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Summary

The "Parallel Vision algorithms" Annual report covers the project activities during the period from

October 1st, 1986 through September 30, 1987. The objective of this project is to develop and

implement, on highly parallel computers, vision algorithms that combine stereo, texture, and multi-

resolution techniques for determining local surface orientation and depth. Such algorithms will

immediately serve as front-endR for autonomous land vehicle navigation systerns. During this first year of

the project, efforts have concentrated on two fronts. First, developing and testing the parallel

programming environment that will be used to develop, implement and test our parallel vision algorithms.

Second, to develop and test multi-resolution stereo, and texture algorithms. This report describes the

status and progress on these two fronts. We describe first the programming environment developed, and

the mapping scheme that allows efficient use of the Connection machine for pyramid (multi-resolution)

algorithms. Second, we present algorithms and test results for multi-resolution stereo, and texture

algorithms. Also the initial results of the starting efforts of integrating stereo and texture algorithms are

presented.
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Preface

This report, submitted to the Defense Advanced Research Projects Agency (DARPA) of the

Department of Defense (DOD), in response to Contract DACA76-86-C-0024, presents the

progress during the first year of the "Parallel Vision Algorithms" project at Columbia University.

The "Parallel Vision Algorithms" project is sponsored by DARPA as part of its Strategic

Computing Program and contracted through the U.S. Army Engineer Topographic Laboratories

(ETL).

The objective of this project is to develop and implement, on highly parallel computers, vision

algorithms that combine stereo, texture, and multi-resolution techniques for determining local

surface orientation and depth. Such algorithms will immediately serve as front-ends for

Autonomous Land Vehicle navigation systems, one of the Strategic Computing Program's

application areas.

This report is prepared for the U.S. Army Engineer Topographic Laboratories, Fort Belvoir,

Virginia, and the Defense Advanced Research Projects Agency, 1400 Wilson Boulevard,

Arlington, Virginia under contract DACA76-86-C-0024. The Contracting Officer's

Representative is Rose Holecheck. The Program manager at DARPA is LTC. Robert Simpson.

Questions regarding this document should be forwarded to Prof. John Kender 212-280-8197.
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1. Introduction
The objective of this project is to develop and implement, on highly parallel computers,

integrated parallel vision algorithms that combine stereo, texture, and multi-resolution

techniques for determining local surface orientation and depth. Such algorithms will

immediately serve as front-ends for autonomous land vehicle navigation systems. During this

first year of the project, efforts have concentrated on two fronts. First, developing and testing the

parallel programming environment that will be used to develop, implement, and test our parallel

vision algorithms. Second, to develop and test multi-resolution stereo, and texture algorithms.

This report describes the status and progress on these two fronts. We describe first the

programming environment developed, and the mapping scheme that allows efficient use of the

Connection machine (CM) for pyramid (multi-resolution) algorithms. Second, algorithms and

test results for multi-resolution stereo, and texture algorithms are presented. A methodology for

integrating the results of different texture modules is described. Also the initial results of the

starting efforts of integrating stereo and texture algorithms are presented.

The initial plans called for the testing and implementation of the parallel algorithms on the NON-

VON Supercomputer (which was being developed at that time). With NON-VON project being

terminated, the Connection Machine has been chosen as the target machine to develop and test

our algorithms. A simulator of the CM* has been installed, tested, and development of some

algorithms on the simulator have started in September 1987. An account has been obtained on

CMI at Syracuse University, and we plans for using this machine to demonstrate the developed

algorithms.

*With permission from Thinking Machines Inc.



2. Programming Environment for Multi-resolution Algorithms
Hussein Ibrahim and Lisa brown

In this section, we briefly describe the different programming environments in which

development and testing of stereo and texture algorithms are performed. Some of our initial

results have been developed and tested on a simulator of the NON-VON machine, a fine-grained

SIMD tree-structured machine. The NON-VON machine is an example of a good architecture to

implement multi-resolution algorithms because of its fine granularity and hierarchical

architecture. Versions of an instruction-level NON-VON simulator are available on both the

VAX 11/750, and the DEC-20 machines. A machine with 2 K processing elements can be

simulated and exercised. A functional-simulator of NON-VON that assumes floating point

arithmetic in the processing elements have also been used by Dong Choi in his work on depth

interpolation. The simulator has been used mainly to test convolution algorithms and computing

zero crossings and matching operations. The results obtained from these tests can be applied to

our target testbed machine (the Connection Machine) because of its fine granularity and the

implicit hierarchical structure of its hypercube network.

A second programming environment, in which we will be testing our parallel algorithms, has

also been setup. This environment consists of a set of primitive functions which will allow us to

simuiate parallel operations on a multi-resolution pyramid of images. The operations allowed in

this environment will make it possible to implement them either on a pyramid machine or easily

simulate them on a mesh-connected machine. The present set-up includes mechanisms for

constructing and saving pyramids, the capability of filtering each level using all the standard

techniques, and inter-level operations that not only descend or ascend the pyramid but operate

cooperatively in both directions including within levels. Several classic pyramid operations have

been used to test the environment such as stereo matching, edge refinement, pyramid search and

similar logarithmically-improved pyramid operations.

Lastly, we have started working on the details of mapping the multi-resolution pyramid data

structures on the Connection Machine, with the goal of reducing the amount of communication

required to simulate a full pyramid machine. This can be achieved by making use of the

hypercube interconnection network employed in the connection machine. We describe this work

in the following subsection.



2.1 Pyramid Algorithms on the Connection Machine
Hussein Ibrahim

2.1.1 Introduction
Pyramid architectures have been proposed to implement efficiently (in real time) image analysis

tasks, specially multi-resolution, and top-down/bottom-up image analysis tasks. The pyramid

architecture consists of a set of mesh-connected layers of processing elements (PE's)

successively decreasing in size by a factor of four. Each PE on an intermediate layer is

connected to four children on the layer below it, to a single parent in the layer above it, and to

four neighbors in the same layer, as shown in Figure 2-1. Hardware implementation of pyramid

architectures is expensive because of the large amount of wiring that is required in such

machines. At the same time, the Connection Machine, a highly parallel fine-grained machine

with mesh and hypercube interconnection networks, has been developed at Thinking machines

Inc. and a 64K version is available for the vision community. The CM executes its tasks in

single instruction stream, multiple data stream (SIMD) mode.

In this section, we describe an addressing scheme that maps efficiently the pyramid architecture

onto the Connection Machine (CM). This results in an efficient implementation of pyramid

algorithms on the CM. The Connection Machine uses two modes of communication; the first

one is mesh-communication where the whole array of PE's (64K) forms a two-dimensional

orthogonal mesh (256 x 256). In this mode, epch PE may communicate with its four neighbors

in the east/west/north/south directions (NEWS network), as shown in Figure 2-2.

The second mode of communication is the hypercube communication, in which each PE can

communicate with all the PE's whose binary addresses differ from its own address exactly in one

bit location. In the 64K machine, this means each PE is also connected to 16 PE's, using the

binary 16-dimension hypercube interconnection network. For example, each PE communicates

in the direction of the first dimension with the PE whose address is computed from its own

address by flip-flopping the least significant bit (1 --> 0, 0 --> 1). In general, each PE

communicates along the n-th dimension with the PE whose address differs from its own only in

the n-th least significant digit. For example, PEO is connected to PEI along the first dimension,

to PE2 along the second dimension, to PE4 along the third dimension, ..., and to PE(2**15)

along the 16th dimension.

2



Figure 2-1: The Pyramid Architecture

Organization of the Pyramid Machine
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Figure 3-2: The address scheme of the Connection Machine PE's

PEO -- PEl-- -PE4--- PE5- - PE16---PE17---PE20---PE21 --

1 111 1 1

-E2 PE3 ---PE6--- PE7- - PE18---PE19---PE22---PE23 --/ 1  1 1 1 1
I 1 i 1 1 1 1 1

PE8---PE9--- PE12---PE13---PE24---PE25---PE28---PE29 --i 111 1 1 1 1

PE10---PE11- PE14---PE15---PE26---PE27---PE30---PE31--
Sii | 1i1 1 1 1

i1111 1 1 1
PE32---PE33---PE36---PE37 -- PE48---PE49---PE52---PE53 --

1 1 1 1 1 1 1 11 1 1 1 1 1 1 1
PE34---PE35---PE38---PE39--PE50---PE51---PE54---PE55 --

1 1 1 1 1 1 1 1
1 1111111

PE40---PE41---PE44---PE45---PE56---PE57---PE60---PE61 --1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

PE42---PE43---PE46---PE47-'-PE58---PE59---PE62---PE63--

Mesh Connections.

An example of Hypercube Connections.
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In the following sections, we describe the addressing scheme, and how various pyramid

communication modes can be simulated on the CM.

2.1.2 Mapping Scheme

To map the pyramid architecture on the connection machine, the CM mesh network of PE's

simulates the base of the pyramid, while the PE's on the internal levels of the pyramid are going

to be simulated according to the following scheme. The lower right PE of each 2 x 2 cube will

simulate the parent of the four PE's in this 2-D cube. Similarly, for the second level above the

leaf level in the pyramid, the PE next to the one in the lower right one will be used to emulate the

parent of the PE's in the 4 x 4 cube (4-D hypercube) A general formula that specifies the CM

addresses of the PE's on the intermediate levels of the pyramid is given as following:

4in - 2
i- 1, where i is the level number ( 1 for the level above

the leaf level), n changes from 1 to the number of PE's on that level.
(22.(8-)).

Figure 2-3 shows this mapping for an 8 x 8 mesh. The hypercube connections are not shown in

this configuration, but they exist according to the scheme described before.

The mapping scheme described above ensures that each PE in the pyramid intermediate le,'els is

emulated exclusively by one PE in the CM (one to one mapping). The proof is as follows. The

address mapping formula is 4in - 2".1. On the same intermediate level, i is constant, ius

changing n will result in a different address each time. Now to prove that no two intermedL-te

level PE's are mapped to the same CM PE address, First assume that this is true. It means that

for PE n 1 on level il, there exist a PE n2 on level i2 such that

4ilnl - 2 i11 = 4i2n2 - 2 i2-1.

The equation can be re-arranged as follows:

4 i2( 4 il-i2nl - n2) = 2i2(2 i14i2-1 - 2-1).

or

2i2(4i1"i 2nI - n2) = (2iI '-i2 - - 0.5).

The left hand side of the equation is always an integer as i I, i2, n I, and n2 are all integers, while

the right hand side is not. Thus the initial assumption is not true. This proves that this mapping

is one to one.

Now there are two types of communication in the pyramid that need to be simulated, the

top/down communication (parent/child communication), and the lateral communication in the

5



Figure 3-3: The layout of the pyramid intermediate levels

The original CM mesh represents level 0.

D :level 1, 0 :level 2 level 3.

PEO--- PEI--- PE4--- PE5--- PE16---PE17---PE20---PE21 --

PE2 ---.-.. PE6 ---.....-- PEI8- .... PE22--....
1 . 1 1 1
1 1 11 1 1 1

PE8 --- PE9--- PE2 --- PE25---PE28--- PE29 --1 ~ ~1 111111

1 11 1 1 1 1 1 1 1

PE32---PE33--- PE36---PE37---PE48---PE49---PE52---PE53 --

1 1 1 1 1 1 1 1

PE34 --- . PE38- PE39 -PE50- .... PE54 ...

1 1 / i ---

1 1 1 1 1 1 /1\ 1

PE40---PE41---PE44---PE45---PE56---PE57---E60--PE61 --

111111 1

1 L

PE42 ---.. .. PE58 --- 5 E6

1 1 1 1 1 1 1 1
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intermediate levels of the pyramid.

