytical work should be eased somewhat by the fact that the

Volterra approach requires fewer regions than the piecewise-linear approach.
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5._Conclusion

This work has investigated the use of the Volterra series representation with regard to
determining nonlinear flying quality parameters, (also see [5, 36, 37]). Our first goal was to
determine if the Volterra series could accurately represent common nonlinear aerodynamic
models over the required range of force/moment conditions. We found that by breaking
up the state space into natural subspaces in which the nonlinearities could be expressed as
low-order polynomials, the total nonlinear model could be represented in each subspace by
a low-order, truncated Volterra series. This is a key result, since dealing with the original
infinite Volterra series would be intractable. Our simulations showed that the combination
of these submodels retained the essential characteristirs of the underlying nonlinear model.
Since most nonlinearities encountered in practice can be accurately represented locally by
p>lynomials, this technique has general applicability.

Our second goal was to determine if a piecewise-linear model, formed by replacing the
nonlinear model by a linear model in each subspace, could accurately capture the nonlinear
phenomena contained in the original model. We found that this was not the case. In
simulations of a wing rock limit cycle, a piecewise-linear model did not predict the stable limit
cycle. Using two-term Volterra models in the same subspaces did predict, via simulations.

the existence of a stable limit cycle. In simulations of a longitudinal limit cycle, the piecewise-

linear model was significantly less accurate than the low-order Volterra model.

The above results demonstrate that there is a need to go beyond piecewise-linear analysis
of nonlinear systems. One appealing feature of the Volterra series is that the “solution™ can
be written down explicitly. as shown in Section 4.1 for the wing rock example. However,
the solution contains so many terms, even for this simple example, that further analysis is
necessary in order to extract the important features.

We believe the first priority of future research should be the development of methods for
the qualitative and quantitative analysis of multi-region phenomena using Volterra submod-

els. If such methods can be found the Volterra approach could be a useful tool for nonlinear
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flving qualities research.

Our work has also indicated several other areas that would benefit from further research.
The first area is the selection of regions and the trim points within regions, and the impact
of this selection on the accuracy of the resulting submodels. In the examples considered in
this report, the selection was done in an ad hoc manner. The second area is the connection
of submodels at the region boundaries. There are several ways in which this can be done
and the method used in our examples, initializing the first (linear) Volterra term with the

current state and initializing the other terms to zero, may not be optimum.
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variables

LIST OF SYMBOLS

Description

A

-

Un =

IS

(deg)
(rad)
(deg)
(deg)
(deg)

(rad)

(ft)
(1/rad)

(1/deg)
(1/deg)

(rad/sec)

(deg/sec)

(Ibs/ft?)
(ft?)

Angle-ot-attack

Angle-of-sideslip

Elevator control angle

Equilibrium elevator control angle

Deviation of elevator angle from equilibrium

Euler roll angle

Dynamics of linearized equations (i.e. Jacobian)
Input matrix for control variable u or 6,

Wing span (Section 3.2)

Rolling moment stability derivative due to sideslip 8
Rolling moment derivatives due to roll rate p and sideslip rate
Pitching moment derivative w.r.t. «

Pitching moment derivative w.r.t. é,.

Plunging force coeflicient (approximates inverted lift coefficient)
Nonlinear term of ith differential Volterra term

ith order Volterra kernel

Grouping term parameter in Volterra series expansion
Roll rate

Pitch rate

Dynamic pressure

Wing reference area

Control input
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(ft/sec)

LIST OF SYMBOLS (Continued)
Free stream speed
State vector
Initial condition
State vector of ith term in Volterra series expansion

State vector of Volterra series approximation with i terms
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Appendix A

Volterra Series Representation

In this appendix, we show how the Volterra series arises naturally in the solution of
nonlinear ordinary differential equations. The differential form of the series that we have
used in this report will be an intermediate step in the calculation of the integral form that

has been used by Suchomel [17].

To keep the presentation simple, we consider the scalar, first-order, nonlinear differential
equation

&=z +bx*+u (A.1)

The procedure we outline below is general, and can be extended to equations of any order,

see Rugh [20].