2.1.3 Simulating Pyramid Intermediate Levels Mesh Communication

In this subsection, we describe how the mesh communication on the pyramid intermediate levels

can be simulated on the CM using the addressing scheme introduced in the previous section.

Note that Simulating the mesh communication on the base of the pyramid is performed directly

using the NEWS network of the CM. In what follows we how a send-east operation within level

one of the pyramid is simulated in the CM, and then generalize this procedure for other pyrarrid

levels (communication in the other directions is performed similarly).

To simulate mesh communication within level one, the information is sent first forward along the

third dimension. Sending information forward along the nth dimension means that only PE's

whose nth bit is 0, send their information to the PE's whose binary address is similar except that

the nth bit is 1. Thus, sending forward along the third dimension will involve PE3 sending the

information to PE7, but PE7 will not send its information to PE3. When PE7 sends its

information to PE3, we will refer to that as sending the information backward along the third

dimension. We will use the following notations to express these two types of hypercube

communication.
-->3 (send information forward along the third dimension.)

3<-- (send information backward along the third dimension.)

Thus sending information forward along the third dimension will ensure that half the PE's on

level one have sent their information to their east neighbors (PE3 to PE7, PE19 to PE23, ..... etc).

Now for PE7 to send its information to PEI9, it first sends the information along the 5th

dimension to PE23, and then PE23 send it back along the third dimension to PE19. This results

in half the remaining PE's sending their information to their east neighbors. In our own

terminology this is represented as: (-->5 followed by 3<--). To continue sending the rest of

information east, similar scheme is followed. The complete procedure to send east in the first

level of the pyramid in a 16-dimension hypercube is given by the following figure:

Note that these communication steps can be pipelined in such a way that there will be no

repetition of the same communication steps. To do that a temporary variable has to be created to

prevent overwriting a traveling value. For example if we want to send the value of variable A to

variable B. In any send forward operation the variable A is sent to variable B, while in a send

7



-->3

-->5, 3<--

-->7, 5<--, 3<--

-->9-,-- 5<--, 3<--

--A1, 9<--, 7<--, 5<--, 3<--

13, 11<--,9<--, 7<--, 5<--, 3<--

-15, 13<--,i 1<--,9<--, 7<--, 5<--, 3<--

backward operation variable B is sent to replace the variable B in the receiving PE. The

pipelined version of the above procedure is as follows:
-->15 -->n- 1

13<--, -->13 n-3<--, -->n-3

In1<--, -->I F n-5<--, -->n-5
9<--, -->9 . .

7<--, -->7 . .

5<--, -->5

3<--, -->3 2i+ 1<--, -->2i+ 1

n: dimension of the hypercube, i: level number.

During each of these communication steps all of the PE's are actively sending or receiving

information. Note also that, the above scheme can be augmented easily to perform wraparound

shifting as well. This is accomplished by a sequence of send backward communication

instructions. For example, in the 16-dimension hypercube this starts with 15<--, where the A

variable contents is sent to to Variable B backward along the 15th dimension, and then a

sequence of send backward of the contents of variable B to variable B in the receiving PE ( 13<--

,11<-- , ... , 3<--), except for the last one where the contents of variable B is sent to variable A

only in the receiving PE's.

In general, simulating send-east communication within level i in the pyramid, involves following

the above procedure except that we stop when information is sent forward along the the 2*i+l

dimension. That means that all the intermediate mesh communications in the pyramid can be

performed simultaneously by disabling the receiving PE's on any level when they have

completed receiving the required information. This can be achieved by storing in each PE the

8



pyramid level number of the PE it simulates in the pyramid architecture. The execution time of

the procedure to simulate all pyramid mesh communications is then proportional to the number

of dimensions in the hypercube.

2.1.4 simulation results

In what follows the simulation results for a 5-levels pyramid (16 x 16 CM) are shown. In this

simulation we assume no wraparound in the shift operation. The communication steps for east

shift operation is shown for level, 1 through 4.

9



East Shift Operation

Random Values for non-leaf levels in 5-level pyramid

Level 1 Level 2 Level 3 Lev.4
248 184 190 180 173 159 209 55 87 151 164 162 253 73 6
164 132 43 55 16 93 243 52 47 132 244 218 209 69
174 140 141 114 13 34 160 239 181 111 149 105
74 156 177 205 171 114 37 82 212 248 150 9

222 185 7 0 240 35 161 9
203 3 110 140 43 130 204 44
42 135 9 65 42 153 198 34
23 171 242 185 159 20 15 173

Contents of the A variable

Shifting East Random Values for non-leaf levels ( A --> B)

Level 1 Level 2 Level 3 Lev.4
Step 1: -- > 7 (A -- > B)
0 0 0 0 248 184 190 180 0 0 87 151 0 253 0
0 0 0 0 164 132 43 55 0 0 47 132 0 209
0 0 0 0 174 140 141 114 0 0 181 111
0 0 0 0 74 156 177 205 0 0 212 248
0 0 0 0 222 185 7 0
0 0 0 0 203 3 110 140 PE's on levels 3,4 are
0 0 0 0 42 135 9 65 disabled after this step
0 0 0 0 23 171 242 185

Contents of the B variable

Step 2: <-- 5 (B -- > B)
0 0 0 0 190 180 190 180 0 0 151 151
0 0 0 0 43 55 43 55 0 0 132 132
0 0 0 0 141 114 141 114 0 0 11 i1
0 0 0 0 177 205 177 205 0 0 248 248
0 0 0 0 7 0 7 0
0 0 0 0 110 140 110 140
0 0 0 0 9 65 9 65
0 0 0 0 242 185 242 185

Contents of the B variable

Step 3: -- > 5 (A -- > B)
0 0 248 184 190 180 173 159 0 87 151 164
0 0 164 132 43 55 16 93 0 47 132 244
0 0 174 140 141 114 13 34 0 181 111 149
0 0 74 156 177 205 171 114 0 212 248 150
0 0 222 185 7 0 240 35 PE's on level 2
0 0 203 3 110 140 43 130 are disabled after
0 0 42 135 9 65 42 153 this step.
0 0 23 171 242 185 159 20

Contents of the B variable

10



Step 4: <-- 3 (B -- > B)
0 0 184 184 180 180 159 159
0 0 132 132 55 55 93 93
0 0 140 140 114 114 34 34
0 0 156 156 205 205 114 114
0 0 185 185 0 0 35 35
0 0 3 3 140 140 130 130
0 0 135 135 65 65 153 153
0 0 171 171 185 185 20 20

Contents of the B variable

Step 5: -- > 3 (A -- > B)
0 248 184 190 180 173 159 209
0 164 132 43 55 16 93 243
0 174 140 141 114 13 34 160
0 74 156 177 205 171 114 37
0 222 185 7 0 240 35 161
0 203 3 110 140 43 130 204
0 42 135 9 65 42 153 198
0 23 171 242 185 159 20 15

Contents of the B variable

2.1.5 Simulating Top/Down Pyramid communication on the CM
To simulate the pyramid top/down communication on the CM, three hypercube communication

steps are required to simulate the level-to-level communication in the pyramid. For example, on

the bottom-level of the pyramid, going one level up, each PE sends its message first forward

along the first dimension, then forward along the second dimension. For example, PE3 is the

parent of PE's 0,1,2,3, and PEO sends its information to its parent node by sending it first to PEI,

and then to PE3. In our notation that consists of two steps -->1, followed by -->2. Note that

sending information from PE1 to its parent involves sending its information forward along the

second dimension ( --> 2), and sending the information from PE2 to its parent involves sending

forward along the first dimension (--> 1). Similarly going from level 1 to level 2 involves

communication forward along dimensions 3 and 4 respectively Thus, PE3 sends its information

to PE7 and then P15. PE14 is the parent node of PE's 3,7,11,15. Thus, PE15 sends the

information now to PE14 backward along the first dimension.

Remember that in the pyramid architecture, each parent is connected to four children on the level

below it. We refer to these four children as UL(upper left), UR(upper right), LL(lower left), and

LR(lower right). Thus, in general, to send information from an UL child on level i to its parent

on level i+l, information is send forward first along dimension 2*i + 1, then forward along

dimension 2*i + 2, and finally backward along dimension i. Note that going along dimension 0

11



means no operation. In our notations this is represented by the following sequence:

- 2"i + 1
- 2"i + 2
1<--

Sending the information from child UR to its parent is executed by the following sequence:

--> 2"i + 2
i <--,

while sending information from child LL to its parent involves the following sequence:

--> 2*i + 1
i <--

Sending information from the LR child to its parent involves only one communication step

(i <--). It is clear that sending information from a single child to its parent executes in at most 3

steps.

Sending information from all UL children to their parents is executed by the following sequence:
I- , ,--> 2,0<-

->3, --> 4, 1<-
-->5, --> 6,2 <--

->n-1, - n, <-- (n-1)/2

Note that the first step in all sequences can be performed simultaneously in one hypercube cycle

if each PE stores its level number and uses it to compute the address of the receiving PE. Thus,

executing a global send parent kind of communication takes at most 3 cycles if each PE has its

pyramid level number stored into it. Sending from all children to their parent executes in at most

8 cycles. In conclusion simulating the parent/child communication executes in fixed time

regardless of the hypercube dimensions.
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3. Parallel Stereo Algorithms - A Multiresolution Approach
Hussein Ibrahim and Antoni Lee

3.1 Introduction

This section reports the initial investigation results of the implementation of a multi-resolution

approach to stereopsis based on various components of the computational algorithm by Marr and

Poggio [10]. Stereopsis refers to the use of the two viewpoints, provided by the left and right

eyes, to establish the depth of surfaces around the viewer. The computational paradigm of visual

processing proposed by Marr and Poggio regards the human visual system as an information

processor performing computations on internal symbolic representations of visual information.

These symbolic representations are the zero-crossings of edges produced by the inherent local

intensity variations in the images of the left and right eyes. The zero-crossings of the left and

right images make up what is called the left and right primal sketches. Each zero-crossing

descriptor from one primal sketch image should match at most one zero-crossing descriptor from

the other primal sketch image. Given the relative disparity of these descriptors, depth

information for selected points in the image can be computed. Using the depth information,

surface descriptions can be interpolated. (This is referred to as the raw 2 1/2-dimension sketch

of the image.)

The Marr-Poggio algorithm utilizes the Laplacian of a gaussian convolution operator to detect

zero crossings. Since the basic descriptors are relatively simple, there may be several possible

descriptions in one image which could correspond to a particular descriptor in the other image.

This gives rise to the false targets problem. The false targets problem is directly proportional to

the range and resolution of depth information over which a match is sought. To ameliorate

correspondence matching, Marr and Poggio proposed a technique by which matching

descriptions are obtained at several levels of resolution. The rough depth information obtained at

a coarse resolution are then used to guide the matching at a fine resolution by changing the

orientation of the eyes (vergence control).

In the following sections, we describe the efforts for the parallel implementation of a multi-

resolution approach to stereo and present briefly the convolution algorithms, the computation of

zero crossings and the matching algorithms. It should be noted here that the implementation

efforts were performed mostly on a simulator of the tree structured NON-VON Supercomputer.
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The simplicity of implementing these algorithms on a pyramid machine is obvious, as the NON-

VON architecture is a subset of the pyramid architecture. Testing the algorithms on a simulator

of a fine-grained parallel machine using realistic images is an extremely time and space

consuming task. We have limited our tests to small synthetic images intended basically to prove

the validity of the approach. Testing real image will be performed once we start implementation

on the real CM.