We consider the solution of {A.1) about the equilibrium point (zo,us) = (0,0). By
considering an input of the form

u = kuy, (A.2)

where k is an arbitrary constant, the solution can be written in the form
t=kry+ Krs + kPrg+--- (A.3)

Substituting (A.2) and (A.3) into (A.1), and equating the coefficients of the various powers
of k (this calculation has been done in detail for the specific examples considered in the

report) yields the set of equations
ry=z+u; ,(0)=0 (A.4)

.7.'2 :.7‘2+hl'f .1'2(0):0 (.‘\3)
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The solution of (A.4) is well known and given by

a0 = [ ¢ uondn (A.6)
0

The first-order Volterra kernel is

hl(t - 0'1) = et"”‘.

By considering bz? to be the input to (A.5), the solution may be written as

t
xg(t)z/et_’bxf(s)ds.
0

Substituting for z,(s) from (A.6) gives

t s s
x2(1) =/ e“”)b/ e’"”‘ul(al)dcrl/ e’ 7%uy(o2)dods.
0 0 0

To facilitate interchanging the integrals, the upper limits of the nested integrals will be

changed from s to t by inserting an appropriate unit-step function

1 220
5“‘(z)={0 2<0’

The result is

t t t
ry(t) = / (“")b/ / b_1(s — a)e’ "M uy(oy)doy, 61 (s — 02)c* 77wy (0,)doyds.
0 0 JoO

Changing the order of integration yields

¢ 14 t
z4(t) = / / bet=21-72 / e6_1(s — 01)6_1(s — o3)dsuy(oy)uy(02)doydo,
o Jo 0

The 6_; functions can be eliminated by writing

t pt t
7,(t) :/ / be! =102 / e’dsuy (o) uy(oq doido,.
o Jo Jmar{ayo;)
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Evaluating the innermost integral results in

t t
z2(t) = / / be!~ 2! — em”("""2)]u1(01)u1(02)d01d02
o Jo

Thus, the second-or ler Volterra kernel is

ha(t,00,02) = be! 71772t — gmez(e1.02))]

To put this in the time-invariant form h,(¢t — 01,t — 02) we can write

hg(t,01,0’2) = be(i—al)e(!—az)e—t[et _ emar(al,al)]
— be(t—ax)e(t—az)[l _ 6171.(11‘(01.02)—!]

— be(t—al)e(t—oz)[l _ emar(o,—t,ag—t)]

= hg(t —op,t — 0‘2).

Therefore, the solution can be written in the form

t t pt
x(t) :/0 hy(t — oy)u(oy)doy +/0 /‘; ho(t — o1, t — 09)uy(0))uy (02 )dodo,
+ e

which is identical to the form given by (2.1), where the ho(t) term is equal to zero due to

our selection of (0,0) as the equilibrium point.
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Appendi. R

Longitudinal Equations of Motion

The following longitudinal equations of motion in wind axes for aircraft flight are derived

in Etkin [2].
0=y
V=101 = D] - gsin(8 - @)
6 =q+ 2 [1 = L] + %cos(0 = o)
0= (55) Cn+ BN = 1,2) + £UL T = 1)

where:

1. The states 6.V, a and q denote pitch angle, air speed, angle-of-attack and pitch rate,

respectively.

i~

The quantities m and [, represen’ the aircraft mass and moment of inertia about the

pitch axis y through the center of gravity. The gravity constant is denoted by g¢.

3. The thrust vector in wind axes is denoted by (7v,T,) where Ty is the thrust along the
velocity vector. The transformation of thrust from the body axes representation (75, T)

to the wind axes vields the equations
Tyv = Trcosar + T.sina
T, = —T.sinao + T.cosa.
4. The aerodynamic forces in wind axes are denoted by drag ) and lift L. These are related
to the coefficients (7 and (7 of drag and 1ift. respectively. as follows

D= Drag =¢S5

o !
f




[&531

L = Lift = §SCy

where § is dynamic pressure and S is the reference area of the wings.
Transforming the drag and lift forces from wind axes to body axes yields the relationships
X = —Decosa + Lsina

Z = - Dsina - Lcosa

where X denotes the aerodynamic force along the body r-axis and Z denotes the aero-

dvnamics force along the body z-axis.

The aerodynamics pitching moment coefficient is denoted by C,,.

. The mean aerodynamic chord is represented by ¢.

The aerodynamic forces X and Z and the thrust forces T, and T, do not necessarily pass
through the center of gravity. In general, they have the moment arms [, l,,[., and ..,

respectively, about the center of gravity.

In the above equation, we are assuming that the sideslip angle 3 is zero. That is. we are

considering pure longitudinal motion in the vertical plane - lateral motion is considered to

be zero.

In our work we are interested in the cause of the longitudinal limit cycle. We know that

it is generated by the nonlinear nature of the lift curve. For this reason we simplify the
nonlinear equations. First, we consider only the & and the ¢ equations. Second, we assume
that the moment arms are zero. Third, we use a linear model for the pitching moment as a
function of only angle-of-attack o and elevator control .. Fourth, we use a linear model for

the elevator control 8, effect on lift. According to the assumptions we can write

Cr = Cpla) + Cp, b
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Cm = Cmnp + Crma@ + Cmy_ 6

Since Cp(a) = -%&% — Cp(a)tan(a)

we i:ave the approximation

Crla)= -C,(a)+ ¢, 10°<a<20°

where c- is some constant. We make the definitions

qS
T v
_ 4
2= TV ke
I, . g s
- 9 cos(6 — o) — T2
= + Vcos( a) i
gSe
Cqy = _Cma
1,
gSe
Cs = _—Cm
I,
qSc
kel
Ce 1, 0

The resulting equations simplify to the following:
a=q+cC.la)+ c6e + c3
q = caa + c56, + Co

where ¢;.1 = 1,2,...,6 are treated as constants, and where (".(«) is to be chosen from the
real data of some airplane. Tor the T-2C airplane of Ref. 22, the following approximate

model 1s obtained.




&=q+9.17C.(a) — 1.8(8. + 7°) + 7.36
q=5173(Cpn,a+ Cn, b) +2.9

where C,, = —1, Cn,, = —1.5 and where the nonlinearities of the C.(a) curve can be

represented by the following low-order subspace models:

a<l14.4°, C(C,(a)=-0.0732a
14.4° < @ < 15.6°, C,{(a) = 0.l1a* —2.9a +20.0
15.6° < a < 19.6°, C,(a)= —0.020° +0.74a — 7.8

19.6° < a < 28°, C,(a) = —-0.47 —0.02¢.

These subspace models are curve-fits to the actual post flight aerodynamic data of the T-2C
obtained by system identification analysis, [22]. We note that these aerodynamic derivatives
represent approximate values for the total airplane. The above model may lack continuity
at the boundary points since all numbers have been rounded off. The model given in Section
3 has less round-off error associated with it, and as a consequence there is continuity at the

boundaries. This continuity is with respect to the curve but not necessarily with respect to

the slope.
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Appendix C

Volterra Expansion for Longitudinal Example

In this appendix we present the details of the Volterra expansion for region II (14.36° <

a < 15.6°) of the longitudinal limit cycle example considered in Section 3.1. The expansion

for region III is similar, and the equation is linear in the other regions.

The simplified longitudinal equations are

& =q+9.168 Cy(a) — 1.8336(6. + 7°) + 7.3619 (C.1)
g =5.73(—a — 1.56.) + 2.865. (C.2)
In region II we have
C.(a) = 0.09722a° — 2.8653a + 20.03346. (C.3)
Substituting (C.3) into (C.1), (C.2) and rearranging gives
. _ 1 q+0.3913a® — 26.269a + 178.24 —1.8336 .
r= [ —5.730 + 2.865 | 8595 | % (C4)
where z = l:a].
q
Considering an input of the form
b = 660 + kéel (C.5)
the solution of (C.1) may be written in the form
r=ro+ ke, + ke + By 4. (C.6)
The equilibrium input in region Il was chosen to be é,, = —9.24°. This resulted in the

cquilibrium state rq = [14.36°, —=1.7552°/sec]T. Substituting (C.5), (C.6) into (C.4) results

m




k$1+k2.’tg+k3$3+=

(qo + k‘h + - ) + 8913(00 + ka1 + . .)2 - 26269(00 + kal + . .) + 17824
-5.73(ap + kay +...) + 2.865

—1.8336 ‘
+ [ T 5sos ] (8eo + K6ey).