3.2 Image Convolution: The First Step
The Marr-Hildreth theory of stereopsis uses band-limiting Gaussian filters to obtain images of

varying spatial resolution (that is, images of different frequency spectra). These images are then

convolved with a Laplacian operator which extracts edge information from the Gaussian filtered

images. The Laplacian of a gaussian can be approximated by the difference of gaussians

(D.O.G.) In our approach, the multi-resolution capability of the pyramidal architecture is used to

obtain images of various resolution levels. In other words, the low pass filtering by Gaussian

filters has been replaced by another form of low-pass filtering, namely resolution reduction.

Wong et al ([14]), have used an unweighted 2 x 2 averaging operator followed by resampling to

compute the reduced resolution versions of the original image. They showed how their operator

reduce the aliasing, which occurs due to spurious noise. Glaser et al ([5]) have used a more

complicated weighted 4 x 4 averaging operator, to approximate the Guassian-like low pass

filters. The unweighted 2 x 2 averaging operator can be implemented on the pyramid

architecture using the same procedure that builds the multi-resolution pyramid. The weighted

operator also can be implemented easily on the pyramid architecture. We have implemented the

simple unweighted average operator, which is equivalent to building the multi-resolution

pyramid (also referred to as low-pass pyramid in [5]) of the image.

The Laplacian convolution operator is then applied to the stored multi-resolution images. The

resulting set of images represent a band-passed images at various resolutions. (Referred to as

band pass pyramids in [5].) Applying the Laplacian operator (a convolution operation) at each

level involves communicating values between neighbor PE's in the two-dimensional image

stored at that level. This is equivalent to shifting the image stored at each level in the south,

north, east, and west directions. The convolution of an n x n image I, with a given m x m mask

C is mathematically given by the following discrete summation:
+M/2 +Mi2
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This operation is computationally intensive; for example, for each pixel in the image, there are

m2 multiplications and m2 - 1 additions. The time complexity for the entire operation in a typical

sequential machine is O(m 2xn2).

On a parallel machine, computational complexity is reduced substantially due to patial

parallelism. Since convolution is a local (window) operation, it can be performed in a parallei

fashion, each pixel computing the convolution result from the multiplication/addition of

neighboring pixels. Assuming a 3 x 3 mask is used, a naive approach to compute the

convolution of the stored image can be performed by repeatedly computing an element in the

convolution sum, and then transmitting it to the PE, in which it is accumulated. This is not

efficient since each PE is sending information to the center PE which, in most cases, is not

physically adjacent. In the 3 x 3 example above, each corner PE (with respect to local 3 x 3

window) will send information through another PE in order to communicate with the center PE.

Ideally, the algorithm should try to minimize the total amount of communication between PE's.

We have implemented two algorithms that make use of the minimum possible communication to

accumulate the convolution value of an n x n image with an m x m mask, where m < n. The first

of the two algorithms is applied to the general case and follows the approach described in [7].

The second algorithm takes advantage of the circular symmetry of templates used in image

processing, such as the difference of guassian template. In both algorithm, we assume that each

PE stores exactly one pixel of the image, and at each step it computes and accumulates one term

of the cross correlation sum. The eventual output is also stored one value per PE.

3.2.1 The Spiral Convolution Algorithm

This algorithm minimizes the communication time by effectively making all communications

local; in other words, data is only transmitted between adjacent PE's. Instead of shipping the

multiplication results to their target PE, pixel values are transported to the target PE in a

pipelined fashion, where they are multiplied and summed. This is achieved by an ordered

sequence of image shifts. If the template is an odd square (the most common case), an outwardly

spiraling shift order as shown in figure 3-1-a, is always possible, thus involving every required

image position without any wasted shifts.

To keep the input image intact, a copy of this image is used in shifting operations. The

algorithm computes the first term of the convolution sum by multiplying the image value of the
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Figure 3-1: Data Flow in Spiral Convolution

Algorithm

PE, where the convolution sum is to be compiled, by the template value corresponding to it.

This corresponds to the central PE in case of odd square templates. Then, a sequence of shift

images are performed according to the following scheme. We start at the template element,

where the sum is computed, and then we walk over the template in such a way as to cover all the

elements of the template (the spiral is the most direct way). For each move, the corresponding

shift step is in reverse direction. For example if we move right, then the shift step is left, and if

we move up, then the shift step is down, and so on. This gives us the ordered sequence of image

shifts, that if performed will bring all the image elements under the central template element in

the same order of the scanning spiral. For each shift step, the corresponding template element is

multiplied by the shifted value and added to the compiled value at the PE. These steps make up

the basic "inner product" kernel associated with the convolution operation. In essence, the

"spiral algorithm" maps the convolution operation into a linear pipeline of (m xm) such kernel

operations, with the first operation being slightly different in that the accumulated result is not

sent to the next PE, but rather stays in the same PE as the convolution result. A 3 x 3 kernel is

shown in Figure 3-1, along with the sequence of shifts required to follow the spiral path. All

PE's perform this kernel operation in parallel, communicating solely with their adjacent

neighbor.

The algorithm currently implemented minimizes the communications overhead as well as the

amount of RAM memory used. The number of multiplications and additions are the same as for
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a standard convolution. In summary, every local window operation requires: m 2 multiplications.

m2 - 1 additions, and m2 _ 1 inter-PE communication steps, where m is the size of the

convolution mask. Due to the spatial parallelism, each local m x m window of PE's

independently computes the convolution summation, so that the total time required to pe-form

the entire image convolution is equal to that of performing a single convolution summation.

3.2.2 The Migration Convolution Algorithm

This algorithm takes advantage of the circular symmetry of non-directional operators in

performing convolutions. In doing so, it drastically reduces the multiplication time involved in

performing a convolution, as well as decreases the amount of communication time and addition

time necessary. To illustrate how this algorithm works, it is helpful to first make several

observations about non-directional operators:
1. If one were to take an illustration of a non-directional operator, for example, The

DOG operator, one would see that all four quadrants of the operator are circularly
symmetrical. An example of a 7x7 mask for the non-directional DOG Operator is
shown in figure 3-2.

2. Because of this circular symmetry, it will always hold true that the set of all
coefficients of the operator will be found within a single "slice" of the mask
(including the elements along the diagonal from the center of the mask to the outer
comer, and along the central axis it borders, be it horizontal or vertical). For
example, the following is a "slice" of the mask in Figure 3-2. It contains the full
set of coefficients for the D.O.G. operator described.

-. 0009

1 -.008 1 -.055 1

1 -.027 1 -. 123 1 0 1

I I I

1 -.04 1 -.135 .303 1 1 I

3. Each quadrant is a mirror copy of the two quadrants adjacent to it if the mask were
folded along the vertical or horizontal centers that separated the two quadrants.
For example, the upper left hand quadrant is a mirror copy of the upper right hand
quadrant were the mask folded in half along the central vertical (the elements along
the central vertical are considered elements of both quadrants). Because of this
relationship, the four rows of any quadrant reflect the spatial relationships of the
coefficients in all quadrants. Each of these rows is called a vector. To illustrate
this, the four vectors of the upper left quadrant are:

17



a. (-.0009, -.008, -.027, -.04)

b. (-.008,-.055,-.123,-.135)

c. (-.027, -.123, 0, .303)

d. (-.04,-.135, .303, 1)
The vectors of the upper right hand quadrant are these same vectors with their
elements in reversed order.

-.0009 1-.008 -.027 -.040 -.027 -.008 -.0009 1

-.008 1-.055 1-.123 -.135 -.123 1-.055 1-.008
1I

1-.027 I-.1231 0 .303 10 1-.123 -.027
I I

1-.040 1-.135 1.303 1 1 1.303 1-.135 -.040 1
S1

1-.027 I-.1231 0 1 .303 10 1-.123 1-.027 1

IiI I III
1-.008 I-.055 I-.123 I-.135 -.123 -.055 -.008 l
1 I

-.0009 1-.008 -.027 1-.040 -.027 -.008 1-.0009 1

Figure 3-2: 7x7 Non-Directional Convolution Mask

Given the above observations, it is now possible to discuss the Migration Algorithm for

Convolutions.

The first step of the algorithm is to broadcast each coefficient in a "slice" of the mask to all the

PE's. Each PE then stores the product of the coefficient broadcast and the intensity of the pixel

corresponding to that PE. Because of observation 3 above, no further multiplications will need

to be performed throughout the remainder of the convolution. The products of this step are

referred to as the CoefficientProducts.

The second step of the algorithm entails migrating the CoefficientProducts to the pixel

corresponding to the center of the mask. An illustration of the migration paths that this

algorithm uses is shown in the diagram below. Data is first migrated towards the central vertical.

Once the data is collected there, it is then migrated towards the center pixel (marked with an "+"
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Figure 3-3: Data Migration Paths

in the above figure). This method of data migration reduces the number of communications due

to the parallel nature in which data is migrating in each of the quadrants.

The data being migrated are the Coefficient-Products themselves. Which Coefficient- Product is

sent to a neighboring PE at any given time is determined by the vectors that were discussed in

observation 4, above. To illustrate this, consider the first vector in the upper left quadrant. The

first Coefficient-Product of the vector is retrieved from RAM and sent to its East neighbor, or the

PE to its right. At that PE, the received value is added to the second Coefficient-Product of the

vector retrieved from that PE's RAM. That sum is then sent to its East neighbor. This is

continued until the accrued sum reaches the central vertical, where the last Coefficient-Product

of the vector is retrieved from RAM and added to the received sum, and then stored into a

temporary RAM location. This is done for each vector of the quadrant. The result of this is that

each PE along the central vertical now has four temporary values stored: one for the result of

applying each vector to that row of PE's.

This process is then done on the upper right hand quadrant of the mask, however, the migration

now proceeds to the West, or left. When the accrued sums arrive at the central vertical, they are

added to the results obtained from the migration of data in the upper left quadrant when th~e same

vector was applied. So, for example, the result of applying vector 1 to the first row of the upper

left quadrant is added to the result of applying that same vector to the first row of' the upper right

quadrant.

Once all of the horizontal migration has been completed, the PE's of the central vertical each

have four temporary values stored which correspond to the application of each vector to the

entire row in which the PE resides. To get these values to the center of the mask, we must pass

these values to the North and South. This is done by the top PE of the central vertical sending

the result of applying vector one to its row South. The second PE from the top adds the received

value to the result of applying vector 2 to its row, and so on, until the accrued sum reaches the
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center. This is exactly the way data is sent North. The bottom PE of the central vertical sends

the result of applying vector 1 North, where it is added to the result of applying vector 2, etc.,

until the sum reaches the center PE. The result of the South and North migration are then added

and the result of the convolution stored!

The result of using this algorithm for performing convolutions using non-directional operators is

a reduction in the expenditure of time spent on multiplying, adding and communicating. Using

this algorithm, the number of multiplications (also the size of memory space required to store the

result of multiplication) is reduced to

i=1
FM I

which is equal to (m2 + 4m + 3)/8. This is approximately one eighth the number of

multiplications required in the spiral algorithm. And, the number of Inter-PE Communications

and Additions is

2LTJ [FM + 2LmJ2 2 2
where m is the size of the convolution mask. This is approximately equal to (m2/2 + m)

Because of NON-VON's spatial parallelism, the sum of these two equations is not only the time

it takes for a single m x m window convolution, but the time it takes to convolve an entire image.

In comparing the spiral and migration algorithms, we see a classic example of a "time-space"

trade-off. The migration convolution is faster than the spiral convolution since it contains less

number of multiplication and communication steps. On the other hand, the spiral convolution

uses less RAM locations and is more flexible since it does not require a circularly symmetric

convolution mask.

3.2.3 Extracting Zero-Crossings from the Image
Once the multi-resolution pyramid has been constructed, the image at each pyramid level can be
convolved, either in parallel or independently, with a Laplacian mask. The resulting image is

then searched for edges by looking at its zero-crossing components. Gaussian filtering should

not be needed to obtain band-limited images since the multi-resolution images have already been

filtered by the resolution reduction operation. If noise is a problem, each image can be Gaussian

filtered before application of the Laplacian. However, this is done for noise considerations and

not as a means of band-limiting the image.
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The resulting image contains edge information in the form of "zero-crossings." The algorithm

implemented can locate zero-crossings in various directions, although only 4 basic (Ist-order)

directions exist: East-West, North-South, and the two diagonal directions. In addition, the

contrast (i.e. whether convolution changes from negative to positive or vice versa) is computed

as well as the gradient of the convolution in a given direction. This additional information

should help during the matching phase of the stereo algorithm, since orientation information is

essential in getting accurate matches, especially in noisy environments. The zero-crossings

would be found for both left and right images. an oriented edge exists if the output (convolved)

image changes sign in a particular direction; for example, for vertical edges (i.e. horizontal zero

crossings), the following criteria is used in the detection of edges:

" if two adjacent output pixels have opposite sign (excluding 0 for either one), then an
edge exists between the two pixels

* if an output pixel is equal to 0 and its left and right neighboring pixels are of
opposite sign, then an edge exists at the 0-valued pixel

These two conditions are shown in Figure 3-4. Edges may be found in any of the 8 primary

directions by using the same criteria for pixels lying in the given orientation.

-+ + - - 0+ + +
A A

AA

condition 1 condition 2

Figure 3-4: Horizontal Zero Crossings

The current implementation assumes that the convolved image is stored in every PE's RAM on a

one-to-one basis (i.e.pixels map directly into PEs). The algorithm finds zero-crossings in any of

8 orientations, labels them as to contrast, and finally calculates and stores in a given RAM

location the gradient of the convolution in the given orientation. The orientation chosen is a

function of the matching algorithm; in Grimson's paper [6], it is stated that only horizontal zero-

crossings contain valid information for stereo matching. In any case, it is often useful to find the

orientation as well as the location of the edges in an image.

The orientation of an edge can easily be found by finding in which direction the gradient of the
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convolution is maximized. Furthermore, by finding the two directions in which the gradient

peaks, one can interpolate between the two directions to get an average orientation. An example

taken from an actual run is shown below.

A typical 3x3 window The gradient in 8
of a convolved image directions is:

1 0 I 0 I 0 I 0 deg ==> 0 180 deg ==> 88
I 0 1-881-881 45 deg ==> 88 225 deg ==> 0
1-88126411761 90 deg ==> 88 270 deg ==> 352

135 deg ==> 88 315 deg ==> 264
180 deg <---> 0 deg

Since the maximum value of the gradient occurs at 270 degrees, then this is the orientation of the

edge. As one can see, this type of information would be very helpful during the matching

operations.

The algorithms have been successfully tested on the NON-VON simulator using artificially-

constructed images. We are starting now the implementation of this approach on the CM

simulator in anticipation of using the real CM machine on real images. Figure 3-5 shows the

16x16 test image used for our tests. This image has been then convolved with several filter

masks, and the resulting images have been analyzed. A typical mask used is a "pseudo-

Gaussian" mask, which is constructed using an exponential formula such as 2exp[L- ]. A 3x3

mask for a = I (and also normalized to 1) is shown below:

111 2 I11
I 2 I 4 I 2 I * 1/16
1 1 1 2 1 1 1

The Laplacian mask utilized in our experiments is shown below:

I 0 I -1 I 0 I
I -1 i 4 1 -1 1
I 0 I -1 1 0 I

Using the Guassian mask on the original image (Figure 3-5) results in the image shown in Figure

3-6. Applying the Lapalacian mask to the convolved image, and using the resulting image as

input to the zero-crossing algorithm, one can locate edges in any of eight particular directions.

Figure 3-7 shows both horizontal and vertical edges of the Laplacian-Gaussian convolved image.

Convolution of an image at levels other than the base level allows the parallel filtering of the

multi-resolution images in the pyramid. Figure 3-8 shows the reduced resolution images at
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levels 2 and 4 (where the mesh level is 0). Notice that for level 2, the image is still quite

distinguishable, but for the next level, only the basic outline of the image is apparent.

The Gaussian and Laplacian filtering of these two images occur in parallel with that of the

original, base level image. The resulting Gaussian filtered image and edge map of the 8x8 image

are shown in Figures 3-9 and 3-10. Each edge map also holds the edges' contrast and

convolution gradient in the direction chosen. In matching applications, it would essential to find

the gradient of the convolution in several directions so as to increase the likelihood of a good

match. To do this would require using the zero-crossing function in as many directions as

desired, each time storing the gradient information in a separate RAM location.

3.2.4 Stereo Matching on Pyramid Architectures

In [6], a method for using coarse descriptions to control eye vergence movements is explained.

In this scheme, zero-crossings from coarse resolution images are first matched and the disparity

found at this level used to shift one image with respect to the other image, thus emulating the

eye's vergence movements. After a new image is brought in, it is again searched but at a finer

level than before, until the disparity is found at the highest possible resolution.

A pyramid architecture facilitates matching and vergence operations. Assuming that a multi-

resolution image pyramid has been built, the matching would start from the higher levels of the

pyramid and work its way down the pyramid. The matching operation makes use of the location

of the edge, its contrast (i.e. polarity), and orientation (as given by the gradient of the

convolution taken in different directions), the matching algorithm attempts to locate an edge with

similar characteristics in the opposite image.

A set of rules is used to determine the existence of a "good" match:
* the matching edge must be located around the same relative horizontal (row)

neighborhood (assuming negligent horizontal disparity)

* given several possible matches, the largest disparity located on the same horizontal
row will be chosen ahead of any other

* if no match exists on the same horizontal row, then the next highest priority goes to
the match with the largest disparity in the closest row

* a match is found for edges whose contrasts are the same and whose orientations are
within certain limits from each other

Given an edge on the left image, the search neighborhood is that area in the right image which
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will be explored for possible matching edges. If the search neighborhood is very large (e.g. the

entire image), it is likely that invalid matches or 'false targets' will bias the results. On the other

hand, too small a neighborhood can result in no matches at all, an equally unacceptable situation.

The algorithm implemented searches an area 'w' wide and 3 rows high. The width 'w' is an

adjustable parameter, while the height is fixed at 3 rows. A typical 5x3 search is shown below.
g -- > f --- > e --- > d --- > c

I
i -- > h --- > E < --- a < --- b

j,<---,, <---,, <---., <---.n

The matching algorithm compares each edge found in the left image with edges lying inside a

given wx3 rectangle surrounding the corresponding right image pixel. The two images are

assumed to be at the same pyramid level of the pyramid machine(i.e. of the same resolution).

Assuming that the two images (and their corresponding edge maps) are stored in RAM memory,

the matching algorithm is composed of the following basic steps:
1. Move the right image edge profile to a buffer area in RAM. Send the data stored in

the buffer towards the center PE (i.e. send 'a' towards 'E'in the diagram above)

2. Compare to see if a match exists between the left image edge profile and that
received from 'a'. A match strength is assigned to this Comparison based on the
edge information as described before.

3. Enable those PE's in which a match was found and broadcast an appropriate
(dx,dy) disparity pair which is then stored in RAM by each enabled PE

4. Send the data again in the same direction so that 'b' will now arrive at the 'E' and
repeat step two.

5. Repeat these send/match functions until for all possible matches of the window
(Another spiral kind of algorithm).

6. Select the best match found among the various matches (largest strength).

Note that this algorithm utilizes the parallelism inherent in a pyramid machine to match all edges

in the left image with right image edges in parallel. If the center pixels are also compared (i.e.

for a disparity of 0), the total time to match an entire image is equal to (w * 3)(time to do a

send/compare/broadcast operation).

At the end, every left image 'edge' PE will contain an array of disparity values (dx,dy)

corresponding to possible right image matches (no pair is stored if a match was not found within

the given search area). The possible matches are arranged according to the priority scheme
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mentioned above (that is, matches located in the same horizontal line are stored in the first array

location). The best match is chosen for each edge, and the maximum disparity is computed

using the pyramid structure.

This maximum value is then used to guide the search on the next level down the pyramid by

limiting the search area. This continues until the matching is performed for the images at the

base. Match values at different levels can be then used to compute a confidence value for the

matching at each edge.

3.3 Depth Interpolation Problem - A multi-resolution approach
Dong Jae Choi and John R. Kender

The depth interpolation problem is concerned with reconstructing the surface of an object for

which sparse depth information has been obtained. In other words transforming the 2 1/2 D raw

sketch that has resulted from the stereo algorithm into a complete 2 1/2 D sketch containing

explicit information about the surface at all points. We report here on efficient computational

methods of solving this problem on fine-grained SIMD machines with local and global

communication networks. The problem can be cast as solving a large system of linear equations

with a symmetric positive definite matrix (SPD). Previous work on the problem, by Grimson

and Terzopolus, have been studied. These methods basically employ local information to reach

the solution. Our work concentrated on investigating the numerical methods that use global

information adaptively to reach the solution and how they can be implemented efficiently on

emerging parallel architectures.

3.3.1 Problem Formulation

The nonzero coefficients of each equation in the large linear system is specified as summations

of computational molecules. Given the depth constraints and the orientation constraints, a set of

computational molecules computes the nonzero coefficients of the linear system by local

computations. Because of the symmetric nature of the computational molecules, it can be easily

snown that the resulting matrix is symmetric. Furthermore, Terzopoulos shows the stronger

result that the matrix generated is symmetric and positive definite (SPD). The matrix is also

sparse. Even for interior nodes which are sufficiently distant from a boundary where the depth is

discontinuous, they interact with only 12 neighbors, all of them at most only 2 nodes away.

When an interior node [i, /1 is constrained by the depth constraint di', its nodal equation is given
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Figure 3-5: Original 16x16 Artificial Image
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Figure 3-6: Gaussian Filtered 16x16 Image
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Figure 3-7: HorizontalNertical Edge Map of 16x 16 Image
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Figure 3-8: Reduced Resolution Images - Wx and 4A4
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Figure 3-9:- Gaussian Filtered 8x8 Image

Figure 3-10:- Horizontal and Vertical Edge Map of Wx Image

by
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Aiwhere xh denotes the depth value computed for the node [i,j]. The two terms, and P, ti.

are not present when the node is not constrained with any depth constraints. The optimal value

for h is dependent on h but independent of [i,jJ and is given by 3h = y/h 2, where y is constant.

The value employed by Terzopoulos for y is either .5 or 2.0 in most cases.

3.3.2 Our approach

We have followed the Terzopoulos' formulation on visible surface reconstruction and have used

the computational molecules proposed by him. However, we present an alternative depth

interpolation process using the theoretically better iteration methods, which speed convergence

and are amenable to certain classes of parallel computers. We were motivated to use these

iteration methods by the observation that the Chebyshev and conjugate gradient methods are

provably optimal in terms of computational complexity. Multiresolution techniques have been

incorporated to speed the execution.

The depth interpolation problem has been cast as solving a large system of linear equations,

Ax = b (2)

where A is an n x n SPD matrix and x and b are n x I vectors. We use x to denote the depth

vector where n represents the number of depth continuous nodes in the region.

Using one of several known basic iterative methods, the equation (2) can be solved by the

following iterative process

x0+ 1) = Gx(i) + k, i = 0, 1, 2, (3)

where G is the iteration matrix for the method and k is an associated vector. The iterative

method (3) is convergent if for any initial approximation x(0 ) the sequence x(1), x(2), defined

by (3) converges to the unique solution a = A' 1b.