Using the equilibrium values, expanding terms, and keeping terms up to order 3 in k

yields

ki‘] + kzi‘g + ksi'g, =

k(=0.6709c, + g — 1.83364,, ) + k*(—0.6709a2 + 0.8913a? + g2)
k(—5.73a; — 8.5958,, ) + k*(—5.73a,)

+ | F3(=0.6709a5 + 1782600, + gs)
k3(~5.73a3) '

Equating coefficients of equal powers of & yields the following equations for the Volterra

scries terms.

5= [—0.6700 1]~ [-18336],

1T =573 0T T | —8.595 | O
[ _ 1 [ 2

i = -__05..67’209 U, 0.8933011]

. _[-0.6709 1] [ 1.78260 05

Sl I B S '

55




Appendix D
Wing Rock Model

Aircraft configurations incorporating slender forebodies generate a wing rock limit cycle
phenomenon at high o (angle-of-attack) due to unsteady aerodynamic effects, [23 - 33]. Delta
wings with leading edge sweeps greater than 76° are known to exhibit wing rock. Nguyen,
Whipple and Brandon [24] present wind-tunnel testing results of such an 80° delta wing.
The F-5 airplane which has a slender forebody is known to exhibit wing rock at high a.
Lutze [32,33] presents wind-tunnel laterial-directional aerodynamics data of a 10-percent-
scale model of the F-5E airplane. A wind-tunnel investigation of a 16-percent-scale model
of the X-29A airplane (which has the saiue nose section as the F-5 airplane) is described in
Murri, Nguyen and Grafton [28]. Using the data contained in these references we construct
a wing rock model. First, we investigate the aerodynamic properties of the 80° delta wing
that is inherent in wing rock. We inspected the scaled X-29A wind-tunnel model and found
it to exhibit similar wing rock model characteristics as the 80° delta wing. For this reason

we construct our model based on the 80° delta wing data, [24].

The standard wind-tunnel test technique used in the study of wing rock phenomenon
is the free-to-roll tests. In these tests the physical scaled model is sting mounted on an
apparatus which allows the model to rotate freely about its roll axis (i.e., the body z-axis)
with no angular limitation. A 80° delta wing mounted on such an apparatus is shown in
Figure 2 of Nguyen, Whipple and Brandon [24]. The resulting system is a single degree
of freedom (SDOF) system. To keep our presentation as simple as possible without loss of
qualitative significance, we consider a mathematical model of wing rock resulting from such

a wind-tunnel testing apparatus.

In a free-to-roll test, the pitch angle 6, which is fixed, is preset according to the desired

angle-of-attack (a) at zero sideslip (8 = 0°). The roll angle  denotes the angle of roll about




the longitudinal body r-axis.

Let Vobe the total aiespeed. The conventional definitions of the body axes velocity

components (u,v,w) are

u = Veos(6)
r = Vsin(9)8in(¢)

w = Vsin()cos(d)

and the angle-of-attack and the sideslip angle satisfy the identities

tan(a) = e
u

. v
sin(fB) = v

From these we have the identities

v
ol = T
‘ w
szn(a) = —\/-u2—+—7
tan(p) = —
w
u
cos(0) = -
_ u
COS(Q) = ﬁ
Vu? 4 w?
cos() =
) Vv 4+ w?
sin(0) = —v
_ w
o) = T
. v
sm(<p) = m
Observe that
. v
B = Veos(B)




‘i,

cos(@)VVE —u?

Since u and V7 are constant functions of time. From these it follows that

. cos(@)Vr? + w?

p=v cos(B)V
or. equivalently,
o . cos(p) .
8= @——cos(ﬂ)bm(e).
The angle of attack a and sideslip angle 3 are functions of § and ¢ and satisfy the following
relationships,
tan(a) = tan{f)cos(p) (D.1)
sin(3) = sin(#)sin(p) (D.2)
tan(B) = sin(a)tan(p) (D.3)
cos(0) = cos(a)cos(B) (D.4)
: _ sin(f)cos(p)
sin(a) = cos(B) (D.5)
B = gsin(a). (D.6)

In our construction of a wing rock model it suffices to consider the following approxima-
tion to Equation (D.3), using small angles in 8 and ¢:
B = psin(a). (D.7)
The roll rate p satisfies

The motion about the roll axis is governed by the nondimensional acrodynamic rolling mo-

ment coeflicient (' which is a function of a, F.p, 3 and é,:

p= (q}5b> Cila,3.p.3,6,) (D.9)

H8




T ——

where

p(h)V? = free stream dynamic pressure

=

g=
p(h) - standard air density at altitude h

S = wing reference area

b = wing span

I. = roll moment of inertia

8, = aileron control surface deflection angle.