There are several well known basic iterative methods: the Jacobi, the Gauss-Seidel, the

successive overrelaxation (SOR), and the symmetric successive overrelaxation (SSOR) methods.

However, methods other than these basic iterative methods are used in practice because of the

slow convergence rates of the basic iterative methods. The rates of convergence can be

accelerated by two major classes of accelerations: polynomial acceleration methods or

nonpolynomial acceleration methods. Note that the multi-grid method used by Terzopoulos is

one of the nonpolynomial acceleration methods.
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In our implementation, we chose the Jacobi method as the underlying basic iterative method

and the adaptive Chebyshev method as the method of polynomial acceleration. In the Jacobi

method, the iteration matrix G is related to the matrix A by

= Ij 0 if i=j (4)
I-aij / ai,i  otherwise

where A = (aij) and G = (gi) for 1 < i, j < n.

The convergence rate of this method is fastest when the largest eigenvalue, M(G), and the

smallest eigenvalue, m(G), of the iteration matrix G for the related basic method are known.

We will return to experiments with this method shortly.

Another method which uses the global information of the matrix is the conjugate gradient

method. We can also solve the equation (2) iteratively by constructing a sequence {x(i)

converging to the solution (x = A 1 b. The following equations have been derived to solve this

problem:

r i)= Ax() - b,

Z(i) X(i) - cir(i)"

y(i) - (i- 1) -z(1)

X(i+ 1) = z(i) uiy), (5)

where

(rQ ), Ar(O)

U0 = 0,

, (y(O, r(i) - cA(i)) 
(6)

(y(O, APi-1) - Ax(0 + ciAr(i))'
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3.3.3 Parallel Implementation

A parallel architecture to support the particular structure of our application demands the

following characteristics:

* Many of the operations described in the previous section ought to be performed
simultaneously on a subset of nodes properly chosen at each moment. Identical
operations are carried out upon the data at each selected node. This first property
naturally leads to a fine grained processor and a single instruction multiple data
stream (SIMD) mode of execution.

* Secondly, the matrix involved is sparse. In particular, in the depth interpolation
problem even an interior node far removed from the region boundary interacts only
with 12 neighboring nodes. Therefore, mesh interconnections between nodes are
sufficient for handling all the local communication needs for matrix multiplication.

* Thirdly, what is needed as well is a fast global summary capability. In the two
iteration methods, we need to compute various vector norms, a matrix norm, and
inner products. This global communication need can be met well by any global
network mechanisms, e.g., the tree topology or the boolean n-cube topology,
superimposed on the underlying mesh.

We need 528 bits/PE in the adaptive Chebyshev acceleration method, while 688/PE are needed

in the case of the conjucate gradient method.

Tables 3-1, and 3-2 show the summary of typical operations required in both methods.

The methods were applied to a synthetic image of a portion of a cylinder whose axis was parallel

to the j direction. The synthetic depth for node [i, J] was set to

Cfi7 = (1.0 - (i - r/2)2/ (r)2)1/2,

where 0 < i < 127 and r = 127.0. The shape of the boundary was a square, with size 128 x 128.

The density of the depth constraints were set to 15%, 30% and 50% respectively.

The root mean square error (RMSE) at the ith iteration is defined as follows:

RMSEG) = (/( [x5O - I2)/n)1/2.

In Table 3-3, we show the number of iterations i to attain the specified fraction of the initial

RMSE value. The results are tabulated side by side for three different iteration methods, the

conjugate gradient, the adaptive Chebyshev acceleration, and the Gauss-Seidel method. We

observe that the conjugate gradient method performs best in the sense that it takes the least

number of iterations. The adaptive Chebyshev acceleration method comes next and the Gauss-

Seidel method performs worst. But we should note that each step of the iteration of the first two
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methods is completely parallelized so that overall execution is much faster compared to the

Gauss-Seidel method where the computation is done in serial fashion. As the depth constraints

become sparser, the depth interpolation problem itself becomes inherently harder to solve and

takes more iterations. Even here, the degradation in the Gauss-Seidel method turns out to be the

worst.

We have derived before that the total number of machine cycles per iterations are 47197 for the

adaptive Chebyshev acceleration method and 73299 for the conjugate gradient method,

respectively. In Table 3-4 we show the normalized number of iterations for two methods in the

first two columns. For the adaptive Chebyshev acceleration method, we use the same numbers

as in Table 3-3. For the conjugate gradient method, we have multiplied the number of iterations

in Table 3-4 by 73299 / 47197 = 1.5530. After normalization, the conjugate gradient method

still performs better than the adaptive Chebyshev acceleration method. This is in part due to the

errors in the initial estimates of the eigenvalues. The initial estimates of the smallest and the

largest eigenvalues, mE and ME, were - IG11. = - 3.0 and 0.0, respectively.

We shcw the number of iterations i in Table 3-3 and the normalized values in Table 3-4. We

have similar results, but the overall number of iterations are smaller, because of the parameter

change in the nodal equations.

For the Chebyshev, acceleration method run with more accurate initial estimates, we proceeded

in similar fashion. For the initial estimates of mE, we used -2.3. When the initial estimates of

mE and ME were -IG11. = -3.0 and 0.0, we obtained .9795, .9932, and .9981 as the final

estimates of ME values at the iteration steps of 90, 153, and 295 when the density of the depth

constraints were varied to 50%, 30%, and 15%, respectively. As the improved initial estimates

of ME, we used .97, .98, and .99, respectively. We note that the adaptive Chebyshev

accelaeration method performs better than the conjucate gradient method if near optimal values
for the minimum and maximum eigen values were used as the initial values.
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Operations local global TOTAL
(machine cycles)

Addition, Subtraction 16 6(log s) (6(log s)+ 16) x 348

Multiplication 11 1 12 x 563

Division 1 0 1 x 993

Mesh Communication 16 0 16 x 160

Tree Communication 0 12(log s)+3 (12(log s)+3) x 192

Table 3-1: Summary of Operations (Chebyshev Accel. Method)

Operations local global TOTAL
(machine cycles)

Addition, Subtraction 30 8 (log s) + 3 (8 (log s) + 33) x 348

Multiplication 18 5 23 x 563

Division 2 0 2 x 993

Mesh Communication 32 0 32 x 160

Tree Communication 0 16(log s)+4 (16(log s)+4) x 192

Table 3-2: Summary of Operations (Conjugate Gradient Method)
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RMSE Conjugate Grad. Chebyshev Accel. Gauss-Seidel

50% 30% 15% 50% 30% 15% 50% 30% 15%

0.5 4 7 12 17 23 36 8 15 36

0.2 9 15 28 27 39 67 21 42 109

0.1 13 22 42 33 52 94 33 66 187

0.05 18 29 56 42 66 123 45 94 288

0.02 24 40 82 53 85 164 62 138 470

0.01 29 49 100 60 102 203 77 178 647

0.001 46 77 152 90 153 295 131 339 1323

Table 3-3: Number of Iterations (cylinder)

36



RMSE Conjugate Grad. Chebyshev Accel.

50% 30% 15% 50% 30% 15% 50% 30% 15%

0.5 6.2 10.9 18.6 17 23 36 6 8 12

0.2 14.0 23.3 43.5 27 39 67 10 17 32

0.1 20.2 34.2 65.2 33 52 94 15 26 58

0.05 28.0 45.0 87.0 42 66 123 20 39 91

0.02 37.3 62.1 127.3 53 85 164 28 64 128

0.01 45.0 76.1 155.3 60 102 203 36 75 159

0.001 71.4 119.6 236.1 90 153 295 69 121 266

Table 3-4: Normalized Number of Iterations (cylinder)
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4. Parallel Texture Algorithms
In this part of the report, we report progress on the development and testing of parallel texture

algorithms. The methods used for detennining surface orientation from textural cues rely upon

the distortions caused by (1) the effects of different perspectives as the surface recedes and (2)

the projection of the surface onto the image. The first effect, originally suggested by J.J.Gibson

as the primary effect used for surface perception by humans, causes that part of the surface

which is farther away from the viewer to be represented by a smaller portion of the image. This

is because of the oblique angle between the viewer and the surface when perspective is

considered. Although this effect is clearly a powerful cue for human perception, machine

perception methods based upon it, have been constrained by the need for strong assumptions

based on the existence of texels (texture elements) and some texel regularity such as uniform

area or equal spacing between texels. Given some such assumption, a texture gradient measure is

defined from which it is possible to infer the geometry which gave rise to it. For this reason,

shape from texture methods which rely on this type of distortion can be categorized as gradient

methods.

The second effect, often called 'foreshortening', is seen as a compression in the direction of

inclination of the surface. A well-known example is the transformation of an image of a circle

into an ellipse whose parameters depend on the orientation of the surface. In particular, a circle

on a surface with slant a and tilt t when orthographically projected becomes an ellipse whose

direction of its minor axis is the same as the tilt and whose ratio of minor axis b to its major axis

a is the cosine of the slant. This effect occurs in the same way for all parts of the surface

regardless of how far away from the viewer any part is. Hence, it is often not necessary to get

involved with the complicated geometry of perspective projection in order to use this distortion

to infer surface orientation. Since it is not necessary to make any assumptions about the

existence of texels, methods based on this distortion have been more statistical in nature and

hence more accurate for large pictures of a single uniform natural texture. A good example of

this type of shape from texture method was developed by A.P.Witkin.

Within our objective to integrate our stereo and texture algorithms with those of other ALV

participants, we have tested an algorithm for on/off road segmentation using the data we have

received from ERIM's ALV Data Collection. The algorithm uses micro-edge densities,

following the road from previous pictures and experimenting with variable size windows which
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change in parallel to accommodate the current locations of the road edges. Figure 4-1 shows the

application of this algorithm to one of the road scenes obtained from ALV data collection. In

addition, we are exploring the use of the density gradients to determine relative orientation. At

present we have been limited by low texture resolution and have been in contact with Martin

Marietta about possible improvements.

A texture segmentation scheme based on a combination of pyramid linking spatial grey level

dependence statistics have been tested on the pyramid programming environment. The

algorithm is based on constructing links between adjacent levels in the multi-resolution pyramid

of the image. The average pyramid is constructed such that each node on an intermediate level is

set equal to the of its own children and the children of its east, south, and east-south siblings. It

follows that each node has at most 16 children, and it contributes to at most 4 parents. In the

linking process, each node establishes a link between it and the parent which has a value most

near to its own. Once this is established, we traverse the pyramid top/down and color the

children with the same color of the parent they are linked to. This iteration is repeated, but this

time the average value is computed based on the children with links established to the parent.

the iteration should terminate when no change in coloring is happening (basically the

segmentation is the same). Figure 4-2 shows the application of this algorithm to segmenting a

road image of the ALV data collection. The figure shows the original image and the segmented

image after three iterations.

In what follows, we report on the progress of testing and implementing two texture algorithms,

and a system that integrate texture algorithms to determine surface orientation.

4.1 Analysis and Parallel Impleme't~ation of Witkin's Method
Lisa Brown & Hussein Ibrahim

In this section, we discuss a parallel implementation of A.P.Witkin's algorithm for the

recovering of surface orientation from texture for the highly parallel, SIMD, tree-structured

NONVON supercomputer. Witkin's approach to the surface from texture problem is well-suited

to a wide spectrum of textures and relies upon the following assumptions:
1. The image is an orthographic projection representing a planar surface.

2. The texture itself is considered to be the distribution of edge directions and this
distribution is assumed to be uniform prior to the effects of projection. More
importantly, the method will work to the extent in which the distribution of edge
directions that compose the texture do not resemble the effects of projection.
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Figure 4-1: A road scene and its segmentation using edge density counting
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Figure 4-2: Pyramid-Linking segmentation of a road image
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3. All surface orientations are equally likely. If we consider each surface as being
represented by a point on the Gaussian sphere then a given surface is equally likely
to be represented by any point on the sphere.

Given that these assumptions hold completely, this method has already been proven to be quite

robust. The major drawbacks are that it fails when confronted with textures with regular features

(assumption 2) and it is computationally inefficient on a serial machine, we have considered

ways to improve the efficiency through parallelization. We take care to use representations

which give accurate measurements and can be used to extend the method to a larger domain.

The idea behind Witkin's method is as follows. We assume that the distribution of edge

directions is uniform prior to the projection. If the surface is slanted about an axis parallel to the

X-axis by an angle a with respect to the image plane then we expect the distribution of edge

directions to become dominated by edges whose directions are close to horizontal. The larger (Y

is, the greater the domination of these edges. This makes intuitive sense since all the edges in the

surface are being more and more compressed along their vertical component. If the surface is

slanted about a different axis which makes a tilt angle t with the X-axis, then the distribution is

just shifted.

The three phases of the algorithm as implemented on NON-VON are:
1. The determination of the edges in the image in each of the edge directions

considered.

2. The histogramming of the edge directions.

3. Computing the likelihood for the histogram for each possible surface orientation
and finding the maximum likelihood.

Finding the edges in different direction is computationally the most important phase of the

algorithm. Since this phase is only the input into the algorithm it is often overlooked; but the

choice of representation and method used here greatly effect the types of information available

for subsequent use. Once the histogram of edge directions is found the computation of the

likelihood estimates is well defined and computationally less intensive. However, there are

several different ways to determine the edges and their orientations and we would like to do this

both efficiently utilizing our parallel architecture and with an eye to facilitating the detection of

edges which do not satisfy the assumptions.

For the initial detection of the edges, Witkin proposed the Marr-Hildreth zero-crossing operator

which he used successfully to demonstrate his algorithm. This method is also applied here using
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the parallel functions for the NONVON as described earlier.

The multiresciution approach described earlier can be used to improve edge detection. Marr and

Hildreth [10] have developed this idea. Each level is used to find the zero-crossings for differing

frequency bands and then a set of parsing rules determine the relationship between the zero-

crossings at each level. The parsing rules are determined by physical constraints such as the

spatial localization of intensity changes due to each physical phenomena in the visual world.

Thus, zero-crossings are expected to be found at each level unless more than one phenomena

have been combined from a higher frequency band. From these rules, the primitives of the primal

sketch are found. This same technique might by exploited for use with Witkin's algorithm.

Distribution of edge directions found at each level could be analyzed together with the parsing

rules to determine the frequency band which give the most reliable results or greatest likelihoods.

In fact, one of the problems encountered with zero-crossings is that more than what is normally

perceived as the edges in the image are detected. This is significant since the set of edges which

are optimal for Witkin's method are not known. In our current implementation however, just the

base level is used for edge detection.

Given this techniquc for edge detection, it still remains to determine the directions of the edges.

To do this, let us first consider the principles behind our edge detection scheme. The Marr-

Hildreth operator was selected as the optimal smoothing filter that satisfied two physical

constraints. The first constraint is one of spatial localization since it is believed that only nearby

points contribute information to the intensity changes at any given point. The second constraint

is a frequency localization. We would like a smooth and band-limited filter. These constraints

lead directly to using Del2G operator to find the zero crossings. The first thing to note is that

finding a zero-crossing in a given direction does not necessarily tell us about the direction of an

edge at this point. Indeed, it is possible that there is a zero-crossing in (every} direction at a
given point when for example, there is only a single edge formed by a uniform intensity change

with constant lines that run parallel to the edge. To choose among several zero-crossings at one

point, we have two simple strategies:
1. Choose the zero-crossing which has the maximum slope.
2. Choose the zero-crossing whose orientation agrees with the orientations of other

neighboring zero-crossings.

The second strategy is supported by the theorem that Mar" and Hildreth call, the condition of

linear variation in which for smoothed images (as in our case) the two strategies above are
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equivalent. The theorem tells us that the intensity variation near and parallel to the line of zero-

crossings should be locally linear. We are ultimately interested in the direction of an edge at this

point, and we see that according to this theorem the line of zero- crossings is in the direction of

the edge since we expect linear intensity changes along and parallel to the edge and a maximum

change across it.

Thus, there are two approaches that can be taken in extracting the edge directions from the zero-

crossings, both which can be easily implemented in our parallel scheme. The fiust approach

takes the edge direction as orthogonal to the orientation of the zero-crossing with the maximum

gradient. The second approach considers an edge only if there are two zero-crossings of the same

orientation which are adjacent to each other on the line perpendicular to the zero-crossing

orientation. The direction of this edge is then the direction formed by the line on which the two

zero-crossings lie. This method has the advantage that an edge is more clearly part of contour

and less likely to have been contributed by noise. On the other hand, since we are only interested

in texture, a contour may be irrelevant. Finally, an edge in the vertical or horizontal direction is

more easily found due to the nature of the grid and this will skew our histogram values.

Once the edge directions have been found, we can take advantage of the pyramid tree

communication capability to compute the histogram. Since the edge directions now reside at the

base level, we simply accumulate the number of edges in each direction as we ascend the

pyramid. The algorithm will require only 0(log n) operations where n is the number of pixels in

the image as opposed to 0(n) time needed by a sequential machine. There are of course several

alternatives to this scheme for determining the edge directions. Two methods that we have

considered are: (1) using the gradient determined by the orthogonal Sobel operators and (2)

using the wedge shaped regions centered at the origin of the power spectrum of the image.

4.1.1 Orientation Likelihoods

This phase of the algorithm although computationally somewhat complex, is not nearly as

computationally intensive and therefore we initially thought that it did not justify implementation

on a parallel machine but could more easily be accomplished by its host computer. Basically, it

consists of computing the likelihood of each possible orientation given the distribution of edge

directions. While the number of possible orientations is infinite, they can be well represented by

a small sized subset on the order of a hundred. However, after considering all the benefits, it

becomes clear that it is worthwhile to take advantage of the parallel architecture.
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In our parallel implementation each PE represents one likelihood, so that a fine grained output of

the orientation likelihoods could be obtained. Once these likelihoods are found, the maximum

can be found by traversing up the tree. But in addition, we have created an ideal structure for

outputting {all) the likelihoods to other shape-from methods and for feedback between the

likelihoods and the edge direction distributions found at varying bandwidths and thresholds. This

latter result, cap be used to identify the edges which optimally satisfy the assumptions, allowing

Witkin's method to be used on more natural textures successfully. A sample of our results is

shown in Figure 4-3.

A more appropriate choice of the coordinate space representation of orientation can lead to more

accurate results. The singularity that occurs when the slant is small is a result of the nonuniform

probability associated with each orientation region, the regions being smallest when the slant

-'pproaches zero. If instead of selecting equally spaced intervals of a, -t, we choose equal size

areas on the Gaussian Sphere, the joint pdf is simply a uniform distribution and thus a constant.

The advantages are twofold: large errors at small slants are avoided and the resolution of the

results becomes more consistent.

Figure 4-4 shows the decrease in the error as a function of slant by transforming the orientation

space into Gaussian Sphere. Ten random samples of 2000 uniformly distributed tangent

directions were projected at a constant tilt for each slant. The projected tangent directions are

then histogrammed and given as input into Witkin's original method which finds the maxinum

likelihood of 100 surfaces: 10 slants and 10 tilts, equally spaced and into the modified method

which finds the maximum likelihood of 100 surfaces approximately uniformly spaced on the

Gaussian Sphere. The implementation of this method on the simulator for the NONVON

computer, has exposed both the advantages and limitations of Witkin's statistical approach to

texture. One obvious limitation is that not all surface orientations can be distinguished. For
every surface orientation that the method finds, there is another orientation which slants in the

opposite direction which is equally likely. This is obviously counter to human perception. It

suggests that this method is somehow incomplete. However there are several reasons why this

method is appealing. Most other methods which derive shape from texture rely upon gradient

measures. These methods rely upon determining texel size, shape or spacing and assumptions

concerning their uniformity. These methods are complicated by determining or locating texels

and limited to very specific domains. Notice how these methods contrast with Witkin's
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Figure 4-3: The center column contains the images whose orientations
are top: a=O, t:=45, center: a=O, ,t=20,

bottom: a=45, t=45. The left column contains the likelihood at each
surface orientation where the distance from the origin is t, and the angle

is a. The right column contains the Fourier Spectra.
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Figure 4-4: Comparison of Witkin's Original Method and Modified Version(Dotted
lines)
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approach which will often fail when their assumptions hold but work when they fail. For

example, uniformly shaped texels will cause Witkin's method to fail if the texel shape is biased

towards certain directions but when the texels are all shaped differently Witkin's is likely to be

applicable. Thus, it would be useful, if Witkin's method could be applied so that instead of

solely determining the orientation which is most likely to be represented by the given edge

distribution, the likelihood of each orientation was used as information to be passed onto to other

shape from texture methods. These other methods which measure shape from texture using

gradients, can then determine precisely what Witkin doesn't: the local directionality which

uniquely determines the surface orientation. This Fusion of information from different texture
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modules is the subject of a later section.

4.2 An autocorrelation approach to texture
Lisa Brown and Haim Shvayster

We have developed a new method for determining local surface orientation from rotationally

invariant textures based on the two-dimensional two-point autocorrelation of an image. The

method does not require the texture to be composed of texels or assume texture regularities such

as equal area texels or equal spacings between texels. It relies only on the projective distortions

of directionally homogeneous textures. The technique is applied to images of textured surfaces

with a single orientation and the results are accurate even in cases where human perception is not

easy. The method is simple and it uses information from all parts of the image.

In this method, we assume that the textured surface is isotropic. By this we mean that the texture

is directionally homogeneous. More precisely, any measurement of length taken over an image

of a surface which is not oriented with respect to the image plane (i.e. not slanted) is independent

of direction.

A practical example of this concept can be portrayed by Witkin's method. Witkin measured the

cumulative length of surface edges in each direction and assumed that for an image of a surface

without slant this measure would be independent of direction. (Uniform probability distribution

of edge directions) Then, using the effect of projecting the image orthographically he computed

precisely how the probability distribution of edge directions changes for different surface

orientations. Based on this, given a particular distribution of edge directions he determined the

orientation of the surface of maximum likelihood. A circle can be considered both as an

example of an image whose edge-lengths are independent of direction or as the polar plot of the

function of edge-lengths versus direction for an image which is independent of direction.

With this formulation, there are a whole class a functions that we could utilize in order to
determine surface orientation, and our task is then to select that function which is optimal for our

purposes. First, let us notice some of the shortcomings and additional constraints involved in

Witkin's method. The assumption in this method is that edges, are directionally homogeneous.

The measurement of edges can take on countless forms, each with its own set of parameters

making the determination of edges a rather arbitrarily defined concept. Furthermore, to ascertain

the length of edges of a certain direction is difficult to do precisely given the discrete nature of
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the input. Lastly and most significantly, assuming directional homogeneity of edges constrains

the textured surface much more than is necessary. Certain textures may be composed of

enormous amounts of information very little of which will be measured as edges.

With these limitations in mind, we would like to find an isotropic function that will give us a

more powerful method. The isotropic function, we suggest, is the well-defined and efficiently

computable, autocorrelation. Traditionally, we consider the 2-D autocorrelation as a function of

a point (ij) whose value is the sum of all products of pairs of points separated by the vector r.