The rolling moment coefficient C, has the expansion

Calen, B,p, B, 6) = Cey(@)B + Coyle, 12 + Co (0,85, (D.10)
where
Coy(@, ) = Coy(e, B) + Ce, (o, B)sin(a) (D.11a)

and where, from (D.6) and (D.8),
Bb . b
C‘b(a’ﬂ)'gﬂ_v' = Cgb(a,ﬂ)sm(a)ipv (D.11b)

Using (D.7) and (D.10) we rewrite (D.9) in the standard form

o+ wHa)e + 2en(@)C(ar0)p = f(a. B)6s (D12
where
wi(a) = ~ %Sr—b) Cey(a)sin(a) (D.15)
zan(a)itone) = = (22) (57 ) Coland = psina) (D.14)
flenB) = (qib) Ce,, (@, B) (D.15)
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In order for the system (D.8) and (D.12) to be stable at high « it is necessary that the
signs of 'y, () and C'gp(a,d) both be negative. The sign of Cy¢,(a) is indeed negative at
high a. We remark that (—‘(F(Q‘,,B) has a negative sign at low a. But airplanes that exhibit
wing rock at high a,25° < a < 50°. have a coefficient derivative ng(a, 3) that is positive for
small sideslip angles and negative for large sideslip angles, Nguyen, Whipple and Brandon
[24) and Murri, Nguyen and Grafton [28]. The wing rock limit cycle phenomenon results
from this switch in sign of C¢,(a, 8) from positive to negative at high a as the sideslip angle

increases to large amplitudes.

In order to make use of Eq. (D.10) we need (quantitative) expressions for the acro-
dynamic derivatives (‘¢ (a) and Cpp(a.ﬂ). Wind Tunnel model data provides C¢, (o) and
f'gp(o. d) in graphic form. We remark that wind tunnel model data provides a model for the
left-hand side of Eq. (D.11a) but it does not provide separate models of the terms (', (. 3)
and (¢ (a.3) on the right-hand side. The model given below in Egs. (D.16) and (D.17) is

an approximation to the wind tunnel data plots contained in {24].

The model of C, (e, 3) presented in Nguyen, Whipple and Brandon, [24], for the 80° delta

wing is typical of airplanes exhibiting wing rock at high a. Their model can be approximated

by the following:

NASA WIND-TUNNEL STING MOUNTED MODEL 80° delta wing

(o =30°,3) = 0.4[1 — 7.64]3]], 0< ]3] <0.3 (D.16)
(o = 30°) = ~0.1584 (D.17)

v =23 (3 =psinaat a=30") (D.IR)

% <ﬂ';;"> (e - ) — I8 GRAT (D.19)

S
(%7 (55 ot = 20700 = T688501 = 5211 (0201




so that

p = —26.6667 + 0.76485[1 — 3.82|¢|lp (D.21)

There are no control surfaces on their wind-tunnel model. Therefore, the f(a,3) term drops

out. The above model is used in the Volterra Series analysis of Section 3.2.
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Appendix E

Expansion of Volterra Series for Wing Rock Example
The model for wing rock as derived in Appendix D is given by
¥ =P

p=-—267p+0.76[1 — 3.82

v|p-
We can represent this equation with respect to the following two regions:

Region I: » >0

p=—26.Tp+0.7601 — 3.82p|p

Region II: ¢ < 0

p=-26.7p+0.76[1 + 3.82p|p.
We note that the p equation is bilinear in the pp term.
A state space representation of the nonlinear equation is given by

2l o 1 07e o ] L
[p] = [—26.7 0.76] [p] + [(—1)12.9299;;]* t=1.2

Let r = {g} and express the system as

o . O — 1) Q9 TR s
£ = .‘\J‘ N [((‘)‘\'L t(‘r[n] L C = ( 1) ...9._, 7 = A,l.

Using the Volterra Series technique described in Section 2, we represent the nonlinear

solutions ¢(t) and p(t) as the infinite expressions
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p(1) = po + pr(t)k 4 pa( )R + - 4+ pa ()K" + ...
(po. po) = (0,0) equilibrium point (unstable).