For a given direction, the autocorrelation of an isotropic texture which is not oriented should be a

constant. Thus, for any set of points which compose a centered circle, all values of the function

will be constant. Furthermore, if an isotropic texture is oriented, there will exist sets of points

along nested ellipses which will be constant. All of these ellipses will have the same parameters

and therefore computing the parameters of any one will be sufficient to determine the surface

orientation.

The following describes how the surface orientation is determined from the autocorrelation of an

image. We assume that the image is of an orthographically projected planar textured surface

whose texture is rotationally invariant when the surface is viewed as parallel to the image plane.

As a nomenclature convention, we use the term 'slant' to specify the degree to which the surface

is inclined, where no slant implies that the surface is parallel to the image plane, and a slant of 90

degrees indicates that is maximally oblique. The term 'tilt' specifies the direction of the

inclination which will vary from 0 degrees when the the surface tilts away and to the right to 180

degrees when the surface tilts away and to the left. Notice that the slant of an actual surface may

vary from 0 to 180 (or the tilt from 0 to 360) but when using only the effects of projective

distortion (foreshortening) it is impossible to distinguish between slants that are 180 degree

complements of each other when the tilt is the same (or tilts which are 360 degree compliments

of each other when the slant is the same.) This is because the amount of compression for both

cases is identical. To distinguish these surfaces it is necessary to use the effects of perspective

distortion in which it is possible to determine which part of the surface is relatively closer.

We have shown theoretically that the 2-point 2-D autocorrelation will always be entirely

composed of elliptic iso-contours, where the ellipses are all of the same family. By this we mean

that they all have the same ratio of minor to major axis and the same directionality.
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The second order moments of the autocorrelation image can be used to compute the ration of the

minor axis to the major axis, and also to compute the angle of tilt as follows:

t _O.5tan-1  2 tl1
9'20-1102

a x-y

where x=g20+pt02

and Y= (20-902o) 2+4g 11

where t20 , P02, and I11 are the second order moments of the autocorrelation image

The above equation computes the slope of the principal axis of the image. The principal axis is

the line passing through the centroid of the image with the minimum moment of inertia. This line

coincides with the major axis of an image of a single centered ellipse. In our case, several

ellipses with the same eccentricity and slope are embedded within each other. Since all of these

ellipses have the same principal axis, it is also the line of minimum moment of inertia for the

entire autocorrelation. The equation also gives the slant of the surface in the image (the ratio of

the minor and major axes).

To test our method, we used pictures of natural images taken by two different processes. Using a

CCD video camera, pictures were taken in our lab and digitized by our Grinnell Image

Processor. From both 35mm photographs and high quality pictures found in magazines such as

(National Geographic), we also created digitized images using a Sharp Image Scanner which

was capable of scanning at as high a resolution as 300bpi.

To initially test our method, we computed the autocorrelation using Fast Fourier Transform and

used video images of homogeneous isotropic textures such as pennies, packing bubbles, and

sand. The first obstacle that became apparent was that the autocorrelation of these images

uniformly contained significant noise levels that occurred dominantly in the horizontal direction.

This was particularly evident at points that are far away from the origin where very low values of

correlation are expected. Since all the pictures taken from the CCD camera had this noise but

synthesized images did not, it was hypothesized that this noise was caused by horizontal

smearing due to the CCD camera. Further tests using images of photographs of natural outdoor

scenes such as sidewalks, leaves and grassy hills that were digitally scanned, showed the same
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effect was already present in the photographs.

Since it was evident that the problem of horizontal smearing was due to several commonly found

hardware acquisition systems, we opted for a software solution. In order to diminish the effect of

the horizontal noise, we designed a simple thresholding technique that could extract it, regardless

of the qualities of the original image. The important thing to notice about this design was that it

did not introduce a 'user-specified' threshold parameter. The thresholding process that we used

was to automatically set the thresholding value - above which all values were retained

unchanged - based on the average value found in the autocorrelation along the circumference of

a small circle. This was an effective scheme because for a large range of circle radius tested (5

to 25) on the autocorrelation of several different images the effects of the different radii were

very similar. Thus an arbitrary setting of the circle radius to 10 worked well for almost all of the

pictures we tested.

This worked successfully as can be seen in a representative example shown in Figure 4-5. The

top right picture in the figure shows the noise due to the horizontal smearing on the

autocorrelation. The other three pictures are the same autocorrelation using the automatic-

thresholding with circle radii of 5, 10 and 25. These pictures are also magnified 4 times the

original so that the nested ellipses can be seen clearly and the similar elliptic parameters for all

three pictures is easily discerned. The figure shows how the horizontal noise is effectively

extracted but is insensitive to the circle radius.

Using the automatic-thresholding technique, the results of the Principal Axis method were

improved dramatically. For a large set of natural images which satisfied the assumption of an

isotropic texture we compared the results with those of Witkin's. Most other shape from texture

methods could not be used since few of the natural isotropic textures used contained practical

texels.

4.3 An Integrated System That Unifies Multiple Shape From Texture

Algorithms
Mark L. Moerdler and John R. Kender

This section describes an approach which integrates several conflicting and corroborating shape-

from-texture methods in a single system. The generality of this approach is due to the interaction

between textural cues, allowing the methodology to extract shape information from a wider

51



Figure 4-5: An Example of Computing Surface Orientation Using Autocorrelation
approach
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range of textured surfaces than any individual method. The system uses a new data structure, the

augmented texel, which combines multiple constraints on orientation in a compact notation for a

single surface patch. The augmented texels initially store weighted orientation constraints that

are generated by the system's several independent shape-from-texture components. These

texture components, which run autonomously and may run in parallel, derive constraints by any

of the currently existing shape-from-texture approaches e.g. shape-from-uniform-texel-spacing.

For each surface patch the augmented texel then combines the potentially inconsistent orientation

data, using a Hough transform-like method on a tesselated gaussian spheres, resulting in an

estimate of the most likely orientation for the patch. The system then defines which patches are

part of the same surface, simplifying surface reconstruction.

4.3.1 Design Methodology

The generation of orientation constraints from perspective distortion uses one or more image

texels. The orientation constraints can be considered as local, defiming the orientation of

individual surface patches (called texel patches*) each of which covers a texel or group of texels.

This definition allows a simple extension to the existing shape-from methods beyond their

current limitation of planar surfaces or simple non planer surfaces based on a single textural cue.

The problem can then be considered as one of intelligently fusing the orientation constraints per

patch. Ikeuchi [8] and Aloimonos [1] attempt a similar extension based on constraint

propagation and relaxation for planer and non planer surfaces for using only a single shape-from-

texture method.

The method consists of three major phases, the calculation of orientation constraints and the

generation of texel patches*, the consolidation of constraints into a "most likely" orientation per

patch, and finally the reconstruction of the surface.

During the first phase the different shape-from-texture components generate texel patches and

augmented texels. Each augmented texel consists of the 2-D description of the texel patch and a

Texei patches are defined by how each method utilizes the texels. Some methods (e.g. Uniform texel size) use a
measured change between two texels; in this case the texels patches are the texels themselves. Other methods (e.g.
Uniform texel density) use a change between two areas of the image , in this case the texel patches are these
predefined areas.

*A texel patch is a 2-D description of a subimage that contains one or more textural elements. The number of
elements that compose a patch is dependent on the shape-from-texture algorithm.
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list of weighted.orientation constraints for the patch. The orientation constraints for each patch

are potentially inconsistent or incorrect because the shape-from methods are locally based and

utilize an unsegmented, noisy image.

In the second phase, all the orientation constraints for each augmented texel are consolidated into

a single "most likely" orientation by a Hough-like transformation on a tesselated gaussian sphere.

During this phase the system will also merge together all augmented texels that cover the same

area of the image. This is necessary because some of the shape-from components define "texel"

similarly, and the constraints generated should also be merged.

Finally, the system re-analyzes the orientation constraints to determine which augmented texels

are part of the same constraint family and groups them together. In effect, this segments the

image into regions of similar orientation. In order to build a complete system one may also want

to reconstruct surfaces from these surface patches [3].

The robustness of this approach is illustrated by a system that fuses the orientation constraints of

two existing shape-from methods: shape-from-uniform-texel-spacing [11], and shape-from-

uniform-texel-size [12]. These two methods generate orientation constraints for different

overlapping classes of textures.

4.3.2 Surface Patch And Orientation Constraint Generation

The first phase of the system consists of multiple shape-from-texture components which generate

augmented texels. Each augmented texel consisting of a texel patch, orientation constraints for

the texel patch, and an assurity weighting per constraint. The orientation constraints are stored in

the augmented texel as vanishing points which are mathematically equivalent to a class of other

orientation notations (e.g. tilt and pan as gradient constraints) [13]. Moreover, they are simple to

generate and compact to store.

The assurity weighting is defined separately for each shape-from method and is based upon the

intrinsic error of the method. For example, shape-from-uniform-texel-spacing's assurity

weighting is a function of the total distance between the texel patches used to generate that

constraint. A low assurity value is given when the inter-texel distance is small (1 texel distance )

because under these conditions a small digitization error causes a large orientation error. Above

this threshold the assurity weighting is set high and then starts to decrease as the inter-texel
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distance increases. (The optimal shape of this assurity function is under investigation.)

4.3.3 Most Likely Orientation Generation

Once the orientation constraints have been generated for each augmented texel, the next step

consists of unifying the constraints into one orientation per augmented texel. The major

difficulty in deriving this "most likely" orientation is that the constraints are errorful,

inconsistent, and potentially incorrect. A simple and computationally feasible, solution to this is

to use a gaussian sphere which maps the orientation constraints to points on the sphere [ 13]. A

single vanishing point circumscribes a great circle on the gaussian sphere; two different

constraints generate two great circles that overlap at two points uniquely defining the orientation

of both the visible and invisible sides of the surface patch.

The gaussian sphere is approximated, within the system, by the hierarchical by tesselated

gaussian sphere based on trixels (triangular shaped faces [2, 4, 9]. The top level of the hierarchy

is the icosahedron. At each level, other than the lowest level of the hierarchy, each trixel has

four children. This hierarchical methodology allows the user to specify the accuracy to which

the orientation should be calculated by defining the number of levels of tesselation that are

created.

The system generates the "most likely" orientation for each texel patch by accumulating

evidence for all the constraints for the patch. For each constraint, it recursively visits each trixel

to check if the constraint's great circle falls on the trixel, and then visiting the children if the

result is positive. At each leaf trixel the likelihood value of the trixel is incremented by the

constraint's weight. Although this is a search process the hierarchical nature of this approach

limits the number of trixels that need to be visited.

Once all of the constraints for a texel patch have been considered, a peak finding program smears

the likelihood values at the leaves. Currently, this is done heuristically by a rough approximation

to a gaussian blur. The "most likely" orientation is defined to be the trixel with the largest

smeared value.
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4.3.4 Surface Generation

The final phase of the system generates surfaces from the individual augmented texels. This is

done by re-analyzing the orientation constraints generated by the shape-from methods in order to

determine which augmented texels are part of the same surface. In doing this, the surface

generation is also performing a first approximation to a surface separation and segmentation.

The re-analysis consists of iterating through each augmented texel, considering all its orientation

constraints, and determining which constraints aided in defining the "correct" orientation for the

texel patch as described in the previous phase. If an orientation constraint correctly determined

the orientation of all the texels that were used in generating the constraint, then these augmented

texels are considered as part of the same surface.

4.3.5 Testing The Methodology

The knowledge fusion approach outlined in the previous section has been applied to a test system

that contains two shape-from-texture methods, shape-from-uniform-texel-spacing[11], and

shape-from-uniform-texel-size [12]. Each of the methods is based on a different, limited type of

texture. Shape-from-uniform-texel-spacing derives orientation constraints based on the

assumption that the texels on the surface are of arbitrary shape but are equally spaced. Shape-

from-uniform-texel-size is based on the unrelated criteria that the spacing between texels can be

arbitrary but the size of all of the texels are equivalent but unknown.

Under certain conditions either method may generate incorrect constraints, which the system will

ignored. On textures that are solvable by both methods, they cooperate and correctly define the

textured surface or surfaces in the image. Some images are not solvable by either method by

itself but can only be correctly segmented and the surfaces defined by the interaction of the cues.

Real images contain noise and shadows which are effectively ignored by the system in many

cases. The system treats shadows as potential surface texels and uses them to compute

orientation constraints. Since many texels are used in generating the orientation for each

individual texel the effect of shadow texels is minimized. Even under the conditions where

many shadow texels are found they do not effect the computed orientation of surface texels so

long as the placement of the shadow texels does not mimic perspective distortion.

Noise can occur in many ways: it can create texels, and it can change the shape, size, or position
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of texels. If noise texels are sufficiently small then they are ignored in the texel finding

components of the shape-from methods. When they are large, they are treated in much the same
way as shadow texels and thus often do not affect the orientation of the surface texel patches.

Since many texels are used and more than one shape-from method is employed, noise-created
changes in the shape of texels can perturb the orientation results, but the effect appears negligible

as shown in the experimental results.

The system has been tested over a range of both synthetic and natural textured surfaces, and
appears to show robustness and generality. Figure 4-6 shows a real image of a man-made texture
consisting of equally spaced, equally sized circles. The system finds fourteen texels: the twelve

texels on the surface, plus two noise texels located in the background. It is able to generate the

correct gradient space p and q values for each of the twelve surface texels (see figure 4-7 for the
positions of the texels and figure 4-9 for the individual p and q values.) In figure 4-8 the

orientations of the texel patches are displayed as needle-like surface normal vectors.

The system is also able to segment the image into three surfaces, one of which contains only the
twelve correct surface texels. The noise-generated texels are each individually marked as parts of

separate surfaces.

..... .....

Figure 4-6: A texture of equal spaced and sized circles

Future enhancements to the system would include addition of other shape-from-texture modules,

investigation of other means of fusing information (such as object model approaches), analysis

of curved surfaces, studies of error behavior, and optimization of the fusion approach, especially

in a parallel processing environment.
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Figure 4-7: The numbering of texels for the circles texture

Figure 4-8: Surface normals for the circles texture

Figure 4-9: Orientation values for the circles texture

Texel Numbed Measured p & | Actual D & a error

p =3.0 p = 3.0 00
0 to 8o q -0.0 q = 0.0 00

P1.0 Shadow Texel

q-6.7

10 to 12 p -3.0 p - 3.0 00

q ,0.0 q - 0.0 0 0

13 P:=I1.0
q-6.7 Shadow Texel

58



5. Integrating Stereo and Texture Information
Terrance E. Boult and Mark Moerdler

This section describes a work progressing in its initial phase that concentrates on combining

stereo and texture techniques to determine surface orientation (depth values). As research in

vision has progressed, researchers began to realize that the information available from a single
"shape-from" algorithm would not be sufficient to solve the general vision problem. Prior

vision research has yielded different "modalities" of information including: numerous

approaches to shape-from-texture, binocular stereo, shape-from shading, and shape-from-motion.

Each of these sources of shape information has different domains of applicability, different

computational complexity, and different error characteristics. For any given module, there

would exists numerous images (or regions thereof) for which the module would not correctly

predict surface shape. Some of the sources are complementary, e.g. shape-from-shading will

apply generally only in those regions where shape-from-texture will fail. Other modules can act

in either a competitive or synergistic fashion, e.g. binocular stereo and shape-from-texture will

generally apply in the same regions of an image, and may compete for dominance if their outputs

differ, or can they mutually reinforce a consistent interpretation.

The system under development uses two levels of data fusion, intra-process integration and inter-

process integration. The former is fusion of information generated by all shape-from-X

approaches with certain predetermined similarities, e.g., feature based stereo algorithms with

different features. The latter type of integration is the fusion of the information resulting from

each of the intra-process integration phases, with any {a priori) knowledge, e.g., smoothness

assumptions or model assumptions. However, to allow for some amount of top-down

processing, there is communication between each process through a global blackboard.

The techniques for intra-process integration are dependent on the assumptions, explicit and
implicit, in the underlying processes. Brief presentation are given of two such intra-process

integration techniques. Inasmuch as the final result of the data fusion is assumed to be objects

with smooth surfaces, the inter-process integration should depend on our model(s) of surfaces,

not on the data acquisition techniques. The current system employs a regularization based

surface reconstruction technique for this task. This approach allow the system to independently

weight each piece of information from the intra-process integration phases. Part of this

weighting is a global factor determining which of the modalities has higher priority.
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The interaction among the various computational modules as well as the integration modules, is

accomplished with a blackboard organization. This scheme allows bidirectional flows of

information and provides a means for easy detection of when the information necessary for

modules execution is present in the system. This portion of the system will not be considered

further in this paper.

In a previous section we have discussed an approach to the problem of deriving the orientation

information from multiple independent textual cues. The stereo-based processes of the system

are based on feature matching between the two images. The system uses multiple feature

definitions to insure both good localization and noise resistance. These feature are then

classified as to amount of ambiguity. The system starts with the least ambiguous matches and

reconstructs a disparity surface. Intra-stereo-integration is accomplished through a regularized

reconstruction of the disparity field based on the supposition that the smooth surfaces in the

world give rise to a smooth disparity surface. After all points are considered, the intra-process

module adds its output to the blackboard. Currently this output is depth values at various points,

especially along the "edges" of surfaces in the disparity field and at the locations of feature

points.

The stereo module currently combines two different types of features. These are: (1) zero

crossings of laplacian of gaussians of the images, which are subsequently thresholded (based on

magnitude of crossing) and matched along approximately epi-polar lines using orientation and

sign as a filters), and (2) centroids of texels defined in the shape-from-texture algorithm (with

some of the other texel features used to insure only valid matches). The first of these features

provide a large number of features for the matching algorithm, unfortunately the localization of

these features are not highly accurate. The second set of features are not very dense, however,

they provide very accurate localization of the feature.

The integration of the various features is accomplished by a multi-pass matching algorithm,

where the quality of localization/ambiguity is effects the order in which points are considered,

and previously matched points effect the disambiguation of other points. The basic assumption

underlying the matching algorithm is that the disparity surface should be smooth. The smooth

disparity fields used for this system are based on generalized two dimensional smoothing splines.

The smoothness criterion is similar to one used in smooth surface reconstruction.
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The system starts with the feature points which have "unique matches" and good localization

(i.e., at the current time it begins with centroids of "texel" defined on the blackboard). In all

neighborhoods without these features, lower quality (in terms of localization) features with
"unique" matches are added, however they are given a lower confidence value. Thus when the

smooth surface is fitted to the disparity data, the disparity values generated by lower quality

features will not be as closely approximated.

After all the "unique" matches have been used, the module reconstructs a disparity surface.

This reconstruction is based on the assumption that the disparity surface should give rise to a

smooth surface in depth. Using this disparity surface, the module disambiguates other matches

by choosing the potential match which comes closest to the smooth surface. The distance

between the disparity predicted by the "best" match and the smoothed disparity surface affects

the confidence of the match, which in turns affects the way the disparity surface approximates

that match. The disambiguation takes place in multiple passes each of which incorporates to

features that are increasingly ambiguous.

After all points are considered, the intra-process module adds its output to the blackboard.

Currently, this output is depth values at various points, especially along the "edges" of surFaces

in the disparity field, and depends on the calibration of the imaging system.

5.0.1 Inter-process integration and surface reconstruction

This section describes the inter-process integration phase of the system. This phase of the fusion

process is predicated on the assumption that the world is comprised of piecewise smooth

surfaces/objects. Therefore, the inter-process integration should depend on the assumed

smoothness model(s) for surfaces, not on the data acquisition techniques. There are two main

aspects of the inter-process integration, basic surface building, and the weighting of various

modules.

The approach taken herein is based on generalized smoothing spline functions [3], and is more

efficient for sparse data. The system allows for each data point to be individually weighted in

the contribution to the allowed fitting error choice of these weights is influenced by two things,

the confidence passed for the point from the intra-process integration processes, and the

weighting assigned to the module as a whole.
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The above fusion scheme requires that each data point be given a weight. The correct selection

of these weights is difficult. The study of these weighting will be of paramount importance in

our future research. Currently, the system builds three surfaces
1. one surface from the output of the intra-texture-integration module using the

weighting supplied by that module,

2. one surface from the output of the intra-stereo-integration module using the
weighting supplied by that module, and

3. one surface combining all data. For the combination, the weights are divided by
the number of data-points output by a module. This provides some means for the
texture data to have an effect on the surface. Otherwise the stereo data (with
500-5000 points) would totally dominate the shape information from texture
(which only provides -10-50 data points).

While it would be nice for the system to choose which of these surface is the "correct" one, this

is not possible. When the information is conflicting, the "correct" precept is subjective, and can

often be changed by will in humans. However, when the surfaces agree, the system should be

able to (but currently cannot) take note, and remove the redundant representations.

The system described above is still under development and has only been subject to limited

experimental testing. One example of the system working on camera images is presented in

Figure 5-1. In this example, the curved roll of paper demonstrates a surface where stereo

dominates, but is significantly aided by the texture information.

6
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Figure 5-1: An example of fusing stereo and texture to reconstruct surfaces.
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6. Conclusions
Fast, integrated, multi-modality computer vision algorithms are the necessary basis for the

development of automatic real-time navigation, photo interpretation, and other human-intensive

tasks. The introduction of highly parallel computers such as the Connection Machine makes this

goal feasible. However, the selection, tuning, integration, and mapping of parallel algorithms

onto these architectures is a complex prerequisite to the full use of the power of the new

machines.

In this report we presented the progress of research during the period of the first year. These

include:
* Developed and experimentally verified a new shape-from-texture method that uses

autocorrelation to compute local surface orientation for rotationally invariant
textured surfaces such as natural road surfaces.

* Developed and validated a resource allocation scheme that efficiently maps
pyramid-based vision algorithms onto the Connection Machine, using a combination
of the hypercube and mesh connections.

* Tested micro-edge density based algorithms on road scenes and other natural scenes,
establishing their effectiveness and tuning their free parameters.

* Developed a programming environment to test the multi-resolution parallel
algorithms on a pyramid-like architecture. The environment consists of primitive
functions that simulate all pyramid operations used in low-level and middle-level
vision.

" Implemented versions of Laplacian of Gaussian convolution and zero-crossing
operators that include optional mask decomposition, alternative arithmetic modes,
and the cascading zero-crossings over several resolutions.

" Implemented and tested parallel versions of Witkin's shape- from-texture algorithm,
and decomposed it in order to integrate it with other shape-from methods.
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7. Future Work
Our Objectives for the second year of the project that starts in October 1987 are:

* Demonstrate on the Connection Machine edge extraction and linear interpolatory
algorithms, using multiple resolution techniques.

* Demonstrate on the Connection Machine surface analyses of depth and orientation,
using fast multi-resolution edge, stereo, and surface interpolation algorithms.

* Implement and exercise on the Connection Machine parallel texture segmentation
algorithms and shape-from-texture algorithms based on texel density, and validate
the newly developed auto-correlation approach.

* Demonstrate on a VAX, possibly also on the Connection Machine, the control
interaction of stereo and texture mediated by surface orientation and depth
calculations.
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