Taking the product of p(t) and p(t), collecting terms with respect to like powers of & and

taking into account the equilibrium point yield
2P = (21p0)k° + (@192 + 921K + (P1p3 + wapa + wap )k

We make the identifications:

012(T1) = o1y
922( 1, T2) = 1Pz + w2y
933(21, T2, T3) = @1p3 + Y2p2 + P3Py

Pp = 5712(1'31);»‘2 + gaafxy, T2)k* + g32( 1, za.23)h* + ...

The Volterra Se-ies approximation of the nonlinear equation is therefore given by:

.’i‘l = Al‘l

. 0 ] .

Ty = Aza+ gi(71), qi(z1) = 6912(11) , ¢ =(—1)2.92 J=12
L [ 0

I3 = Arg + g2z, T2), g2(z1,T2) = chn(th)]

0

i'n = Axn +gn—1(l‘la o 11:1\—1)7 gn—l(xl, cen 7xn—l) = [Cg(n—lﬂ(:rlw- . s‘r:r—-l)

where r; -

i
—
=86
—
—~
il
—
-
-
3
N
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Appendix F

Two-Term Volterra Series Approximation

In this appendix we present the details of the Volterra series analyvsis for the wing rock
example discussed in Section 1.1. As requested by the contract monitor, all derivations
needed to obtain the two-term Volterra series approximation 7;(t) = r,(t) + x2(t) for the
svstem (4.1), thus (1.2). are presented here for the region ¢ > 0. The 2 x 2 matiix A and
the constants a.b,c as well as the 2 x 1 vector functions x,g are as defired in Section {1.1.

From (1.5) and {4.6) we see that the 2 x 1 vector functions r(t) and z;(?) satisfy

11 = fl.‘l'](f), I](O) = IO = [1(})0} (Fl)

Ealt) = Any(t) + [__(,I”(?)m(,)} . n(0)=0 (F.2)

where

Solving for ry(¢) in (F.1)

Eqguation (F.1) is a first-order linear ordinary differential equation with constant co-
efficient matrix 4. FEigenvalues for the matrix A are A\; = (b + Vb? —4a)/2 and X, =
(b— /b2 —4a)/2. Note that b* — 4a < 0 thus A, = (b/2) + iwp and A, = (b/2) — iw, where
«o = (V4a — b?)/2. The matrix exponential ¢4, the state transition matrix for (F.1), can

be computed by the identity (see Miller {38, page 111])

e = w ()] + wy(t)(A = M) (F.3)
where [ is the 2x2 identity matrix and the scalar functions w; and w, satisfy

W) = A (1), wi(0) =1 (I.1)

and

I}")(f) = ,\211'2([,) + U"](t), 11,‘2(0) = 0 (}“.-r))
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[t now follows that

'(Ul(t) = e/\l!

and

t
e/\zt / 6_'\2311)2(8)(13
0

t
e/\zt / ea(.\]-—Ag)dS
0

ez\zt

A=A
eAlt

[et(Al—,\z) - 1]’

(A1 —A2) #

- eAg!

M=

Using identities (F.6) and (F.7) in (F.3) yield

At Aot

€ — €
eAt — e,\1t1+

— (A= N1
A]“A;g (A 1)

[ eiwot _ e—iwot
— ebt/2 Lev.wotl_}_

WY (A- /\11)]

218inwgt

— 6bt/2 e:wot1+

(A - /\11)}

|

2 in

sinwot | — A, 1

— ebt/2 {eiwot] + e b )\1

)

wo

ewol _ Agsinwgt sinwgt

_ €bt/2 wo wo ]
- __asinwpt eint + (b=A1)sinwot
wo wo

which gives the identity
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0
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bsinwyt stnwpt
coswpt —
At o bt)2 Wo Wo
= e . .
asinwot bsinwgt

wo 2wy

€

Let Bj;(t) denote the :** row-;'* column entry in the above matrix, see equation (4.7).

The solution z,(t) for the initial value problem (F.1) is given by

0] _ Buy(t) .
;I'l(t) = 6At [po] = ebtﬁpo [B;:%t}} . (Fb)

Solving for z5(¢) in (F.2)

Equation (F.2) is a first-order linear ordinary differential equation with a nonzero forcing

function

[ —cx“((t))xn(t) ]

where from above z11(t) = €*/2p°By,(t) and z15(t) = €?/2p°By,(¢). The variation of
constants formula together with the zero initial conditions of (F.2) yields
za(t) = (p°)? / e [_0] e”” Bia(7) Baaf(7)dr.
0
We now employ the above calculation of e (in terms of the By;(t) functions defined above)

to express r,(t) by

To(t) = (po)zem/o e A7 [(1)} (—c)€’” Bi2(7) Bao(7)dT

To(t) = —C(Ir°)2eA'/0 e~b /2 [g‘2§_:;] ®” Bio(7) Byy(T)dr




zo(t) = —c(p°)2et /O‘ /2 [gné::;] By3(7)Ba(7)dr. (F.9)

22

At

The matrix e#! is nonsingular and has an inverse e~4*. We shall now note that p° # 0

and use (F.9) to obtain

- At t
-l poye - [ e [522%:13] Bua(7) Bual 7). (I10)

We now direct our attention to the first row of the right hand side of (F.10).

Ry (t) = / e?™/2Byy(—7)Byo(7) Baa(7)dT

0

t
- 1 br/2
= 2

Wo Jo

sin*wyTcosweTdT — ——/ /2 sin’wordr

Integration by parts: u = €*"/2, dv = sin*wyTcoswordr
— b _br/2 _ sindugt
du = 2’ *dr,v = e

1 sindwot = :
Ru(ty=-— { br/a2 201 ' / smswordr}
Wo
b (5712
- —3 "2sindwerdr
2w Jo ’
b‘/zszn wol b [t
Ry {t) = 33 3‘-08/0 e ?sindwordr.

For the second row of the function on the right-hand side of (F.10) we have

t
Rzl(t)=/ebf/2822(—T)Bzg(T)Blg(T)dT
0
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b2

t
Ry (t) = / eb’/2(cos7'w07' - A—sinzon)
0 L

StNwgT

5 dr

JA
(v

We

667/2 b?
Ry (1) = / n-0a+ F)sinzwor]sinwm’dr
0 o Wy

ebr/Z ebr/2 b2
Ry (t) = / stnwerdT — / (1+ Z—)szn wotdT
0 0

Wo wWo LUO

We now integrate the first term on the right to obtain

4 b
[e""/2 —sinwot — wocoswot) + wp)

il = Swrap

br/2 h?
_/ ¢ (1 + —)sin’wordr.
0

wo 4
In order to eliminate the integral terms from both R;(t) and Ry (t) we note that (see

itegration tables)

t
4

e 2 sindwordr = ———————{( — sinwgt + —3wpcoswot )e?/2sintwyt
A b? + 36w?

t
+6w? / e? 2 sinwerdr}.
0

Integrating the last term gives

t
4
bT12 503 onrd —_— , btf2 2
e sinwerdr = {( stnwot —~ 3wgcoswpt e’ " sinwyt
/0 b? + 36w?
24wk bt /2 ,
—_— —wpcoswyl + ~sinwgl
o lwgc (—wgcoswyl + 5 sinwot )

2 4w0

1) + 1(.4.2}
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(4a — b?)

(Note: b + 4w§ =b+4 = 4aq)
2b ) 12w .
=2 + 36w? ebt/zsmawot T 1 3602 n 3((;0.)3 ebt/zszn2w0tcosw0t
24w wp 1203y
a5 + 36w§)6 coswol + aB 1 36w§)e Stnwg
+ 24w
a(b? + 36wd)
We now have the following representations for R;;(¢) and R, (t).
et? b 1 b/2 _
Ru(t) = - 303 sin“wopt — 33 (b"’ n 36w§) {*/3(2bsin’wot
4w t 2bsinwot 3
— 12w sinwotcoswqt — 24w coswo + 12wibsinwg )+ 24w0}
a a a
1

b
[eb‘/z(ésinwot — wopcoswyt) + wo)

Ry (t) =

awy

a 1 bt/2 . 3

: 24w t
— 12wpsin?wotcoswet — £ o coswot
a
12w2bsinwot 2403
- )+ ——1

[t follows from the above representations for Ry(t), Rzi(?), and (I.10) that

alt) =~ | fnl|

21
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[

|
‘|

| =% — 36wd + 24a

—c(p°)%e{ [—(3()2 -6i- 36w3)] sin®wot .
—6ab 3w3 (b2 + 36w3)
4b ] sin?wotcoswpt bt/2
12a | 2(b? + 36w2)

coswqt

3b ]
(6 + 36(.4.)3)a(3

bt/2

—8b? stnwqt

bt/2
b® + 36bw? — ‘24ab] 2awo(b? + 3602)

—8b

b + 36w? — 24a g

1
] a(b? + 36w?)
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Appendix G
SMP Function for Volterra Equations Calculations

The SMP function used to generate the differential equations for the Volterra series terms

is listed in Figure Al. The nonlinear differential equation is assumed to be of the form

r = f(r,u)

The inputs to the function are:

$f = {fi, f2r.--, fu} = components of f(x,u).

$var = {x,....,z,,u} = list of state variables and the input variable (last).
$eq = list of equilibrium values of the variables in $var.
$ord = number of Volterra series terms to be generated.

A sample output of the program for the wing rock example is shown in Figure A2.

This function implements the procedure outlined in Section II. A line-by-line description

of the function follows.
1. %n is set equal to the order of the system.

2. %sub is set equal to the substitution list.

Sord
$var; — Zvaar,-[j](%a)j + $egq; i=1,....%n

i=1

$vargns1 — (%a)Svarg, 1 + Seqas

3. %fs is a set equal to $f with the above substitutions.

4. Technical detail. Az{], a projection that converts truncated series expansions into poly-
nomials, is forced to distribute over lists.
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5. The function % fs is expanded in a Taylor series with respect to the dummy variable (%a)

up to order %ord.

6. Lor each Volterra series term r[z’],%%l is set equal to the coefficient of (%a)! in the

expansion of % fs.




s/7¥%ivoltlé$f,8var,$eq,Sord]
gives differential equations for the components of the state
corresponding to terms in the volterra series for the statg
equation dx/dt=3f(x,u). The state variables and input variable
are listed in $var with the input variable listed last. feq
is a list of the equilibrium values of $var, and $ord is the
number of terms in the volterra series to be considered. %/

voltl$f,$var,%eq,S0rdl::\
(n:Lenl[$f);\

“sub:CatlAr{%n,Svar($11->Sum{[$var(s$1))[i) %a-i, {(i,1,S0rd} I\
+$eql$1)1, (Svarlzn+ll->%a Svarlin+l)+Seqluntl ]} );\
%fs:S[6f,%subl;_Ax[Ldist):1l;%fe:Ax[Psl%fs,%a,0,%0rd));\

Do[i;l;$Ord.Do[j.lp’/.n,Pr["d/dt",[svar‘[j]][i]."=",\
N[CollEx[Coefl%a-1,%fel311)))13;Pr(1;Prl]])

FIGURE A1, SMP Function

SMP 1.5.0
23-JUL-1987 08:57:41.05

$1{1):: f:{(p,-26.6667 phi+.76485 (1-3.82 phi ) p)

2001 {p,-26.6667phi + 0.76485p (1 - 3.82phi))

#102):: <volterra

81(3] VOlt[f:(Phi:P,U};(0:0;0},5]

d.- dt phill] = pll]

ds dt pll) = 0.76485pl1) - 26.6667phill]

d/dt phi([2] = pl2]

dsdt pl2] = 0.766485p(2) - 26.6667phil2] - 2.92173pl1] phill]
d7dt phil3] = pl3]

dsdt pl31] = 0.76485p[3]1 - 26.6667phil3] - 2.92173p[1] phil2]

- 2.92173p(21 phill)
d’dt phil4] pla)

dsdt pl4] 0.76485p[4) - 26.6667phil4] - 2.92173p[1] phil3]

= 2.92173p[2] phil2] - 2.92173p[3) phili]

dsdt phil5]
d-dt pl5]

p(51]
0.76485p[5] - 26.6667phil5) - 2.92173p[1] phil4]

- 2.92173p(2] phil3] - 2.92173p(3) phil2]
- 2.92173pl4] philll

IlG):: Exitl)

FIGURE A2. OUTPUT FOR THE WING ROCK EXAMPLE
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